A public opinion poll surveyed a simple random sample of 1000 respondents. Respondents were classified by Age bracket and by approval or otherwise of a controversial TV advertisement. The results obtained are shown below.

	Res	esponse to TV Ad		
	18 to 35	36 to 59	60 & above	
Approve	200	150	50	
Disapprove	250	300	50	

The pollster wants to test the claim that percentage approval of the TV ad is the same regardless of age group.

Test the claim that response to the TV ad is the same regardless of age group. Use a 0.05 level of significance.

 $H_0: p_1 = p_2 = p_3$ $H_a:$ not all the same, at least one is different $\alpha = 0.05$

The Chi-square table is as follows,

	Res	Totals		
	18 to 35	36 to 59	60 & above	
	x = o = 200	x = 150	50	
Approve	$e = \frac{450*400}{100} = 180$	e = 180	x = 50 e=40 (o-e) ² /e = 2.5	400
	$(o-e)^2/e = 2.22$	$(o-e)^2/e = 5.0$	$(o-e)^2/e = 2.5$	
	x = 250		x = 50	
Disapprove	$e = \frac{450 * 600}{100} = 270$			600
	0 (o-e) ² /e =1.481	(0 0) / 0 - 5.55	$(o-e)^2/e = 1.66$	
Totals	450	450	100	1000

The Chi-square test statistic is

$$X_{calc}^{2} = \sum_{i=1}^{2} \sum_{j=1}^{k} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$$

So, for us,

$$X_{calc}^2 = 2.22 + 5.0 + 2.5 + 1.481 + 3.33 + 1.66 = 16.191$$

$$X_{critical}^2 = X_{\alpha=0.05, df=k-1=2}^2 = 5.991$$

So our

$$X_{calc}^2 > X_{critical}^2$$

So we are in rejection region. So we reject H_0 . This means that the proportion approving the ad is not the same for all age groups, at least one is different.