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Overview

• General Curvilinear Motion

• Curvilinear Motion: Rectangular Components

• Projectile Motion

http://upload.wikimedia.org/wikipedia/commons/6/64/USA_I_in_heat_1_of_2_man_bobsleigh_at_2010_Winter_Olympics_2010-02-20.jpg


General Curvilinear Motion

• Position

We can consider an 
object’s position on 
a circular path as 
a position vector

r = r(t)
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Curvilinear Motion - Displacement

• Displacement: 
the change in the 
particle’s position.

• Lets say the particle 
moves s along path
in time interval t

• New position, r’ = r + r

• Displacement, r  = r’ – r
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Curvilinear Motion - Velocity

• Velocity
During interval t, 
the average velocity

As t     0, r approaches
the tangent to the curve.

or  

v is the instantaneous velocity 
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Curvilinear Motion - Speed

• Note that v is tangential to the curve.

• The magnitude of v is called the speed

• As t     0, r  s. So the speed
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Curvilinear Motion -Acceleration

• If velocity is v at time t,
and v’ at time t+ t, then
average acceleration

where v = v’ - v
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Curvilinear Motion-Acceleration

• If we plot vectors v and v’ to 
scale from a common origin, 
curved path touching their 
arrowheads is called  
hodograph.

• The hodograph is analogous 
to the path s for the position 
vectors.
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Curvilinear Motion - Acceleration

• If t approaches 0, then v  
will approach the tangent to 
the hodograph.

• Instantaneous acceleration
hodograph
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Curvilinear Motion - Acceleration

• Substituting the instantaneous velocity into 
the instantaneous acceleration equation,
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Curvilinear Motion-Acceleration

• It is pertinent to note that 
acceleration acts tangential
to the hodograph, but
generally not tangential 
to the path of motion s 

• Velocity is always tangential
to the path of motion, whereas
acceleration is always tangential 
to the hodograph
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Conclusion

• Examples



KINEMATICS

Curvilinear Motion: Rectangular 
Components

Jean-Baptiste le Rond d'Alembert



Curvilinear Motion: Rectangular 
Components - Position

• Consider the particle is moving in this 3-d frame 
of reference. The position vector

• where i, j, k are unit vectors in the 
respective directions, and x, y, z are 
functions of time
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Rectangular Components - Position

• At any instant, the magnitude of r

• And the direction of the vector r is specified by the 
unit vector
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Rectangular Components - Velocity

• The derivative of r with respect to time yields 
the velocity

• Note that the magnitude 
and direction of each 
component is a function of 
time.  
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Rectangular Components - Velocity

• So for the i component, for example, we must 
apply the product rule of differentiation

• The first term will be zero if we keep our 
frame of reference fixed so that i does not 
change with time
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Rectangular Components - Velocity

• So for all three components,

• The magnitude of the velocity is

• And the direction of the velocity is
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Rectangular Components -
Acceleration

• Acceleration is the first derivative of velocity 
with respect to time. Or the second derivative 
of position with respect to time

where
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Rectangular Components -
Acceleration

• The acceleration has magnitude

• The acceleration has direction

• Note that acceleration is not tangential to the 
path of motion whereas the velocity always is.

          
222

zyx aaaaa

          a .a
a

u
1



Questions & Comments

• How did that go ?

• Examples



KINEMATICS

Projectile Motion

Niccolo Fontana Tartaglia



What is a Projectile?

• an object projected into the air at an angle, 
and once projected continues in motion by its 
own inertia and is influenced only by the 
downward force of gravity

• Examples: football being kicked or thrown, an 
athlete long jumping, the motion of a cannon 
ball

http://www.physicsclassroom.com/Class/newtlaws/u2l1b.html


Brief History

• Niccolo Tartaglia (1500 – 1557), realized that 
projectiles actually follow a curved path. 

• Yet no one knew what that path was. 

• Galileo (1564 – 1642) accurately described 
projectile motion by showing it could be 
analyzed by separately considering the 
horizontal and vertical components of motion.

• Galileo concluded that the path of any
projectile is a parabola



Analysis
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Acceleration

• We need six equation to completely describe 
projectile motion

• Horizontal component of motion 
(acceleration);

ax = 0 ( 1 )

• Vertical component of motion: the force of 
gravity will cause the body to fall towards the 
ground. (9.8 m/s2 or 32.174 ft/ s2). 

ay = -g ( 2 )



Velocity

• ax = 0. 

This implies the horizontal component of 
velocity is constant from the time of 
projection to the time of impact with the 
ground

Vx = Vxo = Vocosθ ( 3 )



Velocity
• Vertical component of velocity

ay = - g

• We have constant acceleration (i.e. continuous 
motion)

• From the 1st equation of motion:
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Displacement

• Horizontal component: 

distance = velocity * time

  

(5)                 

          

tVx

tVx x

cos0



Displacement

• Vertical component: Applying the 2nd equation 
of motion

• The exponent of the time term confirms the 
parabolic shape of the trajectory
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Conclusion

• We have now fully described the projectile 
motion

• Examples


