General Principles

Chapter 1

Overview

• Introduction to mechanics and statics.

- Units of measure (Dimensional Analysis).
- Numerical calculations.

Problem-solving strategies

Definition of Mechanics

Study of what happens to an "object" (the technical name is "<u>body</u>") when <u>forces</u> are applied to it.

Branches of Mechanics

Models Used in Mechanics

Particle: A particle has mass, but its size is negligible.
 E.g. Earth is considered a particle when compared to the sun

Rigid Body: This is a combination of a large number of particles in which all particles remain at a fixed distance from one another. E.g. analysis of a vehicle collision

 Concentrated Force: This represents the effect of a loading which is assumed to act at a point on a body.
 E.g. a truck on a bridge

Units of Measure (Dimensional Analysis) Four fundamental physical quantities (or dimensions). Length

- Mass
- Time
- Force
- Newton's 2^{nd} Law relates them: F = m * a
- This equation can be used to develop systems of units.
- Units are arbitrary names we give to the physical quantities.

Unit Systems

 Force, mass, time and acceleration are related by Newton's 2nd law and are considered *base units* and the fourth unit is derived.

• Which unit is derived varies by the system of units.

• Two unit systems in use in statics:

International System (SI)

• U.S. Customary (USCS)

Unit Systems.

TABLE 1-1 Systems of Units

Name	Length	Time	Mass	Force
International System of Units	meter	second	kilogram	newton*
SI	m	S	kg	$\left(\frac{\text{kg} \cdot \text{m}}{\text{s}^2}\right)$
U.S. Customary FPS	foot	second	$(lb:s^2)$	pound
	ft	s	$\left(\frac{10^{\circ} \text{s}}{\text{ft}}\right)$	ІЬ

*Derived unit.

Conversion Factors

- Conversion factor enable conversion from unit system to the other.
- Work problems in the units given unless told otherwise!

TABLE 1-2	Conversion Factors	ż	
	Unit of		Unit of
Quantity	Measurement (FPS)	Equals	Measurement (SI)
Force	lb		4.448 N
Mass	slug		14.59 kg
Length	ft		0.304 8 m

The International System of Units (SI Units)

• No plurals (e.g., m = 5 kg, not kgs) Separate units with a • (e.g., meter second = m • s) • Typically symbols are in lowercase. Some exceptions include N, Pa, M and G. • Exponential powers apply to units, e.g., cm • cm = cm² Compound prefixes should not be used. Prefixes: *kilometer* = 10^3 m, *mega* Newtons = 10^6 N, etc

Numerical Calculations

Some Rules of Thumb

Dimensions have to be the same on both sides of the equal sign, (e.g. distance = speed × time.) This is called *dimensional homogeneity*

Use an appropriate number of significant figures. Typically

- 3 for answer
- 4 for intermediate calculations
 Rounding off your answers
 greater than 5, round up (3528 → 3530)
 smaller than 5, round down (0.03521 → 0.0352)

Questions & Comments

• Time to solve problems !