$$
6-33
$$

$$
\begin{aligned}
\sum M_{E} & =0 \\
16 V_{A} & =30(16)+20(12)+20(8)+40(4) \\
V_{A} & =65 \mathrm{kN} \\
\sum F_{y} & =0 \\
V_{A} & +V_{E}=30+20+20+40 \\
V_{E} & =45 \mathrm{KN} \\
\sum F_{x} & =0 \Rightarrow H_{A}=0
\end{aligned}
$$

Method of Joints

$$
\begin{align*}
& \sum F_{y}=0 \\
& F_{A J}+V_{A}+F_{A I} \sin \theta=0 \\
& F_{A I}+0.71 F_{A I}=-65-(1) \\
& \sum F_{x}=0 \\
& F_{A B}+F_{A I} \cos \theta=0 \\
& F_{A B}+0.71 F_{A I}=0 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \sum F_{y}=0 \\
& -F_{A S}-30=0 \\
& F_{A J}=-30 \mathrm{kN} \quad \text { (compression) } \\
& \text { (comp) }
\end{aligned}
$$

so from (1) $F_{A I}=-650.71(-30)=-43.7 \mathrm{kN}$ and from (2) $F_{A B}=0-0.71(-43.7)=31.03 \mathrm{kN}$ (tension)

$$
\sum F_{x}=0 \Rightarrow F_{J I}=0
$$

$F_{J I}<$ F $_{\text {AI }}^{\sim} \stackrel{F_{1 B}}{\stackrel{20}{20}}$

$$
\begin{aligned}
& \sum F_{y}=0 \\
& 20+F_{A I} \sin \theta+F_{B I}=0 \\
& F_{B I}=-[20+(-43.7)(0.71)] \\
& F_{B I}=11.03 \mathrm{kN} \quad \text { (tension) }
\end{aligned}
$$

$$
\sum F_{x}=0
$$

$$
\begin{aligned}
& F_{J I}+F_{A_{1}} \cos \theta=F_{H I} \\
& F_{H 1}=0+(-43.7)(0.71)=31.03 \mathrm{kN} \\
&
\end{aligned}
$$

$$
\begin{align*}
& \sum F_{y}=0 \\
& 20+F_{H B} \sin \theta+F_{H C}=0 \\
& 0.71 F_{H B}+F_{H C}=-20 \tag{5}
\end{align*}
$$

$$
\begin{align*}
& \sum F_{x}=0 \\
& \quad F_{H 1}+F_{H B} \cos \theta=F_{H G} \\
& 0.71 F_{H B}-F_{H G}=-31.03 \tag{6}
\end{align*}
$$

$$
\begin{aligned}
& \sum F_{y}=0 \Rightarrow F_{C H}=F_{H C}=0 \\
& \sum F_{x}=0 \quad F_{C B}=F_{C B} \quad(7)
\end{aligned}
$$

so from (5)

$$
F_{H B}=\frac{-20}{0.71}=-\frac{28.16 \mathrm{KN}}{(\text { Comp })}
$$

so from (4)

$$
\begin{aligned}
F_{B C} & =31.03-0.71(-28.16) \\
& =51.02 \mathrm{kN} \text { (tension) }
\end{aligned}
$$

from (6)

$$
\begin{aligned}
F_{\text {HGt }} & =0.71(-28.16)+31.03 \\
& =11.03 \mathrm{kN} \text { (tension) }
\end{aligned}
$$

so, so far

We can continue to get all forces.

Method of Sections.
After determining suppont reaction, we now make a cut to find a fore of interest

OR we can base off of other side of cut, Its your call!

$$
\sum F_{y}=0
$$

$$
30+20=65+F_{B H} \sin \theta
$$

$$
F_{B H}=\frac{30+20-65}{0.71}=-21.12 \text { (comp) }
$$ Students, check my arithmetic!!

$$
\begin{aligned}
& \sum F_{A}=\theta \\
& \sum M_{A}=0 \\
& -20(4)-F_{A I}(4)+F_{B H} \sin \theta(4)=0 \\
& F_{H 1}=\frac{+20(4)+(-21.12)(4)}{0.71(4)}=-1.58 \mathrm{kN} \\
& \text { (compression) }
\end{aligned}
$$

My answer does not match my Method of Joints. Students, please thech my arithmetic. They should be the same. Thank usou!

$$
\begin{aligned}
& \sum F_{x}=0 \\
& F_{M 1}+F_{B H} \cos \theta+F_{B C}=0 \\
& F_{B C}=+1.58+21.12(0.71) \\
& =16.57 \mathrm{kN} \text { (tension) }
\end{aligned}
$$

Again, ald not match my Method of Joint calculation; and it should. Please check my arithmetic. Thanks.

