

Force Vectors

Chapter 2

Overview

- Vectors
- Vector Operations
- Vector Addition of Forces
- Coplanar Forces
- Cartesian Vectors
- Position Vectors & Force Vectors
- Dot Product

Force Vectors

• The three chains pulling on the hook are exerting three forces on it.

Scalars & Vectors

- Scalar: This is any positive or negative physical quantity characterized completely by its magnitude
- Vector: A physical quantity that is completely described by a magnitude and a direction
- Vector notation: **A** or \vec{A}

Vector Operations

• Scalar Multiplication and Division

Vector Addition

• Parallelogram law

- **R**, is called the *resultant* vector
- How would you do A B ?

Resolution of a Vector

• This is breaking up a vector into components along given axes or resolving the vector

Addition of Coplanar Forces

- We can resolve the components of our vector in the x and y axes, with their respective magnitudes
- *i* and *j* represent *unit vectors* in *x* and *y* directions respectively
- We can therefore represent the force vector F as

$$F = F_x i + F_y j$$

Addition of Coplanar Force Vectors

- The *x* and *y* axes are always perpendicular to each other.
- However, they can be directed at any inclination.
- In this example we can express the force vector

$$\boldsymbol{F} = \boldsymbol{F'}_{x} \boldsymbol{i} + \boldsymbol{F'}_{y} \boldsymbol{j}$$

Addition of Several Vectors

• We can use the resolved components to add several vectors by summing up corresponding components

» Step 1: is to resolve each force into its components

Step 2: add all the x-components together. Add all the y-components. These two totals are the x and y components of the resultant vector.

Step 3 is to find the magnitude and angle of the resultant vector.

Addition of Several Vectors

An illustration of the process

Break the three vectors into components, then add them

• $F_R = F_1 + F_2 + F_3$ = $F_{1x} i + F_{1y} j - F_{2x} i + F_{2y} j + F_{3x} i - F_{3y} j$ = $(F_{1x} - F_{2x} + F_{3x}) i + (F_{1y} + F_{2y} - F_{3y}) j$ = $(F_{Rx}) i + (F_{Ry}) j$

Coplanar Force Vectors

- How would you do the previous example using Triangle method or Parallelogram law ??
- We can also represent a 2-D vector with a magnitude and angle
- $F_{Ry} = F_R \sin \theta$
- $F_{Rx} = F_R \cos\theta$
- $\theta = \tan^{-1}(F_{Ry} / F_{Rx})$
- $F_R = SQRT\{(F_{Ry})^2 + (F_{Ry})^2\}$

Questions & Comments ??

Cartesian Vectors

- Solving Vector problems can be simplified if we represent the vectors in *Cartesian vector form*
- This is particularly the case for 3-D problems

Cartesian Coordinates

 For a vector A, with a magnitude of A, an unit vector is defined as

$$u_A = A / A$$
.

Properties of a unit vector

- Its magnitude is 1
- It is *dimensionless* (no units).
- It points in the same direction as the original vector (**A**).

• in the Cartesian axis system *i*, *j*, and *k* unit vectors along the positive x, y, and z axes respectively.

Cartesian Vector Representation

- In this example, the vector A can be defined as
 A = (A_x i + A_y j + A₇ k)
- The *projection* of vector **A** in the x-y plane is A'.
- The magnitude of A' is $|A'| = (A_X^2 + A_Y^2)^{1/2}$
- The magnitude of the position vector **A** is therefore

$$\mathbf{A} = ((A')^2 + A_Z^2)^{\frac{1}{2}}$$

= $(A_X^2 + A_Y^2 + A_Z^2)^{\frac{1}{2}}$

Direction of a Cartesian Vector

- The direction or orientation of vector A is defined by the angles ά, β, and γ.
- Using trigonometry, *direction cosines* are found using

$$\cos \alpha = \frac{A_x}{A}$$
 $\cos \beta = \frac{A_y}{A}$ $\cos \gamma = \frac{A_z}{A}$

where

 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

Direction of a Cartesian Vector

- Recall, the unit vector is defined by $\mathbf{u}_{A} = \frac{\mathbf{A}}{A} = \frac{A_{x}}{A} \mathbf{i} + \frac{A_{y}}{A} \mathbf{j} + \frac{A_{z}}{A} \mathbf{k}$
- Which can be rewritten as $u_A = \cos \alpha i + \cos \beta j + \cos \gamma k$

Addition of Cartesian Vectors

Extending the concept of 2-D vector addition

$$\mathbf{F}_{R} = \Sigma \mathbf{F} = \Sigma F_{x} \mathbf{i} + \Sigma F_{y} \mathbf{j} + \Sigma F_{z} \mathbf{k}$$

- So that if $\mathbf{A} = A_X \mathbf{i} + A_Y \mathbf{j} + A_Z \mathbf{k}$ and $\mathbf{B} = B_X \mathbf{i} + B_Y \mathbf{j} + B_Z \mathbf{k}$, then
- **A+B** = $(A_X + B_X)i + (A_Y + B_Y)j + (A_Z + B_Z)k$

and

• **A-B** =
$$(A_X - B_X)i + (A_Y - B_Y)j + (A_Z - B_Z)k$$

Problem Solving Tips

- You may be given 3-D vector information as:
 - Magnitude and the coordinate direction angles, or,
 - Magnitude and projection angles.
- It helps to change the representation of the vector into the Cartesian form

Questions & Comments ?

Position Vectors and Force Vectors

Position Vectors

- A position vector is defined as a fixed vector that locates a point in space relative to another point
- A and B have coordinates be (X_A, Y_A, Z_A) and (X_B, Y_B, Z_B) , respectively.

Position Vectors

• The position vector from A to B, r_{AB} , is defined as

$$r_{AB} = \{(X_B - X_A)i + (Y_B - Y_A)j + (Z_B - Z_A)k\}$$
m

Force Vector

- If a force is directed along a line, then we can represent the force vector in Cartesian coordinates by using a unit vector and the force's magnitude.
- position vector is r_{AB} , along two points on that line.
- unit vector describing the line's direction is

$$\boldsymbol{u_{AB}} = (\boldsymbol{r_{AB}}/r_{AB})$$

• Force vector is magnitude of force times the unit vector

$$F = F u_{AB}$$

Questions & Comments

Definition:

The dot product of vectors **A** and **B** is defined as $\mathbf{A} \bullet \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta$.

Where
$$\mathbf{A} \bullet \mathbf{B} = (A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}) \bullet (B_x \mathbf{i} + B_y \mathbf{j} + B_z \mathbf{k})$$

= $A_x B_x + A_y B_y + A_z B_z$

The angle θ is the smallest angle between the two vectors and is always in a range of 0° to 180°.

Properties

- The result of the dot product is a scalar (a positive or negative number).
- The units of the dot product will be the product of the units of the **A** and **B** vectors

• By definition,
$$i \bullet j = 0$$
 and
 $i \bullet i = 1$

- For two known vectors we can use the dot product to find the angle between the them
- $\theta = \cos^{-1} [(A \bullet B)/(|A| |B|)],$ where $0^{\circ} \le \theta \le 180^{\circ}$

- The dot product can be used to determine the projection of a vector parallel and perpendicular to a line aka components
- Step 1: Find the unit vector, **u**_{aa}, along line aa'
- Step 2: Find the scalar projection of **A** along line aa' by $A_{||} = \mathbf{A} \bullet \mathbf{u}_{aa} = A_x U_x + A_y U_y + A_z U_z$

Step 3: the projection can also be written as vector, A₁₁, by using the unit vector u_{aa}, and the magnitude found in step 2.

$$\boldsymbol{A}_{||} = \boldsymbol{A}_{||} \boldsymbol{u}_{aa}$$

• The scalar and vector forms of the perpendicular component can easily be obtained by $A_{\perp} = (A^2 - A_{||}^2)^{\frac{1}{2}}$ and

$$A_{\perp} = A - A_{||}$$

or $A = A_{\perp} + A_{||}$

Questions & Comments

