

We have I sopes moving

$$L_{1} = S_{0} + (S_{0} - S_{c}) + (S_{A} - S_{c})$$

$$L_{1} = 2S_{0} - 2S_{c} + S_{A}$$

defferentialing
$$2V_0 - 2V_c + V_A = 0$$
or
$$2(V_0 - V_c) + 4 = 0 - (1)$$

$$V_0 + V_c = 0$$
 -(2)

from (2)

$$V_D = -V_C$$
 -(3)

(3) into (1)

$$2(-V_{c}-V_{c})+4=0$$

 $-4V_{c}=-4$
 $V_{c}=1$ m/s

F12-46

het us resolve velocity of plane & unto verticed and horizontal components. typ horizontal (VB)x = 800 cos60 = 400 = verticed (VB) = 800 Sin 60 = 692.82 V So analyse relative motion for each component Morisontal:

VB/A = VB - VA = -400 - 650 = -1050 Km/h = \$6 - 300 Coston to 650 (-650) = 1050 250 Km/h Vertical: $V_{B/A} = V_{B} - V_{A}$ $= 800 \sin 60 - 0 = -697.8$ 1050 Km/h

tex (592.8 text (1050) = 33.44° $\beta = tan^{-1} (692.8) = 33.44°$ 1 VB/A = VIQ502 + 69282 = BBBBB Km/h So A would observe B coming towards it at 1257. 96 HBGge Km/h at angle of Hours 33.41°

Problems Based on Relative Motion

- 0.11 A swimmer's speed in the direction of flow of river is 16kmh⁻¹. Against the direction of flow of river, the swimmer's speed is 8kmh-1. Calculate the swimmer's speed in still water and the velocity of flow of the river.
- Sol. Let v_s and v_r represent the velocities of swimmer and river respectively.

Now, $v_s + v_r = 16$

 $V_s - V_r = 8$ (1)

Adding, $2v_s = 16 + 8 = 24 \text{kmh}^{-1}$

 $v_{s} = 12 \text{kmh}^{-1}$

From Eq. (1) $12 + v_r = 16$

 $v_{r} = 4 \text{km} \text{h}^{-1}$

- Q.12A train 110m long is traveling at 60kmh⁻¹. In what time it will cross a cyclist moving at 6kmh⁻¹ (a) in the same direction, (b) in the opposite direction?
- Sol. Velocity of train, $v_t = 60 \text{kmh}^{-1}$;

Velocity of cyclist, $v_c = 6 \text{kmh}^{-1}$

(a) Relative velocity of train w.r.t cyclist, $v_{tc} = (60 - 6) \text{kmh}^{-1}$

=
$$54$$
kmh⁻¹ = $54 \times \frac{5}{18}$ ms⁻¹ = 15 ms⁻¹

Now,
$$15 = \frac{100}{t}$$
 or $t = \frac{100}{15}$ s = 7.33s

(b) Relative velocity of train w.r.t cyclist, $v_{tc} = (60 + 6) \text{kmh}^{-1} = 66 \text{kmh}^{-1} = 66 \times \frac{5}{18}$

Now,
$$t = \frac{110 \times 18}{60 \times 5} s = 6s$$

- A police van moving on a highway with a speed of 30kmh⁻¹ fires a bullet at a thief's car speeding away in the same direction with a speed of 192kmh⁻¹. If the muzzle speed of the bullet is 150kmh⁻¹, with what speed does the bullet hit the thief's car?
- Speed of police van, Sol.

$$v_p = 30 \text{kmh}^{-1} = \frac{30 \times 1000}{3600} \, \text{ms}^{-1} = \frac{25}{3} \text{ms}^{-1}$$

Speed of thief's car,

$$v_t = 192 \text{kmh}^{-1} = \frac{192 \times 1000}{3600} \text{ ms}^{-1} = \frac{160}{3} \text{ms}^{-1}$$

Speed of bullet, v_h = speed of police van + speed with which bullet is actually fired

$$v_b = \left(\frac{25}{3} + 150\right) ms^{-1} = \frac{475}{3} ms^{-1}$$

Relative velocity of bullet w.r.t. thief's car,

$$v_{bt} = v_b - v_t = \left(\frac{475}{3} - \frac{160}{3}\right) ms^{-1} = 105 ms^{-1}$$

Problems Based on Relative Motion

$$vT = 18(v - 20)$$
In direction B to A
$$vT = 6(v + 20)$$
On solving equation (1) and (2)
$$V = 40kmh^{-1} \text{ and } t = 9min.$$

- **Q.20** A jet air plane moving a the speed of 500kmh⁻¹ ejects its products of combustion at the speed of 15000kmh⁻¹ relative to it. Find the speed of the latter with respect to an observer on the ground.
- **Sol.** \therefore Velocity of jet plane $V_j = -500 \text{kmh}^{-1}$ Velocity of product of combustion, with respect to jet = $V_p = 1500 \text{kmh}^{-1}$ Relative velocity of product of combustion w.r.t jet = velocity of product velocity of jet \therefore 1500 = V (-500) or V = 1500 500

 $= 1000 \text{kmhr}^{-1}$