CRASH ANALYSIS OF SELECTED ROADWAY SEGMENTS IN PALM BAY

Prepared by:

Kwabena Ofosu, Growth Management Department
Elia Twigg, PE, Division Manager, Public Works Department
Alan Done, Traffic Operations Division, Public Works Department Lori Parker, Right-of-Way Services Division Manager, Public Works Department

5240 Babcock St, NE

Palm Bay, FL 32905

November 25, 2009

Signed: \qquad PE No.: \qquad

John G. Rodgers

Summary

Staff was asked to analyze crashes on selected City roadway segments to enable determinations be made regarding the City streetlight program. Crash records for these roadway sections were complied by roadway segment and time of day. The crash rates (MVM or MEV) were analyzed using formal statistical methods. The result of the analysis is a classification of the locations according to their potential nighttime hazard, which can inform decision makers of the streetlight program.

Table of Contents

Summary ii
List of Tables iv
Introduction 1
Disclaimer 1
Procedures 1
Data 1
Analysis 1
Results 2
Conclusions 4
Appendix

List of Tables

Table 1: Summary of traffic counts and crash statistics by roadway segment .. 3
Table 2: Level of concern based on nighttime crash parameters

Introduction

Staff was asked to conduct an analysis of crashes for selected City roadway segments. The City will use the results of this study as guidance for the streetlight program.

Disclaimer

The scope of work provided for this study is such that this study does not meet the requirements of a formal roadway lighting justification procedure as per Florida Department of Transportation (FDOT) Manual on Uniform Traffic Studies (MUTS). However this study in addition to others can be used as guidance with respect to crashes and countermeasures.

Procedures

The procedures in this study follow the FDOT MUTS for crash analysis, and the National Institute of Standards and Technology (NIST) e-Handbook of Engineering Data Analysis for the statistical analysis.

Data

Crash data for the selected roadway segments were obtained by querying Palm Bay Police Department traffic crash records using the CrashStats database tools developed by the Growth Management Department. Crash rates for a roadway segment were expressed as the number of crashes if 100 million vehicles traversed an equivalent 1-mile segment in one year. This measure is known as the MVM, and is analogous to the measure crashes per million vehicles entering (MEV), used for intersections. Details of the MVM calculations are presented in the Appendix.

Traffic volume counts on the roadway segments were conducted according to industry standards, to determine the average daily traffic on each study segment.

Analysis

The following statistical tests were conducted:

1. F-test (for unequal sample variances): The purpose of this test was to test if the underlying variability of the processes driving the crash rate overall, Citywide, was statistically the same as that of the Citywide crash rate during the day and also during the night. The F-test was also used to test if the underlying variability of the processes driving the Citywide daytime crash rates and Citywide nighttime crash rates were the same or different.
2) T-test: The T-test was used to compare the Citywide overall crash rate versus the Citywide nighttime crash rate, the Citywide overall crash rate versus the Citywide daytime crash rate, and the Citywide daytime crash rate versus the Citywide nighttime crash rate.
3) T-test: The T-test was used on each segment to determine if a) the overall crash rate on that segment was the same as or different from the overall crash rate Citywide, b) the daytime crash rate on that segment was the same as or different from the daytime Citywide crash rate, c) the nighttime crash rate on that segment was the same as or different from the nighttime Citywide crash rate, d) on a particular segment , the daytime crash rate is the same or different from its corresponding nighttime crash rate.

Conditions a), b), and c) above can indicate whether the crash rate on a segment is above the Citywide average, and therefore would determine if the segment is a candidate for improvements/ interventions such as streetlights for nighttime crashes. Condition c) could indicate that a disproportionate number of crashes are occurring during the night regardless of whether the intersection has a higher or lower crash rate than the Citywide average.

Results

1) The results of the F-test indicate that: a) the underlying variability of the processes driving the Citywide overall crash rate and that of the Citywide daytime crash rate are fundamentally the same, b) the underlying variability of the Citywide overall crash rate and that of the Citywide nighttime crash rate are fundamentally different, and c) the underlying variability of the Citywide nighttime crash rate and that of the Citywide daytime crash rate are fundamentally different.
2) The T-tests show that the Citywide overall crash rate, the Citywide daytime crash rate, as well as the Citywide nighttime crash rate are all fundamentally the same.
3) The results of the T-test for the segments are summarized in Table 1, further details as well as the details of the F-tests are provided in the Appendix.

The T-test results for segments were used to classify the study segments into a hierarchy of concern/ priority for improvements. The classification was based on (in order of importance) a) whether the nighttime crash rate exceeded the daytime crash rate for a given segment, b) for a given segment, the nighttime crash rate exceeded the Citywide nighttime crash rate, c) the nighttime crash rate was greater than the critical crash rate for the location to be considered hazardous. The details of the calculation of the critical crash rate for each location are presented in the Appendix.

Based on these criteria the segments were classified as "most hazardous", "hazardous" , and "not hazardous". The results of the classification are presented in Table2.

Table 1: Summary of traffic counts and crash statistics by roadway segment

Roadway	From	то	Length (mile)	Overall			Daytime					Nighttime						mvM Hypothesis Tests			
				ADT	Crashes	100Mvm	ADt	\%ADT	Crashes	\% Crashes	100Mvm	ADT	\%ADT	Crashes	\% Crashes	100Mvm	Critical Crash Rate (100MVM)	Overall vs Overall Ave Day	Day vs Ave Day	Night vs Citywide Ave Night	$\begin{aligned} & \text { Day vs } \\ & \text { Night } \end{aligned}$
Cogan	Paigo	San Filippo	0.59	2,926	1	46.40	2,295	78\%	0	0\%	0.00	632	22\%	1	100\%	214.84	542.53	less	less	less	same
Cogan	San Filippo	Babcock	1.97	2,499	31	504.44	1,870	75\%	22	71\%	478.41	629	25\%	9	29\%	581.84	542.54	same	same	same	same
Eldron	San Filippo	Babcock	1.05	2,818	14	379.03	2,127	75\%	6	43\%	215.22	691	25\%	8	57\%	883.29	542.47	same	same	greater	night > day
Hurley	Malabar	Harper	0.80	$1,595^{1}$	5	313.91	1,252	78\%	2	40\%	159.96	343	22\%	3	60\%	875.83	543.08	same	same	greater	night> day
Malabar	Hurley	Krassner	0.50	6,347	7	176.70	4,551	72\%	4	57\%	140.82	1,796	28\%	3	43\%	267.62	541.91	same	less	less	same
Malabar	Jupiter	Hurley	0.70	10,067	40	454.72	7,726	77\%	28	70\%	414.75	2,341	23\%	12	30\%	586.63	541.80	same	same	same	same
Malabar	Garvey	$\begin{array}{\|l} \hline \text { Jupiter } \\ \hline \end{array}$	0.54	14,155	54	565.94	10,628	75\%	39	72\%	544.38	3,527	25\%	15	28\%	630.92	541.65	greater	same	same	same
Malabar	Minton	Garvey	0.95	18,893	151	673.96	13,989	74\%	123	81\%	741.44	4,904	26\%	28	19\%	481.47^{3}	541.92	greater	greater	same	same
Minton	Jupiter	Malabar	0.82	6,950	160	2249.07	5,188	75\%	129	81\%	2,429.16	1,762	25\%	31	19\%	1718.79	542.06	greater	greater	greater	day > night
San Filippo	Cogan	Eldron	0.87	4,702	3	58.75	3,376	72\%	1	33\%	27.27	1,326	28\%	2	67\%	138.88	543.91	less	less	less	same
Harper	Hurley	Garvey	1.74	705	3	195.91	530	75\%	2	67\%	173.73	175	25\%	1	33\%	263.08	542.36	less	same	less	same
San Filippo	St Andre	Cogan	1.81	3,131	6	84.81	2,321	74\%	4	67\%	76.28	810	26\%	2	33\%	109.28	542.62	less	less	less	same
Wyoming	San Filippo	Babcock	0.36	$2,520$	14	1236.25	1,957	78\%	10	71\%	1,137.07	563	22\%	4	29\%	1580.99	542.62	greater	greater	greater	night > day
Wyoming	Walden	San Filippo	0.68	$2,520^{2}$	4	187.00	$1,957$	78\%	2	50\%	120.40	563	22\%	2	50\%	418.50	542.62	same	less	same	night > day
Lowry	San Filippo	Hemlock	0.77	544	0	0.00	410	75\%	0	-	0.00	134	25\%	0	-	0.00	544.32	less	less	less	same
Sarasota	Lowry	Cogan	0.88	506	1	179.91	375	74\%	1	100\%	242.75	131	26\%	0	0\%	0.00	544.36	same	same	less	same

1. One day of traffic count volumes
2. Less than one day of traffic count data was recorded, therefore the count on the abutting segment of Wyoming (from San Filippo to Babcock) was applied.
3. This location fails all statistical tests to be considered hazardous, however it marginally fails the critical crash rate test. Based on local knowledge and engineering judgment it is considered "hazardous".

Notes:
a) Yellow highlighting indicates segments with nighttime crash rates significantly higher than daytime crash rates, as identified by the statistical hypothesis test. Also the nighttime crash rate is equal t or greater than the citywide nighttime crash rate. b) Blue highlighting indicates segments where nighttime crash rate is higher than Citywide nighttime crash rate, and/ or the observed crash rate is approximately equal to or greater than the critical crash rate for that segment.

Table 2: Level of concern based on nighttime crash parameters

Roadway	From	To	Level of Concern
Eldron	San Filippo	Babcock	Most hazardous
Hurley	Malabar	Harper	Most hazardous
Wyoming	San Filippo	Babcock	Most hazardous
Wyoming	Walden	San Filippo	Most hazardous
Cogan	San Filippo	Babcock	Hazardous
Malabar	Jupiter	Hurley	Hazardous
Malabar	Garvey	Jupiter	Hazardous
Malabar	Minton	Garvey	Hazardous
Minton	Jupiter	Malabar	Hazardous
Cogan	Paigo	San Filippo	Not hazardous
Malabar	Hurley	Krassner	Not hazardous
San Filippo	Cogan	Eldron	Not hazardous
Harper	Hurley	Garvey	Not hazardous
San Filippo	St Andre	Cogan	Not hazardous
Lowry	San Filippo	Hemlock	Not hazardous
Sarasota	Lowry	Cogan	Not hazardous

Conclusions

Staff was asked to conduct analyses of crashes by roadway segment, by time of day, as part of a streetlight evaluation. Crash rates were expressed per hundred million vehicles (MVM). The roadway segments were classified in a hierarchy of concern based on a statistical evaluation of the crash rates.

Appendix

Crash Query Summaries

Crash Rates

According to the Institute of Transportation Engineers (ITE) Traffic Engineering Handbook $5^{\text {th }}$ Edition (1999), crash rates for roadway segments are expressed as crashes per 100 million vehicle miles of travel (100 MVM) by the equation

$$
R_{S E C}=\frac{C * 100,000,000}{365 * T * V * L}
$$

Where : $R_{S E C}=$ crash rate for the roadway section/ segment
$C=$ number of reported crashes
T = time period of the analysis (years). In this study from June 2006 to October 31, 2009, 41 months or 3.42 years
$V=$ annual average daily traffic volume (vehicles per day). In this study Average daily traffic (ADT) was used as an estimate.
$L=$ length of the segment (in miles)

For spots on the roadway e.g. an intersection, the crash rate is expressed as crashes per million vehicles entering the intersection (MEV) using the equation

$$
R_{S P O T}=\frac{C * 1,000,000}{365 * T * V}
$$

Where : $R_{S P O T}=$ crash rate for the spot
$C=$ number of reported crashes
$T=$ time period of the analysis (years).
$V=$ annual average daily traffic entering the spot (from all approaches)(vehicles per day).

The critical crash rate is calculated for each location as follows:

$$
R_{C}=R_{a}+K \sqrt{\frac{R_{a}}{V}}+\frac{1}{2 V}
$$

Where : $R_{C}=$ critical crash rate (100MVM or MEV, whichever is applicable)
$R_{a}=$ average crash rate for locations. In this study this is the Citywide crash rate
$K=$ constant corresponding to the level of confidence of in the conclusions of the analysis. In this study 95% confidence is adopted, therefore $K=1.645$.
$V=$ annual average daily traffic for segment, annual average daily traffic entering the spot (for spot analysis)

Statistical Analyses Presented In NIST Engineering Data Analysis e-Handbook

Reference:_NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook , 11/25/2009.

7.3.1. Do two processes have the same mean?

Testing Given two random samples of measurements, hypotheses related to the means of two processes

$$
Y_{1}, \ldots, Y_{N} \text { and } Z_{1}, \ldots, Z_{N}
$$

from two independent processes (the Y's are sampled from process 1 and the Z's are sampled from process 2), there are three types of questions regarding the true means of the processes that are often asked. They are:

1. Are the means from the two processes the same?
2. Is the mean of process 1 less than or equal to the mean of process 2 ?
3. Is the mean of process 1 greater than or equal to the mean of process 2?

Typical null hypotheses

The corresponding null hypotheses that test the true mean of the first process, \boldsymbol{M}_{1}, against the true mean of the second process, \boldsymbol{M}_{2} are:

1. $\mathrm{H}_{0}: \boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}$
2. $\mathrm{H}_{0}: \boldsymbol{M}_{1}<$ or equal to $\boldsymbol{\mu}_{2}$
3. $\mathrm{H}_{0}: \boldsymbol{\mu}_{1}>$ or equal to $\boldsymbol{\mu}_{2}$

Note that as previously discussed, our choice of which null hypothesis to use is typically made based on one of the following considerations:

1. When we are hoping to prove something new with the sample data, we make that the alternative hypothesis, whenever possible.
2. When we want to continue to assume a reasonable or traditional hypothesis still applies, unless very strong contradictory evidence is present, we make that the null hypothesis, whenever possible.

Basic The basic statistics for the test are the sample means
statistics
from the two
processes

$$
\bar{Y}=\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} Y_{i} \quad \bar{Z}=\frac{1}{N_{2}} \sum_{i=1}^{N Z_{2}} Z_{i}
$$

and the sample standard deviations

$$
\begin{aligned}
& s_{1}=\sqrt{\frac{\sum_{i=1}^{N_{1}}\left(Y_{i}-\bar{Y}\right)^{2}}{N_{1}-1}} \\
& s_{2}=\sqrt{\frac{\sum_{i=1}^{N_{2}}\left(Z_{i}-\bar{Z}\right)^{2}}{N_{2}-1}}
\end{aligned}
$$

with degrees of freedom $v_{1}=N_{1}-1$ and $v_{2}=N_{2}-1$ respectively.

Form of the
test statistic where the
two
processes
have
equivalent standard
deviations

If the standard deviations from the two processes are equivalent, and this should be tested before this assumption is made, the test statistic is

$$
t=\frac{\bar{Y}-\bar{Z}}{s \sqrt{\frac{1}{N_{1}}+\frac{1}{N_{2}}}}
$$

where the pooled standard deviation is estimated as

$$
s=\sqrt{\frac{\left(N_{1}-1\right) s_{1}^{2}+\left(N_{2}-1\right) s_{2}^{2}}{\left(N_{1}-1\right)+\left(N_{2}-1\right)}}
$$

with degrees of freedom $v=N_{1}+N_{2}-2$.

Form of the test statistic where the
two
processes do
NOT have
equivalent

If it cannot be assumed that the standard deviations from the two processes are equivalent, the test statistic is

$$
t=\frac{\bar{Y}-\bar{Z}}{\sqrt{\frac{s_{1}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}}}
$$

standard deviations

Test strategies

Explanation of critical values

The degrees of freedom are not known exactly but can be estimated using the Welch-Satterthwaite approximation

$$
v=\frac{\left(\frac{s_{1}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}\right)^{2}}{\frac{s_{1}^{4}}{N_{1}^{2}\left(N_{1}-1\right)}+\frac{s_{2}^{4}}{N_{2}^{2}\left(N_{2}-1\right)}}
$$

The strategy for testing the <>hypotheses under (1), (2) or (3) above is to calculate the appropriate t statistic from one of the formulas above, and then perform a test at significance level α, where α is chosen to be small, typically $.01, .05$ or .10 . The hypothesis associated with each case enumerated above is rejected if:

1. $|t| \geq t_{\alpha / 2 ; \nu}$
2. $t \geq t_{i ; t}$
3. $t \leq-t_{r ; \psi}$

The critical values from the t table depend on the significance level and the degrees of freedom in the standard deviation. For hypothesis (1) $t_{\alpha i 2, v_{1}} v_{\text {is }}$ the $\alpha / 2$ upper critical value from the t table with v degrees of freedom and similarly for hypotheses (2) and (3).

Example of A new procedure (process 2) to assemble a device is introduced and tested unequal number of data points for possible improvement in time of assembly. The question being addressed is whether the mean, $\boldsymbol{\mu}_{2}$, of the new assembly process is smaller than the mean, μ_{1}, for the old assembly process (process 1). We choose to test hypothesis (2) in the hope that we will reject this null hypothesis and thereby feel we have a strong degree of confidence that the new process is an improvement worth implementing. Data (in minutes required to assemble a device) for both the new and old processes are listed below along with their relevant statistics.

Device	Process 1	(Old)	Process 2 (New)
1	32	36	
2	37	31	
3	35	30	

4	28	31
5	41	34
6	44	36
7	35	29
8	31	32
9	34	31
10	38	
11	42	
		32.2222
	36.0909	2.5386
Mean	4.9082	9
Standard deviation	11	8
No. measurements	10	

Computation From this table we generate the test statistic
of the test statistic

$$
t=\frac{\bar{Y}-\bar{Z}}{\sqrt{s_{1}^{2} / N_{1}+s_{2}^{2} / N_{2}}}=\frac{36.0909-32.2222}{\sqrt{4.9082^{2} / 11+2.5386^{2} / 9}}=2.2694
$$

with the degrees of freedom approximated by

$$
v=\frac{\left(\frac{\varepsilon_{1}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}\right)^{2}}{\frac{s_{1}^{4}}{N_{1}^{2}\left(N_{1}-1\right)}+\frac{s_{2}^{4}}{N_{2}^{2}\left(N_{2}-1\right)}}=\frac{\left(\frac{4.9082^{2}}{11}+\frac{2.5386^{2}}{9}\right)^{2}}{\frac{4.9082^{4}}{1210}+\frac{2.5386^{4}}{648}}=15.5
$$

Decision process

For a one-sided test at the 5% significance level, go to the t table for 5% signficance level, and look up the critical value for degrees of freedom $V=$ 16 . The critical value is 1.746 . Thus, hypothesis (2) is rejected because the test statistic $(t=2.269)$ is greater than 1.746 and, therefore, we conclude that process 2 has improved assembly time (smaller mean) over process 1.

7.3.2. Do two processes have the same standard deviation?

Testing
hypotheses
related to
standard
deviations
from two
processes

Typical null hypotheses

Basic
statistics
from the two
processes

Form of the test statistic

Given two random samples of measurements,

$$
\boldsymbol{Y}_{1}, \ldots, \boldsymbol{Y}_{N} \text { and } Z_{1}, \ldots, Z_{N}
$$

from two independent processes, there are three types of questions regarding the true standard deviations of the processes that can be addressed with the sample data. They are:

1. Are the standard deviations from the two processes the same?
2. Is the standard deviation of one process less than the standard deviation of the other process?
3. Is the standard deviation of one process greater than the standard deviation of the other process?

The corresponding null hypotheses that test the true standard deviation of the first process, σ_{1}, against the true standard deviation of the second process, σ_{2} are:

1. $\mathrm{H}_{0}: \sigma_{1}=\sigma_{2}$
2. $\mathrm{H}_{0}: \sigma_{1} \leq \sigma_{2}$
3. $\mathrm{H}_{0}: \sigma_{1} \geq \sigma_{2}$

The basic statistics for the test are the sample variances

$$
\begin{aligned}
& s_{1}^{2}=\frac{1}{N_{1}-1} \sum_{i=1}^{N 1}\left(Y_{i}-\bar{Y}\right)^{2} \\
& s_{2}^{2}=\frac{1}{N_{2}-1} \sum_{i=1}^{N 2}\left(Z_{i}-\bar{Z}\right)^{2}
\end{aligned}
$$

and degrees of freedom $v_{1}=N_{1}-1$ and $v_{2}=N_{2}-1$, respectively.

The test statistic is

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}
$$

Test The strategy for testing the <>hypotheses under (1), (2) or (3) strategies

Explanation of critical values

Caution on
looking up
critical
values
above is to calculate the F statistic from the formula above, and then perform a test at significance level α, where α is chosen to be small, typically $.01, .05$ or .10 . The hypothesis associated with each case enumerated above is rejected if:

1. $F \leq \frac{1}{F_{\alpha / 2 ; / 2 / 4} / 1 \text { or }} F \geq F_{\alpha / 2 ; / 1 ; / 2}$
2. $F \geq F_{N ; \psi 1 \neq 2}$
$F \leq \frac{1}{F_{i ; \psi+\psi 1}}$

The critical values from the F table depend on the significance level and the degrees of freedom in the standard deviations from the two processes. For hypothesis (1):

- $F_{\alpha_{1} 2_{1}, v_{2}}, v_{1}$ is the upper critical value from the F table with
- $\quad v_{2}=N_{2}-1$ degrees of freedom for the numerator and
- $\quad v_{1}=N_{1}-1$ degrees of freedom for the denominator
and
- $F_{\alpha_{12}, v_{1}, v_{2}}$ is the upper critical value from the F table with
- $\quad v_{1}=N N_{1}-1$ degrees of freedom for the numerator and
- $v_{2}=N_{2}-1$ degrees of freedom for the denominator.

The F distribution has the property that

$$
F_{1-\alpha \mid 2, v_{1}, v_{2}}=\frac{1}{F_{\alpha, 2, v_{2}, v_{1}}}
$$

which means that only upper critical values are required for two-sided tests. However, note that the degrees of freedom are interchanged in the ratio. For example, for a two-sided test at significance level 0.05, go to the F table labeled " 2.5% significance level".

- For $F_{\alpha i Z_{1}, v_{2}, v_{1} \text {, reverse the order of the degrees of }}$
freedom; i.e., look across the top of the table for $v_{2}=N_{2}-1$ and down the table for $v_{1}=N_{1}-1$.
- For $F_{\alpha_{i} Z_{1} v_{1}}, v_{2}$, look across the top of the table for $v_{1}=N_{1}-1$ and down the table for $v_{2}=N_{2}-1$.

Critical values for cases (2) and (3) are defined similarly, except that the critical values for the one-sided tests are based on α rather than on $\alpha / 2$.

Two-sided confidence interval

Example of unequal number of data points

The two-sided confidence interval for the ratio of the two unknown variances (squares of the standard deviations) is shown below.

Two-sided confidence interval with $100(1-\alpha) \%$ coverage for:

$$
\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \quad \frac{1}{F_{\alpha / 2 ; N 1-1 ; N 2-1}}\left(\frac{s_{1}^{2}}{s_{2}^{2}}\right), F_{\alpha / 2 ; N 2-1 ; N 1-1}\left(\frac{s_{1}^{2}}{s_{2}^{2}}\right)
$$

One interpretation of the confidence interval is that if the quantity "one" is contained within the interval, the standard deviations are equivalent.

A new procedure to assemble a device is introduced and tested for possible improvement in time of assembly. The question being addressed is whether the standard deviation, σ_{2}, of the new assembly process is better (i.e., smaller) than the standard deviation, σ_{1}, for the old assembly process. Therefore, we test the null hypothesis that $\sigma_{1} \leq \sigma_{2}$. We form the hypothesis in this way because we hope to reject it, and therefore accept the alternative that σ_{2} is less than σ_{1}. This is hypothesis (2). Data (in minutes required to assemble a device) for both the old and new processes are listed on an earlier page. Relevant statistics are shown below:

Process 1

Mean
36.0909

Standard deviation 4.9082
No. measurements 11
Degrees freedom 10

Process 2

32.2222
2.5874

9
8

Computation From this table we generate the test statistic
of the test statistic

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}=\left(\frac{4.9082}{2.5874}\right)^{2}=3.60
$$

Decision For a test at the 5\% significance level, go to the F table for 5\% process signficance level, and look up the critical value for numerator degrees of freedom $v_{1}=N_{1}-1=10$ and denominator degrees of freedom $v_{2}=N_{2}-1=8$. The critical value is 3.35 . Thus, hypothesis (2) can be rejected because the test statistic $(F=3.60)$ is greater than 3.35. Therefore, we accept the alternative hypothesis that process 2 has better precision (smaller standard deviation) than process 1.

7.2.2. Are the data consistent with the assumed process mean?

The testing of H_{0} for a single population mean

Typical null hypotheses

Test statistic

Given a random sample of measurements, Y_{1}, \ldots, Y_{N}, there are three types of questions regarding the true mean of the population that can be addressed with the sample data. They are:

1. Does the true mean agree with a known standard or assumed mean?
2. Is the true mean of the population less than a given standard?
3. Is the true mean of the population at least as large as a given standard?

The corresponding null hypotheses that test the true mean, $\boldsymbol{\mu}$, against the standard or assumed mean, \mathscr{H}_{0} are:

1. $\quad H 0: \mu=\mu 0$
2. $H_{0}: \mu \leq \mu 0$
3. $H 0: \mu \geq \mu 0$

The basic statistics for the test are the sample mean and the
where the standard deviation is not known
standard deviation. The form of the test statistic depends on whether the poulation standard deviation, σ, is known or is estimated from the data at hand. The more typical case is where the standard deviation must be estimated from the data, and the test statistic is

$$
t=\frac{\bar{Y}-\mu_{0}}{s / \sqrt{N}}
$$

where the sample mean is

$$
\bar{Y}=\frac{1}{N} \sum_{i=1}^{N} Y_{i}
$$

and the sample standard deviation is

$$
s=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}}
$$

with $N-1$ degrees of freedom.

Comparison with critical values

Test statistic
where the

For a test at significance level α, where α is chosen to be small, typically $.01, .05$ or .10 , the hypothesis associated with each case enumerated above is rejected if:

1. $|t| \sum t_{\alpha \mid 2 ; s+1}$
2. $t \sum t \alpha_{1} s^{\prime} 1$
3. $t \leq-t_{1} \alpha_{1}+1$
where ${ }^{t} \alpha_{12} ; N, 1$ is the upper $\alpha / 2$ critical value from the t distribution with N-1 degrees of freedom and similarly for cases (2) and (3). Critical values can be found in the t-table in Chapter 1.

If the standard deviation is known, the form of the test statistic is

```
standard
deviation is known
```

Caution

An illustrative example of the t-test

The test is two- Over a long run the process average for wafer particle counts sided

$$
z=\frac{\bar{Y}-\mu_{0}}{\sigma / \sqrt{N}}
$$

For case (1), the test statistic is compared with $z_{\alpha i 2}$, which is the upper $\alpha / 2$ critical value from the standard normal distribution, and similarly for cases (2) and (3).

If the standard deviation is assumed known for the purpose of this test, this assumption should be checked by a test of hypothesis for the standard deviation.

The mean $=53.7$ counts and the standard deviation $=6.567$ counts. has been 50 counts per wafer, and on the basis of the sample, we want to test whether a change has occurred. The null hypothesis that the process mean is 50 counts is tested against the alternative hypothesis that the process mean is not equal to 50 counts. The purpose of the two-sided alternative is to rule out a possible process change in either direction.

Critical values For a significance level of $\alpha=.05$, the chances of erroneously rejecting the null hypothesis when it is true are 5% or less. (For a review of hypothesis testing basics, see Chapter 1).

Even though there is a history on this process, it has not been stable enough to justify the assumption that the standard deviation is known. Therefore, the appropriate test statistic is the t-statistic. Substituting the sample mean, sample standard deviation, and sample size into the formula for the test statistic gives a value of

$$
t=1.782
$$

with degrees of freedom $=N-1=9$. This value is tested against the upper critical value

$$
\mathrm{t}_{0.025 ; 9}=2.262
$$

from the t-table where the critical value is found under the column labeled 0.025 for the probability of exceeding the critical value and in the row for 9 degrees of freedom. The critical value $\alpha / 2$ is used instead of α because of the twosided alternative (two-tailed test) which requires equal probabilities in each tail of the distribution that add to α.

Conclusion Because the value of the test statistic falls in the interval (2.262, 2.262), we cannot reject the null hypothesis and, therefore, we may continue to assume the process mean is 50 counts.

Analysis of the Data

Outliers were removed from each dataset to prevent skewing of the results.
Overall crash rates per segment
46.40392
504.4408
379.0345
313.9065
176.7016
454.7188
565.941
673.959
58.74899
195.9133
84.8146
1236.249
186.9957
179.9069

mean	361.2668
pop SD	
sample SD	308.0819
	319.7117

Daytime crash rates per segment
478.40518
215.21646
159.96196
140.81995
414.74993
544.37771
741.43975
27.27466
173.73444
76.275894
1137.0713
120.39579
242.75439

mean	
pop SD	
sample SD	344.03672
	304.2153

Nighttime crash rates per segment

$$
214.84
$$

581.84
883.29
875.83
267.62
586.63
630.92
481.47
138.88
263.08
109.28
1580.99
418.50
mean
pop SD

541.01
387.0676
402.8727

1.Citywide Overall Crash rate versus Citywide Daytime Crash rate

F-Test Two-Sample for Variances

	Variable 1	Variable 2
Mean	361.2668	344.0367
Variance	102215.6	100259.2
Observations	14	13
df	13	12
F	1.019513	
P(F<=f) one-tail	0.489698	
F Critical one-tail	2.660177	

Conclusion: Overall SD and daytime SD are the same
t-Test: Two-Sample Assuming Equal Variances

	Variable	Variable
Mean	361.2668	244.0367
Variance	102215.6	100259.2
Observations	14	13
Pooled Variance	101276.5	
Hypothesized Mean		
Difference	0	
df	25	
t Stat	0.140568	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.444669	
t Critical one-tail	1.708141	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.889338	
t Critical two-tail	2.059539	

Conclusion: Overall crash rate and daytime crash rate are the same

2.Citywide Overall Crash rate versus Citywide Nightime Crash rate

F-Test Two-Sample for Variances

	Variable 1	Variable 2
Mean	361.2668	541.0135
Variance	102215.6	162306.4
Observations	14	13
df	13	12
F	0.629769	
P(F<=f) one-tail	0.209777	
F Critical one-tail	0.384075	

Conclusion: Nighttime SD different than overall
t-Test: Two-Sample Assuming Unequal Variances

	Variable	Variable
	1	2
Mean	361.2668	541.0135
Variance	102215.6	162306.4
Observations	14	13
Hypothesized Mean		
Difference	0	
df	23	
t Stat	-1.27785	
P(T<=t) one-tail	0.107025	
t Critical one-tail	1.713872	
P(T<=t) two-tail	0.21405	
t Critical two-tail	2.068658	

Conclusion: Overall crash rate and nighttime crash rate are the same

3.Citywide Daytime Crash rate versus Citywide Nighttime Crash rate

F-Test Two-Sample for Variances

	Variable 1	Variable 2
Mean	344.036724	541.0135431
Variance	100259.1941	162306.4317
Observations	13	13
df	12	12
F	0.617715472	
P(F<=f) one-tail	0.208000981	
F Critical one-tail	0.372212531	

Conclusion: reject null hypothesis. daytime and nighttime SDs are different
t-Test: Two-Sample Assuming Unequal Variances

	Variable 1	Variable 2
Mean	344.036724	541.0135431
Variance	100259.1941	162306.4317
Observations	13	13
Hypothesized Mean		
Difference	0	
df	23	
	-	
t Stat	1.386014781	
P(T<=t) one-tail	0.089517274	
t Critical one-tail	1.713871517	
P(T<=t) two-tail	0.179034547	
t Critical two-tail	2.068657599	

Conclusion: Overall crash rate and nighttime crash rate are statistically the same

General Conclusion:

There are differences in variance, but the underlying process for overall, daytime, and nighttime are the same according to the t-tests.

We can use Citywide "overall", Citywide "daytime", or Citywide "nighttime" averages for the comparison to segments since the t-tests show they are all statistically the same. In this analysis we used nighttime to compare segment nighttime etc. This approach will yield the same result as we have shown Citywide nighttime, Citywide daytime, Citywide overall are all the same.

Hypothesis Tests per Segment - Minitab Output
----- 11/24/2009 4:14:12 PM ---------------------

Welcome to Minitab, press F1 for help.

One-Sample T

Test of $\mathrm{mu}=46.4039 \mathrm{vs}<46.4039$

95\% Upper
N Mean StDev SE Mean Bound T P
$13361.3308 .1 \quad 85.4 \quad 513.63 .680 .998$

One-Sample T

Test of $m u=46.4039$ vs >46.4039

95\% Lower
N Mean StDev SE Mean Bound T P
$13361.3308 .1 \quad 85.4 \quad 209.03 .680 .002$

One-Sample T

Test of $\mathrm{mu}=46.4039$ vs not $=46.4039$

N Mean StDev SE Mean $95 \% \mathrm{Cl}$ T P
$13361.3308 .1 \quad 85.4(175.1,547.4) 3.680 .003 \quad$ Confidence Interval for Citywide overall crash rate

One-Sample T

Test of $m u=504.44$ vs >504.44

95\% Lower

N Mean StDev SE Mean Bound T P
$13 \quad 361.3 \quad 308.1 \quad 85.4 \quad 209.0-1.68 \quad 0.940$

One-Sample T

Test of $\mathrm{mu}=504.44 \mathrm{vs}<504.44$

N Mean StDev SE Mean	Bound	T	P			
13	361.3	308.1	85.4	513.6	-1.68	0.060

One-Sample T

Test of $\mathrm{mu}=504.44$ vs not $=504.44$

N Mean StDev SE Mean $95 \% \mathrm{Cl}$ T P
$13361.3308 .1 \quad 85.4(175.1,547.4)-1.680 .120$

One-Sample T

Test of $\mathrm{mu}=478.41$ vs not $=478.41$
N Mean StDev SE Mean 95% Cl \quad P
$12344.0316 .6 \quad 91.4(142.9,545.2)-1.47 \quad 0.170$ Confidence Interval for City daytime crash rate

One-Sample T
N Mean StDev SE Mean $95 \% \mathrm{Cl} \quad$ T \quad P

| 12 | 541 | 387 | $112(295,787)$ | 0.56 | 0.587 |
| :--- | :--- | :--- | :--- | :--- | :--- | Confidence Interval for Citywide nighttime crash rate

Two-Sample T-Test and Cl

Sample N Mean StDev SE Mean
$\begin{array}{lllll}1 & 12 & 0 & 304 & 88\end{array}$
$2 \quad 12 \quad 215 \quad 387 \quad 112$

Difference = mu (1) - mu (2)

Estimate for difference: -215

95\% CI for difference: $(-511,82)$

T-Test of difference $=0$ (vs not $=$): T -Value $=-1.51 \mathrm{P}$-Value $=0.146 \mathrm{DF}=20$

Two-Sample T-Test and Cl

Sample N Mean StDev SE Mean
$1 \quad 12 \quad 478 \quad 304 \quad 88$

Difference $=m u(1)-m u(2)$
Estimate for difference: -103
95\% CI for difference: $(-400,193)$
T -Test of difference $=0$ (vs not $=$): T -Value $=-0.73 \mathrm{P}$-Value $=0.475 \mathrm{DF}=20$

Two-Sample T-Test and Cl

Sample N Mean StDev SE Mean
$1 \quad 12 \quad 215 \quad 304 \quad 88$
$2 \begin{array}{lllll}2 & 12 & 883 & 387 & 112\end{array}$

Difference $=m u(1)-m u(2)$
Estimate for difference: -668
95\% CI for difference: (-965, -372)
T -Test of difference $=0$ (vs not $=$): T -Value $=-4.70 \mathrm{P}$-Value $=0.000 \quad \mathrm{DF}=20$

Two-Sample T-Test and Cl

Sample N Mean StDev SE Mean

```
1 1412}160 304 88 
2 12 }12876 387 11
```

Difference $=m u(1)-m u(2)$
Estimate for difference: -716
$95 \% \mathrm{Cl}$ for difference: (-1012, -419)
T -Test of difference $=0$ (vs not $=$): T -Value $=-5.04 \mathrm{P}$-Value $=0.000 \quad \mathrm{DF}=20$

Two-Sample T-Test and CI

Sample N Mean StDev SE Mean
$\begin{array}{lllll}1 & 12 & 141 & 304 & 88\end{array}$
$2 \quad 12 \quad 268 \quad 387112$

Difference $=m u(1)-m u(2)$
Estimate for difference: -127
95\% CI for difference: $(-423,170)$
T -Test of difference $=0$ (vs not $=$): T -Value $=-0.89 \mathrm{P}$-Value $=0.383 \mathrm{DF}=20$

Sample N Mean StDev SE Mean
$\begin{array}{lllll}1 & 12 & 415 & 304 & 88\end{array}$
$2 \quad 12 \quad 587 \quad 387112$

Difference $=m u(1)-m u(2)$
Estimate for difference: -172
$95 \% \mathrm{Cl}$ for difference: $(-468,125)$
T -Test of difference $=0$ (vs not $=$): T -Value $=-1.21 \mathrm{P}$-Value $=0.241 \mathrm{DF}=20$

Two-Sample T-Test and CI

Sample N Mean StDev SE Mean
$\begin{array}{lllll}1 & 12 & 544 & 304 & 88\end{array}$
$2 \quad 12 \quad 631 \quad 387112$

Difference $=m u(1)-m u(2)$
Estimate for difference: -87
$95 \% \mathrm{Cl}$ for difference: $(-383,210)$
T -Test of difference $=0$ (vs not $=$): T -Value $=-0.61 \mathrm{P}$-Value $=0.549 \mathrm{DF}=20$

Sample N Mean StDev SE Mean

```
1 14% }12741 304 88 
2 142481 387 112
```

Difference $=m u(1)-m u(2)$
Estimate for difference: 260
$95 \% \mathrm{Cl}$ for difference: $(-36,556)$
T -Test of difference $=0$ (vs not $=$): T -Value $=1.83 \mathrm{P}$-Value $=0.082 \mathrm{DF}=20$

Two-Sample T-Test and Cl

Sample N Mean StDev SE Mean
$1 \quad 122429 \quad 304 \quad 88$
$2 \quad 121719 \quad 387 \quad 112$

Difference $=m u(1)-m u(2)$
Estimate for difference: 710
$95 \% \mathrm{Cl}$ for difference: $(414,1007)$
T -Test of difference $=0$ (vs not $=$): T -Value $=5.00 \mathrm{P}$-Value $=0.000 \mathrm{DF}=20$

Two-Sample T-Test and CI

Sample N Mean StDev SE Mean

1	12	27	304	88

$2 \quad 12139 \quad 387112$

Difference $=m u(1)-m u(2)$
Estimate for difference: -112
95\% CI for difference: $(-408,185)$
T -Test of difference $=0$ (vs not $=$): T -Value $=-0.79 \mathrm{P}$-Value $=0.441 \mathrm{DF}=20$

Two-Sample T-Test and CI

Sample N Mean StDev SE Mean
$\begin{array}{lllll}1 & 12 & 174 & 304 & 88\end{array}$
$2 \quad 12 \quad 263 \quad 387112$

Difference $=m u(1)-m u(2)$
Estimate for difference: -89
$95 \% \mathrm{Cl}$ for difference: $(-386,207)$
T -Test of difference $=0$ (vs not $=$): T -Value $=-0.63 \mathrm{P}$-Value $=0.537 \mathrm{DF}=20$

Two-Sample T-Test and Cl

Sample N Mean StDev SE Mean

1	12	76	304	88

2	12	109	387	112

Difference $=m u(1)-m u(2)$
Estimate for difference: -33
$95 \% \mathrm{Cl}$ for difference: $(-329,263)$
T -Test of difference $=0$ (vs not $=$): T -Value $=-0.23 \mathrm{P}$-Value $=0.819 \mathrm{DF}=20$

Two-Sample T-Test and Cl

Sample N Mean StDev SE Mean
$1 \quad 121137 \quad 304 \quad 88$
$2 \quad 121581 \quad 387 \quad 112$

Difference $=m u(1)-m u(2)$
Estimate for difference: -444
$95 \% \mathrm{Cl}$ for difference: ($-740,-147$)
T -Test of difference $=0$ (vs not $=$): T -Value $=-3.12 \mathrm{P}$-Value $=0.005 \mathrm{DF}=20$

```
Two-Sample T-Test and Cl
Sample N Mean StDev SE Mean
1
2 
Difference =mu(1)-mu(2)
Estimate for difference:-298
95% Cl for difference: (-595, -2)
T-Test of difference = 0 (vs not =): T-Value =-2.10 P-Value = 0.049 DF =20
```

Two-Sample T-Test and Cl

Sample N Mean StDev SE Mean
$\begin{array}{lllll}1 & 12 & 0 & 304 & 88\end{array}$
$\begin{array}{lllll}2 & 12 & 0 & 387 & 112\end{array}$

Difference $=m u(1)-m u(2)$
Estimate for difference: 0
95\% CI for difference: $(-296,296)$

T -Test of difference $=0$ (vs not $=$): T -Value $=0.00 \mathrm{P}$-Value $=1.000 \mathrm{DF}=20$

Two-Sample T-Test and Cl

Sample N Mean StDev SE Mean
$\begin{array}{lllll}1 & 12 & 243 & 304 & 88\end{array}$
$\begin{array}{lllll}2 & 12 & 0 & 387 & 112\end{array}$

Difference $=m u(1)-m u(2)$
Estimate for difference: 243
$95 \% \mathrm{Cl}$ for difference: $(-54,539)$
T-Test of difference $=0($ vs not $=): T$-Value $=1.71$ P-Value $=0.103 \mathrm{DF}=20$

