AutoCAD 2011

Command Reference

© 2010 Autodesk, Inc. All Rights Reserved. Except as otherwise permitted by Autodesk, Inc., this publication, or parts thereof, may not be reproduced in any form, by any method, for any purpose.

Certain materials included in this publication are reprinted with the permission of the copyright holder.

Trademarks

The following are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and other countries: 3DEC (design/logo), 3December, 3December.com, 3ds Max, Algor, Alias, Alias (swirl design/logo), AliasStudio, AliasIWavefront (design/logo), ATC, AUGI, AutoCAD, AutoCAD Learning Assistance, AutoCAD LT, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface, Autodesk, Autodesk Envision, Autodesk Intent, Autodesk Inventor, Autodesk Map, Autodesk MapGuide, Autodesk Streamline, AutoLISP, AutoSnap, AutoSketch, AutoTrack, Backburner, Backdraft, Built with ObjectARX (logo), Burn, Buzzsaw, CAiCE, Civil 3D, Cleaner, Cleaner Central, ClearScale, Colour Warper, Combustion, Communication Specification, Constructware, Content Explorer, Dancing Baby (image), DesignCenter, Design Doctor, Designer's Toolkit, DesignKids, DesignProf, DesignServer, DesignStudio, Design Web Format, Discreet, DWF, DWG, DWG (logo), DWG Extreme, DWG TrueConvert, DWG TrueView, DXF, Ecotect, Exposure, Extending the Design Team, Face Robot, FBX, Fempro, Fire, Flame, Flare, Flint, FMDesktop, Freewheel, GDX Driver, Green Building Studio, Heads-up Design, Heidi, HumanIK, IDEA Server, i-drop, ImageModeler, iMOUT, Incinerator, Inferno, Inventor, Inventor LT, Kaydara, Kaydara (design/logo), Kynapse, Kynogon, LandXplorer, Lustre, MatchMover, Maya, Mechanical Desktop, Moldflow, Moonbox, MotionBuilder, Movimento, MPA, MPA (design/logo), Moldflow Plastics Advisers, MPI, Moldflow Plastics Insight, MPX, MPX (design/logo), Moldflow Plastics Xpert, Mudbox, Multi-Master Editing, Navisworks, ObjectARX, ObjectDBX, Open Reality, Opticore, Opticore Opus, Pipeplus, PolarSnap, PortfolioWall, Powered with Autodesk Technology, Productstream, ProjectPoint, ProMaterials, RasterDWG, RealDWG, Real-time Roto, Recognize, Render Queue, Retimer,Reveal, Revit, Showcase, ShowMotion, SketchBook, Smoke, Softimage, SoftimageIXSI (design/logo), Sparks, SteeringWheels, Stitcher, Stone, StudioTools, ToolClip, Topobase, Toxik, TrustedDWG, ViewCube, Visual, Visual LISP, Volo, Vtour, Wire, Wiretap, WiretapCentral, XSI, and XSI (design/logo).

All other brand names, product names or trademarks belong to their respective holders.
Disclaimer
THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE AVAILABLE BY AUTODESK, INC. "AS IS." AUTODESK, INC. DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE MATERIALS.

Published by:
Autodesk, Inc.
111 McInnis Parkway
San Rafael, CA 94903, USA

Contents

Commands 1
Chapter 1 3D Commands 3
3D 3
3DALIGN 14
3DARRAY 16
3DCLIP 18
Adjust Clipping Planes Window 19
3DCONFIG 21
Adaptive Degradation and Performance Tuning Dialog Box 21
Performance Tuner Log 24
-3DCONFIG 25
3DCORBIT 27
3DDISTANCE 28
3DDWF 29
3D DWF Publish Dialog Box 30
3DEDITBAR 32
3D Edit Bar Shortcut Menu 35
3DFACE 37
3DFLY 39
3DFORBIT 40
3D Free Orbit Cursor Icons 41
3DMESH 43
3DMOVE 44
3D Move Gizmo Shortcut Menu 47
3DORBIT 49
3D Orbit Shortcut Menu 50
3DORBITCTR 53
3DOSNAP 53
-3DOSNAP 54
3DPAN 55
3DPOLY 56
3DPRINT 57
Send to 3D Print Service Dialog Box 59
Create STL File Dialog Box 61
3DROTATE 61
3D Rotate Gizmo Shortcut Menu 64
3DSCALE 65
3D Scale Gizmo Shortcut Menu 67
3DSIN 68
3D Studio File Import Options Dialog Box 69
3DSWIVEL 72
3DWALK 73
Animation Controls 74
Animation Settings Dialog Box 75
Position Locator Window 76
Walk and Fly Navigation Mappings Balloon 77
3DZOOM 79
Chapter 2 A Commands 81
ABOUT 81
ACISIN 82
ACISOUT 82
ACTBASEPOINT 83
ACTMANAGER 84
Action Macro Manager 84
ACTRECORD 86
Action Recorder Preferences Dialog Box 87
ACTSTOP 88
Action Macro Dialog Box 89
-ACTSTOP 91
ACTUSERINPUT 92
ACTUSERMESSAGE 92
-ACTUSERMESSAGE 93
ADCCLOSE 94
ADCENTER 94
DesignCenter Window 95
Search Dialog Box 99
iv Contents
ADCNAVIGATE 103
ADDSELECTED 103
ADJUST 105
ALIGN 107
AMECONVERT 109
ANALYSISCURVATURE 110
ANALYSISDRAFT 111
ANALYSISOPTIONS 112
Analysis Options Dialog Box 113
ANALYSISZEBRA 116
ANIPATH 117
Motion Path Animation Dialog Box 118
Animation Preview Dialog Box 121
ANNORESET 123
ANNOUPDATE 124
APERTURE 124
APPLOAD 125
Load/Unload Applications Dialog Box 126
Startup Suite Dialog Box 129
ARC 130
ARCHIVE 134
Archive a Sheet Set Dialog Box 135
Modify Archive Setup Dialog Box 139
Archive - Set Password Dialog Box 143
-ARCHIVE 144
AREA 145
ARRAY 148
Array Dialog Box 149
-ARRAY 155
ARX 157
ATTACH 158

- ATTACH 159
ATTACHURL 162
ATTDEF 163
Attribute Definition Dialog Box 163
-ATTDEF 167
ATTDISP 170
ATTEDIT 172
Edit Attributes Dialog Box 172
-ATTEDIT 174
ATTEXT 178
Attribute Extraction Dialog Box 178
-ATTEXT 180
ATTIPEDIT 181
ATTREDEF 182
ATTSYNC 183
AUDIT 184
AUTOCONSTRAIN 185
AUTOPUBLISH 185
Auto Publish Options Dialog Box 186
Chapter 3 B Commands 189
BACTION 189
BACTIONBAR 193
BACTIONSET 194
BACTIONTOOL 196
BASE 202
BASSOCIATE 202
BATTMAN 203
Block Attribute Manager 204
Edit Attribute Dialog Box 206
Block Attribute Settings Dialog Box 211
BATTORDER 212
Attribute Order Dialog Box 213
BAUTHORPALETTE 214
BAUTHORPALETTECLOSE 215
BCLOSE 215
BCONSTRUCTION 216
BCPARAMETER 217
-BCPARAMETER 221
BCYCLEORDER 221
Insertion Cycling Order Dialog Box 222
BEDIT 223
Edit Block Definition Dialog Box 224
Block Editor Ribbon Contextual Tab 226
Block Editor 231
-BEDIT 240
BESETTINGS 240
Block Editor Settings Dialog Box 241
BGRIPSET 244
BHATCH 244
BLIPMODE 245
BLOCK 246
Block Definition Dialog Box 246
-BLOCK 250
BLOCKICON 252
BLOOKUPTABLE 252
Property Lookup Table Dialog Box 253
Add Parameter Properties Dialog Box 254
BMPOUT 256
BOUNDARY 256
Boundary Creation Dialog Box 257
-BOUNDARY 259
BOX 260
BPARAMETER 262
BREAK 269
BREP 272
BROWSER 272
BSAVE 273
BSAVEAS 274
Save Block As Dialog Box 274
BTABLE 276
Block Properties Table Dialog Box 277
Add Parameter Properties Dialog Box 278
New Parameter Dialog Box 280
BTESTBLOCK 281
BVHIDE 282
BVSHOW 283
BVSTATE 284
Visibility States Dialog Box 284
New Visibility State Dialog Box 286
-BVSTATE 287
Chapter 4 C Commands 289
CAL 289
Understand Syntax of Expressions 290
Format Feet and Inches 291
Format Angles 292
Use Points and Vectors 293
Use AutoLISP Variables 294
Use System Variables in Calculations 295
Convert Units of Measurement 296
Use Standard Numeric Functions 296
Calculate a Vector from Two Points 298
Calculate the Length of a Vector 299
Obtain a Point by Cursor 299
Obtain the Last-Specified Point 300
Use Snap Modes in Arithmetic Expressions 300
Convert Points Between UCS and WCS 302
Calculate a Point on a Line 303
Rotate a Point About an Axis 303
Obtain an Intersection Point 304
Calculate a Distance 305
Obtain a Radius 306
Obtain an Angle 307
Calculate a Normal Vector 308
Use Shortcut Functions 310
CAMERA 311
Camera Preview Dialog Box 312
CHAMFER 313
CHAMFEREDGE 317
CHANGE 318
CHECKSTANDARDS 321
Check Standards Dialog Box 322
CHPROP 323
CHSPACE 325
CIRCLE 326
CLASSICIMAGE 329
CLASSICLAYER 330
CLASSICXREF 330
CLEANSCREENON 331
CLEANSCREENOFF 331
CLIP 332
CLOSE 335
CLOSEALL 336
COLOR 336
Select Color Dialog Box 337
-COLOR 344
COMMANDLINE 345
COMMANDLINEHIDE 346
COMPILE 346
CONE 347
CONSTRAINTBAR 350
CONSTRAINTSETTINGS 351
Constraint Settings Dialog Box 352
+CONSTRAINTSETTINGS 355
CONVERT 356
CONVERTCTB 357
CONVERTOLDLIGHTS 358
CONVERTOLDMATERIALS 358
CONVERTPSTYLES 359
CONVTOMESH 361
CONVTONURBS 362
CONVTOSOLID 363
CONVTOSURFACE 366
COPY 369
COPYBASE 370
COPYCLIP 371
COPYHIST 372
COPYLINK 372
COPYTOLAYER 373
Copy To Layer Dialog Box 374
-COPYTOLAYER 375
CUI 375
Customize User Interface Editor 376
Button Editor Dialog Box 387
Image Manager Dialog Box 389
Find and Replace Dialog Box - CUI 391
CUIEXPORT 393
CUIIMPORT 393
CUILOAD 394
Load/Unload Customizations Dialog Box 395
CUIUNLOAD 396
CUSTOMIZE 397
Customize Dialog Box 397
CUTCLIP 399
CVADD 400
CVHIDE 401
CVREBUILD 402
Rebuild Surface Dialog Box 403
Rebuild Curve Dialog Box 405
CVREMOVE 406
CVSHOW 407
CYLINDER 408
Chapter 5 D Commands 413
DATAEXTRACTION 413
Data Extraction Wizard 414
Add Folder Options Dialog Box 426
Data Extraction - Additional Settings Dialog Box 427
New Drawings Found Dialog Box 429
Link External Data Dialog Box 430
Sort Columns Dialog Box 433
Insert Formula Column Dialog Box 434
Set Cell Format Dialog Box 436
Edit Formula Column Dialog Box 439
Filter Column Dialog Box 441
Data Extraction - Outdated Table Dialog Box 443
-DATAEXTRACTION 444
DATALINK 445
Data Link Manager 445
New Excel Data Link Dialog Box 447
DATALINKUPDATE 450
DBCONNECT 452
dbConnect Manager 453
Data View Window 458
Query Editor 466
Column Values Dialog Box 474
Configure a Data Source Dialog Box 474
Data View and Query Options Dialog Box 475
Export Links Dialog Box 478
Export Query Set Dialog Box 479
Export Template Set Dialog Box 479
Find Dialog Box 480
Format Dialog Box 481
Import Query Set Dialog Box 482
Import Template Set Dialog Box 483
Label Template Dialog Box 484
Label Template Properties Dialog Box 489
Link Conversion Dialog Box 490
Link Manager 493
Link Select Dialog Box 494
Link Template Dialog Box 498
Link Template Properties Dialog Box 499
New Label Template Dialog Box 500
New Link Template Dialog Box 501
New Query Dialog Box 502
Replace Dialog Box 503
Select a Database Object Dialog Box 504
Select Data Object Dialog Box 505
Sort Dialog Box 506
Synchronize Dialog Box 507
DBLIST 509
DCALIGNED 509
DCANGULAR 511
DCCONVERT 513
DCDIAMETER 514
DCDISPLAY 515
DCFORM 515
DCHORIZONTAL 516
DCLINEAR 517
DCRADIUS 519
DCVERTICAL 520
DDEDIT 521
Edit Text Dialog Box 522
Edit Attribute Definition Dialog Box 523
DDPTYPE 524
Point Style Dialog Box 524
DDVPOINT 526
Viewpoint Presets Dialog Box 526
DELAY 528
DELCONSTRAINT 528
DETACHURL 529
DGNADJUST 529
DGNATTACH 531
Attach DGN Underlay Dialog Box 532
DGN Underlay Ribbon Contextual tab 534
-DGNATTACH 535
DGNCLIP 537
DGNEXPORT 539
Export DGN Settings Dialog Box 540
DGNEXPORT Conversion Table 544
-DGNEXPORT 547
DGNIMPORT 548
Import DGN Settings Dialog Box 549
DGNIMPORT Conversion Table 552
DGNIMPORT Unit Mapping Table 555
-DGNIMPORT 557
DGNLAYERS 558
DGNMAPPING 559
DGN Mapping Setups Dialog Box 560
New Mapping Setup Dialog Box 561
Modify DGN Mapping Setup Dialog Box 563
Select Color Dialog Box 568
DIM and DIM1 569
DIMALIGNED 571
DIMANGULAR 574
DIMARC 577
DIMBASELINE 579
DIMBREAK 581
DIMCENTER 583
DIMCONSTRAINT 584
DIMCONTINUE 586
DIMDIAMETER 588
DIMDISASSOCIATE 589
DIMEDIT 590
DIMINSPECT 592
Inspection Dimension Dialog Box 593
-DIMINSPECT 595
DIMJOGGED 596
DIMJOGLINE 598
DIMLINEAR 599
DIMORDINATE 603
DIMOVERRIDE 605
DIMRADIUS 606
DIMREASSOCIATE 607
DIMREGEN 609
DIMSPACE 610
DIMSTYLE 611
Dimension Style Manager 612
Create New Dimension Style Dialog Box 614
New, Modify, and Override Dimension Style Dialog Boxes 616
Compare Dimension Styles Dialog Box 645
-DIMSTYLE 646
DIMTEDIT 648
DIST 651
DISTANTLIGHT 652
DIVIDE 655
DONUT 656
DRAGMODE 658
DRAWINGRECOVERY 659
Drawing Recovery Manager 659
DRAWINGRECOVERYHIDE 661
DRAWORDER 662
DSETTINGS 663
Drafting Settings Dialog Box 664
Pointer Input Settings Dialog Box 679
Dimension Input Settings Dialog Box 680
Tooltip Appearance Dialog Box 681
DSVIEWER 683
Aerial View Window 683
DVIEW 686
DWFADJUST 694
DWFATTACH 695
Attach DWF Underlay Dialog Box 696
Substitute DWF Name Dialog Box 698
DWF Underlay Ribbon Contextual Tab 699
-DWFATTACH 700
DWFCLIP 702
DWFFORMAT 703
DWFLAYERS 704
DWGPROPS 704
Drawing Properties Dialog Box 705
Add Custom Property Dialog Box 712
DXBIN 713
Chapter 6 E Commands 715
EATTEDIT 715
Enhanced Attribute Editor 716
EATTEXT 720
-EATTEXT 721
EDGE 722
EDGESURF 723
EDITSHOT 725
ELEV 725
ELLIPSE 727
ERASE 730
ETRANSMIT 731
Create Transmittal Dialog Box 732
Transmittal Setups Dialog Box 735
Import Transmittal Setups Dialog Box 737
Modify Transmittal Setup Dialog Box 738
Transmittal - Set Password Dialog Box 744
-ETRANSMIT 745
EXPLODE 745
EXPORT 748
-EXPORT 749
EXPORTDWF 751
Save as DWF Dialog Box 751
Export to DWF/PDF Options Palette 753
Page Setup Override Dialog Box 754
Precision Presets Manager 755
Export to DWF/PDF Ribbon Panel 758
EXPORTDWFX 759
Save as DWFx Dialog Box 760
EXPORTPDF 761
Save as PDF Dialog Box 762
EXPORTLAYOUT 763
Export Layout to Model Space Drawing Dialog Box 764
EXPORTSETTINGS 765
EXPORTTOAUTOCAD 766
EXTEND 767
EXTERNALREFERENCES 771
External References Palette 772
EXTERNALREFERENCESCLOSE 781
EXTRUDE 781
Chapter 7 F Commands 787
FBXEXPORT 787
FBX Export Options Dialog Box 788
-FBXEXPORT 789
FBXIMPORT 791
FBX Import Options 791
-FBXIMPORT 793
FIELD 795
Field Dialog Box 796
FILL 799
FILLET 800
FILLETEDGE 804
FILTER 805
Object Selection Filters Dialog Box 806
FIND 808
Find and Replace Dialog Box - FIND 809
FLATSHOT 813
Flatshot Dialog Box 814
FREESPOT 817
FREEWEB 820
Chapter 8 G Commands 825
GCCOINCIDENT 825
GCCOLLINEAR 827
GCCONCENTRIC 828
GCEQUAL 829
GCFIX 830
GCHORIZONTAL 831
GCPARALLEL 833
GCPERPENDICULAR 834
GCSMOOTH 835
GCSYMMETRIC 836
GCTANGENT 838
GCVERTICAL 839
GEOGRAPHICLOCATION 840
Define Geographic Location Dialog Box 841
Location Already Exists Dialog Box 842
Coordinate System Already Defined Dialog Box 842
Geographic Location Dialog Box 843
Location Picker Dialog Box 847
GEOMCONSTRAINT 848
GOTOURL 849
GRADIENT 850
GRAPHICSCONFIG 851
Manual Performance Tuning Dialog Box 851
-GRAPHICSCONFIG 857
GRAPHSCR 859
GRID 859
GROUP 861
Object Grouping Dialog Box 861
Order Group Dialog Box 864
-GROUP 866
Chapter 9 H Commands 869
HATCH 869
Hatch and Gradient Dialog Box 870
Hatch Creation Ribbon Contextual Tab 882
Hatch Pattern Palette Dialog Box 887
-HATCH 889
HATCHEDIT 896
Hatch Edit Dialog Box 897
Hatch Editor Ribbon Contextual Tab 898
-HATCHEDIT 903
HATCHGENERATEBOUNDARY 906
HATCHSETBOUNDARY 906
HATCHSETORIGIN 907
HATCHTOBACK 908
HELIX 908
HELP 910
HIDE 911
HIDEOBJECTS 912
HIDEPALETTES 913
HLSETTINGS 913
HYPERLINK 914
Insert Hyperlink Dialog Box 915
Edit Hyperlink Dialog Box 918
Select Place in Document Dialog Box 919
-HYPERLINK 920
HYPERLINKOPTIONS 922
Chapter 10 I Commands 923
ID 923
IMAGE 924
-IMAGE 925
IMAGEADJUST 927
Image Adjust Dialog Box 928
-IMAGEADJUST 929
IMAGEATTACH 930
Attach Image Dialog Box 931
Image Ribbon Contextual tab 933
IMAGECLIP 935
IMAGEQUALITY 936
IMPORT 937
IMPRINT 938
INSERT 940
Insert Dialog Box 941
-INSERT 944
INSERTOBJ 946
Insert Object Dialog Box 947
INTERFERE 948
Interference Settings Dialog Box 950
Interference Checking Dialog Box 952
-INTERFERE 954
INTERSECT 955
ISOLATEOBJECTS 956
ISOPLANE 957
Chapter 11 J Commands 959
JOIN 959
JPGOUT 961
JUSTIFYTEXT 961
Chapter 12 L Commands 963
LAYCUR 963
LAYDEL 964
Delete Layers Dialog Box 965
-LAYDEL 965
LAYER 966
Layer Properties Manager 967
Layer Filter Properties Dialog Box 977
Select Linetype Dialog Box 981
Lineweight Dialog Box 982
Layer Transparency Dialog Box 984
Layer Settings Dialog Box 985
Customize Layer Columns Dialog Box 988
-LAYER 989
LAYERCLOSE 993
LAYERP 993
LAYERPALETTE 994
LAYERPMODE 995
LAYERSTATE 995
Layer States Manager 996
New Layer State to Save Dialog Box 999
Edit Layer State Dialog Box 1000
Select Layers to Add to Layer State Dialog Box 1001
Select Layer States Dialog Box 1002
LAYFRZ 1004
LAYISO 1005
LAYMCH 1007
Change to Layer Dialog Box 1008
-LAYMCH 1008
LAYLCK 1009
LAYMCUR 1010
LAYMRG 1010
Merge Layers Dialog Box 1012
Merge to Layer Dialog Box 1012
-LAYMRG 1013
LAYOFF 1014
LAYON 1015
LAYOUT 1016
LAYOUTWIZARD 1017
Layout Wizard 1018
LAYTHW 1019
LAYTRANS 1019
Layer Translator 1020
Settings Dialog Box 1023
Edit/New Layer Dialog Box 1024
LAYULK 1025
LAYUNISO 1026
LAYVPI 1027
LAYWALK 1028
LayerWalk Dialog Box 1029
LEADER 1032
LENGTHEN 1034
LIGHT 1037
LIGHTLIST 1037
Lights in Model Palette 1038
LIGHTLISTCLOSE 1039
LIMITS 1040
LINE 1041
LINETYPE 1043
Linetype Manager 1043
Load or Reload Linetypes Dialog Box 1046
-LINETYPE 1047
LIST 1049
LIVESECTION 1050
LOAD 1051
LOFT 1052
Loft Settings Dialog Box 1056
LOGFILEOFF 1059
LOGFILEON 1060
LTSCALE 1061
LWEIGHT 1061
Lineweight Settings Dialog Box 1062
-LWEIGHT 1064
Chapter 13 M Commands 1067
MARKUP 1067
Markup Set Manager 1068
MARKUPCLOSE 1073
MASSPROP 1074
MATBROWSERCLOSE 1077
MATBROWSEROPEN 1078
Materials Browser 1079
MATCHCELL 1080
MATCHPROP 1080
Property Settings Dialog Box 1081
MATEDITORCLOSE 1085
MATEDITOROPEN 1085
Materials Editor 1086
Texture Editor 1087
Nested Map Navigation 1097
Material Tool Property Editor 1098
MATERIALASSIGN 1099
MATERIALATTACH 1100
Material Attachment Options Dialog Box 1100
MATERIALMAP 1102
MATERIALS 1106
MATERIALSCLOSE 1107
MEASURE 1107
MEASUREGEOM 1110
MENU 1114
MESH 1114
Mesh Object Ribbon Contextual Panels 1130
Mesh Subobject Ribbon Contextual Panels 1132
MESHCAP 1133
MESHCOLLAPSE 1134
MESHCREASE 1135
MESHEXTRUDE 1137
MESHMERGE 1140
MESHOPTIONS 1142
Mesh Tessellation Options Dialog Box 1142
MESHPRIMITIVEOPTIONS 1146
Mesh Primitive Options Dialog Box 1146
MESHREFINE 1156
MESHSMOOTH 1157
MESHSMOOTHLESS 1158
MESHSMOOTHMORE 1160
MESHSPIN 1161
MESHSPLIT 1162
MESHUNCREASE 1164
MIGRATEMATERIALS 1165
MINSERT 1166
MIRROR 1170
MIRROR3D 1172
MLEADER 1174
MLEADERALIGN 1177
MLEADERCOLLECT 1178
MLEADEREDIT 1179
MLEADERSTYLE 1181
Multileader Style Manager 1181
Modify Multileader Style Dialog Box 1183
Create New Multileader Style Dialog Box 1189
MLEDIT 1190
Multiline Edit Tools Dialog Box 1191
-MLEDIT 1198
MLINE 1199
MLSTYLE 1202
Multiline Style Dialog Box 1203
Create New Multiline Style Dialog Box 1205
New, Modify Multiline Style Dialog Boxes 1206
Load Multiline Styles Dialog Box 1209
MODEL 1210
MOVE 1211
MREDO 1212
MSLIDE 1213
MSPACE 1213
MTEDIT 1214
MTEXT 1214
Text Editor Ribbon Contextual Tab 1215
In-Place Text Editor 1221
Paragraph Dialog Box 1229
Columns Menu 1231
Column Settings Dialog Box 1232
Background Mask Dialog Box 1234
Find and Replace Dialog Box - MTEXT 1235
Stack Properties Dialog Box 1236
AutoStack Properties Dialog Box 1239
-MTEXT 1240
Symbols and Special Characters 1244
MULTIPLE 1247
MVIEW 1247
MVSETUP 1251
MVSETUP on the Model Tab 1252
MVSETUP on a Layout Tab 1253
Chapter 14 N Commands 1257
NAVBAR 1257
3Dconnexion Settings Dialog Box 1258
NAVSMOTION 1259
NAVSMOTIONCLOSE 1260
NAVSWHEEL 1260
SteeringWheels Settings Dialog Box 1261
NAVVCUBE 1264
ViewCube Settings Dialog Box 1265
NETLOAD 1268
NEW 1268
Create New Drawing Dialog Box 1269
Quick Setup Wizard 1272
Advanced Setup Wizard 1274
NEW Command Prompt 1277
NEWSHEETSET 1277
NEWSHOT 1278
NEWVIEW 1278
Chapter 15 O Commands 1281
OBJECTSCALE 1281
Annotative Object Scale Dialog Box 1282
Add Scales to Object Dialog Box 1283
-OBJECTSCALE 1285
OFFSET 1286
OLELINKS 1288
Links Dialog Box 1288
Convert Dialog Box 1290
Change Icon Dialog Box 1291
OLESCALE 1292
OLE Text Size Dialog Box 1292
OOPS 1293
OPEN 1294
Standard File Selection Dialog Boxes 1295
Buzzsaw Location Shortcuts Dialog Box 1300
Log In to Buzzsaw Dialog Box 1301
Create or Edit a Buzzsaw Location Shortcut Dialog Box 1302
Select a Buzzsaw Location Dialog Box 1303
Find Dialog Box 1304
Add/Modify FTP Locations Dialog Box 1307
Partial Open Dialog Box 1309
OPEN Command Prompt 1312
OPENDWFMARKUP 1313
OPENSHEETSET 1313
OPTIONS 1314
Options Dialog Box 1314
Alternate Font Dialog Box 1355
Drawing Window Colors Dialog Box 1357
Command Line Window Font Dialog Box 1359
Light Glyph Appearance Dialog Box 1360
Camera Glyph Appearance Dialog Box 1361
Thumbnail Preview Settings Dialog Box 1361
Plot Style Table Settings Dialog Box 1363
Right-Click Customization Dialog Box 1365
Field Update Settings Dialog Box 1367
Visual Effect Settings Dialog Box 1368
Ribbon Contextual Tab State Options Dialog Box 1369
Advanced Preview Options Dialog Box 1371
Add or Change Profile Dialog Box 1372
Transparency Dialog Box 1373
Hidden Message Settings Dialog Box 1374
Default Scale List Dialog Box 1375
Initial Setup Dialog Box 1376
ORTHO 1379
OSNAP 1380
Chapter 16 P Commands 1383
PAGESETUP 1383
Page Setup Manager 1384
New Page Setup Dialog Box 1387
Page Setup Dialog Box 1389
Changes to a Printer Configuration File Dialog Box (Page Setup) 1396
Import Page Setups Dialog Box 1397
PAN 1399
Panning in Real Time 1400
-PAN 1401
Pan Shortcut Menu 1402
PARAMETERS 1402
Parameters Manager - Drawing Editor 1403
Parameters Manager - Block Editor 1408
-PARAMETERS 1413
PARAMETERSCLOSE 1413
PARTIALOAD 1414
Partial Load Dialog Box 1414
-PARTIALOAD 1417
PARTIALOPEN 1418
PASTEASHYPERLINK 1420
PASTEBLOCK 1420
PASTECLIP 1421
PASTEORIG 1422
PASTESPEC 1423
Paste Special Dialog Box 1423
PCINWIZARD 1425
PDFADJUST 1426
PDFATTACH 1427
-PDFATTACH 1428
Attach PDF Underlay Dialog Box 1429
PDF Underlay Ribbon Contextual tab 1431
PDFCLIP 1432
PDFLAYERS 1434
PEDIT 1435
Multiple Selection (PEDIT) 1436
2D Polyline Selection (PEDIT) 1437
3D Polyline Selection (PEDIT) 1444
3D Polygon Mesh Selection (PEDIT) 1447
PFACE 1449
PLAN 1450
PLANESURF 1452
PLINE 1453
PLOT 1460
Plot Dialog Box 1461
Add Page Setup Dialog Box 1472
Changes to a Printer Configuration File Dialog Box 1473
Plot Job Progress Dialog Box 1474
Update PC3 File with New Printer Dialog Box 1474
-PLOT 1476
PLOTSTAMP 1480
Plot Stamp Dialog Box 1481
User Defined Fields Dialog Box 1483
Advanced Options Dialog Box 1484
-PLOTSTAMP 1487
PLOTSTYLE 1489
Current Plot Style Dialog Box 1490
Select Plot Style Dialog Box 1491
-PLOTSTYLE 1493
PLOTTERMANAGER 1493
Add-a-Plotter Wizard 1494
Plotter Configuration Editor 1495
Configure LPT Port Dialog Box 1508
Settings for COM Port Dialog Box 1508
Advanced Settings for COM Port Dialog Box 1509
PNGOUT 1511
POINT 1512
POINTCLOUD 1513
POINTCLOUDATTACH 1514
Attach Point Cloud Dialog Box 1515
-POINTCLOUDATTACH 1517
POINTCLOUDINDEX 1518
POINTLIGHT 1518
POLYGON 1523
POLYSOLID 1525
PRESSPULL 1529
PREVIEW 1531
PROJECTGEOMETRY 1533
PROPERTIES 1534
Properties Palette 1535
General Properties of Objects 1538
Cell Border Properties Dialog Box 1539
Add Distance or Angle Value Dialog Box 1541
Lighting Properties 1542
PROPERTIESCLOSE 1550
PSETUPIN 1550
-PSETUPIN 1551
PSPACE 1551
PUBLISH 1552
Publish Dialog Box 1553
Publish Options Dialog Box 1557
Publish Block Template Dialog Box (Publish) 1560
Block Template Options Dialog Box (Publish) 1562
DWF Password Dialog Box 1562
Confirm DWF Password Dialog Box 1563
Publish Job Progress Dialog Box 1564
-PUBLISH 1565
PUBLISHTOWEB 1566
Publish to Web Wizard 1567
PURGE 1567
Purge Dialog Box 1568
-PURGE 1571
PYRAMID 1572
Chapter 17 Q Commands 1575
QCCLOSE 1575
QDIM 1575
QLEADER 1577
Leader Settings Dialog Box 1578
QNEW 1582
QSAVE 1583
QSELECT 1584
Quick Select Dialog Box 1585
QTEXT 1587
QUICKCALC 1588
QuickCalc Calculator 1589
Variable Definition Dialog Box 1591
Category Definition Dialog Box 1593
QUICKCUI 1594
QUIT 1594
QVDRAWING 1595
QVDRAWINGCLOSE 1596
QVLAYOUT 1596
QVLAYOUTCLOSE 1597
Chapter 18 R Commands 1599
RAY 1599
RECOVER 1600
RECOVERALL 1601
RECTANG 1602
REDEFINE 1604
REDO 1604
REDRAW 1605
REDRAWALL 1605
REFCLOSE 1606
REFEDIT 1607
Edit Reference Ribbon Contextual Tab 1608
Reference Edit Dialog Box 1609
-REFEDIT 1612
REFSET 1613
REGEN 1614
REGENALL 1615
REGENAUTO 1615
REGION 1616
REINIT 1617
Re-initialization Dialog Box 1618
RENAME 1619
Rename Dialog Box 1619
-RENAME 1621
RENDER 1621
Render Window 1622
Missing Texture Maps Dialog Box 1626
Render Output File Dialog Box 1628
-RENDER 1636
RENDERCROP 1639
RENDERENVIRONMENT 1640
Render Environment Dialog Box 1641
RENDEREXPOSURE 1642
Adjust Rendered Exposure Dialog Box 1643
RENDERPRESETS 1645
Render Presets Manager 1645
Copy Render Preset Dialog Box 1653
RENDERWIN 1654
RESETBLOCK 1655
RESUME 1655
REVCLOUD 1656
REVERSE 1657
REVOLVE 1658
REVSURF 1662
RIBBON 1665
RIBBONCLOSE 1665
ROTATE 1666
ROTATE3D 1667
RPREF 1670
Advanced Render Settings Palette 1670
Output Size Dialog Box 1679
RPREFCLOSE 1681
RSCRIPT 1681
RULESURF 1682
Chapter 19 S Commands 1685
SAVE 1685
SAVEAS 1685
Template Options Dialog Box 1686
Saveas Options Dialog Box 1687
SAVEAS Command Prompts 1690
SAVEIMG 1690
SCALE 1691
SCALELISTEDIT 1693
Edit Drawing Scales Dialog Box 1693
Add Scale Dialog Box 1695
Edit Scale Dialog Box 1696
-SCALELISTEDIT 1697
SCALETEXT 1698
SCRIPT 1699
SECTION 1700
SECTIONPLANE 1703
Section Plane Ribbon Contextual Panel 1706
SECTIONPLANEJOG 1706
SECTIONPLANESETTINGS 1708
Section Settings Dialog Box 1708
New Layer Name Dialog Box 1713
SECTIONPLANETOBLOCK 1715
Generate Section / Elevation Dialog Box 1716
SECURITYOPTIONS 1718
Security Options Dialog Box 1719
Confirm Password Dialog Box 1720
Advanced Options Dialog Box 1721
SEEK. 1721
SELECT 1722
SELECTSIMILAR 1726
Select Similar Settings Dialog Box 1727
SETBYLAYER 1728
SetByLayer Settings Dialog Box 1729
SETIDROPHANDLER 1730
Set Default i-drop Content Type Dialog Box 1731
i-drop Options Dialog Box 1731
SETVAR 1732
SHADEMODE 1733
-SHADEMODE 1733
SHAPE 1734
SHAREWITHSEEK 1735
Share with Autodesk Seek Dialog Box 1735
SHEETSET 1737
Sheet Set Manager 1738
Subset Properties Dialog Box 1745
Publish Sheets Dialog Box 1747
Select Layout as Sheet Template Dialog Box 1749
New Sheet Dialog Box 1750
Rename \& Renumber Sheet Dialog Box 1751
Rename \& Renumber View Dialog Box 1753
Import Layouts as Sheets Dialog Box 1754
Insert Sheet List Table Dialog Box 1756
Edit Sheet List Table Settings Dialog Box 1761
Sheet Set Properties Dialog Box 1763
Sheet Set Custom Properties Dialog Box 1765
Add Custom Property Dialog Box 1766
Resource Drawing Locations Dialog Box 1767
Sheet Properties Dialog Box 1768
New Sheet Selection Dialog Box 1770
Sheet Selections Dialog Box 1771
View Category Dialog Box 1772
List of Blocks Dialog Box 1773
Select Block Dialog Box 1775
SHEETSETHIDE 1776
SHELL 1776
SHOWPALETTES 1777
SIGVALIDATE 1777
Validate Digital Signatures Dialog Box 1778
Digital Signature Contents Dialog Box 1779
SKETCH 1781
SLICE 1782
SNAP 1789
SOLDRAW 1791
SOLID 1792
SOLIDEDIT 1793
SOLPROF 1810
SOLVIEW 1813
SPACETRANS 1817
SPELL 1818
Check Spelling Dialog Box 1819
Check Spelling Settings Dialog Box 1822
Dictionaries Dialog Box 1823
Manage Custom Dictionaries Dialog Box 1825
SPHERE 1827
SPLINE 1828
SPLINEDIT 1834
SPOTLIGHT 1839
STANDARDS 1843
Configure Standards Dialog Box 1844
CAD Standards Settings Dialog Box 1846
STATUS 1848
STLOUT 1850
Create STL File Dialog Box 1851
STRETCH 1851
STYLE 1853
Text Style Dialog Box 1854
-STYLE 1858
STYLESMANAGER 1859
Add-a-Plot-Style-Table Wizard 1860
Plot Style Table Editor 1861
Edit Lineweights Dialog Box 1868
SUBTRACT 1869
SUNPROPERTIES 1871
Sun Properties Window 1872
SUNPROPERTIESCLOSE 1875
SURFBLEND 1875
SURFEXTEND 1877
SURFFILLET 1878
SURFNETWORK 1879
SURFOFFSET 1881
SURFPATCH 1883
SURFSCULPT 1885
SURFTRIM 1886
SURFUNTRIM 1888
SWEEP 1890
SYSWINDOWS 1892
Chapter 20 T Commands 1895
TABLE 1895
Insert Table Dialog Box 1896
Table Ribbon Contextual Tab 1900
-TABLE 1902
Manage Cell Content Dialog Box 1904
TABLEDIT 1906
TABLEEXPORT 1907
TABLESTYLE 1907
Table Style Dialog Box 1908
Create New Table Style Dialog Box 1910
New and Modify Table Style Dialog Boxes 1911
Create New Cell Style Dialog Box 1916
Manage Cell Styles Dialog Box 1917
Table Cell Format Dialog Box 1919
Additional Format Dialog Box 1920
TABLET 1922
TABSURF 1926
TARGETPOINT 1928
TASKBAR 1931
TEXT 1932
Text Shortcut Menu 1936
Special Unicode Characters 1937
Control Codes and Special Characters 1938
TEXT and the TEXTEVAL System Variable 1939
TEXTEDIT 1940
TEXTSCR 1940
TEXTTOFRONT 1941
THICKEN 1942
TIFOUT 1943
TIME 1944
TINSERT 1945
Insert a Block in a Table Cell Dialog Box 1946
TOLERANCE 1946
Geometric Tolerance Dialog Box 1947
Symbol Dialog Box 1951
Material Condition Dialog Box 1953
TOOLBAR 1954
-TOOLBAR 1954
TOOLPALETTES 1956
View Options Dialog Box 1958
Tool Properties Dialog Box 1959
Add Actions Dialog Box 1960
TOOLPALETTESCLOSE 1960
TORUS 1961
TPNAVIGATE 1963
TRACE 1963
TRANSPARENCY 1964
TRAYSETTINGS 1965
Tray Settings Dialog Box 1965
TREESTAT 1966
TRIM 1967
Chapter 21 U Commands 1973
U 1973
UCS 1974
UCSICON 1981
UCS Icon Dialog Box 1983
UCSMAN 1985
UCS Dialog Box 1985
Orthographic UCS Depth Dialog Box 1990
UCS Details Dialog Box 1990
ULAYERS 1992
Underlay Layers Dialog Box 1992
UNDEFINE 1993
UNDO 1994
UNION 1997
UNISOLATEOBJECTS 1999
UNITS 2000
Drawing Units Dialog Box 2000
Direction Control Dialog Box 2003
-UNITS 2005
UPDATEFIELD 2006
UPDATETHUMBSNOW 2007
Chapter 22 V Commands 2009
VBAIDE 2009
VBALOAD 2010
AutoCAD Macro Virus Protection Dialog Box 2011
VBAMAN 2012
VBA Manager 2013
VBARUN 2016
Macros Dialog Box 2016
Select Project Dialog Box 2019
VBA Options Dialog Box 2019
-VBARUN 2021
VBASTMT 2021
VBAUNLOAD 2022
VIEW 2022
View Manager 2023
New View / Shot Properties Dialog Box 2028
Background Dialog Box 2036
Adjust Sun \& Sky Background Dialog Box 2038
Adjust Background Image Dialog Box 2041
-VIEW 2043
VIEWGO 2045
VIEWPLAY 2045
VIEWPLOTDETAILS 2046
Plot and Publish Details Dialog Box 2046
Plot and Publish Status Bar Icon Shortcut Menu 2048
VIEWRES 2049
VISUALSTYLES 2050
Visual Styles Manager 2051
Create New Visual Style and Edit Name and Description Dialog Boxes 2060
-VISUALSTYLES 2061
VISUALSTYLESCLOSE 2062
VLISP 2062
VPCLIP 2063
VPLAYER 2064
VPMAX 2066
VPMIN 2067
VPOINT 2068
VPORTS 2069
Viewports Dialog Box 2070
-VPORTS 2073
VSCURRENT 2077
VSLIDE 2079
VSSAVE 2079
VTOPTIONS 2080
View Transitions Dialog Box 2080
Chapter 23 W Commands 2083
WALKFLYSETTINGS 2083
Walk and Fly Settings Dialog Box 2084
WBLOCK 2085
Write Block Dialog Box 2086
-WBLOCK 2089
WEBLIGHT 2090
WEDGE 2093
WHOHAS 2095
WIPEOUT 2096
WMFIN 2097
WMFOPTS 2100
WMF In Options Dialog Box 2100
WMFOUT 2101
WORKSPACE 2101
WSSAVE 2102
Save Workspace Dialog Box 2102
WSSETTINGS 2103
Workspace Settings Dialog Box 2103
Chapter 24 X Commands 2105
XATTACH 2105
Attach External Reference Dialog Box 2106
External Reference Ribbon Contextual Tab 2109
XBIND 2110
Xbind Dialog Box 2111
-XBIND 2112
XCLIP 2113
XEDGES 2115
XLINE 2116
XOPEN 2118
Open Reference Files Dialog Box 2119
XPLODE 2120
XREF 2122
Bind Xrefs Dialog Box 2122
-XREF 2124
Chapter 25 Z Commands 2127
ZOOM 2127
Zoom Shortcut Menu 2131
Chapter 26 Command Modifiers 2133
Coordinate Filters (Command Modifier) 2133
Direct Distance Entry (Command Modifier) 2134
FROM (Command Modifier) 2134
MTP (Command Modifier) 2135
TRACKING (Command Modifier) 2135
Object Snaps (Command Modifier) 2136
Selection Modes (Command Modifier) 2137
System Variables 2139
Chapter 27 3D System Variables 2141
3DDWFPREC 2141
3DCONVERSIONMODE 2142
3DOSMODE 2142
3DSELECTIONMODE 2143
Chapter 28 A System Variables 2145
ACADLSPASDOC 2145
ACADPREFIX 2145
ACADVER 2146
ACISOUTVER 2146
ACTPATH 2147
ACTRECORDERSTATE 2147
ACTRECPATH 2148
ACTUI 2148
ADCSTATE 2149
AFLAGS 2149
ANGBASE 2150
ANGDIR 2150
ANNOALLVISIBLE 2151
ANNOAUTOSCALE 2151
ANNOTATIVEDWG 2153
APBOX 2153
APERTURE 2154
APPLYGLOBALOPACITIES 2154
APSTATE 2155
AREA 2155
ATTDIA 2156
ATTIPE 2156
ATTMODE 2157
ATTMULTI 2157
ATTREQ 2158
AUDITCTL 2158
AUNITS 2159
AUPREC 2159
AUTODWFPUBLISH 2160
AUTOMATICPUB 2161
AUTOSNAP 2161
Chapter 29 B System Variables 2163
BACKGROUNDPLOT 2163
BACKZ 2164
BACTIONBARMODE 2164
BACTIONCOLOR 2165
BCONSTATUSMODE 2165
BDEPENDENCYHIGHLIGHT 2166
BGRIPOBJCOLOR 2166
BGRIPOBJSIZE 2167
BINDTYPE 2167
BLIPMODE 2168
BLOCKEDITLOCK 2168
BLOCKEDITOR 2169
BLOCKTESTWINDOW 2169
BPARAMETERCOLOR 2170
BPARAMETERFONT 2170
BPARAMETERSIZE 2171
BPTEXTHORIZONTAL 2171
BTMARKDISPLAY 2172
BVMODE 2172
Chapter 30 C System Variables 2175
CALCINPUT 2175
CAMERADISPLAY 2175
CAMERAHEIGHT 2176
CANNOSCALE 2176
CANNOSCALEVALUE 2177
CAPTURETHUMBNAILS 2177
CBARTRANSPARENCY 2178
CCONSTRAINTFORM 2178
CDATE 2179
CECOLOR 2179
CELTSCALE 2180
CELTYPE 2180
CELWEIGHT 2181
CENTERMT 2181
CETRANSPARENCY 2182
CHAMFERA 2183
CHAMFERB 2183
CHAMFERC 2183
CHAMFERD 2184
CHAMMODE 2184
CIRCLERAD 2184
CLASSICKEYS 2185
CLAYER 2185
CLEANSCREENSTATE 2186
CLISTATE 2186
CMATERIAL 2187
CMDACTIVE 2187
CMDDIA 2188
CMDECHO 2188
CMDINPUTHISTORYMAX 2189
CMDNAMES 2189
CMLEADERSTYLE 2190
CMLJUST 2190
CMLSCALE 2191
CMLSTYLE 2191
COMPASS 2192
CONSTRAINTBARDISPLAY 2192
CONSTRAINTBARMODE 2193
CONSTRAINTINFER 2194
CONSTRAINTNAMEFORMAT 2194
CONSTRAINTRELAX 2195
CONSTRAINTSOLVEMODE 2196
COORDS 2196
COPYMODE 2197
CPLOTSTYLE 2197
CPROFILE 2198
CROSSINGAREACOLOR 2199
CSHADOW 2199
CTAB 2200
CTABLESTYLE 2200
CULLINGOBJ 2201
CULLINGOBJSELECTION 2201
CURSORSIZE 2202
CVPORT 2203
Chapter 31 D System Variables 2205
DATALINKNOTIFY 2205
DATE 2206
DBCSTATE 2207
DBLCLKEDIT 2207
DBMOD 2208
DCTCUST 2208
DCTMAIN 2209
DEFAULTGIZMO 2210
DEFAULTLIGHTING 2213
DEFAULTLIGHTINGTYPE 2214
DEFLPLSTYLE 2214
DEFPLSTYLE 2215
DELOBJ 2216
DEMANDLOAD 2217
DGNFRAME 2218
DGNIMPORTMAX 2218
DGNMAPPINGPATH 2219
DGNOSNAP 2219
DIASTAT 2220
DIGITIZER 2221
DIMADEC 2221
DIMALT 2222
DIMALTD 2222
DIMALTF 2223
DIMALTRND 2223
DIMALTTD 2224
DIMALTTZ 2224
DIMALTU 2225
DIMALTZ 2226
DIMANNO 2226
DIMAPOST 2227
DIMARCSYM 2227
DIMASSOC 2228
DIMASZ 2229
DIMATFIT 2229
DIMAUNIT 2230
DIMAZIN 2231
DIMBLK 2231
DIMBLK1 2233
DIMBLK2 2234
DIMCEN 2234
DIMCLRD 2235
DIMCLRE 2235
DIMCLRT 2236
DIMCONSTRAINTICON 2236
DIMDEC 2237
DIMDLE 2237
DIMDLI 2238
DIMDSEP 2238
DIMEXE 2239
DIMEXO 2239
DIMFRAC 2239
DIMFXL 2240
DIMFXLON 2240
DIMGAP 2241
DIMJOGANG 2241
DIMJUST 2242
DIMLDRBLK 2242
DIMLFAC 2243
DIMLIM 2244
DIMLTEX1 2244
DIMLTEX2 2245
DIMLTYPE 2245
DIMLUNIT 2245
DIMLWD 2246
DIMLWE 2247
DIMPOST 2247
DIMRND 2248
DIMSAH 2248
DIMSCALE 2249
DIMSD1 2249
DIMSD2 2250
DIMSE1 2250
DIMSE2 2251
DIMSOXD 2251
DIMSTYLE 2252
DIMTAD 2252
DIMTDEC 2253
DIMTFAC 2254
DIMTFILL 2254
DIMTFILLCLR 2255
DIMTIH 2255
DIMTIX 2256
DIMTM 2256
DIMTMOVE 2257
DIMTOFL 2257
DIMTOH 2258
DIMTOL 2258
DIMTOLJ 2259
DIMTP 2259
DIMTSZ 2260
DIMTVP 2260
DIMTXSTY 2261
DIMTXT 2261
DIMTXTDIRECTION 2262
DIMTZIN 2262
DIMUPT 2263
DIMZIN 2263
DISPSILH 2264
DISTANCE 2265
DIVMESHBOXHEIGHT 2265
DIVMESHBOXLENGTH 2266
DIVMESHBOXWIDTH 2267
DIVMESHCONEAXIS 2267
DIVMESHCONEBASE 2268
DIVMESHCONEHEIGHT 2269
DIVMESHCYLAXIS 2270
DIVMESHCYLBASE 2271
DIVMESHCYLHEIGHT 2272
DIVMESHPYRBASE 2273
DIVMESHPYRHEIGHT 2274
DIVMESHPYRLENGTH 2275
DIVMESHSPHEREAXIS 2276
DIVMESHSPHEREHEIGHT 2277
DIVMESHTORUSPATH 2278
DIVMESHTORUSSECTION 2278
DIVMESHWEDGEBASE 2279
DIVMESHWEDGEHEIGHT 2280
DIVMESHWEDGELENGTH 2281
DIVMESHWEDGESLOPE 2282
DIVMESHWEDGEWIDTH 2283
DONUTID 2284
DONUTOD 2284
DRAGMODE 2285
DRAGP1 2286
DRAGP2 2286
DRAGVS 2286
DRAWORDERCTL 2287
DRSTATE 2288
DTEXTED 2288
DWFFRAME 2289
DWFOSNAP 2289
DWGCHECK 2290
DWGCODEPAGE 2291
DWGNAME 2291
DWGPREFIX 2292
DWGTITLED 2292
DXEVAL 2293
DYNCONSTRAINTMODE 2294
DYNDIGRIP 2294
DYNDIVIS 2295
DYNMODE 2296
DYNPICOORDS 2297
DYNPIFORMAT 2297
DYNPIVIS 2298
DYNPROMPT 2298
DYNTOOLTIPS 2299
Chapter 32 E System Variables 2301
EDGEMODE 2301
ELEVATION 2302
ENTERPRISEMENU 2302
ERHIGHLIGHT 2302
ERRNO 2303
ERSTATE 2304
EXPERT 2304
EXPORTEPLOTFORMAT 2305
EXPORTMODELSPACE 2306
EXPORTPAPERSPACE 2306
EXPORTPAGESETUP 2307
EXPLMODE 2307
EXTMAX 2308
EXTMIN 2308
EXTNAMES 2309
Chapter 33 F System Variables 2311
FACETERDEVNORMAL 2311
FACETERDEVSURFACE 2312
FACETERGRIDRATIO 2312
FACETERMAXEDGELENGTH 2313
FACETERMAXGRID 2314
FACETERMESHTYPE 2314
FACETERMINUGRID 2315
FACETERMINVGRID 2315
FACETERPRIMITIVEMODE 2316
FACETERSMOOTHLEV 2317
FACETRATIO 2318
FACETRES 2318
FIELDDISPLAY 2319
FIELDEVAL 2319
FILEDIA 2320
FILLETRAD 2321
FILLETRAD3D 2321
FILLMODE 2322
FONTALT 2322
FONTMAP 2323
FRAME 2323
FRONTZ 2324
FULLOPEN 2325
FULLPLOTPATH 2325
Chapter 34 G System Variables 2327
GEOLATLONGFORMAT 2327
GEOMARKERVISIBILITY 2328
GFANG 2328
GFCLR1 2329
GFCLR2 2329
GFCLRLUM 2330
GFCLRSTATE 2330
GFNAME 2331
GFSHIFT 2331
GLOBALOPACITY 2332
GRIDDISPLAY 2333
GRIDMAJOR 2333
GRIDMODE 2334
GRIDSTYLE 2334
GRIDUNIT 2335
GRIPBLOCK 2335
GRIPCOLOR 2336
GRIPCONTOUR 2336
GRIPDYNCOLOR 2337
GRIPHOT 2337
GRIPHOVER 2338
GRIPMULTIFUNCTIONAL 2338
GRIPOBJLIMIT 2339
GRIPS 2339
GRIPSIZE 2340
GRIPSUBOBJMODE 2341
GRIPTIPS 2341
GTAUTO 2342
GTDEFAULT 2343
GTLOCATION 2343
Chapter 35 H System Variables 2345
xxxviii Contents
HALOGAP 2345
HANDLES 2345
HELPPREFIX 2346
HIDEPRECISION 2346
HIDETEXT 2347
HIGHLIGHT 2347
HPANG 2348
HPANNOTATIVE 2348
HPASSOC 2349
HPBACKGROUNDCOLOR 2349
HPBOUND 2350
HPBOUNDRETAIN 2350
HPCOLOR 2351
HPDLGMODE 2352
HPDOUBLE 2352
HPDRAWORDER 2353
HPGAPTOL 2354
HPINHERIT 2354
HPISLANDDETECTION 2355
HPISLANDDETECTIONMODE 2355
HPLAYER 2356
HPMAXLINES 2356
HPNAME 2356
HPOBJWARNING 2357
HPORIGIN 2357
HPORIGINMODE 2358
HPQUICKPREVIEW 2358
HPSCALE 2359
HPSEPARATE 2359
HPSPACE 2360
HPTRANSPARENCY 2360
HYPERLINKBASE 2361
Chapter 36 I System Variables 2363
IMAGEFRAME 2363
IMAGEHLT 2364
IMPLIEDFACE 2364
INDEXCTL 2365
INETLOCATION 2365
INPUTHISTORYMODE 2366
INSBASE 2367
INSNAME 2367
INSUNITS 2367
INSUNITSDEFSOURCE 2369
INSUNITSDEFTARGET 2370
INTELLIGENTUPDATE 2372
INTERFERECOLOR 2372
INTERFEREOBJVS 2373
INTERFEREVPVS 2373
INTERSECTIONCOLOR 2374
INTERSECTIONDISPLAY 2374
ISAVEBAK 2375
ISAVEPERCENT 2375
ISOLINES 2376
Chapter 37 L System Variables 2377
LARGEOBJECTSUPPORT 2377
LASTANGLE 2377
LASTPOINT 2378
LASTPROMPT 2378
LATITUDE 2379
LAYERDLGMODE 2379
LAYEREVAL 2380
LAYEREVALCTL 2381
LAYERFILTERALERT 2381
LAYERMANAGERSTATE 2382
LAYERNOTIFY 2383
LAYLOCKFADECTL 2384
LAYOUTREGENCTL 2385
LEGACYCTRLPICK 2386
LENSLENGTH 2387
LIGHTGLYPHDISPLAY 2387
LIGHTINGUNITS 2388
LIGHTLISTSTATE 2388
LIGHTSINBLOCKS 2389
LIMCHECK 2389
LIMMAX 2390
LIMMIN 2390
LINEARBRIGHTNESS 2391
LINEARCONTRAST 2391
LOCALE 2392
LOCALROOTPREFIX 2392
LOCKUI 2393
LOFTANG1 2393
LOFTANG2 2394
LOFTMAG1 2394
LOFTMAG2 2395
LOFTNORMALS 2395
LOFTPARAM 2396
LOGEXPBRIGHTNESS 2397
LOGEXPCONTRAST 2397
LOGEXPDAYLIGHT 2398
LOGEXPMIDTONES 2398
LOGEXPPHYSICALSCALE 2399
LOGFILEMODE 2399
LOGFILENAME 2400
LOGFILEPATH 2400
LOGINNAME 2401
LONGITUDE 2401
LTSCALE 2402
LUNITS 2402
LUPREC 2403
LWDEFAULT 2403
LWDISPLAY 2404
LWUNITS 2404
Chapter 38 M System Variables 2405
MATBROWSERSTATE 2405
MATEDITORSTATE 2405
MATERIALSPATH 2406
MAXACTVP 2406
MAXSORT 2407
MAXTOUCHES 2407
MBUTTONPAN 2407
MEASUREINIT 2408
MEASUREMENT 2409
MENUBAR 2409
MENUCTL 2410
MENUECHO 2410
MENUNAME 2411
MESHTYPE 2411
MIRRHATCH 2412
MIRRTEXT 2412
MLEADERSCALE 2413
MODEMACRO 2413
MSLTSCALE 2414
MSMSTATE 2414
MSOLESCALE 2415
MTEXTCOLUMN 2415
MTEXTED 2416
MTEXTFIXED 2416
MTEXTTOOLBAR 2417
MTJIGSTRING 2418
MYDOCUMENTSPREFIX 2418
Chapter 39 N System Variables 2421
NAVBARDISPLAY 2421
NAVSWHEELMODE 2421
NAVSWHEELOPACITYBIG 2422
NAVSWHEELOPACITYMINI 2423
NAVSWHEELSIZEBIG 2423
NAVSWHEELSIZEMINI 2424
NAVVCUBEDISPLAY 2424
NAVVCUBELOCATION 2425
NAVVCUBEOPACITY 2425
NAVVCUBEORIENT 2426
NAVVCUBESIZE 2426
NOMUTT 2427
NORTHDIRECTION 2428
Chapter 40 O System Variables 2429
OBJECTISOLATIONMODE 2429
OBSCUREDCOLOR 2430
OBSCUREDLTYPE 2430
OFFSETDIST 2432
OFFSETGAPTYPE 2432
OLEFRAME 2433
OLEHIDE 2433
OLEQUALITY 2434
OLESTARTUP 2435
OPENPARTIAL 2435
OPMSTATE 2436
ORTHOMODE 2436
OSMODE 2437
OSNAPCOORD 2438
OSNAPNODELEGACY 2439
OSNAPZ 2439
OSOPTIONS 2440
Chapter 41 P System Variables 2441
PALETTEOPAQUE 2441
PAPERUPDATE 2442
PARAMETERCOPYMODE 2443
PARAMETERSSTATUS 2444
PDFFRAME 2444
PDFOSNAP 2445
PDMODE 2446
PDSIZE 2446
PEDITACCEPT 2447
PELLIPSE 2447
PERIMETER 2448
PERSPECTIVE 2448
PERSPECTIVECLIP 2449
PFACEVMAX 2449
PICKADD 2450
PICKAUTO 2450
PICKBOX 2451
PICKDRAG 2451
PICKFIRST 2452
PICKSTYLE 2452
PLATFORM 2453
PLINECONVERTMODE 2453
PLINEGEN 2454
PLINETYPE 2454
PLINEWID 2455
PLOTOFFSET 2456
PLOTROTMODE 2456
PLOTTRANSPARENCYOVERRIDE 2457
PLQUIET 2457
POINTCLOUDAUTOUPDATE 2458
POINTCLOUDDENSITY 2459
POINTCLOUDLOCK 2459
POINTCLOUDRTDENSITY 2460
POLARADDANG 2461
POLARANG 2461
POLARDIST 2462
POLARMODE 2462
POLYSIDES 2463
POPUPS 2463
PREVIEWEFFECT 2464
PREVIEWFACEEFFECT 2464
PREVIEWFILTER 2465
PREVIEWTYPE 2466
PRODUCT 2466
PROGRAM 2467
PROJECTNAME 2467
PROJMODE 2468
PROXYGRAPHICS 2468
PROXYNOTICE 2469
PROXYSHOW 2469
PROXYWEBSEARCH 2470
PSLTSCALE 2470
PSOLHEIGHT 2471
PSOLWIDTH 2472
PSTYLEMODE 2472
PSTYLEPOLICY 2473
PSVPSCALE 2473
PUBLISHALLSHEETS 2474
PUBLISHCOLLATE 2474
PUBLISHHATCH 2475
PUCSBASE 2476
Chapter 42 Q System Variables 2477
QCSTATE 2477
QPLOCATION 2477
QPMODE 2478
QTEXTMODE 2479
QVDRAWINGPIN 2479
QVLAYOUTPIN 2480
Chapter 43 R System Variables 2481
RASTERDPI 2481
RASTERPERCENT 2481
RASTERPREVIEW 2482
RASTERTHRESHOLD 2482
REBUILD2DCV 2483
REBUILD2DDEGREE 2483
REBUILD2DOPTION 2484
REBUILDDEGREEU 2485
REBUILDDEGREEV 2485
REBUILDOPTIONS 2486
REBUILDU 2486
REBUILDV 2487
RECOVERAUTO 2487
RECOVERYMODE 2488
REFEDITNAME 2489
REGENMODE 2489
RE-INIT 2490
REMEMBERFOLDERS 2490
RENDERPREFSSTATE 2491
RENDERUSERLIGHTS 2491
REPORTERROR 2492
RIBBONCONTEXTSELECT 2493
RIBBONCONTEXTSELLIM 2493
RIBBONDOCKEDHEIGHT 2494
RIBBONSELECTMODE 2494
RIBBONSTATE 2495
ROAMABLEROOTPREFIX 2495
ROLLOVEROPACITY 2496
ROLLOVERTIPS 2497
RTDISPLAY 2497
Chapter 44 S System Variables 2499
SAVEFIDELITY 2499
SAVEFILE 2500
SAVEFILEPATH 2500
SAVENAME 2500
SAVETIME 2501
SCREENBOXES 2501
SCREENMENU 2502
SCREENMODE 2502
SCREENSIZE 2503
SELECTIONANNODISPLAY 2503
SELECTIONAREA 2504
SELECTIONAREAOPACITY 2504
SELECTIONCYCLING 2505
SELECTIONPREVIEW 2505
SELECTSIMILARMODE 2506
SETBYLAYERMODE 2507
SHADEDGE 2508
SHADEDIF 2508
SHADOWPLANELOCATION 2509
SHORTCUTMENU 2509
SHOWHIST 2510
SHOWLAYERUSAGE 2511
SHOWMOTIONPIN 2511
SHOWPALETTESTATE 2512
SHPNAME 2512
SIGWARN 2513
SKETCHINC 2513
SKPOLY 2514
SKTOLERANCE 2514
SKYSTATUS 2515
SMOOTHMESHCONVERT 2515
SMOOTHMESHGRID 2516
SMOOTHMESHMAXFACE 2517
SMOOTHMESHMAXLEV 2517
SNAPANG 2518
SNAPBASE 2518
SNAPISOPAIR 2518
SNAPMODE 2519
SNAPSTYL 2519
SNAPTYPE 2520
SNAPUNIT 2520
SOLIDCHECK 2521
SOLIDHIST 2521
SORTENTS 2522
SPLDEGREE 2523
SPLFRAME 2523
SPLINESEGS 2524
SPLINETYPE 2524
SPLKNOTS 2525
SPLMETHOD 2525
SSFOUND 2526
SSLOCATE 2526
SSMAUTOOPEN 2527
SSMPOLLTIME 2527
SSMSHEETSTATUS 2528
SSMSTATE 2528
STANDARDSVIOLATION 2529
STARTUP 2530
STATUSBAR 2530
STEPSIZE 2531
STEPSPERSEC 2531
SUBOBJSELECTIONMODE 2532
SUNPROPERTIESSTATE 2536
SUNSTATUS 2536
SURFACEASSOCIATIVITY 2537
SURFACEASSOCIATIVITYDRAG 2537
SURFACEAUTOTRIM 2538
SURFACEMODELINGMODE 2539
SURFTAB1 2539
SURFTAB2 2540
SURFTYPE 2540
SURFU 2541
SURFV 2541
SYSCODEPAGE 2542
Chapter 45 T System Variables 2543
TABLEINDICATOR 2543
TABLETOOLBAR 2543
TABMODE 2544
TARGET 2545
TBCUSTOMIZE 2545
TDCREATE 2546
TDINDWG 2546
TDUCREATE 2547
TDUPDATE 2547
TDUSRTIMER 2547
TDUUPDATE 2548
TEMPOVERRIDES 2548
TEMPPREFIX 2549
TEXTED 2549
TEXTEVAL 2550
TEXTFILL 2550
TEXTOUTPUTFILEFORMAT 2551
TEXTQLTY 2551
TEXTSIZE 2552
TEXTSTYLE 2552
THICKNESS 2553
THUMBSIZE 2553
TILEMODE 2554
TIMEZONE 2554
TOOLTIPMERGE 2558
TOOLTIPS 2559
TPSTATE 2559
TRACEWID 2560
TRACKPATH 2560
TRANSPARENCYDISPLAY 2561
TRAYICONS 2561
TRAYNOTIFY 2562
TRAYTIMEOUT 2562
TREEDEPTH 2563
TREEMAX 2563
TRIMMODE 2564
TSPACEFAC 2565
TSPACETYPE 2565
TSTACKALIGN 2566
TSTACKSIZE 2566
Chapter 46 U System Variables 2567
UCSAXISANG 2567
UCSBASE 2567
UCSDETECT 2568
UCSFOLLOW 2568
UCSICON 2569
UCSNAME 2570
UCSORG 2570
UCSORTHO 2571
UCSVIEW 2571
UCSVP 2572
UCSXDIR 2572
UCSYDIR 2573
UNDOCTL 2573
UNDOMARKS 2574
UNITMODE 2574
UOSNAP 2575
UPDATETHUMBNAIL 2576
USERI1-5 2576
USERR1-5 2577
USERS1-5 2577
Chapter 47 V System Variables 2579
VIEWCTR 2579
VIEWDIR 2579
VIEWMODE 2580
VIEWSIZE 2581
VIEWTWIST 2581
VISRETAIN 2581
VPLAYEROVERRIDES 2582
VPLAYEROVERRIDESMODE 2583
VPMAXIMIZEDSTATE 2583
VPROTATEASSOC 2584
VSACURVATUREHIGH 2584
VSACURVATURELOW 2585
VSACURVATURETYPE 2585
VSADRAFTANGLEHIGH 2586
VSADRAFTANGLELOW 2586
VSAZEBRACOLOR1 2587
VSAZEBRACOLOR2 2588
VSAZEBRADIRECTION 2588
VSAZEBRASIZE 2589
VSAZEBRATYPE 2589
VSBACKGROUNDS 2590
VSEDGECOLOR 2590
VSEDGEJITTER 2591
VSEDGELEX 2592
VSEDGEOVERHANG 2593
VSEDGES 2594
VSEDGESMOOTH 2596
VSFACECOLORMODE 2596
VSFACEHIGHLIGHT 2597
VSFACEOPACITY 2598
VSFACESTYLE 2599
VSHALOGAP 2599
VSHIDEPRECISION 2600
VSINTERSECTIONCOLOR 2600
VSINTERSECTIONEDGES 2601
VSINTERSECTIONLTYPE 2602
VSISOONTOP 2603
VSLIGHTINGQUALITY 2603
VSMATERIALMODE 2604
VSMAX 2605
VSMIN 2605
VSMONOCOLOR 2606
VSOBSCUREDCOLOR 2606
VSOBSCUREDEDGES 2607
VSOBSCUREDLTYPE 2607
VSOCCLUDEDCOLOR 2609
VSOCCLUDEDEDGES 2610
VSOCCLUDEDLTYPE 2610
VSSHADOWS 2612
VSSILHEDGES 2613
VSSILHWIDTH 2615
VSSTATE 2615
VTDURATION 2616
VTENABLE 2616
VTFPS 2617
Chapter 48 W System Variables 2619
WHIPARC 2619
WHIPTHREAD 2619
WINDOWAREACOLOR 2620
WMFBKGND 2621
WMFFOREGND 2621
WORLDUCS 2622
WORLDVIEW 2623
WRITESTAT 2623
WSAUTOSAVE 2624
WSCURRENT 2624
Chapter 49 X System Variables 2625
XCLIPFRAME 2625
XDWGFADECTL 2626
XEDIT 2626
XFADECTL 2627
XLOADCTL 2627
XLOADPATH 2628
XREFCTL 2629
XREFNOTIFY 2629
XREFTYPE 2630
Chapter 50 Z System Variables 2631
ZOOMFACTOR 2631
ZOOMWHEEL 2631
Chapter 51 Utilities 2633
Attach Digital Signatures 2633
Attach Digital Signatures Dialog Box 2633
Search Folders Dialog Box 2635
Batch Standards Checker 2636
Batch Standards Checker Window 2636
SLIDELIB 2640
Index 2679

Commands

You can start a command by using one of the following methods:

- Click the command name on a menu, toolbar, status bar, or shortcut menu.
- Enter the command name or command alias at the Command prompt and press ENTER or SPACEBAR.

The acad.pgp file lists the command aliases. To access the acad.pgp, on the Tools menu, click Customize > Edit Program Parameters (acad.pgp).

In this Command Reference, near the beginning of each command description is a command access section that lists the specific ways you can start that command.

3D Commands

Quick Reference

See also:
■ Create Custom Mesh (Legacy)
Creates 3D polyface mesh objects in common geometric shapes that can be hidden, shaded, or rendered.

List of Prompts

The following prompts are displayed.
[Box on page $3 /$ Cone on page $6 /$ DIsh on page $7 /$ DOme on page $8 / \mathrm{Mesh}$ on page 9 /Pyramid on page 9 /Sphere on page 11 /Torus on page 12 /Wedge on page 13]:

Box

Creates a 3D box polyface mesh.
Corner Point Sets the first corner of the box.
Length Sets the first corner of the box.

Width

Specifies the width of the box. Enter a distance or specify a point relative to the corner point of the box.

Height Specifies the height of the box. Enter a distance or specify a point relative to the corner point of the box.

Rotation Angle Rotates the box about the first corner specified. If you enter $\mathbf{0}$, the box remains orthogonal to the current X and Y axes.

Reference Aligns the box with other objects in the drawing or relative to an angle you specify. The base point for the rotation is the first corner of the box.
■ Reference Angle:Defines a reference angle by specifying two points or an angle from the X axis on the $X Y$ plane. For example, you can rotate the
box to align two specified points on the box with a point on another object. After defining a reference angle, specify a point for the reference angle to align with. The box then rotates around the first corner relative to the angle of rotation specified for the reference angle.
If you enter $\mathbf{0}$ as a reference angle, the new angle determines the rotation of the box.

- New Angle:

Specify a point relative to the base point. The base point for the rotation is the first corner of the box. The box rotates by the angle between the reference angle and the new angle. If you want to align the box with another object, specify two points on the target object to define the new angle of rotation for the box.
If the reference angle of rotation is 0 , the box rotates the angular distance entered relative to the first corner of the box.

Cube

Creates a cube using the length for the width and height of the box.

Center Point for Base

Radius for Base

Radius for Top

Specify rotation angle of box about the Z axis or [Reference]: Specify an angle or enter \mathbf{r}

Rotation Angle Rotates the cube about the first corner of the box. If you enter $\mathbf{0}$, the box remains orthogonal to the current X and Y axes.

Reference Aligns the box with other objects in the drawing or relative to an angle you specify. The base point for the rotation is the first corner of the box. Specify the reference angle $<0>$: Specify a point, enter an angle, or press Enter You can define a reference angle by specifying two points or an angle from the X axis on the $X Y$ plane. For example, you can rotate the box to align two specified points on the box with a point on another object. After defining a reference angle, specify a point for the reference angle to align with. The box
then rotates around the first corner relative to the angle of rotation specified for the reference angle.
If you enter $\mathbf{0}$ as a reference angle, the new angle alone determines the rotation of the box.
Specify the new angle: Specify a point or enter an angle
To specify the new angle of rotation, specify a point relative to the base point. The base point for the rotation is the first corner of the box. The box rotates the angular distance between the reference angle and the new angle. If you want to align the box with another object, specify two points on the target object to define the new angle of rotation for the box.
If the reference angle of rotation is 0 , the box rotates the angular distance entered relative to the first corner point of the box.

Cone

Creates a cone-shaped polygon mesh.

Specify center point for base of cone: Specify a point (1)
Specify radius for base of cone or [Diameter]: Specify a distance or enter \mathbf{d}

Radius for Base

Defines the base of the cone by its radius.
Specify radius for top of cone or [Diameter] <0>: Specify a distance, enter d, or press Enter

Radius for Top Defines the top of the cone by its radius. A value of 0 produces a cone. A value greater than 0 produces a truncated cone.
Specify height of cone: Specify a distance

Enter number of segments for surface of cone $<16>$: Enter a value greater than 1 or press Enter

Diameter for Top Defines the top of the cone by its diameter. A value of 0 produces a cone. A value greater than 0 produces a truncated cone.
Specify diameter for top of cone $<0>$: Specify a distance or press Enter Specify height of cone: Specify a distance

Enter number of segments for surface of cone $<16>$: Enter a value greater than 1 or press Enter

Diameter for Base

Defines the base of the cone by its diameter.
Specify diameter for base of cone: Specify a distance
Specify radius for top of cone or [Diameter] <0>: Specify a distance, enter d, or press Enter

Radius for Top Defines the top of the cone by its radius. A value of 0 produces a cone. A value greater than 0 produces a truncated cone.
Specify height of cone: Specify a distance
Enter number of segments for surface of cone $<16>$: Enter a value greater than 1 or press Enter

Diameter for Top Defines the top of the cone by its diameter. A value of 0 produces a cone. A value greater than 0 produces a truncated cone.
Specify diameter for top of cone $<0>$: Specify a distance
Specify height of cone: Specify a distance
Enter number of segments for surface of cone $<16>$: Enter a value greater than 1 or press Enter

Dish

Creates the lower half of a spherical polygon mesh.
Specify center point of dish: Specify a point (1)

Specify radius of dish or [Diameter]: Specify a distance or enter d
Radius Defines the dish by its radius.
Enter number of longitudinal segments for surface of dish $\langle 16\rangle$: Enter a value greater than 1 or press Enter
Enter number of latitudinal segments for surface of dish $<8>$: Enter a value greater than 1 or press Enter

Diameter Defines the dish by its diameter.
Specify diameter of dish: Specify a distance
Enter number of longitudinal segments for surface of dish $\langle 16\rangle$: Enter a value greater than 1 or press Enter
Enter number of latitudinal segments for surface of dish $<8>$: Enter a value greater than 1 or press Enter

Dome

Creates the upper half of a spherical polygon mesh.
Specify center point of dome: Specify a point (1)
Specify radius of dome or [Diameter]: Specify a distance or enter \mathbf{d}
Radius Defines the dome by its radius.
Enter number of longitudinal segments for surface of dome: Enter a value greater than 1 or press Enter
Enter number of latitudinal segments for surface of dome $<8>$: Enter a value greater than 1 or press Enter

Diameter Defines the dome by its diameter.
Specify diameter of dome: Specify a distance
Enter number of longitudinal segments for surface of dome $<16>$: Enter a value greater than 1 or press Enter
Enter number of latitudinal segments for surface of dome $<8>$: Enter a value greater than 1 or press Enter

Mesh

Creates a planar mesh whose M and N sizes determine the number of lines drawn in each direction along the mesh. The M and N directions are similar to the X and Y axes of an $X Y$ plane.

Specify first corner point of mesh: Specify a point (1)
Specify second corner point of mesh: Specify a point (2)
Specify third corner point of mesh: Specify a point (3)
Specify fourth corner point of mesh: Specify a point (4)
Enter mesh size in the M direction: Enter a value between 2 and 256
Enter mesh size in the N direction: Enter a value between 2 and 256

Pyramid

Creates a pyramid or a tetrahedron.
Specify first corner point for base of pyramid: Specify a point (1)
Specify second corner point for base of pyramid: Specify a point (2)
Specify third corner point for base of pyramid: Specify a point (3)
Specify fourth corner point for base of pyramid or [Tetrahedron]: Specify a point (4) or enter \mathbf{t}

Fourth Corner Point

Defines the fourth corner point of the base of a pyramid.
Specify apex point of pyramid or [Ridge/Top]: Specify a point (5) or enter an option

The Z value of the point specified determines the height for the pyramid's apex, top, or ridge line.

Apex Point Defines the top of the pyramid as a point (apex).
Ridge Defines the top of the pyramid as a ridge line. The two endpoints must lie in the same direction as the base points to prevent a self-intersecting wireframe.
Specify first ridge end point of pyramid: Specify a point (1)
Specify second ridge end point of pyramid: Specify a point (2)

Top Defines the top of the pyramid as a rectangle. If the top points cross, they create a self-intersecting polygon mesh.
Specify first corner point for top of pyramid: Specify a point Specify second corner point for top of pyramid: Specify a point Specify third corner point for top of pyramid: Specify a point Specify fourth corner point for top of pyramid: Specify a point

Tetrahedron

Creates a tetrahedral polygon mesh.
Specify apex point of tetrahedron or [Top]: Specify a point or enter \mathbf{t}
Apex Point Defines the top of the tetrahedron as a point (apex).
Top Defines the top of the tetrahedron as a triangle. If the top points cross, they create a self-intersecting polygon mesh.
Specify first corner point for top of tetrahedron: Specify a point (1)
Specify second corner point for top of tetrahedron: Specify a point (2)
Specify third corner point for top of tetrahedron: Specify a point (3)

Sphere

Creates a spherical polygon mesh.
Specify center point of sphere: Specify a point (1)
Specify radius of sphere or [Diameter]: Specify a distance or enter d

Radius Defines the sphere by its radius.
Enter number of longitudinal segments for surface of sphere $<16>$: Enter a value greater than 1 or press Enter
Enter number of latitudinal segments for surface of sphere $<16>$: Enter a value greater than 1 or press Enter

Diameter Defines the sphere by its diameter.
Specify diameter of sphere: Specify a distance
Enter number of longitudinal segments for surface of sphere $<16>$: Enter a value greater than 1 or press Enter
Enter number of latitudinal segments for surface of sphere $<16>$: Enter a value greater than 1 or press Enter

Torus

Creates a toroidal polygon mesh that is parallel to the $X Y$ plane of the current UCS.

Specify center point of torus: Specify a point (1)
Specify radius of torus or [Diameter]: Specify a distance or enter d
The radius of the torus is measured from its center point to its outside edge, not to the center of the tube.

Radius of Torus

Radius Defines the torus by its radius.

12 | Chapter 1 3D Commands

Specify radius of tube or [Diameter]: Specify a distance or enter d

Diameter of Torus

Defines the torus by its diameter.

Specify diameter of torus: Specify a distance
Specify radius of tube or [Diameter]: Specify a distance or enter d

Radius of Tube

Defines the tube by its radius.
Enter number of segments around tube circumference $<16>$: Enter a value greater than 1 or press Enter

Enter number of segments around torus circumference $<16>$: Enter a value greater than 1 or press Enter

The radius of the tube of the torus is measured from the center of the tube to the outside edge of the tube.

Diameter of Tube
Defines the tube by its diameter.
Specify diameter of tube: Specify a distance
Enter number of segments around tube circumference $<16>$: Enter a value greater than 1 or press Enter

Enter number of segments around torus circumference $\langle 16\rangle$: Enter a value greater than 1 or press Enter

Wedge

Creates a right-angle, wedge-shaped polygon mesh with a sloped face tapering along the X axis.

Specify corner point of wedge: Specify a point (1)
Specify length of wedge: Specify a distance
Specify width of wedge: Specify a distance
Specify height of wedge: Specify a distance
Specify rotation angle of wedge about the Z axis: Specify an angle
The base point for the rotation is the corner point of the wedge. If you enter $\mathbf{0}$, the wedge remains orthogonal to the current UCS plane.

3DALIGN

Quick Reference

See also:

- Align Objects

Aligns objects with other objects in 2D and 3D.

Access Methods

Button
$\$$ Ribbon: Home tab > Modify panel > 3D Align
$\$$ Menu: Modify > 3D Operations > 3D Align
$\$$ Toolbar: Modeling

14 | Chapter 1 3D Commands

Summary

You can specify one, two, or three points for the source object. Then, you can specify one, two, or three points for the destination.

List of Prompts

The following prompts are displayed.
Select objects: Select the objects to align and press Enter Specify source plane and orientation . . .
The selected object is moved and rotated so that the base points, and the X and Y axes of the source and destination align in 3D space. 3DALIGN works with dynamic UCS (DUCS), so you can dynamically drag the selected objects and align them with the face of a solid object.

Specify base point or [Copy]: Specify a point or enter c to create a copy
The base point of the source object will be moved to the base point of the destination.

Specify second point or [Continue] $<\mathrm{C}>$: Specify a point on the object's X axis, or press Enter to skip forward to specifying destination points

The second point specifies a new X axis direction within a plane parallel to the $X Y$ plane of the current UCS. If you press Enter instead of specifying a second point, the X and Y axes are assumed to be parallel with the X and Y axes of the current UCS.

Specify third point or [Continue] <C>: Specify a point on the object's positive XY plane, or press Enter to skip forward to specifying destination points

The third point fully specifies the orientation of the X and Y axes of the source object that will be aligned with the destination plane.
Specify destination plane and orientation . . .
Specify first destination point: Specify a point
This point defines the destination of the base point of the source object.
Specify second source point or $[\mathrm{eXit}]<\mathrm{X}>$: Specify a point for the X axis of the destination or press Enter
The second point specifies a new X axis direction for the destination within a plane parallel to the $X Y$ plane of the current UCS. If you press Enter instead of specifying a second point, the X and Y axes of the destination are assumed to be parallel with the X and Y axes of the current UCS.
Specify third destination point or [eXit] <X>: Specify a point for the destination's positive XY plane, or press Enter
The third point fully specifies the orientation of the X and Y axes of the destination plane.

NOTE If the destination is a plane on an existing solid object, you can define the destination plane with a single point by turning on dynamic UCS.

3DARRAY

Quick Reference

See also:

- Create an Array of Objects

Creates a 3D matrix of objects in a rectangular or polar arrangement.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Modify panel $>$ 3D Array.
$\%$ Menu: Modify > 3D Operations > 3D Array
$\$$ Toolbar: Modeling

Summary

For 3D rectangular arrays, in addition to columns and rows, you also specify the number of levels in the Z direction. For 3D polar arrays, you specify the axis of rotation with any two points in space.

The entire selection set is treated as a single element in the array.

List of Prompts

The following prompts are displayed.
Enter type of array [Rectangular/Polar] <R>: Enter an option or press Enter

Rectangular Array

Copies objects in a matrix of rows (X axis), columns (Y axis), and levels (Z axis). An array must have at least two rows or two columns or two levels.
Specifying one row requires that more than one column be specified, and vice versa. Specifying one level creates a two-dimensional array.

Positive values generate the array along the positive X, Y, and Z axes. Negative values generate the array along the negative X, Y, and Z axes.

Polar Array

Copies objects about an axis of rotation.
The specified angle determines how far the objects are arrayed about the axis of rotation. A positive number produces a counterclockwise array rotation. A negative number produces a clockwise array rotation.

Entering y or pressing Enter rotates each array element.

3DCLIP

Quick Reference

See also:

- Create a 3D Dynamic View (DVIEW)

Starts an interactive 3D view and opens the Adjust Clipping Planes window.

Summary

The Adjust Clipping Planes window is displayed.

Adjust Clipping Planes Window

Quick Reference

See also:

- Create a 3D Dynamic View (DVIEW)

Sets clipping planes for the display in 3D Orbit view.

Access Methods

锉 Command entry: 3dclip

Summary

Use the Adjust Clipping Planes toolbar, or right-click in the Adjust Clipping Planes window and select an option from the shortcut menu.

Click the Close button in the upper-right corner of the window to see the effect of the clipping planes. As you rotate the view, different portions of the objects are clipped as they pass in and out of the clipping planes.

To turn clipping planes off, right-click in the drawing area or the Adjust Clipping Planes window, and check or clear Front Clipping On and Back Clipping On.

Adjust Clipping Planes Shortcut Menu

To choose any of the following options, right-click in the Adjust Clipping Planes window.

Adjust Front Clipping Adjusts only the front clipping plane. The line near the bottom of the window adjusts the front clipping plane. If a check mark is displayed next to Front Clipping On, you can see the clipping in the 3D Orbit view as you move the line up or down.

Adjust Back Clipping Adjusts only the back clipping plane. The line near the top of the window adjusts the back clipping plane. If a check mark is displayed next to Back Clipping On, you can see the clipping in the 3D Orbit view as you move the line up or down.

Create Slice Causes the back and front clipping planes to move together, which shows you a "slice" of the objects in the 3D Orbit view. Adjust the front and back clipping planes, and then choose Create Slice. You can then move the front and back clipping planes as one unit.

Pan Displays the pan cursor, a hand cursor that you can use to pan the clipping plane. Hold down the pick button and drag the cursor in any direction. The pan cursor stays active until you click another button.

Zoom Displays the zoom cursor, a magnifying-glass cursor that you can use to enlarge or reduce the clipping plane. To enlarge the image, hold down the pick button and drag the cursor toward the top of Adjust Clipping Planes window. To reduce the image, hold down the pick button and drag the cursor toward the bottom of the window.

Front Clipping On Turns the front clipping plane on or off. A check mark indicates that the front clipping plane is on, and you can see the results of moving the line that adjusts the front clipping plane. Choose this option again to turn the front clipping plane off and remove the check mark.

Back Clipping On Turns the back clipping plane on or off. A check mark indicates that the back clipping plane is on, and you can see the results of moving the line that adjusts the back clipping plane. Choose this option again to turn the back clipping plane off and remove the check mark.

Reset Resets the window and clipping plane to the extents of the drawing.

3DCONFIG

Quick Reference

See also:
■ Control Performance

Sets options that affect 3D display performance.

Summary

Displays the Adaptive Degradation and Performance Tuning dialog box.
If you enter -3dconfig at the Command prompt, options are displayed.

Adaptive Degradation and Performance Tuning Dialog Box

Quick Reference

See also:
■ Control Performance
Controls 3D display performance.

Summary

This dialog box can also be accessed from the Performance Settings button on the System tab of the Options dialog box.

List of Options

The following options are displayed.
Controls whether adaptive degradation is on or off. With adaptive degradation on, if performance goes below the specified level, effects are disabled or reduced in a certain order until performance returns to an acceptable level.

Degrade When FPS Is Below

Sets the level at which adaptive degradation begins in frames per second (FPS). The default speed is 5 FPS. Enter a number or choose a number from the list.

Degradation Order

Specifies the order in which effects are degraded. Items at the top are degraded first. Items that are not checked are not degraded. Click Move Up or Move Down to move a selected item up or down in the chain.

Move Up Moves the selected item up in the chain.
Move Down Moves the selected item down in the chain.

Hardware and Performance Tuning

Specifies hardware settings and performance tuning. The performance tuner reads your system and decides whether to use software or hardware implementation for features that support both. Features that work with your system are turned on, and features that cannot work with your system are turned off. A log file displays the results. You can make manual changes.

View Tune Log
Displays the Performance Tuner log.
Manual Tune
Displays the Manual Performance Tuning dialog box.

Check for Updates

Checks for updated versions of the graphics card and driver database that is used for performance tuning.

Get Download Info This button is displayed after you have checked for updates and when a new driver is available and recommended.
Displays a Web page that describes the certification program for graphics cards and display drivers. You can download the latest list of certified cards and drivers at any time.
Graphics hardware certification indicates which graphics card and driver combinations that Autodesk has tested to ensure that it supports real-time 3D shading, shadows, smooth-line display, and texture compression features of AutoCAD 2007 (and later) based products. Autodesk certified graphics hardware is better suited for the 3D display features of AutoCAD 2007 and later releases, and non-certified graphics hardware may not support these features or may cause problems during use.
Graphics card information for the current system is available in the Performance Tuner Log, which you can view by clicking the View Tune Log button in this dialog box.

Remind Me When a New Driver Is Available

Specifies that a notification bubble is displayed when a new driver is available.

Performance Tuner Log

Quick Reference

See also:

■ Control Performance

Lists the features that have been disabled, if any.

Access Methods

Button
$\$$ Menu: Tools > Options (Options dialog box, System tab)

挫 Command entry: options

Summary

Information includes the system configuration, 3D graphics device, driver, and if any features have been disabled. If your 3D device shows as certified, Autodesk tested AutoCAD with this specific hardware.

List of Options

The following options are displayed.

Save Log As

Displays a standard file selection dialog box.

-3DCONFIG

Quick Reference

See also:
■ Control Performance

Controls 3D display performance in the command line.

List of Prompts

The following prompts are displayed.
Enter option: [Adaptive degradation/Dynamic tessellation/General options/acceLeration/Plot emulation/"eXit"] <Adaptive degradation>:

Adaptive Degradation

Turns off or minimizes display effects when performance drops below the minimum you specify.

Dynamic Tessellation

Sets the options that determine the smoothness of the objects in a drawing. Objects are drawn using many short lines (or triangles when drawing spheres). These lines are called tessellation lines. Objects in your drawing appear smoother when you use more tessellation lines.

Surface Tessellation Determines the amount of detail for surfaces in your drawing. A higher setting provides more detail but uses more tessellation lines and more memory.

Curve Tessellation Determines the amount of detail for curves in your drawing. A higher setting provides more detail but uses more tessellation lines and more memory.

Number of Tessellations to Cache Configures your system according to memory and performance requirements. The 3D cache always stores at least one tessellation. When this option is set to 1 , the tessellation for all viewports is the same; some objects in the drawing may be regenerated as you zoom in and out. Setting this option to 2 or more is useful when you have more than one viewport with different views. Increasing the number requires more memory.

General Options

Sets performance-related options that are not hardware dependent.
Discard Back Faces Discards back faces when drawing objects. You cannot see the effect of discarding back faces on some objects, such as spheres, because you cannot see the back face even when it is present. The effect of discarding back faces is visible on objects such as those that don't have a top. Discarding back faces enhances performance.

Transparency Quality Adjusts the transparency quality. At the Low setting, a screen-door effect achieves transparency without sacrificing speed. At the Medium setting, the default in software mode, blending improves image quality. The High setting, the default in hardware mode, produces an image free of visual artifacts at the cost of drawing speed. Materials must also be turned on for transparency to be visible.
The General Options prompt is redisplayed.

Acceleration

Specifies whether to use software or hardware acceleration in 3D.
If you select Hardware, you can also specify whether geometry acceleration are turned on or off.

Hardware Specifies hardware acceleration. The hardware graphics card performs most of the drawing tasks in 3D to increase performance.

The available drivers are AcadDM10.hdi and direct3d10.hdi.
When you select Hardware, the default driver is set to the AcadDM10.hdi driver that is included with the program.

- Driver Name. You can select a driver from a list of available hardware-accelerated drivers found in the Drv directory. If you want to use a hardware driver from another vendor, it must be supported by the Heidi ${ }^{\circledR}$ Graphics System.

For more information, see Hardware Acceleration Troubleshooting in the Driver and Peripheral Guide.

■ Enhanced 3D Performance on page 853
■ Global Smooth Display on page 854

- Advanced Material Effects on page 854
- Gooch Hardware Shader on page 854

■ Per-pixel Lighting on page 854

- Full Shadow Display on page 854

■ Texture Compression on page 854
■ Enhanced 2D Performance on page 854

Software Specifies software acceleration. The software graphics system performs all of the drawing tasks in 3D.

Texture Compression Enables the use of texture compression to reduce the amount of video memory required to open and display a drawing that contains materials with images or has attached images.
NOTE With this option on, the time it takes to load the images may increase the first time that they are accessed and there is a reduction in the quality of the images when they are displayed in the viewport or plotted.

Plot Emulation

Turns on or off the use of software emulation for unsupported hardware effects during the plotting of a drawing with shaded viewports. The use of software emulation happens when it is turned on, and hardware acceleration is disabled or is enabled, but does not support Shadows.

3DCORBIT

Quick Reference

See also:

- Use 3D Navigation Tools

Rotates the view in 3D space with continuous motion.

Access Methods

Button
$\$$ Ribbon: View tab $>$ Navigate panel $>$ Orbit drop-down $>$ Continuous Orbit.
$\$$ Menu: View $>$ Orbit $>$ Continuous Orbit
Toolbar: 3D Navigation
Shortcut menu: Start any 3D navigation command, right-click in the drawing area, and click Other Navigation Modes $>$ Continuous Orbit (3).

Summary

You can view your entire drawing or select one or more objects before starting the command.

Selecting one of more objects before starting this command limits the display to those objects only.

While the command is active, right-click to display additional options from a shortcut menu.

Click in a drawing area and drag the pointing device in any direction to start the objects moving in the direction that you're dragging. Release the button on the pointing device and the objects continue their orbit in the direction that you specified. The speed set for the cursor movement determines the speed at which the objects spin.

You can change the direction of the continuous orbit by clicking and dragging again. You can also change the display of the continuous orbit by right-clicking in the drawing area and choosing an option from the shortcut menu. For example, you can choose Visual Aids $>$ Grid to add a grid to the view without exiting Continuous Orbit.

3DDISTANCE

Quick Reference

See also:

- Use 3D Navigation Tools

Starts the interactive 3D view and makes objects appear closer or farther away.

Access Methods

Button
$\$$ Menu: View $>$ Camera $>$ Adjust Distance
8 Toolbar: 3D Navigation
Shortcut menu: Start any 3D navigation command, right-click in the drawing area, and click Other Navigation Modes $>$ Adjust Distance (4).

Summary

3DDISTANCE changes the cursor to a line with one arrow pointing up and one pointing down. Click and drag the cursor vertically toward the top of the screen to move the camera closer to the objects, making them appear larger. Click and drag the cursor vertically toward the bottom of the screen to move the camera away from the objects, making them appear smaller.

3DDWF

Quick Reference

See also:
■ Publish 3D DWF Files

Creates a 3D DWF or 3D DWFx file of your 3D model and displays it in the DWF Viewer.

Access Methods

Button
$\$$ Ribbon: Output tab $>$ Export to DWF/PDF panel $>$ 3D DWF

Toolbar: Standard

Summary

The Export 3D DWF dialog box (a standard file selection dialog box) is displayed. After you enter a file name and click Save, the DWF file viewer is launched and your DWF file is displayed.

You can also change publishing settings from the 3D DWF Publish dialog box.
NOTE The File Type control on the Export 3D DWF dialog box lists 3D DWF (*.dwf) and 3D DWFx (*.dwfx) when you use the 3DDWF command.

3D DWF Publish Dialog Box

Quick Reference

See also:

- Publish 3D DWF Files

Access Methods

Toolbar: Standard
Shortcut menu: Issue the 3DDWF command and click Tools $>$ Options from the Export 3D DWF dialog box.
並 Command entry: 3ddwf

Summary

Allows you to publish a three-dimensional model as a DWF or DWFx file. 3D DWF Publishing, a technology preview in AutoCAD ${ }^{\circledR} 2006$, is now a standard AutoCAD feature.

List of Options

The following options are displayed.

Objects to Publish

Specifies whether all model space objects or selected model space objects are published to the DWF file.

All Model Space Objects All model space objects are published to the 3D DWF or 3D DWFx file.

Selected Model Space Objects Allows you to create a selection set of model space objects, including external references, which are published to the 3D DWF or 3D DWFx file after you click OK.

Select Objects Active only when Select Model Space Objects is enabled. Clicking this button minimizes the dialog boxes and lets you select objects in the drawing workspace. When object selection is completed, press Enter and the 3D DWF or 3D DWFx Publish dialog box reappears reporting the number of objects selected for publishing.

3D DWF Organization

Specifies how to group objects in the DWF or DWFx file for viewing in Autodesk ${ }^{\circledR}$ DWF $^{\text {TM }}$ Viewer.

Group by Xref Hierarchy Arrange objects by xref hierarchy in the viewer. If unchecked, externally referenced files are listed in the viewer like any other objects.

Options

These options let you specify if materials are published in the DWF file.
Publish with Materials Most materials that you have assigned to your model will not be published to the 3D DWF or 3D DWFx file. Materials with procedural maps and some material properties will not export to the 3D DWF or 3D DWFx file. If your material contains texture mapping, only the Diffuse Map gets published along with its scale and orientation data. Including materials will not significantly affect the size of your 3D DWF or 3D DWFx files. Default=active.

NOTE Materials that are not supported in 3D DWF or 3D DWFx include Bump, Opacity, and Reflection mapping, as well as all forms of procedural materials, which include Checker, Marble, Noise, Speckle, Tile, Waves and Wood.

3DEDITBAR

Quick Reference

See also:

- Use the CV Edit Bar

Reshapes, scales, and edits the tangency of NURBS surfaces.

Access Methods

$\$$ Ribbon: Surface tab $>$ Control Vertices panel $>$ CV Edit Bar

Summary

The 3D Edit Bar allows you to reshape NURBS surfaces and to change the tangency at specific points in the U and V directions. The ability to specify precise coordinates allows you to edit a surface with surgical precision.

32 | Chapter 1 3D Commands

Understand the 3D Edit Bar Grips

The 3D Edit Bar has three grips:

- The expander grip (triangular grip)

■ The magnitude handle (circular grip)

- The move gizmo (square grip)

34 | Chapter 1 3D Commands

List of Prompts

The following prompts are displayed.
Select a NURBS surface or curve Selects the 3D objects you want to edit.
When you have selected the objects, press Enter.
Base point Specifies the next edit point.
Displacement Specifies a relative distance and direction for the placement of the CV using coordinate values that you enter at the command prompt.

Undo Cancels the action without exiting the CV Edit Bar.
Exit Cancels the prompt and returns you to the CV edit bar to continue adding and editing CVs.

3D Edit Bar Shortcut Menu

Quick Reference

See also:

- Use the CV Edit Bar

Displays options to set the tangency and location of a control vertex and move or align the edit bar.

Access Methods

Shortcut menu: Right-click the Expander grip.

Summary

When you right-click the triangular tangency grip a shortcut menu appears.

The shorcut menu has options that allow you to:

- Reshape the curve (Move Point Location)
- Edit the tangent scale (Move Tangent Direction)

■ Move the base point to edit a different part of the surface (Relocate Base Point)

- Realign the gizmo (the edit bar).
- Whether to reshape the curve (Move Point Location) or the tangency (Move Tangent Direction).

Different options appear depending on what option you select.

List of Options

The following options are displayed.
Move Point Location When selected, moving the base point reshapes the NURBS surface (and not the tangency).

Move Tangent Direction When selected, moving the base point changes the tangency (and not the shape of the NURBS surface). This image shows the
edit bar moving in the U direction on the left, and the V direction on the right.

U Tangent Direction Moves the edit bar to the U axis to constrain the tangency edit to that direction. In the image above, the image on the left shows the edit bar moving in the U direction.

V Tangent Direction Moves the edit bar to the V axis to constrain the tangency edit to that direction. In the image above, the image on the right shows the edit bar moving in the V direction.

Normal Tangent Direction Moves the edit bar to edit the tangency of the curve normal to the current UCS.

Set Constraint Sets whether the change in tangency or point location is constrained to a specific axis.
■ \mathbf{X}, \mathbf{Y} or \mathbf{Z}. Restricts the change to the designated axis.
■ XY, YX, or ZX. Restricts the change to a plane that is defined by the selected axes.

Relocate Base Point Moves to a new location and add a new control vertex.
Align Gizmo With Sets the alignment for the change. Choices include
■ World UCS (default)

- Current UCS

■ Face

3DFACE

Quick Reference

See also:

- Create Custom Mesh (Legacy)

Creates a three-sided or four-sided surface in 3D space.

Access Methods

Button
$\$$ Menu: Draw $>$ Modeling $>$ Meshes $>$ 3D Face

Summary

List of Prompts

The following prompts are displayed.
Specify first point or [Invisible]: Specify a point (1) or enter \mathbf{i}
First Point Defines the start point for the 3D surface. After entering the first point, enter the remaining points in a natural clockwise or counterclockwise order to create a normal 3D face. If you locate all four points on the same plane, a planar face is created that is similar to a region object. When you shade or render the object, planar faces are filled.

Invisible Controls which edges of a 3D face are visible, allowing for accurate modeling of objects with holes. Entering \mathbf{i} or invisible before the first point of an edge makes the edge invisible.
The invisible specification must precede any object snap modes, $X Y Z$ filters, or coordinate input for that edge. You can create a 3D face in which all edges are invisible. Such a face is a phantom; it does not appear in wireframe presentations but can hide material in line drawings. 3D faces do appear in shaded renderings.

You can combine 3D faces to model complex 3D surfaces.

Specify second point or [Invisible]: Specify a point (2) or enter \mathbf{i} Specify third point or [Invisible] <exit>: Specify a point (3), enter \mathbf{i}, or press Enter

Specify fourth point or [Invisible] <create three-sided face>: Specify a point (4), enter \mathbf{i}, or press Enter

The Third Point and Fourth Point prompts are repeated until you press Enter. Specify points 5 and 6 at these repeating prompts. When you finish entering points, press Enter.

3DFLY

Quick Reference

See also:

■ Walk and Fly Through a Drawing

Changes the 3D view in a drawing interactively to create the appearance of flying through the model.

Access Methods

Button

Toolbar: 3D Navigation
$\$$ Menu: View $>$ Walk \& Fly $>$ Fly
Shortcut menu: Start any 3D navigation command, right-click in the drawing area, and click Other Navigations Modes $>$ Fly (7).

Summary

3DFLY activates a fly mode in the current viewport. You can leave the XY plane as though you're flying through or around the model. On the keyboard, use the four arrow keys, the W (forward), A (left), S (back), and D (right) keys, and the mouse to determine the direction of your fly. For more information, see Walk and Fly Navigation Mappings Balloon on page 77.

By default, the Position Locator window opens and displays your position in the drawing from a top view.

To control walk and fly settings, use the Walk and Fly Settings dialog box. To specify settings for animating a 3D walk or fly, see Animation Settings Dialog Box on page 75.

3DFORBIT

Quick Reference

See also:

■ Use 3D Navigation Tools

Rotates the view in 3D space without constraining roll.

Access Methods

Button
$\$$ Ribbon: View tab $>$ Navigate panel $>$ Orbit drop-down $>$ Free Orbit $\$$ Menu: View $>$ Orbit $>$ Free Orbit
$\$$ Toolbar: 3D Navigation
Pointing device: Press Shift+Ctrl and click the mouse wheel to temporarily enter 3DFORBIT mode.
Shortcut menu: Start any 3D navigation command, right-click in the drawing area, and click Other Navigations Modes » Free Orbit (2).

Summary

Selecting one of more objects before starting this command limits the display to those objects only.

While the command is active, right-click to display additional options from a shortcut menu.

3DFORBIT activates a 3D Free Orbit view in the current viewport. If the user coordinate system (UCS) icon is on, a shaded 3D UCS icon representing the current UCS appears in the 3D Orbit view. You can view your entire drawing or select one or more objects before starting the command.

The 3D Free Orbit view displays an arcball, which is a circle divided into four quadrants by smaller circles. When the Enable Orbit Auto Target option is deselected in the shortcut menu, the target of the view stays stationary. The camera location, or point of view, moves around the target. The center of the arcball, not the center of the objects you're viewing, is the target point. Unlike 3DORBIT, 3DFORBIT does not constrain the change in view to prevent roll, the rotation of the view about an axis orthogonal to the plane of your screen.

NOTE You cannot edit objects while the 3DFORBIT command is active.
Moving your cursor over different parts of the arcball changes the cursor icon, indicating the direction in which the view rotates. See 3D Free Orbit Cursor Icons on page 41.

While the command is active, you can access additional 3DORBIT options from a shortcut menu by right-clicking in the drawing area, or choosing buttons on the 3D Navigation toolbar. See 3D Orbit Shortcut Menu on page 50.

TIP While in 3D Orbit mode, you can temporarily enter 3D Free Orbit mode by pressing and holding the Shift key.

3D Free Orbit Cursor Icons

Quick Reference

See also:

- Use 3D Navigation Tools

View rotation is determined by the placement and appearance of the cursor as follows:

Sphere Encircled by Two Lines When you move the cursor inside the arcball, it changes to a small sphere encircled by two lines. If you click and drag in the drawing area you can move freely around the objects. It works as if your cursor is grabbing a sphere surrounding the objects and dragging it around the target point. You can drag horizontally, vertically, and diagonally using this method.

Circular Arrow When you move the cursor outside the arcball, it becomes a circular arrow. Clicking outside the arcball and dragging the cursor around the arcball causes the view to move around an axis that extends through the center of the arcball, perpendicular to the screen. This is called a roll.

Horizontal Ellipse When you move the cursor over one of the small circles on the left or right side of the arcball, it becomes a horizontal ellipse. Clicking and dragging from either of these points rotates the view around the vertical or Y axis through the middle of the arcball.

Vertical Ellipse When you move the cursor over one of the small circles on the top or bottom of the arcball, it becomes a vertical ellipse. Clicking and dragging from either of these points rotates the view around the horizontal or X axis through the middle of the arcball.

3DMESH

Quick Reference

See also:

- Create Custom Mesh (Legacy)

Creates a free-form polygon mesh.

Summary

The mesh density controls the number of facets, and is defined in terms of a matrix of M and N vertices, similar to a grid consisting of columns and rows. 3DMESH is a legacy method for creating mesh, designed primarily for operation under program control rather than by manual entry.
To take advantage of smoothing, creasing, and refinement capabilities, use the MESH command.

List of Prompts

The following prompts are displayed.
Size of mesh in M direction Sets the M direction value. Enter a value between 2 and 256.

Size of mesh in \mathbf{N} direction Sets the N direction value. Enter a value between 2 and 256.
M times N equals the number of vertices that you must specify.

Location for vertex $(\mathbf{0}, \mathbf{0})$ Sets the coordinate location of the vertex. Enter a 2D or 3D coordinate.
The location of each vertex in the mesh is defined by m and n, the row and column indices of the vertex. Defining vertices begins with vertex (0,0). You must supply the coordinate locations for each vertex in row m before specifying vertices in row $m+1$.
Vertices may be any distance from each other. The M and N orientation of a mesh depends on the position of its vertices.

3DMESH polygon meshes are always open in both M and N directions. You can close a mesh with PEDIT.

3DMOVE

Quick Reference

See also:
■ Move 3D Objects

In a 3D view, displays the 3D Move gizmo to aid in moving 3D objects a specified distance in a specified direction.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Modify panel $>$ 3D Move
$\$$ Menu: Modify > 3D Operations > 3D Move
$\$$ Toolbar: Modeling
Summary
With the 3D Move gizmo, you can move selected objects and subobjects freely or constrain the movement to an axis or plane.

If the default gizmo (DEFAULTGIZMO) is 3D Move, the 3D Move gizmo is displayed whenever you select an object in a view with a 3D visual style. If you are working in a viewport with 2D Wireframe set as the visual style, 3DMOVE temporarily changes the visual style to 3D Wireframe for the duration of the command.

The 3D Move gizmo is displayed at the center of the selected 3D object or objects by default. You can use the shortcut menu to change its location.

You can also align the 3D Move gizmo with the plane of a face or object by using the Align Gizmo With > Face option on the shortcut menu. The direction of the move operation is then constrained relative to this workplane.

When the 3D Move gizmo is displayed, the 3D Move Gizmo shortcut menu offers options for aligning, moving, or changing to another gizmo.

List of Prompts

The following prompts are displayed.
Select objects Selects the 3D objects you want to move. When you have selected the objects, press Enter.
When you have selected an object, the gizmo is displayed. You can constrain the movement by clicking one of the following locations on the gizmo:

- Move along an axis. Click an axis to constrain the movement to that axis.

■ Move along a plane. Click the area between the axes to constrain the movement to that plane.

Stretch point When you are specifying the move using the gizmo, sets the new location of the selected objects. Drag and click to move the objects dynamically.

Copy When you are specifying the move using the gizmo, creates a copy of the selected objects instead of moving them. You can make multiple copies by continuing to specify locations.

Base point Specifies the base point of the 3D objects you want to move.

- Second point. Specifies where the 3D object or objects will be dragged. You can also move the cursor to indicate a direction and then enter a distance.

Displacement Specifies a relative distance and direction for the placement of the selected 3D objects using coordinate values that you enter at the command prompt.

3D Move Gizmo Shortcut Menu

Quick Reference

See also:

- Move 3D Objects

Displays options to set the constraint of a 3D object, switch gizmos, and move or align the gizmo.

Access Methods
Shortcut menu: Right-click the 3D Move gizmo

List of Options

The following options are displayed.
Move Activates the 3D Move gizmo.
Rotate Activates the 3D Rotate gizmo.
Scale Activates the 3D Scale gizmo.
Set Constraint Sets whether the change is constrained to a specific axis.
■ \mathbf{X}, \mathbf{Y} or \mathbf{Z}. Restricts the change to the designated axis.

- XY, YX, or ZX. Restricts the change to a plane that is defined by the selected axes.

Relocate Gizmo Moves the gizmo to the point you specify.
Align Gizmo With Sets the alignment for the change. Choices include

- World UCS (default)
- Current UCS
- Face

Custom Gizmo Allows you to define the current gizmo by specifying one, two, or three points, or an object.

Respect Dynamic UCS When relocating the gizmo, as you move the cursor, temporarily aligns the $X Y$ plane of the UCS with the faces or edges.

3DORBIT

Quick Reference

See also:

- Use 3D Navigation Tools

Rotates the view in 3D space, but constrained to horizontal and vertical orbit only.

Access Methods

Button
$\$$ Ribbon: View tab $>$ Navigate panel $>$ Orbit drop-down $>$ Orbit.
$\$$ Toolbar: 3D Navigation
$\$$ Menu: View > Orbit > Constrained Orbit
Pointing device: Press Shift and click the mouse wheel to temporarily enter 3D Orbit mode.
Shortcut menu: Start any 3D navigation command, right-click in the drawing area, and click Other Navigations Modes » Constrained Orbit (1).

Summary

Selecting one of more objects before starting this command limits the display to those objects only.

While the command is active, right-click to display additional options from a shortcut menu.

3DORBIT activates a 3D Orbit view in the current viewport. You can view your entire drawing or select one or more objects before starting the command.
When 3DORBIT is active, the target of the view stays stationary and the camera location, or point of view, moves around the target. However, it appears as if the 3D model is turning as the mouse cursor is dragged In this way, you can specify any view of the model.

The 3D Orbit cursor icon appears. If you drag the cursor horizontally, the camera moves parallel to the XY plane of the world coordinate system (WCS). If you drag the cursor vertically, the camera moves along the Z axis.

NOTE You cannot edit objects while the 3DORBIT command is active.
While the command is active, you can access additional 3DORBIT options and modes from a shortcut menu by right-clicking in the drawing area, or choosing buttons on the 3D Navigation toolbar. See 3D Orbit Shortcut Menu on page 50 .

3D Orbit Shortcut Menu

Quick Reference

See also:

■ Use 3D Navigation Tools

When the 3DORBIT command (or any 3D navigation command or mode) is active, you can access the options on the 3D Orbit shortcut menu. To access the 3D Orbit shortcut menu, right-click in the 3D Orbit view.

Current Mode: Current

Displays the current mode.

Other Navigation Modes

Choose one of the following 3D navigation modes:
■ Constrained Orbit (1). Constrains orbiting to the XY plane or the Z direction.

- Free Orbit (2). Allows orbiting in any direction, without being constrained to the XY plane or the Z direction. See 3DFORBIT.
- Continuous Orbit (3). Changes the cursor to a sphere with two continuous lines encircling it and enables you to set the objects into continuous motion. See 3DCORBIT.

■ Adjust Distance (4). Simulates moving the camera closer to the object or farther away. See 3DDISTANCE.

■ Swivel (5). Changes the cursor to an arched arrow and simulates the effect of swiveling the camera. See 3DSWIVEL.

- Walk (6). Changes the cursor to a plus sign and enables you to "walk through" a model at a fixed height above the XY plane, by dynamically controlling the location and target of the camera. See 3DWALK.

■ Fly (7). Changes the cursor to a plus sign and enables you to "fly through" a model without being restricted to a fixed height above the XY plane. See 3DFLY.

■ Zoom (8). Changes the cursor to a magnifying glass with plus (+) and minus (-) sign and simulates moving the camera closer to an object or farther away. Works like the Adjust Distance option. See 3DZOOM.

- Pan (9). Changes the cursor to a hand cursor and moves the view in the direction that you drag. See 3DPAN.

TIP You can switch to any mode by using the shortcut menu or by entering the number displayed after its name.

Enable Orbit Auto Target

Keeps the target point on the objects you are viewing rather than on the center of the viewport. This feature is turned on by default.

Animation Settings

Opens the Animation Settings dialog box, where you can specify settings for saving an animation file.

Zoom Window

Changes the cursor to a window icon so that you can select a specific area to zoom in on. When the cursor changes, click a starting point and end point to define the zoom window. The drawing is zoomed in and focused on the area you selected.

Zoom Extents

Centers the view and sizes it to display all objects.

Zoom Previous

Displays the previous view.

Parallel

Displays objects so that two parallel lines in a drawing never converge. The shapes in your drawing always remain the same and do not appear distorted when they are closer.

Perspective

Displays objects in perspective so that all parallel lines converge at one point. Objects appear to recede into the distance, and parts of the objects appear larger and closer to you. The shapes are somewhat distorted when the object is very close. This view correlates more closely to what your eyes see. See PERSPECTIVE.

Reset View

Resets the view back to the view that was current when you first started 3DORBIT.

Preset Views

Displays a list of predefined views such as Top, Bottom, and SW Isometric. Choose a view from the list to change the current view of your model.

Named Views

Displays a list of named views in the drawing. Choose a named view from the list to change the current view of your model.

Visual Styles

Provides methods for shading objects. For more information about visual styles, see Use a Visual Style to Display Your Model.

The options are the same as the options in VSCURRENT on page 2077.

Visual Aids

Provides aids to visualizing the objects.
■ Compass. Draws a 3D sphere composed of three lines representing the X, Y, and Z axes.

- Grid. Displays a two-dimensional array of lines similar to graph paper. This grid is oriented along the X and Y axes.

NOTE Before starting 3DORBIT, you can use the GRID command to set system variables that control the grid display. The number of major grid lines corresponds to the value you set using the Grid Spacing option of the GRID command, which is stored in the GRIDUNIT system variable. Ten horizontal lines and ten vertical lines are drawn between the major lines.

■ UCS Icon. Displays a shaded 3D UCS icon. Each axis is labeled X, Y, or Z. The X axis is red, the Y axis is green, and the Z axis is blue.

3DORBITCTR

Quick Reference

See also:

- Use 3D Navigation Tools

Sets the center of rotation in 3D Orbit view.

Summary

Starts 3D Orbit view and uses a center of rotation that you specify with your pointing device. If you specify a point outside the current view, 3DORBITCTR ignores the specified point and uses the default center of rotation.

3DORBITCTR overrides the AutoTarget option in the 3DORBIT command.

3DOSNAP

Quick Reference

See also:

■ Create Solids and Surfaces from Lines and Curves

- Create Solids
- Create Surfaces

■ Modify Surfaces

■ Use Grips to Modify Solids and Surfaces
■ Snap to Locations on Objects (Object Snaps)
Sets the object snap modes for 3D objects.

Access Methods

$\$$ Menu: Tools $>$ Drafting Settings
Shortcut menu: Press Shift while right-clicking in the drawing area and click 3D Osnap > Osnap Settings.

Toolbar: Status bar $>$ 3D Object Snap

菐 Command entry: 3dosnap ('3dosnap for transparent use)

Summary

Displays the 3D Object Snap tab of the Drafting Settings dialog box on page 664. You can also set the 3D object snap settings with the 3DOSMODE on page 2142 system variable.

NOTE Because 3D object snaps can slow performance, select only the object snaps you need.

-3DOSNAP

Quick Reference

Uses command prompts to set running object snap modes for 3D objects.

List of Prompts

The following prompts are displayed.
Enter List of Object Snap Modes Specify one or more object snap modes by entering the first four characters of the name. If you enter more than one, separate the names with commas.

- ZVERtex. Snaps to a vertex or a control vertex.

■ ZMIDpoint. Snaps to the midpoint on a face edge.

- ZCENter. Snaps to the center of a face.

■ ZKNOt. Snaps to a spline knot.

- ZPERpendicular. Snaps to a perpendicular face (planar faces only).
- ZNEAr. Snaps to an object nearest to face.

■ ZNONe. Turns off all 3D object snaps.

See the 3D Object Snaps tab of the Drafting Settings dialog box for more information.

3DPAN

Quick Reference

See also:

- Use 3D Navigation Tools

When a drawing is in a Perspective view, starts the interactive 3D view and enables you to drag the view horizontally and vertically.

Access Methods

Button
$\$$ Toolbar: 3D Navigation
\$ Menu: View > Pan
Shortcut menu: Start any 3D navigation command, right-click in the drawing area, and click Other Navigation Modes $>$ Pan (9).

Summary

Moves in the direction that you drag. You can drag the view vertically, horizontally, or diagonally. 3DPAN changes the cursor to a hand cursor.

You can view your entire drawing or select objects before entering 3DPAN.

3DPOLY

Quick Reference

See also:

- Draw Polylines

Creates a 3D polyline.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Draw panel $>$ 3D Polyline.
$\$$ Menu: Draw $>$ 3D Polyline

Summary

A 3D polyline is a connected sequence of straight line segments created as a single object. 3D polylines can be non-coplanar; however, they cannot include arc segments.

List of Prompts

The following prompts are displayed.
Specify start point of polyline: Specify a point (1)
Specify endpoint of line or [Undo]: Specify a point or enter an option Specify endpoint of line or [Undo]: Specify a point or enter an option Specify endpoint of line or [Close/Undo]: Specify a point or enter an option

Endpoint of Line Draws a straight line from the previous point to the specified new point. The prompt is repeated until you press Enter to end the command.

Undo Deletes the last line created. You can continue drawing from the previous point.

Close Draws a closing line from the endpoint back to the first point, and then ends the command. To be closed, a 3D polyline must contain at least two lines.

3DPRINT

Quick Reference

See also:

- Print 3D Models

Sends a 3D model to a 3D printing service.

Access Methods

Button

8 Ribbon: Output tab $>$ 3D Print panel $>$ Send to 3D Print Service.
$\$$ Menu: Application menu $>$ Publish $>$ Send to 3D Print Service

Summary

The 3DPRINT command opens the 3D Printing - Prepare Model for Printing dialog box. You can

- Learn about preparing 3D models for printing

■ Continue

List of Prompts

The following prompts are displayed.
Select solids or watertight meshes: Select 3D solids or watertight meshes. Press Enter.

As you select solids or watertight meshes, note the following:
■ You can select uniformly scaled blocks and xrefs that contain solids or watertight meshes. Non-uniformly scaled blocks and xrefs cannot be included in the selection set.

- Only solids and watertight meshes within selected blocks and xrefs are included in the STL file. All other geometry is discarded.

■ Watertight meshes are converted to 3D solids based on the current value of the SMOOTHMESHCONVERT system variable. (Values of 0 and 1 create smoothed solids. Values of 2 and 3 create faceted solids.) 3DPRINT does not optimize, or merge, coplanar faces during this conversion.

No other command prompts display. However, the following display in the order listed:

■ Send to 3D Print Service Dialog Box

- Create STL File Dialog Box
- The Autodesk 3D Printing Website

Send to 3D Print Service Dialog Box

Quick Reference

See also:
■ Print 3D Models

Access Methods

Button
$\$$ Ribbon: Output tab $>$ 3D Print panel $>$ Send to 3D Print Service.
$\$$ Menu: Application menu $>$ Publish $>$ Send to 3D Print Service
座 Command entry: 3dprint

List of Options

The following options are displayed.

Objects

The following buttons allow you to change the selection set:

Select Objects

Displays the canvas where you can add or remove objects from the selection set. Objects that you have already selected are removed from the selection set and replaced by newly selected objects.
To add objects to the selection set, select the objects.
To remove objects from the selection set, shift-select the objects.

Quick Select

Displays the Quick Select Dialog Box.
Use the Quick Select Dialog Box.

Output Dimensions

As part of the 3D printing process, selected 3D solids and watertight meshes within a bounding box are saved as an STL file. This file can be used by a 3D printing service to output a physical model.

You can select blocks or external references (xrefs) that contain 3D solids and watertight meshes. However, only 3D solids and watertight meshes within selected blocks or xrefs are included in the STL file. Other objects are not included when you save the STL file.
You can modify the dimensions of the bounding box and specify the scale of 3D solids and watertight meshes within the bounding box. If you modify this option, the proportions of these objects are unaffected.

You can modify the following options. All of these options are based on one another. If you modify one, the others are automatically adjusted.

Scale

Specifies the scale of selected 3D objects within the bounding box.

Length (X)

Specifies the X dimension of the model bounding box.
Width (Y)
Specifies the Y dimension of the model bounding box.

Height (Z)

Specifies the Z dimension of the model bounding box.

Output Preview

Provides a dynamic preview of selected 3D solids and watertight meshes. If you modify output dimensions, the output preview remains unaffected.

Zoom Extents

Sets the display so that the image fits within the preview window. This dialog box is resizeable. If desired, you can enlarge the preview.

Pan

Moves the image horizontally and vertically within the preview window. You can also pan by holding down the scroll wheel of your mouse as you move the mouse.

Zoom

Changes the magnification of the preview. To zoom in or out, select this button, then hold the left mouse button and drag upwards or downwards.

You can also roll the mouse scroll wheel to zoom or out at any time.
Orbit

Rotates the image within the preview window as you drag the image with the mouse.

Create STL File Dialog Box

Quick Reference

See also:

- Export Stereolithography STL Files

Saves a drawing as an STL file.

Access Methods

菐 Command entry: stlout

Summary

The Create STL File dialog box is a standard file selection dialog box. It displays when you use the 3DPRINT or STLOUT commands.

The STL file format is preferred by 3D printing service providers. If you have prepared your drawing for 3D printing, you can save it with the STLOUT command, rather than the 3DPRINT command.

The FACETRES system variable determines how the solid is triangulated. A higher value creates a finer mesh that more accurately represents the model. This also results in a much larger file.

3DROTATE

Quick Reference

See also:

- Rotate 3D Objects

In a 3D view, displays the 3D Rotate gizmo to aid in revolving 3D objects around a base point.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Modify panel $>$ 3D Rotate.
$\$$ Menu: Modify $>$ 3D Operations $>$ 3D Rotate
$\$$ Toolbar: Modeling

Summary

With the 3D Rotate gizmo, you can rotate selected objects and subobjects freely or constrain the rotation to an axis.

If you are working in a viewport with 2D Wireframe set as the visual style, 3DROTATE temporarily changes the visual style to 3D Wireframe for the duration of the command.

The 3D Rotate gizmo is displayed at the center of the selected object or objects by default. You can adjust the axis of rotation by using the shortcut menu to change the location of the gizmo.

When the 3D Rotate gizmo is displayed, the 3D Rotate Gizmo shortcut menu offers options for aligning, moving, or changing to another gizmo.

List of Prompts

The following prompts are displayed.
Select objects Specifies the objects that you want to rotate.
Base point Sets the center point of the rotation.
Pick a rotation axis On the 3D Scale gizmo, specifies the axis of rotation. Move the mouse until the axis path you want to select turns yellow, then click to select it.

Specify angle start point or type an angle Sets the relative start point of the rotation. You can also enter an angle value.

Specify angle end point Rotates the object about the specified axis. Click to end the rotation.

3D Rotate Gizmo Shortcut Menu

Quick Reference

See also:

■ Rotate 3D Objects

Displays options to set the constraint of a 3D object, switch gizmos, and move or align the gizmo.

Access Methods

Shortcut menu: Right-click the 3D Rotate gizmo

List of Options

The following options are displayed.
Move Activates the 3D Move gizmo.
Rotate Activates the 3D Rotate gizmo.
Scale Activates the 3D Scale gizmo.
Set Constraint Sets whether the change is constrained to a specific axis.
■ X, Y or \mathbf{Z}. Restricts the change to the designated axis.

Relocate Gizmo Moves the gizmo to the point you specify.
Align Gizmo With Sets the alignment for the change. Choices include
■ World UCS (default)
■ Current UCS
■ Face

Custom Gizmo Allows you to define the current gizmo by specifying one, two, or three points, or an object.

Respect Dynamic UCS When relocating the gizmo, as you move the cursor, temporarily aligns the $X Y$ plane of the UCS with the faces or edges.

3DSCALE

Quick Reference

See also:

- Scale 3D Objects

In a 3D view, displays the 3D Scale gizmo to aid in resizing 3D objects.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Modify panel $>$ 3D Scale

Summary

With the 3D Scale gizmo, you can resize selected objects and subobjects along an axis or plane, or resize the objects uniformly.
When the 3D Scale gizmo is displayed, the 3D Scale Gizmo shortcut menu offers options for aligning, moving, or changing to another gizmo.

List of Prompts

The following prompts are displayed.
Select objects Specifies the objects to be scaled.
Specify base point Specifies the base point for the scaling.

Pick a scale axis or plane Specifies whether the object is scaled uniformly or only along a specific axis or plane. You have the following choices:
■ Scale uniformly. Click the area closest to the vertex of the 3D Scale gizmo. The interior region of all axes of the gizmo is highlighted.

- Constrain the scale to a plane. Click between the parallel lines between the axes that define the plane. This option is only available for meshes, not solids or surfaces.

- Constrain the scale to an axis. Click the axis. This option is only available for meshes, not solids or surfaces.

Specify scale factor Specifies the amount of change. Drag to dynamically modify the size of the selected objects or enter a scale value. For example, enter 2 to double the size of the selection.

Copy Creates and scales a copy of the selected objects.
Reference Sets a scale based on a ratio.

- Reference length. Sets the relative amount that represents the current size in the scale ratio.

■ New Length. Sets the relative value used to calculate the new size. For example, if the reference length is 1 and the new length is 3 , the size of the selected objects is tripled.

- Points. Specifies the relative value used to calculate the new size based on two points that you specify.

3D Scale Gizmo Shortcut Menu

Quick Reference

See also:

■ Use Gizmos to Modify Objects

Displays options to set the constraint of a 3D object, switch gizmos, and move or align the gizmo.

Access Methods

Shortcut menu: Right-click the 3D Scale gizmo

List of Options

The following menu options are displayed when you right-click the 3D Scale gizmo.

Move Activates the 3D Move gizmo.

Rotate Activates the 3D Rotate gizmo.
Scale Activates the 3D Scale gizmo.
Set Constraint Sets whether the change is constrained to a specific axis.
■ \mathbf{X}, \mathbf{Y} or \mathbf{Z}. Restricts the change to the designated axis.
■ XY, YX, or ZX. Restricts the change to a plane that is defined by the selected axes.

■ XYZ. Applies the scaling uniformly to all axes.

NOTE Unlike most other objects, mesh objects support non-uniform scale.
Relocate Gizmo Moves the gizmo to the point you specify.
Align Gizmo With Sets the alignment for the change. Choices include

- World UCS (default)
- Current UCS

■ Face

Custom Gizmo Allows you to define the current gizmo by specifying one, two, or three points, or an object.
Respect Dynamic UCS When relocating the gizmo, as you move the cursor, temporarily aligns the $X Y$ plane of the UCS with the faces or edges.

3DSIN

Quick Reference

See also:

- Import Autodesk 3ds MAX Files

Imports an Autodesk 3ds MAX (3DS) file.

Access Methods

Button
$\$$ Menu: Insert > 3D Studio

Summary

Data that can be imported from a 3ds MAX file includes meshes, materials, mappings, lights, and cameras. Procedural materials, smoothing groups, and keyframe data cannot be imported. For lights and materials, use CONVERTOLDLIGHTS and CONVERTOLDMATERIALS.

The 3D Studio File Import dialog box (a standard file selection dialog box) is displayed. After you choose a file to import, the 3D Studio File Import Options dialog box is displayed.

3D Studio File Import Options Dialog Box

Quick Reference

See also:

- Import Autodesk 3ds MAX Files

Access Methods

$\stackrel{5}{7}$
Button
$\$$ Menu: Insert > 3D Studio
䱂 Command entry: 3dsin

Summary

Lists available and selected 3D objects, saves 3D objects to layers, and handles objects that use multiple materials.

List of Options

The following options are displayed.

Available Objects

Displays the names of all objects in the specified Autodesk ${ }^{\circledR} 3 \mathrm{ds}$ MAX ${ }^{\circledR}$ (3DS) file. You can select up to 70 objects.

Object Name and Type Displays the type and assigned name of each object.
Add All Adds all of the objects in the Available Objects list to the Selected Objects list.

Add Adds the objects currently selected in the Available Objects list to the Selected Objects list.

Selected Objects

Displays the selected 3ds MAX objects to import.
Object Name and Type Displays the type and assigned name of each object.
Remove Removes objects selected in the Selected Objects list and returns them to the Available Objects list.

Remove All Removes all objects from the Selected Objects list and returns them to the Available Objects list.

Save to Layers

Controls how 3ds MAX objects are assigned to layers in the drawing.
By Object Creates a layer for each object in the 3ds MAX file and places the object on that layer. The name of the layer is the same as the name of the object.

By Material Creates a layer for each material in the 3ds MAX file and places objects to which that material is attached on that layer. The name of the layer is the same as the name of the material.

By Object Color Creates a layer for each object color in the 3ds MAX file. Each 3ds MAX object is placed on the layer corresponding to its color. The name of the layer is COLORnn, where $n n$ is the 3ds MAX color index. If the 3ds MAX file contains objects with no color, these objects are placed on a layer called COLORNONE.

Single Layer Creates a single layer called AVLAYER and places all objects on that layer.

Multiple Material Objects

3ds MAX assigns materials by face, element, or object. AutoCAD assigns materials by object only. When AutoCAD encounters a 3ds MAX object assigned multiple materials, AutoCAD must find a way to handle the assignment.

Always Prompt

Displays the Material Assignment Alert dialog box for each object with multiple materials. The dialog box displays the name of the object. The options you select determine how 3DSIN handles the assignment. The options are as follows:

Split Object by Material Splits the object into multiple objects, one for each material. This preserves the material assignments that were made in the 3ds MAX file. It also increases the complexity of the drawing geometry.

Assign First Material Assigns the first material assigned to each multiple-material object to the entire object. See the 3ds MAX documentation for an explanation of how the first-assigned material is determined.

Select a Material Assigns one of the materials that was assigned to the object in the 3ds MAX file to the entire object. Select the material from the list below this option, or choose NONE to revert to the AutoCAD default material.

Split by Material

Splits all objects with multiple materials into multiple objects, one for each material. This preserves the material assignments that were made in the 3ds MAX file. It also increases the complexity of the drawing geometry.

Assign First Material

Assigns the first material assigned to each multiple-material object to the entire object. See the 3ds MAX documentation for an explanation of how the first-assigned material is determined.

Don't Assign a Material

Assigns no material to each multiple-material object. This option loses all material assignment information but preserves the 3ds MAX geometry. The object reverts to the AutoCAD default material.

3DSWIVEL

Quick Reference

See also:

- Use 3D Navigation Tools

Changes the target of the view in the direction that you drag.

Access Methods

8 Toolbar: 3D Navigation
$\$$ Menu: View $>$ Camera $>$ Swivel
Pointing device: Press Ctrl and click the mouse wheel to temporarily enter 3DSWIVEL mode.
Shortcut menu: Start any 3D navigation command, right-click in the drawing area, and click Other Navigations Modes » Swivel (5).

Summary

Simulates panning with a camera in the direction that you drag. The target of the view changes. You can swivel the view along the $X Y$ plane or along the Z axis.

3DWALK

Quick Reference

See also:

■ Walk and Fly Through a Drawing

Changes the 3D view in a drawing interactively to create the appearance of walking through the model.

Access Methods

Button
$\$$ Toolbar: 3D Navigation
$\$$ Menu: View $>$ Walk and Fly $>$ Walk
Shortcut menu: Start any 3D navigation command, right-click in the drawing area, and click Other Navigation Modes $>$ Walk (6).

Summary

3DWALK activates a walk mode in the current viewport. On the keyboard, use the four arrow keys or the W (forward), A (left), S (back), and D (right) keys to determine the direction of your walk. To specify the direction of the view, you drag the mouse in the direction you want to look. For more information, see Walk and Fly Navigation Mappings Balloon on page 77.

By default, the Position Locator window opens and displays your position in the drawing from a top view.

To control walk and fly settings, use the Walk and Fly Settings dialog box. To specify settings for animating a 3D walk or fly, see Animation Settings Dialog Box on page 75.

Animation Controls

Quick Reference

See also:

- Create Preview Animations

Creates and saves an animation created with 3D navigation commands such as 3DWALK on page 73 and 3DFLY on page 39.

Animation Pane

The Animation panel on the ribbon allows you to create walk-throughs of your model. You can create a walk-through by specifying a path with the ANIPATH command or with the animation controls when one of the 3D Navigation commands are enabled.

Animation Play

Displays the Animation Preview window within which you can view the recorded animation.

Animation Record

Starts the recording for a walk-through animation that does not follow a specific path.

Animation Pause

Pauses the recording of a walk-through animation that does not follow a specific path.

Animation Save

Stops and saves the recording of a walk-through animation that does not follow a specific path.

Animation Settings Dialog Box

Quick Reference

See also:

- Walk and Fly Through a Drawing

Specifies settings for recording an animation of 3D navigation.

A Animation Settings			${ }^{2}$
Settings			
Visual style:		Resolution:	
As displayed		320×240	
Frame rate (FPS):		Format:	
30	$\stackrel{\rightharpoonup}{*}$	WMV	\checkmark
OK	Cancel	H	

List of Options

The following options are displayed.

Settings

Determines the settings for an animation file.
Visual Style
Displays a list of visual styles and render presets that you can apply to an animation file.

Resolution

Displays a list of resolutions. The default value is 320×240.
Frame Rate (FPS)
Specifies a frame rate (in seconds). Values are between 1 and 60. The default value is 30 .

Format

Specifies a list of animation output formats. Available formats are AVI, MPG, WMV, and MOV.

Position Locator Window

Quick Reference

See also:

- Walk and Fly Through a Drawing

Displays the top-view position of a 3D model when in a walk or fly navigation.

List of Options

The following options are displayed.
Zoom In Zooms in to the display in the Position Locator window.
Zoom Out Zooms out from the display in the Position Locator window.
Zoom Extents Zooms to the extents of the display in the Position Locator window.

Preview Displays your current location in the model. You can drag the position indicator to change your position. You can also drag the target indicator to change the direction of the view.

Position Indicator Color Sets the color of the dot that shows your current position.

Position Indicator Size Sets the size of the indicator. You can choose Small, Medium, or Large.

Position Indicator Blink Turns the blinking effect on or off.
Position Z Specifies the Z coordinate for the position indicator. You can modify the setting by entering a new value.

Target Indicator Displays an indicator that shows the target of the view.
Target Indicator Color Sets the color of the target indicator.
Target Z Specifies the Z coordinate for the target position indicator. You can modify the setting by specifying a point in the drawing area or entering a new value.

Preview Transparency Sets the transparency of the preview window. You can choose a value from 0 to 95 .

Preview Visual Style Sets the visual style of the preview.

Walk and Fly Navigation Mappings Balloon

Quick Reference

See also:

- Walk and Fly Through a Drawing

The Walk and Fly Navigation Mappings balloon displays the keyboard and mouse controls that control walk and fly modes.

Summary

Press TAB to turn the display of the balloon on and off. You can specify whether to display the instructions, and how often, in the Walk and Fly Settings dialog box.

List of Options

The following options are displayed.
Up arrow/W key Moves the camera backward.
Down arrow/S key Moves the camera forward so that you appear to be walking (or flying) forward.

Left arrow/A key Moves the camera to the left, so that you appear to be moving to the left.

Right arrow/D key Moves the camera to the right.
Drag mouse Sets the target so that you look or turn.
F key Toggles between fly (3DFLY) and walk (3DWALK) modes.

3DZOOM

Quick Reference

See also:

- Specify 3D Views

Zooms in and out in a perspective view.

Access Methods

Button

Toolbar: 3D Navigation
$\$$ Menu: View > Zoom
Pointing device: Scroll the mouse wheel to zoom in and out.
Shortcut menu: Start any 3D navigation command, right-click in the drawing area, and click Other Navigation Modes $>$ Zoom (8).

Summary

Zooming in a perspective view simulates moving the camera closer to the target or farther away. Objects appear closer or farther away, but the position of the camera does not change.

List of Prompts

The following prompts are displayed in a perspective view.
Press Esc or Enter to exit, or right-click to display shortcut-menu. Enter option [All/Extents/Window/Previous/Object] <real time>: All Zooms to display the entire drawing.

Extents Zooms to display the drawing extents and results in the largest possible display of all the objects

Window Zooms to display an area specified by two points of a rectangular window.

Previous Zooms to display the previous view.

Object Zooms to display one or more selected objects as large as possible and in the center of the view.

Real Time Using the pointing device, zooms interactively.

A Commands

ABOUT

Quick Reference

See also:

- Start a Drawing

Displays information about AutoCAD.
Access Methods
$\$$ Menu: Help > About
曼 Command entry: 'about for transparent use

Summary

Copyright information and product information is displayed. Product information includes the version number and service pack, serial number, license type and expiration date, and the text of the license agreement. You can save the product information as a text file.

ACISIN

Quick Reference

See also:

- Import ACIS SAT Files

Imports an ACIS (SAT) file and creates 3D solid, body, or region objects.

Access Methods

Button

Menu: Insert > ACIS File

Summary

The Select ACIS File box is displayed. Select the file to import in the File Name list. The SAT (ASCII) ACIS file is imported into the drawing.

NOTE ACISIN imports SAT files up to ACIS version 7.0.

ACISOUT

Quick Reference

See also:

- Export ACIS SAT Files

Exports a body object, solid, or region to an ACIS file.

Summary

Selected objects that are not solids or regions are ignored, and the Create ACIS File dialog box is displayed. Enter the name of the file you want to create. The selected objects are exported to an ASCII file.

NOTE When exchanging SAT files to earlier versions of AutoCAD, you need to set the ACISOUTVER on page 2146 system variable to the ACIS version used for that release. For example, to export SAT files to AutoCAD Release 14, set ACISOUTVER to 16.

ACTBASEPOINT

Quick Reference

See also:

- Insert Base Points

Inserts a base point in an action macro.

Access Methods

Button
$\$$ Ribbon: Manage tab $>$ Action Recorder panel $>$ Insert Base Point

Summary

During the time of recording, if you enter actbasepoint at the Command prompt, the following prompt is displayed:

Specify a base point: Specify a point
Inserts a base point in an action macro, which requests a user-defined point when the action macro is played back. The inserted base point is represented by a node with an icon that displays a crosshairs and a small black silhouette of a person in the lower right corner. This icon is followed by the point specified in an italic font. You can insert a base point by selecting an action macro or the command node in the Action tree.

A base point establishes a point location with absolute coordinates, which is used by the prompts that follow in the action macro.

NOTE When you play back the action macro (with a base point inserted) in a version older than AutoCAD 2010, an error message is displayed and the action macro is removed from the location of available action macros.

ACTMANAGER

Quick Reference

See also:

- Manage Action Macros

Manages action macro files.

Access Methods

Button

Ribbon: Manage tab $>$ Action Recorder panel $>$ Manage Action Macros
並 Command entry: 'actmanager for transparent use

Summary

The Action Macro Manager on page 84is displayed.
Use the Action Macro Manager to copy, rename, modify, or delete action macro files.

Action Macro Manager

Quick Reference

See also:

- Manage Action Macros

Copies, renames, modifies, or deletes action macro files.

84 | Chapter 2 A Commands

Al Action Macro Manager	
Action Macros	
ActMacro001 ActMacro002 ActMacro003 ActMacro004 CreateBolt Rename Options...	

Access Methods

Button

Ribbon: Manage tab $>$ Action Recorder panel $>$ Manage Action Macros菐 Command entry: actmanager (or 'actmanager for transparent use)

Summary

Your recorded action macro (ACTM) files are listed in the Action Macro Manager.

List of Options

The following options are displayed.
Copy
Creates a duplicate copy of an action macro.

Rename

Renames an action macro.

Modify

Displays the selected action macro in the Action Macro dialog box on page 89.

Delete

Moves the selected action macro (ACTM) file to the Windows Recycle Bin. You can select and delete one or more action macros.

Options

Displays the Options dialog box on page 1314 (Files tab). From the Files tab, you can locate the paths used to record and play back your (ACTM) files from the Action Recorder Settings node.

Close Closes the Action Macro Manager dialog box.
NOTE When a single action macro is selected, you can use Copy, Rename, Modify, and Delete. But, when multiple action macros are selected, you can only use Delete.

ACTRECORD

Quick Reference

See also:

- Record an Action Macro with the Action Recorder

Starts the Action Recorder.

Access Methods

Button
$\$$ Ribbon: Manage tab $>$ Action Recorder panel $>$ Record
$\$$ Menu: Tools $>$ Action Recorder $>$ Record
Shortcut menu: Right-click in the drawing area and click Action Recorder Record.

Summary

The Action Recorder Preferences dialog box on page 87 controls the behavior of the Action Recorder panel when playing back or recording an action macro.

You can create an action macro by recording most of the commands that you are already familiar with.

Action Recorder Preferences Dialog Box

Quick Reference

See also:

■ Record an Action Macro with the Action Recorder

Controls the behavior of the Action Recorder panel when playing back or recording an action macro.
Action Recorder Preferences
Action Recorder panel
\square Expand on playback
∇ Expand on recording
∇ Prompt for action macro name

OK Cancel

Access Methods

Button
$\$$ Ribbon: Manage tab $>$ Action Recorder panel $>$ Preference

Summary

Customizes the settings used for the Action Recorder.

ACTSTOP

Quick Reference

See also:
■ Record an Action Macro with the Action Recorder

Stops the Action Recorder and provides the option of saving the recorded actions to an action macro file.

Access Methods

Button
$\$$ Ribbon: Manage tab $>$ Action Recorder panel $>$ Stop
$\$$ Menu: Tools $>$ Action Recorder $>$ Stop
Shortcut menu: Right-click in the drawing area and click Action Recorder Stop.
䱂 Command entry: 'actstop for transparent use

Summary

The Action Macro dialog box on page 89 is displayed.
If you enter -actstop at the Command prompt, options are displayed on page 91.

You can use this command to stop the recording or playback of an action macro based on the current state of the Action Recorder. When the recording of an action macro is stopped, the recorded actions are saved to an action macro file.

Action Macro Dialog Box

Quick Reference

See also:

■ Record an Action Macro with the Action Recorder

Access Methods

\square
Button
$\$$ Ribbon: Manage tab $>$ Action Recorder panel $>$ Stop
$\$$ Menu: Tools $>$ Action Recorder $>$ Stop

Shortcut menu: Right-click in the drawing area and click Action Recorder > Stop.
幽 Command entry: actstop (or 'actstop for transparent use)

Summary

Saves or renames the current action macro and defines the playback behavior for the action macro.

List of Options

The following options are displayed.
Action Macro Command Name Specifies the command name for the current action macro.

File Name Displays the file name for the current action macro.
Folder Path Displays the location where the current action macro file is stored or will be saved to.

Description Specifies a description for the current action macro. The description is displayed in a tooltip when the cursor hovers over the top node of the action macro in the Action tree.

Restore Pre-Playback View Defines how the view, prior to the playback of an action macro, is restored.

- When Pausing for User Input. Restores the view prior to the playback of an action macro when a request for user input occurs.
- Once Playback Finishes. Restores the view prior to the playback of an action macro when playback is complete.

Check for Inconsistencies When Playback Begins Specifies if the action macro should be scanned for inconsistencies between the current drawing state and the drawing state when the macro was recorded.

More Options Controls the display of additional options in the Action Macro dialog box.
■ Restore Pre-Playback View

■ Check for Inconsistencies When Playback Begins

-ACTSTOP

Quick Reference

See also:
■ Record an Action Macro with the Action Recorder

Stops the Action Recorder and provides the option of saving the recorded actions to an action macro file

Access methods

並 Command entry: '-actstop for transparent use

List of Prompts

The following prompts are displayed.
Enter action macro name <ActMacro001>: Press ENTER, or enter a name for the action macro
Enter an option ["Description"/"Settings"/"Exit"] <Exit>: Enter an option and press ENTER
Description Specifies a description for the current action macro.

Settings

Defines the behavior of the action macro during playback.
Restores the original view before a request for input. Restores the view prior to the playback of an action macro when a request for user input occurs.

Restores the original view after playback is complete. Restores the view prior to the playback of an action macro when playback is complete

Prompts during playback if inconsistencies are found. Specifies if the action macro should be scanned for inconsistencies between the current drawing state and the drawing state when the macro was recorded.

Exit Stops and saves the action macro recording with the specified name.

ACTUSERINPUT

Quick Reference

See also:

- Pause for User Input

Pauses for user input in an action macro.

Access Methods

Button

Ribbon: Manage tab $>$ Action Recorder panel $>$ Pause for User Input菐 Command entry: 'actuserinput for transparent use

Summary

The next recorded action is set to pause for user input when the action macro is played back. When a pause for user input is added to an action, the icon for the action in the Action tree displays a small black silhouette of a person in the lower-right corner and the text assigned to the action node is displayed in italic font.

You can insert a pause for user input by selecting the value node in the Action tree that you want to pause and provide input for during playback.

ACTUSERMESSAGE

Quick Reference

See also:
■ Insert User Messages

Inserts a user message into an action macro.

Access Methods

Button

Ribbon: Manage tab $>$ Action Recorder panel $>$ Insert Message
機 Command entry: 'actusermessage for transparent use

Summary

The Insert User Message dialog box is displayed.
Inserts a user message that is displayed when the action macro is played back.
If you enter -actusermessage at the Command prompt, options are displayed on page 93.

You can insert a message into an action macro by selecting an action in the Action tree, and then entering the text that you want displayed during playback.

-ACTUSERMESSAGE

Quick Reference

See also:
■ Insert User Messages

Inserts a user message into an action macro

Access Methods

挫 Command entry: '-actusermessage for transparent use

Summary

Inserts a user message that is displayed when the action macro is played back. Click Close to continue playback.

List of Prompts

The following prompts are displayed.

Enter a message to display during playback <exit>: Enter a message and press ENTER, or press ENTER to exit the command

NOTE You can enter a maximum of 256 characters for the user message.

ADCCLOSE

Quick Reference

See also:

- Overview of DesignCenter

Closes DesignCenter.

Summary

Closes the DesignCenter ${ }^{\text {TM }}$ window.

ADCENTER

Quick Reference

See also:
■ Overview of DesignCenter

Manages and inserts content such as blocks, xrefs, and hatch patterns.

Access Methods
聞品
Button

Ribbon: Insert tab $>$ Content panel $>$ DesignCenter
Toolbar: Standard
Menu: Tools $>$ Palettes $>$ DesignCenter

Summary

The DesignCenter is displayed.

DesignCenter Window

Quick Reference

See also:

- Understand the DesignCenter Window

Browses, finds, and previews content, and inserts content, which includes blocks, hatches, and external references (xrefs).

Access Methods

関

Bution

Ribbon: Insert tab $>$ Content panel $>$ DesignCenter
$\$$ Toolbar: Standard
$\$$ Menu: Tools $>$ Palettes $>$ DesignCenter
曼 Command entry: adcenter

Summary

Use the buttons in the toolbar at the top of DesignCenter for display and access options.

When you click the Folders tab or the Open Drawings tab, the following two panes are displayed from which you can manage drawing content:

- Content area (right pane) on page 96
- Tree view (left pane) on page 98

NOTE The DesignCenter Online (DC Online tab) is disabled by default. You can enable it from the CAD Manager Control utility.

List of Options

The following options are displayed.
Content Area (DesignCenter) Displays the content of the "container" currently selected in the tree view. A container is a network, computer, disk, folder, file, or web address (URL) containing information accessible by DesignCenter.
Depending on the container selected in tree view, the content area typically displays the following:

- Folders containing drawings or other files
- Drawings
- Named objects contained in drawings (named objects include blocks, xrefs, layouts, layers, dimension styles, table styles, multileader styles, and text styles)
- Images or icons representing blocks or hatch patterns
- Web-based content

■ Custom content developed by third-party applications

From the content area, you can insert blocks or hatch patterns or attach external references in a drawing by dragging, by double-clicking, or by right-clicking and choosing Insert Block, Attach Xref, or Copy. You can drag or right-click to add other content to drawings, such as layers, dimension styles, and layouts. You can drag blocks and hatches from DesignCenter to tool palettes.

NOTE You can access relevant content area and tree view options on a shortcut menu by right-clicking in the tree view or the content area.

Load Displays the Load dialog box (a standard file selection dialog box). Use Load to navigate to files on local and network drives or on the Web, and then to select content to load in the content area.

Back Returns to the most recent location in the history list.
Forward Returns to the next later location in the history list.
Up Displays the contents of the container one level above the current container.

Stop (DC Online tab) Stops the current transfer.
Reload (DC Online tab) Reloads the current page.
Search Displays the Search dialog box, where you can specify search criteria to locate drawings, blocks, and nongraphical objects within drawings.
Search also displays custom content saved on your desktop.
Favorites Displays the contents of the Favorites folder in the content area. The Favorites folder contains shortcuts to items you access often. You can add items to Favorites either by right-clicking the content area or right-clicking an item in the tree view, and then clicking Add to Favorites. To delete an item from Favorites, use the Organize Favorites option on the shortcut menu and then use the Refresh option on the shortcut menu.

NOTE The DesignCenter folder is automatically added to Favorites. This folder contains drawings with discipline-specific blocks that you can insert in drawings.

Home Returns DesignCenter to your home folder. On installation, the home folder is set to ... \Sample\DesignCenter. Change the home folder using the shortcut menu in the tree view.

Tree View Toggle Displays and hides the tree view. Hide the tree view if you need more space in your drawing area. When the tree view is hidden, you can use the content area to navigate to containers and to load content.

The Tree View Toggle button is not available while you're using the History list in the tree view.

Preview Displays and hides a preview of the selected item in a pane below the content area. If there is no preview image saved with the selected item, the Preview area is empty.

Description Displays and hides a text description of the selected item in a pane below the content area. If a preview image is also displayed, the description is displayed below it. If there is no description saved with the selected item, the Description area is empty.

Views

Provides different display formats for the content that is loaded in the content area. You can select a view from the Views list or click the Views button repeatedly to cycle through the display formats. The default view varies for the type of content currently loaded in the content area.
Large Icon Displays the names of the loaded content in large icon format.
Small Icon Displays the names of the loaded content in small icon format.
List View Displays the names of the loaded content in a list.
Detail View Displays additional information about the loaded content. You can sort the items by name, size, type, and other properties, depending on the type of content that is loaded in the content area.

Refresh (Shortcut Menu Only) Refreshes the display in the content area to reflect any changes you have made. Right-click the content area background and click Refresh on the shortcut menu.

Autodesk Seek Design Content Opens a web browser and displays the Autodesk Seek (SEEK on page 1721) home page. Product design information available on Autodesk Seek depends on what content providers, both corporate partners and individual contributors, publish to Autodesk Seek (SHAREWITHSEEK on page 1735). Such content could include 3D models, 2D drawings, specifications, brochures, or descriptions of products or components.

Tree View (DesignCenter)

Displays the hierarchy of files and folders on your computer and network drives, a list of open drawings, custom content, and a history of the last locations you accessed. Select an item in the tree view to display its contents in the content area.

NOTE In the sample \designcenter folder are drawings containing discipline-specific blocks that you can insert in drawings. These drawings are called symbol library drawings.

Use the buttons in the toolbar at the top of DesignCenter to access tree view options.

Folders Displays the hierarchy of files and folders on your computer and network drives, including My Computer and Network Neighborhood.
You can use ADCNAVIGATE to navigate to a specific file name, directory location, or network path in the DesignCenter tree view. See ADCNAVIGATE on page 103.

Open Drawings Displays all drawings open in the current work session, including drawings that are minimized.

History Displays a list of the files that you opened most recently in DesignCenter. With the history displayed, right-click a file to display information about the file or to delete the file from the History list.

DC Online Accesses the DesignCenter Online web page. When you establish a web connection, two panes are viewed on the Welcome page. The left side displays folders containing symbol libraries, manufacturer sites, and additional content libraries. When a symbol is selected, it is displayed on the right side and can be downloaded into your drawing.
NOTE The DesignCenter Online (DC Online tab) is disabled by default. You can enable it from the CAD Manager Control utility.

Search Dialog Box

Quick Reference

See also:

- Overview of DesignCenter

Searches for content such as drawings, hatch patterns, and blocks.

Access Methods

皆

Bulton
$\$$ Ribbon: Insert tab $>$ Content panel $>$ DesignCenter
$\$$ Toolbar: Standard
Menu: Tools $>$ Palettes $>$ DesignCenter
䱂 Command entry: adcenter

List of Options

The following options are displayed.

Look For

Specifies the type of content to search for. The content type you specify determines which tabs are displayed in the Search dialog box and the search fields it provides. The Date Modified and Advanced tabs are displayed only when the Drawings option is selected in Look For.

In
Specifies a search path name. To enter multiple paths, separate them with semicolons. Use Browse to select a path from a tree view list.

Browse

Displays a tree view in the Browse for Folder dialog box, in which you can specify the drives and folders to search.

Search Subfolders

Includes subfolders in the search path.

Search Now

Starts the search based on criteria you specify.

Stop

Stops the search and displays the accumulated results in the Search Results panel.

New Search
Clears the Search For the Word(s) box and places the cursor in the box.

Search Results Panel

Displays the results of the search in resizable columns at the bottom of the window. Double-click an item to load it into DesignCenter.

Search Tabs (Search Dialog Box)

Display search fields relevant to the type of content specified in the Look For list. The name of the tab reflects the content type. You can use wild-card characters to extend or limit your search patterns.

Search for the Word(s)

Specifies the text string to look for in the field you specify. Use the asterisk and question mark wild-card characters to broaden your search.

■ * (Asterisk): Matches any string and can be used anywhere in the search string.

- ? (Question mark): Matches any single character; for example, ?BC matches ABC, 3BC, and so on.

This option is available on the Drawings tab and, when available, the Custom Content tab.

In the Field(s)

Specifies the property fields to search. For drawings, all fields other than File Name are derived from the information entered in the Drawing Properties dialog box (DWGPROPS on page 704).

This option is available on the Drawings tab and the Custom Content tab. NOTE Custom content developed by third-party applications may not provide fields for searches using the Search dialog box.

Search for the Name

Specifies the name of the drawing, block, layer, xref, or other content type that you want to find.

This option is available on all tabs except Drawings and Custom Content.

Date Modified Tab (Search Dialog Box)

Finds content that was created or modified during a certain time period.
All Files Finds all the files that match the criteria you specify on other tabs, regardless of creation date or date modified. This is the default setting.
Find All Files Created or Modified Finds files created or modified during a specific time period. The search locates files that match the criteria you specify on this and other tabs.

Between

Searches for files created or modified between the dates you specify.

During the Previous Month(s)

Searches for files created or modified within the number of months you specify.

During the Previous Day(s)

Searches for files created or modified within the number of days you specify.

Advanced Tab (Search Dialog Box)

Finds content within drawings; this tab is available only when you select Drawings in Look For.

Containing

Specifies the type of text in a drawing that you want to search for. For example, you can search for text contained within a block attribute, such as a manufacturer's catalog number.

Containing Text

Specifies the text you want to search for.

Size Is

Specifies a minimum or maximum file size. Select At Least or At Most, and enter a value in KB.

ADCNAVIGATE

Quick Reference

See also:

- Access Content with DesignCenter

Loads a specified DesignCenter drawing file, folder, or network path.

Summary
The path or drawing file name you specify is loaded in the tree view of the DesignCenter Folders tab.

ADCNAVIGATE supports remote domains or workgroups if you have the target domain or workgroup mapped to a drive letter.

List of Prompts

The following prompts are displayed.
Enter pathname <current>:
At the prompt, you can enter a path in any of the following formats:

- Folder path: $c: \backslash p r o j e c t ~ f i l e s \backslash e l e c t r i c a l ~$
- Folder path and a file name: $c: \backslash p r o j e c t ~ f i l e s \ e l e c t r i c a \ \backslash c i r c u i t 2 . d w g ~$

■ UNC (universal naming convention) network path:
server1 \campus_project

DesignCenter is displayed, with the Folder tab active, and the path or drawing file that you specified is loaded.

ADDSELECTED

Quick Reference

See also:

- Copy, Offset, or Mirror Objects

Creates a new object based on the object type and general properties of a selected object.

Access Methods

Shortcut menu: Select a single object, right-click, and click Add Selected.

Summary

Differs from COPY by duplicating only the general properties on page 1538 of an object. For example, creating an object based on a selected circle adopts the general properties of the circle, such as its color and layer, but prompts you for the new circle's center point and radius.

With the ADDSELECTED command, you can create a new object with the same object type as a selected object. Certain objects have special properties that are supported in addition to its general properties, as shown in the following table.

Object type	Special properties supported by ADDSELEC- TED
Gradient	Gradient name, Color 1, Color 2, Gradient Angle, Centered
Text, MText, Attribute Definition	Text Style, Height
Dimensions (Linear, Aligned, Radial, Diamet- ric, Angular, Arc Length, and Ordinate)	Dim Style, Dim Scale
Tolerance	Dim Style
Leader	Dim Style, Dim Scale
Multileader	Multileader Style, Overall Scale
Table	Table Style
Hatch Reference	Nattern, Scale, Rotation

Object type	Special properties supported by ADDSELEC- TED
Underlays (DWF, DGN, Image, and PDF)	Name

List of Prompts

The following prompt is displayed.
Select object: Use an object selection method
The prompts vary by object type.

ADJUST

Quick Reference

See also:
■ Adjust Underlay Contrast, Fade, Monochrome, and Colors for the Background

Adjusts the fade, contrast and monochrome settings of the selected image or underlay (DWF, DWFx, PDF, or DGN).

Access Methods

Button
$\$$ Ribbon: Insert tab $>$ Reference panel $>$ Adjust

Summary

With the ADJUST command, you can control several display settings for selected images and underlays (DWF, DWFx, PDF, and DGN underlays). To confirm the settings, use the Properties palette.

List of Prompts

The following prompts are displayed.
The list of prompts depends on whether you select one or more images, or one or more underlays.

Images

Fade Controls the fade effect in the image. Values range from 0 through 100. The greater the value, the lighter that the image appears. This setting works indirectly with the contrast effect; a higher contrast value blends the image into the background when fade is set to a higher value.

Contrast Controls the contrast, and indirectly the fading effect in the image. Values range from 0 through 100. The greater the value, the stronger the contrast.

Brightness Controls the brightness, and indirectly, the contrast in the image. Values range from 0 through 100. The greater the value, the brighter the image and the more pixels that become white when you increase contrast.

Underlays

Fade Controls the fade effect in the underlay. Values range from 0 through 100. The greater the value, the lighter that the linework in the underlay appears. This setting works indirectly with the contrast effect; a higher contrast value blends the underlay into the background when fade is set to a higher value.

Contrast Controls the contrast, and indirectly the fading effect in the underlay. Values range from 0 through 100. The greater the value, the stronger the contrast.

Monochrome Controls the color saturation of all areas while maintaining the luminance. When turned on, the underlay appears in shades of gray starting at black if the background color luminance is 50 percent or more. If the background color luminance is less than 50 percent, then the colors are inverted, with the darkest areas displaying as white, and the lightest areas displaying as black.

ALIGN

Quick Reference

See also:

- Align Objects

Aligns objects with other objects in 2D and 3D.

Access Methods

Button
\oint Ribbon: Home tab $>$ Modify panel $>$ Align.
$\$$ Menu: Modify $>$ 3D Operations $>$ Align

Summary

Either one, two, or three pairs of source points and definition points can be specified to move, rotate, or tilt the selected objects, aligning them with points on another object.

List of Prompts

The following prompts are displayed.
Select objects: Select the objects to align and press ENTER
ALIGN Using One Pair of Points When you select only one source point and destination point pair, the selected objects move in 2D or 3D from the source point (1) to the destination point (2).

ALIGN Using Two Pairs of Points When you select two point pairs, you can move, rotate, and scale the selected objects in 2D or 3D to align with other objects.

objects selected

four points specified

result

The first set of source and destination points defines the base point for the alignment $(1,2)$. The second set of points defines the angle of rotation $(3,4)$. After you enter the second set of points, you are prompted to scale the object. The distance between the first and second destination points $(2,4)$ is used as the reference length to which the object is scaled. Scaling is available only when you are aligning objects using two point pairs.

NOTE If you use two source and destination points to perform a 3D alignment on nonperpendicular working planes, you get unpredictable results.

ALIGN Using Three Pairs of Points When you select three point pairs, you can move and rotate the selected objects in 3D to align with other objects.

The selected objects move from the source point (1) to the destination point (2).

The selected object is rotated (1 and 3) so that it aligns with the destination object (2 and 4).
The selected object is then rotated again (3 and 5) so that it aligns with the destination object (4 and 6).

AMECONVERT

Quick Reference

See also:

- Use Models with Other Applications

Converts AME solid models to AutoCAD solid objects.

Summary

The objects you select must be Advanced Modeling Extension (AME) Release 2 or 2.1 regions or solids. All other objects are ignored.

Because of increased accuracy in the new solid modeler, AME models may look slightly different after conversion. This difference is noticeable where the previous version of the solid modeler identified the surfaces of two different shapes as so close as to be considered in the same plane. The new solid modeler's finer tolerance may interpret these surfaces as being slightly offset. This phenomenon is most apparent with aligned features such as fillets, chamfers, and through-holes.

Holes might become blind holes when the new modeler, with its much finer approximation capability, interprets what was once a through-hole as being slightly less wide than the solid. Typically, the length of the remaining solid material is the difference between the tolerance of the previous modeler and that of the new modeler.

Likewise, updated fillets or chamfers can occasionally be placed slightly below the surface, creating a hole through the solid, leaving the original shape unaltered. Also, drawing fillets or chamfers slightly above the original surface creates an uneven transition between the solid and the fillet or chamfer.

ANALYSISCURVATURE

Quick Reference

See also:

- Analyze the Curvature of a Surface

Displays a color gradient onto a surface to evaluate different aspects of its curvature.

Access Methods

$\$$ Ribbon: Surface tab $>$ Analysis panel $>$ Curvature

Summary

Allows you to visualize Gaussian, minimum, maximum, and mean U and V surface curvature. Maximum curvature and a positive Gaussian value display as green; minimum curvature and a negative Gaussian value display as blue.

Positive Gaussian curvature means that the surface is shaped like a bowl. Negative Gaussian curvature means the surface is shaped like a saddle (as shown below). Mean curvature and a zero Gaussian value means that the surface is flat in at least one direction (planes, cylinders, and cones have zero Gaussian curvature).

To change the curvature analysis display settings, use the Curvature tab on page 114 of the Analysis Options dialog box on page 113.

ANALYSISDRAFT

Quick Reference

See also:

- Analyze the Draft of a Surface

Displays a color gradient onto a 3D model to evaluate whether there is adequate space between a part and its mold.

Access Methods

$\$$ Ribbon: Surface tab $>$ Analysis panel $>$ Draft

Summary

The color spectrum shows draft angle changes within a specified range. The maximum draft angle displays as red, and the minimum draft angle displays as blue.

If the surface is parallel to the construction plane with surface normals facing in the same direction as the current UCS, the draft angle is 90.0. When perpendicular, it is 0 . If the surface is parallel to the current UCS with surface normals facing in the opposite direction than the current UCS, the draft angle is -90.0 .

To change the draft analysis display settings, use the Draft Angle tab on page 115 of the Analysis Options dialog box on page 113.

ANALYSISOPTIONS

Quick Reference

See also:

- Analyze Surfaces

Sets the display options for zebra, curvature, and draft analysis.

Access Methods

$\$$ Ribbon: Surface tab $>$ Analysis panel $>$ Analysis Options
业 Command entry: analysisoptions

Summary

The Analysis Options dialog box on page 113is displayed.

Analysis Options Dialog Box

Quick Reference

See also:

- Analyze Surfaces

Sets the display options for zebra, curvature, and draft analysis.

Access Methods

$\$$ Ribbon: Surface tab $>$ Analysis panel $>$ Analysis Options
菐 Command entry: analysisoptions

List of Tabs

The Analysis Options dialog box contains the following tabs:

- Zebra on page 113
- Curvature on page 114
- Draft Angle on page 115

Zebra Tab (Analysis Options Dialog Box)

Quick Reference

See also:

- Analyze Surfaces

Changes the display settings for the ANALYSISZEBRA command.

List of Options

The following options are displayed.

Select Object to Analyze

Prompts you to select the surface objects to analyze. When you are done selecting objects, press Enter to return to the Analysis Options dialog box.

Stripe Display
 Stripe Direction

Specifies the display angle. (VSAZEBRADIRECTION on page 2588) This option is only available when Type is set to Cylinder. If you are using the Chrome Ball type, change the stripe directions with the VSAZEBRADIRECTION on page 2588 system variable.

Type
Sets analysis display type. (VSAZEBRATYPE on page 2589)
Size
Sets the width of the zebra stripes. (VSAZEBRASIZE on page 2589)
Color 1
Sets the first color for zebra stripes. (VSAZEBRACOLOR1 on page 2587)
Color 2
Sets the second color for zebra stripes. (VSAZEBRACOLOR2 on page 2588)

Clear Zebra Analysis

Removes the zebra display from all objects in the current drawing.

Curvature Tab (Analysis Options Dialog Box)

Quick Reference

See also:

- Analyze Surfaces

Changes the display settings for the ANALYSISCURVATURE command.

List of Options

The following options are displayed.

Select object to analyze

Prompts you to select the surface objects to analyze. When you are done selecting objects, press Enter to return to the Analysis Options dialog box.

Color Mapping
 Display Style

Specifies the display for color mapping (VSACURVATURETYPE on page 2585 system variable).

Enter the maximum curvature value (VSACURVATUREHIGH on page 2584 system variable). When the surface curvature reaches this value, it displays as green.

Enter the minimum curvature value (VSACURVATURELOW on page 2585 system variable). When the surface curvature reaches this value, it displays as blue.

Auto Range

Calculates the curvature range so that 80% of the values are within the high and low range (VSACURVATUREHIGH on page 2584 and VSACURVATURELOW on page 2585 system variables).

Max Range

Calculates the maximum and minimum ranges of all objects selected for curvature analysis (VSACURVATUREHIGH on page 2584 and VSACURVATURELOW on page 2585 system variables).

Clear Curvature Analysis
Removes the curvature analysis display from all objects in the current drawing.

Draft Angle Tab (Analysis Options Dialog Box)

Quick Reference

See also:

- Analyze Surfaces

Changes the display settings for the ANALYSISDRAFT command.

List of Options

The following options are available.

Select object to analyze

Prompts you to select the surface objects to analyze. When you are done selecting objects, press Enter to return to the Analysis Options dialog box.

Color Mapping

Maps green to the highest draft angle, red to the medium draft angle, and blue to the lowest draft angle.

Angle Sets the value for the high and low draft angles. The draft angle is the angle in degrees between the surface normal and the UCS plane.
Enter a value for the highest angle allowed (VSADRAFTANGLEHIGH on page 2586). When the object's angle reaches this value, it displays in green.

Displays the average value of the high and low angles. When the object's angle reaches this value, it displays in red.

Enter a value for the lowest angle allowed (VSADRAFTANGLELOW on page 2586). When the object's angle reaches this value, it displays in blue.

Clear Draft Angle Analysis

Removes the curvature analysis display from all objects in the current drawing.

ANALYSISZEBRA

Quick Reference

See also:

■ Analyze Surface Continuity with Zebra Analysis

Projects stripes onto a 3D model to analyze surface continuity.

Access Methods

$\$$ Ribbon: Surface tab $>$ Analysis panel $>$ Draft

Summary

The way the stripes line up where two surfaces meet, helps analyze the tangency and curvature of the intersection.

In this example, the surface continuity is G0 because the surface edges are coincident, but they are not tangent and they have different curvatures. The fact that the stripes are not aligned shows that the surfaces are not tangent.

To change the zebra analysis display settings, use the Zebra Analysis tab on page 113 of the Analysis Options dialog box on page 113.

ANIPATH

Quick Reference

See also:

- Specify Motion Path Settings

Saves an animation file of a camera moving or panning in a 3D model.

Access Methods

Button

8 Ribbon: Render tab $>$ Animations panel $>$ Animation Motion Path
$\$$ Menu: View $>$ Motion Path Animations

Summary

The Motion Path Animation dialog box on page 118 is displayed.

Motion Path Animation Dialog Box

Quick Reference

See also:
■ Specify Motion Path Settings

Specifies settings for a motion path animation and creates an animation file.

Access Methods

Button

8 Ribbon: Render tab $>$ Animations panel $>$ Animation Motion Path $\$$ Menu: View $>$ Motion Path Animations
 座 Command entry: anipath

Summary

A path object must be created first and then selected as the camera path or the target path. A path object can be a line, arc, elliptical arc, circle, polyline, 3D polyline, or spline.

List of Options

The following options are displayed.

Camera

Link Camera To Links a camera to a static point or a motion path in a drawing.

Point
Links a camera to a static point in a drawing.
Path
Links a camera to a motion path in the drawing.

Pick Point/Select Path

Selects either the point where a camera is located or the path along which a camera travels, depending on whether Point or Path was selected.

Point/Path List

Displays a list of named points or paths to which you can link a camera. To create a path, you can link a camera to a line, arc, elliptical arc, circle, polyline, 3D polyline, or spline.

NOTE When you create a motion path, a camera is automatically created. If you delete an object that you specified as a motion path, the named motion path is also deleted.

Target

Link Target To Links a target to a point or a path.
If the camera is linked to a point, the target must be linked to a path. If the camera is linked to a path, you can link the target to either a point or a path.

Point

If the camera is linked to a path, links the target to a static point in the drawing.

Path

Links the target to a motion path in the drawing.

Pick Point/Select Path

Selects either the point or a path for the target, depending on whether Point or Path was selected.

Point/Path List

Displays a list of named points or paths to which you can link the target. To create a path, you can link a target to a line, arc, elliptical arc, circle, polyline, 3D polyline, or spline.

Animation Settings

Controls the output of the animation file.

Frame Rate (FPS)

The speed at which the animation will run, measured in frames per second. Specify a value from 1 to 60 . The default value is 30 .

Number of Frames

Specifies the total number of frames in the animation.
With the frame rate, this value determines the length of the animation. When you change this number, the Duration value is automatically recalculated.

Duration (seconds)

Specifies the duration (in sections) of the animation.
When you change this number, the Number of Frames value is automatically recalculated.

Visual Style
Displays a list of visual styles and render presets that you can apply to an animation file. For more information, see VISUALSTYLES on page 2050 and RENDERPRESETS on page 1645 .

Format

Specifies the file format for the animation.
You can save an animation to an AVI, MOV, MPG, or WMV file format for future playback. The MOV format is available only if Apple QuickTime Player
is installed. The WMV format is available and is the default selection only if Microsoft Windows Media Player 9 or later is installed. Otherwise, AVI is the default selection.

Resolution

Defines the width and height of the resulting animation in screen display units. The default value is 320×240.

Corner Deceleration

Moves a camera at a slower rate as it turns a corner.

Reverse

Reverses the direction of an animation.
When Previewing Show Camera Preview
Enables the display of the Animation Preview dialog box so you can preview the animation before you save it.

Preview

Displays the movement of the camera for the animation in the viewport. If "When Previewing Show Camera Preview" is checked, the Animation Preview dialog box on page 121 also displays a preview of the animation.

Animation Preview Dialog Box

Quick Reference

See also:

- Specify Motion Path Settings

Access Methods

Button

Ribbon: Render tab $>$ Animations panel $>$ Animation Motion Path
Menu: View > Motion Path Animations
Command entry: anipath

Summary

Previews a motion path animation that you created with a motion path or 3D navigation.

List of Options

The following options are displayed.
Preview Displays a preview of the animation you set up either in the Motion Path Animation dialog box or when walking or flying through an animation and recording it from the ribbon.

Play Plays the animation preview. The Play button is disabled when an animation is already playing.

Record Records the animation, starting from the current frame displayed in the Preview region. All frames following the current frame are overwritten. The Overwrite Confirmation warning is displayed to confirm that you intend to overwrite the existing frames. The Record button is disabled when an animation is playing.

Pause Pauses the animation at the current frame displayed in the Preview region. After pausing an animation, the Pause button is disabled.

Save Opens the Save As dialog box. You can save an animation to an AVI, MOV, MPG, or WMV file format for future playback. Once you save the animation, you are returned to the drawing. The Save button is disabled when an animation is playing.

Visual Style Specifies the visual style displayed in the Preview region. The visual style is initially set to Current, which is the visual style defined in the active viewport. Choose from a list of preset and user-defined visual styles.

Slider Moves frame-by-frame through the animation preview. You can move the slider to a specific frame in the animation. A tooltip displays the current frame and total number of frames in the animation.

ANNORESET

Quick Reference

See also:

- Add and Modify Scale Representations

Resets the locations of all alternate scale representations of the selected annotative objects.

Access Methods

Button
$\$$ Ribbon: Annotate tab $>$ Annotation Scaling panel $>$ Sync Scale Positions $\$$ Menu: Modify $>$ Annotative Object Scale > Synchronize Multiple-Scale Positions

Summary

The location of each scale representation of an annotative object can be adjusted using grips. For each selected annotative object, all alternate scale representations are returned to the location of the object's current scale representation.

ANNOUPDATE

Quick Reference

See also:
■ Work with Annotative Styles

Updates existing annotative objects to match the current properties of their styles.

Access Methods

锉 Command entry: annoupdate

Summary

When a non-annotative text object is updated to an annotative text style, the object becomes annotative and supports the current annotation scale on page 2645. If the text style has a fixed Paper Height, the object is set to that height. If the text style's Paper Height is set to 0, the size of the text does not change. The Paper Height value is inferred by dividing the model height by the current annotation scale.

If an annotative object is updated to a non-annotative style, the object becomes non-annotative and any alternate scale representations on page 2671 are removed.

APERTURE

Quick Reference

See also:
■ Use Object Snaps

Controls the size of the object snap target box.

Access Methods

㟇 Command entry: aperture (or 'aperture for transparent use)

Summary

Object snap applies only to objects inside or crossing the object snap target box. The APBOX on page 2153 system variable controls whether the object snap target box is displayed. The number of pixels you enter using APERTURE controls the size of the object snap box. The higher the number, the larger the target box. You can also change this setting in the Options dialog box, Drafting tab.

APERTURE controls the object snap target box, not the pickbox displayed at the Select Objects prompt. The object selection pickbox is controlled by the PICKBOX on page 2451 system variable.

APPLOAD

Quick Reference

See also:

- Overview of AutoLISP Automatic Loading

Loads and unloads applications and defines which applications to load at startup.

Access Methods

Button
$\$$ Ribbon: Manage tab $>$ Applications panel $>$ Load Application
$\$$ Menu: Tools $>$ Load Application

Summary

The Startup Suite option loads the specified applications each time the product first starts. Application files can be dragged from the files list, or from any application with dragging capabilities.
The Load/Unload Applications dialog box is displayed.

Load/Unload Applications Dialog Box

Quick Reference

See also:
■ Overview of AutoLISP Automatic Loading

Loads and unloads applications and defines which applications to load at startup.

Access Methods

Button
$\$$ Ribbon: Manage tab $>$ Applications panel $>$ Load Application
$\$$ Menu: Tools $>$ Load Application
亜 Command entry: appload

Summary

Loads and unloads applications and specifies applications to be loaded at startup.

List of Options

The following options are displayed.
The options at the top of this dialog box are derived from the standard file selection dialog box. Following are descriptions of the additional options provided by the Load/Unload Applications dialog box:

Load Loads or reloads the applications that are currently selected either in the files list or on the History List tab. Load is unavailable until you select a file that you can load. ObjectARX, VBA, and DBX applications are loaded immediately, but LSP, VLX, and FAS applications are queued and then loaded when you close the Load/Unload Applications dialog box.
If you select a file that is already loaded, Load reloads the application when applicable. You cannot reload ObjectARX applications. In this case, you must first unload the ObjectARX application and then load it again. The Load option is also available from a shortcut menu by right-clicking a file on the History List tab.

Loaded Applications

Displays an alphabetical list (by file name) of currently loaded applications. LISP routines are displayed in this list only if you loaded them in the Load/Unload Applications dialog box. You can drag files into this list from the files list or from any application with dragging capabilities, such as Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ Explorer.

If you use the AutoCAD web browser to load an application, the web browser downloads the application to a temporary location on your machine. This is
the location from which AutoCAD loads the application, as displayed in this list.
You can also unload certain applications from this list. See the Unload option for details. Files that you cannot unload are not available for selection.

History List

Displays an alphabetical list (by file name) of applications that you previously loaded with Add To History selected. You can drag files into this list from the files list, or from any application with dragging capabilities, such as Windows Explorer. If Add To History is not selected when you drag files into this list, the dragged files are loaded but not added to the history list.

You can load and remove applications from this list, but to unload applications, you must use the Loaded Applications tab. See the Load, Unload, and Remove options.

Add to History

Adds any applications that you load to the history list.
You may prefer to clear this option when loading applications with the AutoCAD web browser, because these applications are unavailable once the cache for the application's temporary location is emptied.

Unload/Remove

Unloads the selected applications or removes them from the History List. Unload is available only when a file is selected on the Loaded Applications tab. Remove is available only when you select a file on the History List tab.

LISP applications cannot be unloaded, nor can ObjectARX applications that are not registered for unloading.

NOTE Remove does not unload the selected application. The Remove option is also available from a shortcut menu by right-clicking an application on the History List tab.

Startup Suite

Contains a list of applications that are loaded each time you start AutoCAD. You can drag application files from the files list, or from any application with dragging capabilities such as Windows Explorer, into the Startup Suite area to add them to the Startup Suite.

You cannot add applications that you load with the AutoCAD web browser to the Startup Suite.

Contents

Displays the Startup Suite dialog box. You can also add files to the Startup Suite by clicking the Startup Suite icon or by right-clicking an application on the History List tab and clicking Add to Startup Suite on the shortcut menu.

Status Line
Displays messages that indicate the status of loading and unloading operations.

Startup Suite Dialog Box

Quick Reference

See also:

■ Overview of AutoLISP Automatic Loading

Adds and removes application files from the Startup Suite. These are the applications that are loaded each time you start AutoCAD.

Access Methods

$\$$ Menu: Tools > Load Application曼 Command entry: appload

List of Options

The following options are displayed.
List of Applications
Displays an alphabetical list (by file name) of the application files to load at startup.

Add
Displays the Add File to Startup Suite dialog box. You can use this dialog box to select files to add to the startup suite.

Remove

Removes selected files from the Startup Suite.

ARC

Quick Reference

See also:

- Draw Arcs

Creates an arc.

Access Methods

Button

Ribbon: Home tab $>$ Draw panel $>$ Arc drop-down $>$ 3-Point
8 Menu: Draw $>$ Arc
Toolbar: Draw

Summary

To create an arc, you can specify combinations of center, endpoint, start point, radius, angle, chord length, and direction values.

List of Prompts

The following prompts are displayed.
Specify start pointof arc or [Center]: Specify a point, enter c, or press ENTER to
start tangent to last line, arc, or polyline
Start Point
Specifies the starting point of the arc.

NOTE If you press ENTER without specifying a point, the endpoint of the last drawn line or arc is used and you are immediately prompted to specify the endpoint of the new arc. This creates an arc tangent to the last drawn line, arc, or polyline.

Specify second point of arc or [Center/End]:

Second Point

Draws an arc using three specified points on the arc's circumference. The first point is the start point (1). The third point is the endpoint (3). The second point (2) is a point on the circumference of the arc.

Specify end point of arc: Specify a point (3)

You can specify a three-point arc either clockwise or counterclockwise.

Center

Specifies the center of the circle of which the arc is a part.
Specify center point of arc:
Specify end point of arc or [Angle/chord Length]:
End Point Using the center point (2), draws an arc counterclockwise from the start point (1) to an endpoint that falls on an imaginary ray drawn from the center point through the third point (3).

The arc does not necessarily pass through this third point, as shown in the illustration.

Angle Draws an arc counterclockwise from the start point (1) using a center point (2) with a specified included angle. If the angle is negative, a clockwise arc is drawn.

Specify included angle: Specify an angle

Chord Length Draws either a minor or a major arc based on the distance of a straight line between the start point and endpoint.
If the chord length is positive, the minor arc is drawn counterclockwise from the start point. If the chord length is negative, the major arc is drawn counterclockwise.
Specify length of chord: Specify a length

End

Specifies the endpoint of the arc.
Specify end point of arc:
Specify center point of arc or [Angle/Direction/Radius]:
Center Point Draws an arc counterclockwise from the start point (1) to an endpoint that falls on an imaginary ray drawn from the center point (3) through the second point specified (2).

Angle Draws an arc counterclockwise from the start point (1) to an endpoint (2), with a specified included angle. If the angle is negative, a clockwise arc is drawn.
Specify included angle: Enter an angle in degrees or specify an angle by moving the pointing device counterclockwise

Direction Begins the arc tangent to a specified direction. It creates any arc, major or minor, clockwise or counterclockwise, beginning with the start point
(1), and ending at an endpoint (2). The direction is determined from the start point.
Specify tangent direction for the start point of arc:

Radius Draws the minor arc counterclockwise from the start point (1) to the endpoint (2). If the radius is negative, the major arc is drawn.
Specify radius of arc:

Center

Specifies the center of the circle of which the arc is a part.
Specify center point of arc:
Specify start point of arc:
Specify end point of arc or [Angle/chord Length]:
End Point Draws an arc counterclockwise from the start point (2) to an endpoint that falls on an imaginary ray drawn from the center point (1) through a specified point (3).

Angle Draws an arc counterclockwise from the start point (2) using a center point (1) with a specified included angle. If the angle is negative, a clockwise arc is drawn.

Specify included angle:

Chord Length Draws either a minor or a major arc based on the distance of a straight line between the start point and endpoint.
If the chord length is positive, the minor arc is drawn counterclockwise from the start point. If the chord length is negative, the major arc is drawn counterclockwise.
Specify length of chord:

Tangent to Last Line, Arc, or Polyline

Draws an arc tangent to the last line, arc, or polyline drawn when you press ENTER at the first prompt.

Specify end point of arc: Specify a point (1)

ARCHIVE

Quick Reference

See also:

- Publish, Transmit, and Archive Sheet Sets

Packages the current sheet set files for archive.

Access Methods

Button

Summary

The Archive a Sheet Set dialog box is displayed.
If you enter -archive at the Command prompt, options are displayed.

Archive a Sheet Set Dialog Box

Quick Reference

See also:

- Publish, Transmit, and Archive Sheet Sets

Packages the current sheet set files for archive.

Access Methods

Button

Summary

The Sheets tab lists the sheets to be included in the archive package in sheet order and according to subset organization. The Files Tree tab lists the files to be included in the package in a hierarchical tree format. The Files Table tab displays the files to be included in the package in a table format.

All files to be included in the archive package are indicated by a check mark next to the file name. To remove a file from the archive package, select the check box. Right-click in the file display area to display a shortcut menu, from which you can clear all check marks or apply check marks to all files.

NOTE Make sure that the files to be archived are not currently open in any application.

List of Options

The following options are displayed.

Sheets Tab

Lists the sheets to be included in the archive package in sheet order and according to subset organization. A sheet set must be open in the Sheet Set Manager. Archive can be selected from the shortcut menu displayed when the top-level sheet set node is right-clicked, or archive can be entered at the Command prompt.

Files Tree Tab

Lists the files to be included in the archive package in a hierarchical tree format. By default, all files associated with the current drawing (such as related xrefs, plot styles, and fonts) are listed. You can add files to the archive package or remove existing files. Related files that are referenced by URLs are not included in the archive package.

Included

Reports the number of files included in the package and the size of the package.

Files Table Tab

Displays the files to be included in the archive package in a table format. By default, all files associated with the current drawing (such as related xrefs, plot styles, and fonts) are listed. You can add files to the archive package or remove existing files. Related files that are referenced by URLs are not included in the archive package.

■ Included on page 136

Add a File

Opens a standard file selection dialog box, in which you can select an additional file to include in the archive package. This button is available on both the Files Tree tab and the Files Table tab.

Enter Notes to Be Included with This Archive

Provides a space where you can enter notes related to the archive package. The notes are included in the archive report. You can specify a template of default notes to be included with all your archive packages by creating an ASCII text file called archive.txt. This file must be saved to a location specified by the Support File Search Path option on the Files tab in the Options dialog box.

View Report

Displays report information that is included with the archive package. Includes any archive notes that you entered. If you have created a text file of default notes, the notes are also included in the report.

Save As Opens a File Save dialog box, in which you can specify a location in which to save a report file. Note that a report file is automatically included with all archive packages that you generate; by choosing Save As, you can save an additional copy of a report file for reference purposes.

Modify Archive Setup

Displays the Modify Archive Setup dialog box, in which you can specify options for the archive package.

Modify Archive Setup Dialog Box

Quick Reference

See also:

- Publish, Transmit, and Archive Sheet Sets

Access Methods

锉 Command entry: archive

List of Options

The following options are displayed.

Archive Type and Location

Specifies the type and location of archive package created.

Archive Package Type

Specifies the type of archive package created.

Archive Package Type	Description
Folder	Creates an archive package of uncom- pressed files in a new or existing folder.
Zip	Creates an archive package of files as a compressed, self-extracting executable file. Double-clicking the resulting EXE file de- compresses the archive package and re- stores the files.
Creates an archive package of files as a compressed ZIP file. To restore the files, you need a decompression utility such as the shareware application PKZIP or WinZip.	

File Format

Specifies the file format to which all drawings included in the archive package will be converted. You can select a drawing file format from the drop-down list.

Archive File Folder

Specifies the location in which the archive package is created. Lists the last nine locations in which archive packages were created. To specify a new location, click Browse and navigate to the location you want.

If this field is left blank, the archive file is created in the folder containing the sheet set data (DST) file.

Archive File Name

Specifies the method for naming the archive package. Displays the default file name for the archive package. This option is not available if the archive package type is set to Folder.

Archive File Name Type	Description
Prompt for a File Name	Displays a standard file selection dialog box where you can enter the name of the archive package.
Overwrite if Necessary	Uses a logical default file name. If the file name already exists, the existing file is automatically overwritten.
Increment File Name if Ne- cessary	Uses a logical default file name. If the file name already exists, a number is added to the end. This number is incremented each time a new archive package is saved.

Path Options

Provides options for the archive.

Use Organized Folder Structure

Duplicates the folder structure for the files being transmitted. The root folder is the top-level folder within a hierarchical folder tree.

The following considerations apply:
■ Relative paths remain unchanged. Relative paths outside the source root folder retain up to one level of the folder path above them, and are placed in the root folder.

- Absolute paths within the root folder tree are converted to relative paths. Absolute paths retain up to one level of the folder path above them, and are placed in the root folder.
- Absolute paths outside the root folder tree are converted to No Path and are moved to the root folder or to a folder within the root folder tree.
- A Fonts folder is created, if necessary.
- A PlotCfgs folder is created, if necessary.
- A SheetSets folder is created to hold all support files for sheet sets, if necessary. The sheet set data (DST) file, however, is placed in the root folder.

This option is not available if you're saving an archive package to an Internet location.

Source Root Folder

Defines the source root folder for relative paths of drawing-dependent files, such as xrefs. This option determines the source root folder for the Use Organized Folder Structure option.

The source root folder also contains the sheet set data (DST) file when a sheet set is archived.

Place All Files in One Folder

All files are installed to a single, specified target folder when the archive package is created.

Keep Files and Folders As Is

Preserves the folder structure of all files in the archive package. This option is not available if you're saving an archive package to an Internet location.

Actions

Specifies the actions applicable to the archive package.

Set Default Plotter to 'None'

Changes the printer/plotter setting in the archive package to None.

Prompt for Password

Opens the Archive-Set Password dialog box, where you can specify a password for your archive package.

Purge Drawings

Does a complete purge of all the drawings in the archive.
NOTE As the purge is done in silent mode, you will not receive any notifications when the drawings have been removed.

Include Options

Specifies the various options available with the archive package.

Include Fonts

Includes any associated font files (TXT and SHX) with the archive package.

Include Files from Data Links

Adds external files referenced by a data link to the transmittal package.

Include Textures from Materials

Includes textures with materials that are attached to objects or faces.
Include Photometric Web Files
Includes photometric web files that are associated with web lights in the drawing.

Include Unloaded File References
Includes all unloaded external file references. The unloaded file references are listed in the Files Tree and Files Table and report under their appropriate category.

Include Sheet Set Data and Files
Includes the sheet set data (DST) file, label block drawing files, callout block drawing files, and drawing template (DWT) files with the archive package.

Archive - Set Password Dialog Box

Quick Reference

See also:

- Publish, Transmit, and Archive Sheet Sets

Access Methods

座 Command entry: archive

List of Options

The following options are displayed.

Password for Compressed Archive Package

Provides a space for an optional password for the archive package. When others attempt to open the archive package, they must provide this password to access the files. Password protection cannot be applied to folder archive packages.

Password Confirmation

Provides a space to confirm the password that you entered in the Password field. If the two passwords do not match, you are prompted to reenter them.

-ARCHIVE

Quick Reference

See also:

- Publish, Transmit, and Archive Sheet Sets

List of Prompts

The following prompts are displayed.
Sheet Set name or [?] <current>: Enter a predefined sheet set name, enter? to display a list of sheet sets, or press ENTER

Sheet Set Name

Specifies a sheet set to use for the archive package. This option is available only when a sheet set is open.

Create Archive Package Creates the archive package from the specified sheet set.

Report Only Opens a File Save dialog box, in which you can specify a location in which to save a report file. Note that a report file is automatically included with all archive packages that you generate; by choosing Save As, you can save an additional copy of a report file for reference purposes.

Password You are only prompted for a password if you selected Prompt for Password in the archive setup.

Quick Reference

See also:

■ Obtain Area and Mass Properties Information

Calculates the area and perimeter of objects or of defined areas.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Utilities panel $>$ Area.
$\$$ Menu: Tools $>$ Inquiry $>$ Area

Summary

Several commands are available to provide area information including AREA, MEASUREGEOM on page 1110MASSPROP on page 1074. Alternatively, use BOUNDARY on page 256 to create a closed polyline or region. Then use LIST on page 1049 or the Properties palette on page 1535 to find the area.

List of Prompts

The following prompts are displayed.
Specify first corner point on page 145 or [Object on page 146/Add Area on page 147/Subtract Area on page 147] <Object>: Select an option

The area and perimeter of the specified object displays at the Command prompt and in the tooltip.

Specify Corner Points

Calculates the area and perimeter defined by specified points. All points must lie in a plane parallel to the $X Y$ plane of the current user coordinate system (UCS).

A rubberband line from the first specified point to the cursor is displayed. Once the second point is specified, a line segment and a polygon with green fill are displayed.

Continue to specify points to define a polygon and then press ENTER to complete the definition of the perimeter. The area to be calculated is highlighted in green.

If you do not close the polygon, the area is calculated as if a line were drawn from the last point entered to the first. When the perimeter is calculated, that line length is added.

Object

Calculates the area and perimeter of a selected object. You can calculate the area of circles, ellipses, splines, polylines, polygons, regions, and 3D solids.

NOTE 2D solids (created with the SOLID on page 1792 command) do not have an area reported.

Select object:
If you select an open polyline, the area is calculated as if a line were drawn from the last point entered to the first. When the perimeter is calculated that line length is ignored.

The centerline of a wide polyline is used to make area and perimeter calculations.

area defined

The centerline of a wide polyline is used to make area and perimeter (or length) calculations.
wide polyline

Add Area

Turns on Add mode and keeps a running balance of the total area as you continue to define areas. You can use the Add Area option to calculate individual areas and perimeters of defined areas and objects and the total area of all defined areas and objects.

You can also select to specify the points. A rubberband line from the first specified point to the cursor is displayed

Specify points to define a polygon (3). The area to be added is highlighted in green. Press ENTER. AREA calculates the area and perimeter and returns the total area of all the areas defined by selecting points or objects since Add mode was turned on.

If you do not close the polygon, the area is calculated as if a line were drawn from the last point entered to the first. When the perimeter is calculated, that line length is added.

Subtract Area

Similar to the Add Area option, but subtracts areas and perimeters. You can use the Subtract Area option to subtract a specified area from a total area.
You can also specify the area to be subtracted with points. A rubberband line from the first specified point to the cursor is displayed.

The specified area to be subracted is highlighted in red.
The total area and perimeter displays at the Command prompt and in the tooltip.

ARRAY

Quick Reference

See also:

- Create an Array of Objects

Creates multiple copies of objects in a pattern.

Access Methods

Button
\otimes Ribbon: Home tab $>$ Modify panel $>$ Array.
$\$$ Toolbar: Modify
$\$$ Menu: Modify $>$ Array.

Summary

You can create copies of objects in a regularly spaced rectangular or polar array.

The Array dialog box is displayed. You can create rectangular or polar arrays by choosing the appropriate option. Each object in an array can be manipulated
independently. If you select multiple objects, the objects are treated as one item to be copied and arrayed.

If you enter -array at the Command prompt, options are displayed.

Array Dialog Box

Quick Reference

See also:

- Create an Array of Objects

Creates multiple copies of objects in a pattern.

Access Methods

Button
$\$$ Ribbon: Home tab > Modify panel $\boldsymbol{>}$ Array
$\$$ Menu: Modify $>$ Array
$\$$ Toolbar: Modify
菐 Command entry: array

List of Options

The following options are displayed.

Rectangular Array

Creates an array of rows and columns of copies of the selected object.

Rows

Specifies the number of rows in the array.
If you specify one row, you must specify more than one column. If you specify a large number of rows and columns for the array, it might take a while to create the copies. By default, the maximum number of array elements that you can generate in one command is 100,000 . The limit is set by the MAXARRAY setting in the registry. To reset the limit to 200,000, for example, enter (setenv "MaxArray" "200000") at the Command prompt.

Columns

Specifies the number of columns in the array.
If you specify one column, you must specify more than one row. If you specify a large number of rows and columns for the array, it might take a while to create the copies. By default, the maximum number of array elements that you can generate in one command is 100,000 . The limit is set by the MAXARRAY setting in the registry. To reset the limit to 200,000, for example, enter (setenv "MaxArray" "200000") at the Command prompt.

Offset Distance and Direction

Provides a space for you to specify the distance and direction of the array's offset.

Row Offset

Specifies the distance (in units) between rows. To add rows downward, specify a negative value. To specify row spacing with the pointing device, use the Pick Both Offsets button or the Pick Row Offset button.

Column Offset

Specifies the distance (in units) between columns. To add columns to the left, specify a negative value. To specify column spacing with the pointing device, use the Pick Both Offsets button or the Pick Column Offset button.

Angle of Array

Specifies the angle of rotation. This angle is normally 0 , so the rows and columns are orthogonal with respect to the X and Y drawing axes of the current UCS. You can change the measurement conventions for angles using UNITS on page 2000. The ANGBASE on page 2150 and ANGDIR on page 2150 system variables affect the angle of arrays.

Pick Both Offsets

Temporarily closes the Array dialog box so that you can use the pointing device to set the row and column spacing by specifying two diagonal corners of a rectangle.

Pick Row Offset

Temporarily closes the Array dialog box so that you can use the pointing device to specify the distance between rows. ARRAY prompts you to specify two points and uses the distance and direction between the points to specify the value in Row Offset.

Pick Column Offset

Temporarily closes the Array dialog box so that you can use the pointing device to specify the distance between columns. ARRAY prompts you to specify two points and uses the distance and direction between the points to specify the value in Column Offset.

Pick Angle of Array

Temporarily closes the Array dialog box so that you can specify the angle of rotation by entering a value or using the pointing device to specify two points. You can change the measurement conventions for angles using UNITS on page 2000. The ANGBASE on page 2150 and ANGDIR on page 2150 system variables affect the angle of arrays.

Polar Array
Creates an array by copying the selected objects around a specified center point.

Center Point

Specifies the center point of the polar array. Enter coordinate values for X and Y, or choose Pick Center Point to use the pointing device to specify the location.

Pick Center Point

Temporarily closes the Array dialog box so that you can use the pointing device to specify the center point in the drawing area.

Method and Values

Specifies the method and values used to position objects in the polar array.

Method

Sets the method used to position objects. This setting controls which of the Method and Value fields are available for specifying values. For example, if the method is Total Number of Items \& Angle to Fill, the related fields are available for specifying values; the Angle Between Items field is not available.

Total Number of Items

Sets the number of objects that appear in the resultant array. The default value is 4.

Angle to Fill

Sets the size of the array by defining the included angle between the base points of the first and last elements in the array. A positive value specifies counterclockwise rotation. A negative value specifies clockwise rotation. The default value is 360 . A value of 0 is not permitted.

Angle Between Items

Sets the included angle between the base points of the arrayed objects and the center of the array. Enter a positive value. The default direction value is 90.

NOTE You can choose the Pick buttons and use the pointing device to specify the values for Angle to Fill and Angle Between Items.

Pick Angle to Fill Temporarily closes the Array dialog box so that you can define the included angle between the base points of the first and last elements in the array. ARRAY prompts you to select a point relative to another point in the drawing area.

Pick Angle Between Items Temporarily closes the Array dialog box so that you can define the included angle between the base points of the arrayed objects and the center of the array. ARRAY prompts you to select a point relative to another point in the drawing area.

Rotate Items as Copied

Rotates the items in the array, as shown in the preview area.

More/Less

Turns the display of additional options in the Array dialog box on and off. When you choose More, additional options are displayed, and the name of this button changes to Less.

Object Base Point

Specifies a new reference (base) point relative to the selected objects that will remain at a constant distance from the center point of the array as the objects are arrayed. To construct a polar array, ARRAY determines the distance from the array's center point to a reference (base) point on the last object selected. The point used depends on the type of object, as shown in the following table.

Base point settings by object	
Object type	Default base point
Arc, circle, ellipse	Center point
Polygon, rectangle	First corner
Donut, line, polyline, 3D polyline, ray, spline	Starting point
Block, paragraph text, single-line text	Insertion point
Construction lines	Midpoint

Base point settings by object

Object type	Default base point
Region	Grip point

Set to Object's Default

Uses the default base point of the object to position the arrayed object. To manually set the base point, clear this option.

Base Point

Sets a new X and Y base point coordinate. Choose Pick Base Point to temporarily close the dialog box and specify a point. After you specify a point, the Array dialog box is redisplayed.

NOTE To avoid unexpected results, set the base point manually if you are constructing a polar array and do not want to rotate the objects.

Select Objects

Specifies the objects used to construct the array. You can select objects before or after the Array dialog box is displayed. To select objects when the Array dialog box is displayed, choose Select Objects. The dialog box temporarily closes. When you finish selecting objects, press ENTER. The Array dialog box is redisplayed, and the number of objects selected is shown below the Select Objects button.

NOTE If you select multiple objects, the base point of the last selected object is used to construct the array.

Preview Area

Shows a preview image of the array based on the current settings in the dialog box. The preview image is dynamically updated when you move to another field after changing a setting.

Preview

Closes the Array dialog box and displays the array in the current drawing.

-ARRAY

Quick Reference

See also:

- Create an Array of Objects

List of Prompts

The following prompts are displayed.
Select objects: Use an object selection method
Enter the type of array [Rectangular/Polar] <current>: Enter an option or press ENTER

Rectangular

Creates an array of rows and columns of copies of the selected objects.

Enter the number of rows (---) <1>:Enter a nonzero integer or press ENTER
Enter the number of columns (III) <1>:Enter a nonzero integer or press ENTER
If you specify one row, you must specify more than one column and vice versa.

The selected object, or cornerstone element, is assumed to be in the lower-left corner, and generates the array up and to the right.

The specified distance between the rows and columns includes the corresponding lengths of the object to be arrayed.

Enter the distance between rows or specify unit cell (---):
To add rows downward, specify a negative value for the distance between rows. ARRAY skips the next prompt if you specify two points for the opposite corners of a rectangle.

Specify the distance between columns (III):
To add columns to the left, specify a negative value for the distance between columns. Rectangular arrays are constructed along a baseline defined by the current snap rotation. This angle is normally 0 , so the rows and columns are orthogonal with respect to the X and Y drawing axes. The Rotate option of the SNAP on page 1789 command changes the angle and creates a rotated array. The SNAPANG on page 2518 system variable stores the snap rotation angle.

If you specify a large number of rows and columns for the array, it might take a while to create the copies. By default, the maximum number of array elements that you can generate in one command is 100,000 . The limit is set by the MAXARRAY setting in the registry. To reset the limit to 200,000, for example, enter (setenv "MaxArray" "200000") at the Command prompt.

Polar
Creates an array by copying the selected objects around a specified center point.

Specify center point of array or [Base]: Specify a point or enter \mathbf{b} to specify a new base point

Center Point Creates an array defined by a center point.
Base Specifies a new reference (base) point relative to the selected objects that will remain at a constant distance from the center point of the array as the objects are arrayed.

Enter the number of items in the array: Enter a positive integer or press ENTER
If you enter a value for the number of items, you must specify either the angle to fill or the angle between items. If you press ENTER (and do not provide the number of items), you must specify both.

Specify the angle to fill ($+=\mathrm{ccw},-=\mathrm{cw}$) $<360>$: Enter a positive integer for a counterclockwise rotation or a negative integer for a clockwise rotation

You can enter $\mathbf{0}$ for the angle to fill only if you specify the number of items.
If you specify an angle to fill without providing the number of items, or if you specify the number of items and enter $\mathbf{0}$ as the angle to fill or press ENTER, the following prompt is displayed:

Angle between items: Specify an angle
If you specified the number of items and entered 0 as the angle to fill or pressed ENTER, ARRAY prompts for a positive or negative value to indicate the direction of the array:

Angle between items (+=ccw, -=cw): Enter a positive integer for a counterclockwise rotation or a negative integer for a clockwise rotation
ARRAY determines the distance from the array's center point to a reference point on the last object selected. The reference point used is the center point of a circle or arc, the insertion base point of a block or shape, the start point of text, and one endpoint of a line or trace.

Rotate arrayed objects? <Y>: Entery or n, or press ENTER
In a polar array, the reference point of the last object in the selection set is used for all objects. If you defined the selection set by using window or crossing selection, the last object in the selection set is arbitrary. Removing an object from the selection set and adding it back forces that object to be the last object selected. You can also make the selection set into a block and replicate it.

ARX

Quick Reference

See also:

- Overview of ObjectARX

Loads, unloads, and provides information about ObjectARX applications.

List of Prompts

The following prompts are displayed.
Enter an option [?/Files/Groups/Commands/CLasses/Services/Load/Unload]:

? - List Applications

Lists the currently loaded ObjectARX applications, which can be third-party programs or internal applications such as Render.

Load

Displays the ObjectARX/DBX File dialog box (a standard file selection dialog box). This option loads the specified ObjectARX application.

Unload

Unloads the specified ObjectARX application.
Enter ARX/DBX file name to unload:

Commands

Lists the AcEd-registered commands (AcEd-registered commands are described in the ObjectARX Developer's Guide).

Options

Presents developer-related ObjectARX application options. These options are explained in greater detail in the ObjectARX Developer's Guide.
Group Causes the specified group of commands to be the first group searched when resolving the names of AutoCAD commands.

Classes Displays a class hierarchy of C++ classes derived from objects registered in the system.

Services Lists the names of all registered services.

ATTACH

Quick Reference

See also:

- Attach Files as Underlays

Inserts an external reference, image, or underlay (DWF, DWFx, PDF, or DGN files) in the current drawing.

Access Methods

Button

Ribbon: Insert tab $>$ Reference panel $>$ Attach

Summary

The Select Reference File dialog box (a standard file selection dialog box) is displayed. To select multiple DWG files for attach, set the Files of Type to Drawing. You can select one file only for all other file formats.

- ATTACH

Quick Reference

See also:

- Attach Files as Underlays

Inserts an external reference, image, or underlay (DWF, DWFx, PDF, or DGN files) in the current drawing.

Summary

Attach an external reference, image, or underlay (DWF, DWFx, PDF, or DGN) file from the command line.

List of Prompts

The list of prompts differs depending on whether you are attaching an underlay, an image, or an external reference.

DWF and DWFx Underlay Prompts
Path to File Enters the location of the DWF or DWFx file including the file name.

Sheet name Enters a sheet name.
? Enters multiple sheets.

* Lists sheets available in the DWF or DWFx file.

Insertion point Specify the location of the lower, left-hand corner of the underlay by clicking on screen or entering the X, Y coordinates.

Base Image Size Displays the underlay's height and width in units

Scale Factor Resizes the underlay. For example, if the base image size is 36 x 24 and you enter a scale factor of 2 , the underlay will display at 72×48.

Rotation Sets an angle of rotation for the underlay.
PDF Underlay Prompts
Path to File Enters the location of the PDF file including the file name.
Page Number Enters a page number.
? Enters multiple pages.

* Lists pages available in the PDF file.

Insertion Point Specifies the location of the lower, left-hand corner of the underlay by clicking on screen or entering the X, Y coordinates.

Base Image Size Displays the underlay's height and width in units
Scale Factor Resizes the underlay. For example, if the base image size is 36 x 24 and you enter a scale factor of 2 , the underlay will display at 72×48.

Rotation Sets an angle of rotation for the underlay.
DGN Underlay Prompts
Path to File Enters the location of the DGN file including the file name.
Name of Model Enters a model name.
? Enters multiple models.

* Lists pages available in the DGN file.

Insertion Point Specifies the location of the lower, left-hand corner of the underlay by clicking on screen or entering the X, Y coordinates.

Base Image Size Displays the underlay's height and width in units
Scale Factor Resizes the underlay. For example, if the base image size is 36 x 24 and you enter a scale factor of 2 , the underlay will display at 72 x 48 .

Rotation Sets an angle of rotation for the underlay.

Image Prompts

Path to File Enters the location of the image file including the file name.
Insertion Point Specifies the location of the lower, left-hand corner of the image by clicking on screen or entering the X, Y coordinates.

Base Image Size Displays the image's height and width in units

Scale Factor Resizes the image. For example, if the base image size is 36×24 and you enter a scale factor of 2 , the underlay will display at 72×48.

Rotation Sets an angle of rotation for the underlay.

External Reference Prompts

Path to File Enters the location of the external reference file including the file name.

Reference Type Selects whether to attach this file as an underlay or an overlay. Press Enter to attach the file as an underlay (attachment).
NOTE Unlike attached external references, overlaid external references are not included when the drawing is attached or overlaid as an external reference to another drawing.

Insertion Point Specifies the location of the lower, left-hand corner of the external reference by clicking on screen or entering the X, Y coordinates.

Scale Sets the scale factor for the X, Y, and Z axes. The scale for the Z axis is the absolute value of the specified scale factor.

- Specify scale factor for XYZ axes: Enter a nonzero value
- Specify insertion point:
- Specify rotations angle $<0>$:
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ Sets the X, Y, and Z scale factor.
- Specifies scale factor for XYZ axes: Enter a nonzero value
- Specifies insertion point:
- Specifies rotations angle $<0>$:

Rotate Sets the rotation angle for both the individual blocks and the entire array.

PScale Sets the scale factor for the X, Y, and Z axes to control the display of the block as it is dragged into position.
PX, PY, PZ Sets the scale factor for the X, Y, and Z axes to control the display of the block as it is dragged into position.

PRotate Sets the rotation angle of the block as it is dragged into position.
Base Image Size Displays the external reference's height and width in units

Scale Factor Resizes the external reference. For example, if the base image size is 36×24 and you enter a scale factor of 2 , the external reference will display at 72×48.

Unit Changes the type of units to scale the external reference.

ATTACHURL

Quick Reference

See also:
■ Overview of Using Hyperlinks in a Drawing

Attaches hyperlinks to objects or areas in a drawing.

List of Prompts

The following prompts are displayed.
Enter hyperlink insert option [Area/Object] <Object>: Enter a or press ENTER Area
Creates the URLLAYER layer, draws a polyline on that layer, and attaches a URL to the polyline.

The polyline that represents the area is displayed in the color assigned to URLLAYER. The default color is red. When you move the cursor over the area in the drawing, the cursor changes to a hyperlink cursor to indicate that a URL is attached to the area.

Object

Attaches a URL to the selected object.
When you move the cursor over the object in the drawing, the cursor changes to a hyperlink cursor to indicate that a URL is attached to the object.

ATTDEF

Quick Reference

See also:
■ Define Block Attributes

Creates an attribute definition for storing data in a block.
Access Methods

Button
$\$$ Ribbon: Insert tab $>$ Attributes panel $>$ Define Attributes.
$\$$ Menu: Draw $>$ Block $>$ Define Attributes

Summary
The Attribute Definition dialog box is displayed.
If you enter -attdef at the Command prompt, options are displayed.
An attribute is an object that is created and included with a block definition. Attributes can store data such as part numbers, product names, and so on.

Attribute Definition Dialog Box

Quick Reference

See also:
 ■ Define Block Attributes

Defines the mode; attribute tag, prompt, and value; insertion point; and text settings for an attribute.

A Attribute Definition			
ModeInvisibleConstantVerifyPresetLock positionMultiple lines	Attribute		
	Iag:		
	Prompt:		
	Default:		官
	Text Settings		
	Justfication:	Left	
Insertion Point	Text style: Annotative (i)	Standard	
\checkmark Specify on-screen		$\square \text { Annotative (i) }$	
¢ 0.0000	Text height:	0.2000	Ca
Y: 0.0000	Rotation:		
2. 0.0000			
	Boundary width:	0.0000	cos
\square Align below previous attribute definition			
	OK Cancel		

Access Methods

Button

Ribbon: Insert tab $>$ Attributes panel $>$ Define Attributes
$\$$ Menu: Draw $>$ Block $>$ Define Attributes
Command entry: attdef

List of Options

The following options are displayed.

Mode

Sets options for attribute values associated with a block when you insert the block in a drawing.

The default values are stored in the AFLAGS on page 2149 system variable. Changing the AFLAGS setting affects the default mode for new attribute definitions and does not affect existing attribute definitions.

Invisible

Specifies that attribute values are not displayed or printed when you insert the block. ATTDISP on page 170 overrides Invisible mode.

Constant

Gives attributes a fixed value for block insertions.

Verify

Prompts you to verify that the attribute value is correct when you insert the block.

Preset

Sets the attribute to its default value when you insert a block containing a preset attribute.

Lock Position

Locks the location of the attribute within the block reference. When unlocked, the attribute can be moved relative to the rest of the block using grip editing, and multiline attributes can be resized.

Multiple Lines

Specifies that the attribute value can contain multiple lines of text. When this option is selected, you can specify a boundary width for the attribute.

NOTE In a dynamic block, an attribute's position must be locked for it to be included in an action's selection set.

Attribute

Sets attribute data.
Tag
Identifies each occurrence of an attribute in the drawing. Enter the attribute tag using any combination of characters except spaces. Lowercase letters are automatically changed to uppercase.

Prompt

Specifies the prompt that is displayed when you insert a block containing this attribute definition. If you do not enter a prompt, the attribute tag is used as a prompt. If you select Constant in the Mode area, the Prompt option is not available.

Default

Specifies the default attribute value.

Insert Field Button

Displays the Field dialog box. You can insert a field as all or part of the value for an attribute.

Multiline Editor Button

When Multiple Line mode is selected, displays an in-place text editor with a text formatting toolbar and ruler. Depending on the setting of the ATTIPE on page 2156 system variable, the Text Formatting toolbar displayed is either the abbreviated version, or the full version.

For more information, see the In-Place Text Editor.
NOTE Several options in the full In-Place Text Editor are grayed out to preserve compatibility with single-line attributes.

Insertion Point

Specifies the location for the attribute. Enter coordinate values or select Specify On-screen and use the pointing device to specify the placement of the attribute in relation to the objects that it will be associated with.

Specify On-Screen

Displays a Start Point prompt when the dialog box closes. Use the pointing device to specify the placement of the attribute in relation to the objects that it will be associated with.

X

Specifies the X coordinate of the attribute's insertion point.
Y
Specifies the Y coordinate of the attribute's insertion point.
Z
Specifies the Z coordinate of the attribute's insertion point.

Text Settings

Sets the justification, style, height, and rotation of the attribute text.

Justification

Specifies the justification of the attribute text. See TEXT on page 1932 for a description of the justification options.

Text Style

Specifies a predefined text style for the attribute text. Currently loaded text styles are displayed. To load or create a text style, see STYLE on page 1853.

Annotative

Specifies that the attribute is. If the block is annotative, the attribute will match the orientation of the block. Click the information icon to learn more about annotative objects.

Text Height

Specifies the height of the attribute text. Enter a value, or choose Height to specify a height with your pointing device. The height is measured from the origin to the location you specify. If you select a text style that has fixed height (anything other than 0.0), or if you select Align in the Justification list, the Height option is not available.

Rotation

Specifies the rotation angle of the attribute text. Enter a value, or choose Rotation to specify a rotation angle with your pointing device. The rotation angle is measured from the origin to the location you specify. If you select Align or Fit in the Justification list, the Rotation option is not available.

Boundary Width

Specifies the maximum length of the lines of text in a multiple-line attribute before wrapping to the next line. A value of 0.000 means that there is no restriction on the length of a line of text.

Not available for single-line attributes.

Align Below Previous Attribute Definition

Places the attribute tag directly below the previously defined attribute. If you have not previously created an attribute definition, this option is not available.

-ATTDEF

Quick Reference

See also:

■ Define Block Attributes

List of Prompts

The following prompts are displayed.
Current attribute modes: Invisible=current Constant=current Verify=current Preset=current Lock position=current Annotative =current Multiple line =current

Enter an option to change [Invisible/Constant/Verify/Preset/Lock position/Annotative/Multiple lines] <done>:
Enter attribute tag name: Enter any characters except spaces or exclamation points Enter attribute value: Enter the appropriate text or press ENTER (this prompt is displayed only if you turned on Constant mode)
Enter attribute prompt: Enter the text for the prompt line or press ENTER (this prompt is not displayed if you turned on Constant mode)
Enter default attribute value: Enter the appropriate text or press ENTER (this prompt is not displayed if you turned on Constant mode)
Specify location of multiline attribute: Specify a point (this prompt is displayed only if you turned on Multiple line mode)
Specify opposite corner: Specify a point or enter an option (this prompt is displayed only if you turned on Multiple line mode)

Attribute Modes

The current value line indicates the current settings for each attribute mode (either Y for on or N for off). Entering $\mathbf{i}, \mathbf{c}, \mathbf{v}, \mathbf{p}, \mathbf{I}, \mathbf{a}$, or \mathbf{m} toggles the modes on or off. Press ENTER when you have finished adjusting the mode settings. The AFLAGS on page 2149 system variable stores the current mode settings and can be used to set the default modes.

Invisible Specifies that attribute values are displayed when you insert the block. ATTDISP on page 170 overrides Invisible mode.

Constant Gives attributes a fixed value for block insertions.
Verify Prompts for verification that the attribute value is correct when you insert the block.

Preset Sets the attribute to its default value when you insert a block containing a preset attribute.

Lock Position Locks the location of the attribute within the block reference. When unlocked, the attribute can be moved relative to the rest of the block using grip editing, and multiline attributes can be resized.
NOTE In a dynamic block, an attribute's position must be locked for it to be included in an action's selection set.

Annotative Specifies that the attribute is .
Multiple Lines Specifies that the attribute value can contain multiple lines of text. When this option is selected, you can specify a boundary width for the attribute.

Attribute Tag Name

Specifies the attribute tag, which identifies each occurrence of an attribute in the drawing. The tag can contain any characters except spaces or exclamation marks (!). Lowercase letters are automatically changed to uppercase.

Attribute Prompt

Specifies the prompt that is displayed when you insert a block containing this attribute definition. If you press ENTER, the attribute tag is used as the prompt. If you turn on Constant mode, this prompt is not displayed.

NOTE For single-line attributes, you can enter up to 256 characters. If you need leading blanks in the prompt or the default value, start the string with a backslash ($\$). To make the first character a backslash, start the string with two backslashes.

Default Attribute Value

Specifies the default attribute value. The default attribute value appears when a block is inserted into your drawing. A default value is not required. If you turn on Constant mode, the Attribute Value prompt is displayed instead.

When Multiple Line mode is off, -ATTDEF then displays the same prompts as the TEXT command, using the attribute tag instead of requesting a text string.

Current text style: "Standard" Text height: 0.2000
Specify start point of text or [Justify / Style]: Enter an option or press ENTER Specify paper text height <current>: Specify a height, or press ENTER

The Specify Paper Text Height prompt is displayed only if the current text style is .

For a description of each option, see TEXT on page 1932.
NOTE For single-line attributes, you can enter up to 256 characters. If you need leading blanks in the prompt or the default value, start the string with a backslash ($)$. To make the first character a backslash, start the string with two backslashes.

When Multiple Line mode is on, -ATTDEF then displays several of the prompts used by the MTEXT command. For a description of each option, see MTEXT on page 1214.

Attribute Value (Constant Mode)

Specifies the value for a constant attribute. This prompt is displayed only if you turn on Constant mode.

ATTDEF then displays the same prompts as the TEXT command, using the attribute tag instead of requesting a text string. For a description of each option, see TEXT on page 1932.

When Multiple Line mode is on, -ATTDEF then displays several of the prompts used by the MTEXT command. For a description of each option, see MTEXT on page 1214 .

Location of Multiline Attribute (Multiple Line Mode)

Specifies the first corner of the bounding box for the multiple-line text. This location is used as the starting point for the attribute.

Opposite Corner (Multiple Line Mode)

As you drag the pointing device to specify the opposite corner, a rectangle is displayed to show the location and width of the multiple-line text. The arrow within the rectangle indicates the direction of the text flow.

ATTDISP

Quick Reference

See also:
■ Define Block Attributes

Controls the visibility overrides for all block attributes in a drawing.
Access Methods

Button
$\$$ Ribbon: Home tab $>$ Block panel $>$ Retain Attribute Display
$\$$ Menu: View $>$ Display $>$ Attribute Display
曼 Command entry: 'attdisp for transparent use

Summary

The drawing is regenerated after you change the visibility settings unless REGENAUTO on page 1615, which controls automatic regeneration, is off. The current visibility of attributes is stored in the ATTMODE on page 2157 system variable.

List of Prompts

The following prompts are displayed.
Enter attribute visibility setting [Normal/ON/OFF] <current>:
Normal Restores the visibility settings of each attribute. Visible attributes are displayed. Invisible attributes are not displayed.

On Makes all attributes visible, overriding the original visibility settings.
Off Makes all attributes invisible, overriding the original visibility settings.

ATTEDIT

Quick Reference

See also:
■ Attach Data to Blocks (Block Attributes)

Changes attribute information in a block.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Block panel $>$ Edit Attributes.
$\$$ Menu: Modify $>$ Object $>$ Attribute $>$ Single

Summary

The Edit Attributes dialog box is displayed to edit attribute values for a specific block.

If you enter -attedit at the Command prompt, options are displayed to edit attribute values and properties independent of a block.

Edit Attributes Dialog Box

Quick Reference

See also:

- Attach Data to Blocks (Block Attributes)

Changes attribute information in a block.

172 | Chapter 2 A Commands

A. Edit Attributes				\pm
Block name: CHAIR				
ENTER EMPLOYEE NAME	CH-OO			
ENTER MANUFACTURER	FUTU			
ENTER COLOR	129.99			
ENTER ROOM NUMBER	CHAIR			
ENTER TYPE	4126			
ENTER COST	SLAT			
ENTER STYLE	CHAI			
ENTER MODEL NUMBER	JAUN			
OK Cancel	Previous	Next	Help	

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Block panel $>$ Edit Attributes
$\$$ Menu: Modify $>$ Object $>$ Attribute $>$ Single
䱂 Command entry: attedit

Summary

To change attribute properties such as position, height, and style, use -ATTEDIT.

List of Options

The following options are displayed.

Block Name

Indicates the name of the selected block. The value of each attribute contained in the block is displayed in this dialog box.

List of Attributes

Displays the first eight attributes contained in the block. Edit the attribute values. If the block contains additional attributes, use Previous and Next to navigate through the list. You cannot edit attribute values on locked layers.
Multiple-line attributes display the In-Place Text Editor on page 1221 with the Text Formatting toolbar and the ruler. Depending on the setting of the ATTIPE
on page 2156 system variable, the Text Formatting toolbar displayed is either the abbreviated version, or the full version.
To use a field as the value, right-click and click Insert Field on the shortcut menu to display the Field dialog box.

Previous

Displays the previous eight attribute values. Previous is available only if the selected block contains more than eight attributes and you used Next to display the additional attributes.

Next

Displays the next eight attribute values. If the block contains no additional attributes, Next is unavailable.

-ATTEDIT

Quick Reference

See also:

- Modify Blocks

List of Prompts

If you enter -attedit at the Command prompt, the following prompts are displayed.
Edit attributes one at a time? [Yes/No] <Y>: Entery or press ENTER to edit attributes one at a time, or enter \mathbf{n} to edit attributes globally

The following prompts filter the attributes to be changed based on attribute tag, current value, or object selection.

Yes
Edits attributes one at a time. Attributes to be edited one at a time must be visible and parallel to the current UCS.

Attribute values are case sensitive.

The first attribute in the selection set is marked with an X. You can change any properties of the attribute you select.
Enter an option [Value/Position/Height/Angle/Style/Layer/Color/Next] <N>: Enter the property to change, or press ENTER for the next attribute

If the original attribute was defined with aligned or fit text, the prompt does not include Angle. The Height option is omitted for aligned text. For each of the options except Next, ATTEDIT prompts for a new value. The X remains on the current attribute until you move to the next attribute.

R328
4.7 K

Value

Changes or replaces an attribute value.
Enter type of value modification [Change/Replace]: Enter cor ror press ENTER
Change Modifies a few characters of the attribute value.
Either string can be null. The ? and * characters are interpreted literally, not as wild-card characters.

Replace Substitutes a new attribute value for the entire attribute value.
If you press ENTER, the attribute value is empty (null).

Position

Changes the text insertion point.

If the attribute is aligned, ATTEDIT prompts for both ends of a new text baseline.

Height

Changes the text height.

When you specify a point, the height becomes the distance between the specified point and the start point of the text.

Angle

Changes the rotation angle.

If you specify a point, the text is rotated along an imaginary line between the specified point and the start point of the text.

Style

Changes the style setting.

176 | Chapter 2 A Commands

Layer

Changes the layer.

Color

Changes the color.
You can enter a color from the AutoCAD Color Index (a color name or number), a true color, or a color from a color book.

You can enter a color name, a color number between 1 and 255, or bylayer or byblock.

True Color Specifies a true color to be used for the selected object.
Color Book Specifies a color from a loaded color book to be used for the selected object.
If you enter a color book name, you are prompted to enter the color name in the color book, such as PANTONE ${ }^{\circledR} 573$.

Next

Moves to the next attribute in the selection set. If there are no more attributes, ATTEDIT ends.

No

Edits more than one attribute at a time. Global editing applies to both visible and invisible attributes.

Editing attributes globally limits you to replacing a single text string with another text string. If you edit attributes one at a time, you can edit any or all of the attributes.

Yes Edits only visible attributes.
Attribute values are case sensitive. To select empty (null) attributes, which normally are not visible and cannot be selected, enter a backslash (\backslash).
Select the attribute you want to change.
Either string can be empty (null). The ? and * characters are interpreted literally, not as wild-card characters.

No Edits attributes whether they are visible or not. Changes to attributes are not reflected immediately. The drawing is regenerated at the end of the command unless REGENAUTO on page 1615, which controls automatic regeneration, is off.
Attribute values are case sensitive. To select empty (null) attributes, which normally are not visible, enter a backslash (\backslash).
The attributes that match the specified block name, attribute tag, and attribute value are selected.

Either string can be empty (null). The ? and * characters are interpreted literally, not as wild-card characters.

ATTEXT

Quick Reference

See also:
■ Define Block Attributes

Extracts attribute data, informational text associated with a block, into a file.

Access Methods

Summary

The Attribute Extraction dialog box is displayed.
If you enter -attext at the Command prompt, options are displayed.

Attribute Extraction Dialog Box

Quick Reference

See also:

- Attach Data to Blocks (Block Attributes)

178 | Chapter 2 A Commands

Access Methods

巠 Command entry: attext

Summary

Specifies the file format for the attribute information, the objects from which you want to extract information, and the template and output file names for the information.

List of Options

The following options are displayed.

File Format

Sets the format for the file into which you are extracting the attribute data.

Comma Delimited File (CDF)

Generates a file containing one record for each block reference in the drawing that has at least one matching attribute tag in the template file. Commas separate the fields of each record. Single quotation marks enclose the character fields.

Space Delimited File (SDF)

Generates a file containing one record for each block reference in the drawing that has at least one matching attribute tag in the template file. The fields of each record have a fixed width; therefore, field separators or character string delimiters are not appropriate.

DXF Format Extract File (DXX)

Produces a subset of the AutoCAD Drawing Interchange File format containing only block reference, attribute, and end-of-sequence objects. DXF ${ }^{\mathrm{TM}}$ format extraction requires no template. The file name extension.$d x x$ distinguishes the output file from normal DXF files.

Select Objects

Closes the dialog box so you can use the pointing device to select blocks with attributes. When the Attribute Extraction dialog box reopens, Number Found shows the number of objects you selected.

Number Found

Indicates the number of objects you selected using Select Objects.

Template File

Specifies a template extraction file for CDF and SDF formats. Enter the file name in the box, or choose Template File to search for existing template files using a standard file selection dialog box. The default file extension is .txt. If you select DXF under File Format, the Template File option is not available.

Output File

Specifies the file name and location for the extracted attribute data. Enter the path and file name for the extracted attribute data, or choose Output File to search for existing template files using a standard file selection dialog box. The .txt file name extension is appended for CDF or SDF files and the . $d x x$ file name extension for DXF files.

-ATTEXT

Quick Reference

See also:

■ Attach Data to Blocks (Block Attributes)

List of Prompts

Enter extraction type or enable object selection [Cdf/Sdf/Dxf/Objects] <C>: Enter an option or press ENTER
CDF: Comma-Delimited File Generates a file containing one record for each block reference in the drawing. Commas separate the fields of each record. Single quotation marks enclose the character fields.
In the Select Template File dialog box, enter the name of an existing attribute extraction template file.
In the Create Extract File dialog box, enter the name for the output file. The extract file's file name extension is .txt for CDF or SDF format.

SDF: Space-Delimited File Generates a file containing one record for each block reference in the drawing. The fields of each record have a fixed width; therefore, field separators or character string delimiters are not used.
In the Select Template File dialog box, enter the name of an existing attribute extraction template file.
In the Create Extract File dialog box, enter the name for the output file. The extract file's file name extension is .txt for CDF or SDF format.

DXF: Drawing Interchange File Produces a subset of the AutoCAD Drawing Interchange File format containing only block reference, attribute, and end-of-sequence objects. DXF-format extraction requires no template. The file name extension . $d x x$ distinguishes the output file from normal DXF files.
In the Create Extract File dialog box, enter the name for the output file. The extract file's file name extension is . $d x x$ for DXF format.

Objects Selects objects whose attributes you want to extract.

ATTIPEDIT

Quick Reference

See also:

- Modify a Block Attribute Definition

Changes the textual content of an attribute within a block.

Summary

If you select a single-line attribute, displays the In-Place Text Editor on page 1221 without the Text Formatting toolbar and the ruler. Right-click to display options.

If you select a multiple-line attribute, displays the In-Place Text Editor on page 1221 with the Text Formatting toolbar and the ruler. Depending on the setting of the ATTIPE on page 2156 system variable, the Text Formatting toolbar displayed is either the abbreviated version shown, or the full version.

Use the abbreviated version for compatibility with previous AutoCAD releases and editing operations. Use the full version for additional text formatting options.

The following prompts are displayed.

NOTE Not all MTEXT formatting options are available for multiline attributes even with the full In -Place Editor.

List of Prompts

The following prompts are displayed.
Select attribute to edit: Select an attribute within a block

Mask the Objects Behind Attribute Text

If the text in a multiple-line attribute overlaps other objects within the block, you can hide those objects that interfere with the text with a background mask. Click the Options button in the Text Formatting toolbar and click Background Mask to display the Background Mask dialog box on page 1234.

ATTREDEF

Quick Reference

See also:

■ Modify a Block Attribute Definition

Redefines a block and updates associated attributes.

Summary

New attributes assigned to existing block references use their default values. Old attributes in the new block definition retain their old values. Any old attributes that are not included in the new block definition are deleted.

> WARNING ATTREDEF removes any format or property changes made with the ATTEDIT or EATTEDIT commands. It also deletes any extended data associated with the block, and might affect dynamic blocks and blocks created by third-party applications.

List of Prompts

The following prompts are displayed.
Enter the name of the block you wish to redefine:
Select objects for new block:
Select objects:
Insertion base point of new block: Specify a point

ATTSYNC

Quick Reference

See also:

■ Modify a Block Attribute Definition

Updates block references with new and changed attributes from a specified block definition.

Access Methods

Button
$\$$ Ribbon: Home tab $\boldsymbol{>}$ Block panel $\boldsymbol{>}$ Synchronize Attributes

8 Toolbar: Modify II
锉 Command entry: attsync

Summary

You are prompted for the names of blocks you want to update with the current attributes defined for the blocks.

Use this command to update all instances of a block containing attributes that was redefined using the BLOCK or BEDIT commands. ATTSYNC does not change any values assigned to attributes in existing blocks.

NOTE Use the ATTREDEF command to redefine and update blocks in one command.

Entering ? displays a list of all block definitions in the drawing. Enter the name of the block you want to update.

Pressing ENTER allows you to use your pointing device to select the block whose attributes you want to update.

If a block you specify does not contain attributes or does not exist, an error message is displayed, and you are prompted to specify another block.

WARNING ATTSYNC removes any format or property changes made with the ATTEDIT or EATTEDIT commands. It also deletes any extended data associated with the block, and might affect dynamic blocks and blocks created by third-party applications.

AUDIT

Quick Reference

See also:

- Repair a Damaged Drawing File

Evaluates the integrity of a drawing and corrects some errors.

Access Methods

Button

Summary

For easy access, AUDIT places all objects for which it reports errors in the Previous selection set. However, editing commands affect only the objects that belong to the current paper space or model space.

If you set the AUDITCTL on page 2158 system variable to 1, AUDIT creates a text file describing problems and the action taken and places this report in the same folder as the current drawing, with the file extension .adt.

If a drawing contains errors that AUDIT cannot fix, use RECOVER on page 1600 to retrieve the drawing and correct its errors.

AUTOCONSTRAIN

Quick Reference

See also:

- Apply or Remove Geometric Constraints

Applies geometric constraints to a selection set of objects based on orientation of the objects relative to one another.

Access Methods

Button

8 Ribbon: Parametric tab $>$ Geometric panel $>$ Auto Constrain
$\$$ Menu: Parametric $>$ AutoConstrain
$\$$ Toolbar: Parametric

Summary

You can apply geometric constraints to a selection set of geometry within the specified tolerance set using the AutoConstrain tab in the Constraint Settings dialog box on page 352 .

Specify the Settings option to change the types of constraints applied, the order in which they are applied, and the applicable tolerances.

The Settings option displays the Constraint Settings dialog box with the Autoconstrain tab on page 354 selected.

AUTOPUBLISH

Quick Reference

See also:

- Set Publish Options

Publishes drawings to DWF, DWFx, or PDF files automatically to a specified location.

Summary

Publishes a drawing to a DWF, DWFx, or PDF file. The file format (DWF, DWFx, or PDF) is specified in the Auto Publish dialog box on page 186.

To view information about the published drawings, click the Plotting Details Report Available icon in the tray on the right side of the status bar. Clicking this icon opens the Plot and Publish Details dialog box, which provides information about your completed plot and publish jobs. This information is also saved to the Plot and Publish log file. The shortcut menu for this icon also provides an option to view the most recently published DWF, DWFx, or PDF file.

List of Prompts

The following prompts are displayed.
AutoPublish DWF Automatically publishes the drawing to a DWF, DWFx, or PDF file. The file format (DWF, DWFx, or PDF) is specified in the Auto Publish dialog box on page 186.

Location Specifies a directory where the published drawings are stored. Opens Select a Folder for Generated Files dialog box (a standard file selection dialog box on page 1295).

Auto Publish Options Dialog Box

Quick Reference

See also:

- Set Publish Options

Publishes drawings to DWF, DWFx, or PDF files automatically to a specified location.

Access Methods

$\$$ Menu: Application menu $>$ Options

Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and choose Options. Select the Plot and Publish tab.
䱂 Command entry: options

Summary

Specifies options for publishing drawings to DWF, DWFx, or PDF files when you save or close a drawing file, or issue the AUTOPUBLISH on page 185 command.

List of Options

The following options are displayed.

Auto-Publish Options

Specifies where DWF or PDF files are saved when you publish drawing sheets.
Publish on Specifies when the publishing takes place.

- Save (Publishes when the drawing is saved)
- Close (Publishes when the drawing is closed)
- Prompt on Save (Publishes when the drawing is prompted to save)

■ Prompt on Close (Publishes when the drawing is prompted to close)

Location Specifies a directory where exported files are saved when you publish drawings by selecting the following options in the list:

- Drawing folder
- DWF and PDF (sub-folder relative to Drawing folder)
- Previously selected location

Click the [...] button to specify a new location to save the published drawings.
Include Specifies whether to publish the model, the layouts or both the model and layouts are saved when you publish drawings.

General DWF/PDF options

Specifies options for creating a single-sheet or multi-sheet DWF, DWFx, and PDF files.

File Format Specifies whether the DWG should be published as a DWF, DWFx, or PDF file.

Type Specifies that a single-sheet or a multi-sheet is generated for all the sheets listed in the Publish dialog box.

Layer Information Specifies whether layer information is included in the published DWF, DWFx, or PDF file.
NOTE Layer information for 3D DWF entries does not get published.
Merge Control Specifies whether overlapping lines overwrite (the top line hides the bottom line) or merge (the colors of the lines blend together).

DWF Data Options

Lists and allows you to specify the data that you can optionally include in the published file.

Password Protection Specifies options for protecting DWF, DWFx, or PDF files with passwords.

Block Information Specifies whether block property and attribute information is included in the published DWF, DWFx, or PDF files.
NOTE You must set block information to Include in order for block template file information to be available.

Block Template File Allows you to create a new block template (DXE) file, edit an existing block template file, or use the settings of a previously created block template file.
Create opens the Publish Block Template dialog box on page 1560, in which you can create a new block template.
Edit opens the Select Block Template dialog box (a standard file selection dialog box on page 1295), in which you can select an existing block template to modify.

B Commands

BACTION

Quick Reference

See also:

- Overview of Actions

Adds an action to a dynamic block definition.

Summary

This command is available only in the Block Editor on page 231. Actions define how the geometry of a dynamic block reference moves or changes when the custom properties of a block reference are manipulated in a drawing. You associate actions with parameters.

List of Prompts

The following prompts are displayed.
Select parameter: Select a parameter in the block definition with which to associate the action

You can associate parameters with the following types of actions.

Array

Adds an array action to the current dynamic block definition. An array action can be associated with a linear, polar, or XY parameter. Specifies that the selection set of objects arrays when the action is triggered in a dynamic block reference.

Select Objects Defines the objects that will be included in the action when modified.

Enter Distance Between Columns When a linear or polar parameter is selected, specifies the distance between the selected objects when the array action is modified. To specify the distance, use the mouse pointer.

■ Specify opposite corner.

Enter Distance Between Rows or Specify Unit Cell When an XY parameter is selected, specifies the distance between the selected objects when the array action is modified. To specify the distance, use the mouse pointer. To specify unit cell, enter two values separated by a comma for each of the two points.

Specify Action Location When BACTIONBARMODE on page 2164 is set to 0 , determines where the action is placed within the Block Editor.

Lookup

The lookup action displays the Property Lookup Table dialog box on page 253 where you can create a lookup table for the block reference.

Flip

A set of objects is flipped around the reflection line of the flip parameter when the action is triggered in the block reference.

A flip action can only be associated with a flip parameter.
Specify Selection Set Determines the objects that will be mirrored about the flip parameter reflection line.

Move

Specifies that the selection set of objects moves when the action is triggered in a dynamic block reference. A move action can be associated with a point, linear, polar, or XY parameter.

Select Objects Select Objects on page 190
Specify Action Location Specify Action Location on page 190
Specify Parameter Point When a linear or polar parameter is selected, determines whether the start or end point of the parameter is used to determine the base point of the action.
When an XY parameter is selected, determines which corner of the parameter will be associated with the action. The objects selected for the action will be moved relative to this point.

Multiplier When BACTIONBARMODE on page 2164 is set to 0 and the action is triggered, changes the associated parameter value by the specified distance.

Offset When BACTIONBARMODE on page 2164 is set to 0 and the action is triggered, increases or decreases the angle of the selected parameter by the specified value.

XY When an XY parameter is selected, specifies whether the distance applied to the action is the parameter's X distance, Y distance, or $X Y$ distance from the parameter's base point.

Rotate

Specifies that the selection set of objects rotates when the action is triggered in a dynamic block reference. A rotate action can only be associated with a rotation parameter.

Specify Selection Set Determines the objects that will be rotated about the parameter base point.

Scale

Specifies that the selection set of objects scales relative to the defined base point when the action is triggered in a dynamic block reference. A scale action can only be associated with a linear, polar, or XY parameter.

Select Objects Select Objects on page 190
Specify Action Location Specify Action Location on page 190
Base Type Specifies whether the base point for the action is dependent or independent of the associated parameter's base point.

Dependent Scales or moves selected objects relative to the base point of the associated parameter.

Independent Scales or moves selected objects relative to a base point defined separately from that of the associated parameter.

XY When an XY parameter is selected, sets the Scale Type custom property.
■ X. Scales the selected object only along the X-axis of the $X Y$ parameter.

- Y. Scales the selected object only along the Y-axis of the $X Y$ parameter.
- XY. Scales the selected object along both the X - and Y-axes of the $X Y$ parameter.

Stretch

Specifies that the selection set of objects will stretch or move when the action is triggered in a dynamic block reference. A stretch action can be associated with a point, linear, polar, or XY parameter.

Specify Parameter Point When a linear or polar parameter is selected, determines whether the start or end point of the parameter is used to determine the base point of the action.
When an XY parameter is selected, determines which corner of the parameter will be associated with the action. The objects selected for the action will be stretched relative to this point.

Specify Stretch Frame Creates a box that represents the boundary area for the action when modified.

- Specify opposite corner.
- Specify objects.

CPolygon Creates a polygon that represents the boundary area for the action when modified.

- First polygon point.
- Specify endpoint.

Specify Action Location Specify Action Location on page 190
■ Multiplier on page 190
■ Offset on page 191

- XY on page 191

Select Objects Select Objects on page 190

Polar Stretch

Specifies that the selection set of objects stretches or moves when the action is triggered in a dynamic block reference. A polar stretch action can only be associated with a polar parameter.

Specify Parameter Point Determines whether the start or end point of the parameter is used to determine the base point of the action.

Specify Stretch Frame Specify Stretch Frame on page 192

- CPolygon on page 192

Specify Objects to Rotate Only Determines the objects in the selection that will rotate and not stretch.

Specify Action Location Specify Action Location on page 190
■ Multiplier on page 190
■ Offset on page 191

BACTIONBAR

Quick Reference

See also:

- Overview of Actions and Parameters

Displays or hides action bars for a selection set of parameter objects.

Access Methods

$\$$ Ribbon: Block Editor contextual tab $>$ Action Parameters panel $>$ Show All Actions/Hide All Actions
亜 Command entry: bedit > bactionbar

Summary

You can only use the BACTIONBAR command in the Block Editor on page 231 and when in Action Bar mode (BACTIONBARMODE on page 2164 system variable is set to 1). The BACTIONBAR command controls the display of action bars for parameter objects in the Block Editor. An action bar is a toolbar-like element that displays the actions associated with a parameter object.

On the ribbon, you can also show or hide all action bars for all parameter objects.

List of Prompts

The following prompts are displayed.
Enter an option [Show on page 194/Hide on page 194/Reset] <Show all>: Specify a parameter to show or hide the action bars

Show

Displays the action bars for the selected parameter objects in the Block Editor.

Hide

Hides the action bars for the selected parameter objects in the Block Editor.

Reset

Displays all action bars for the parameter objects in the Block Editor and resets to the default position relative to the parameters they are associated with.

BACTIONSET

Quick Reference

See also:

- Modify Dynamic Block Definitions

Specifies the selection set of objects associated with an action in a dynamic block definition.

Access Methods

座 Command entry: bedit > bactionset

Shortcut menu: Select an action in the block definition. Right-click in the Block Editor drawing area. Click Action Selection Set, and then click an option.

Summary

Re-specifies the selection set of objects associated with an action by creating a new selection set or by adding to or removing objects from the existing selection set. You can only use the BACTIONSET command in the Block Editor on page 231.

NOTE The BACTIONSET command is disabled when the BACTIONBARMODE on page 2164 system variable is set to 1 .

List of Prompts

The following prompts are displayed.
Select action: Select an action in the current dynamic block definition

Specify Selection Set

Creates a new selection set for the selected action, or modifies an existing selection set.

Select objects Defines the objects that will be included in the action when modified.

Remove Removes objects from the original selection set associated with the selected action.

Specify Stretch Frame Creates a box that represents the boundary area for the action when modified.

- Specify opposite corner.
- Specify objects.

CPolygon Creates a polygon that represents the boundary area for the action when modified.

- First polygon point.
- Specify endpoint.

Specify Objects to Rotate Only Determines the objects in the selection that will rotate and not stretch.

BACTIONTOOL

Quick Reference

See also:

■ Overview of Actions

Adds an action to a dynamic block definition.

Access Methods

Panel

Summary

Actions define how the geometry of a dynamic block reference moves or changes when the custom properties of a block reference are manipulated in a drawing. You associate actions with parameters. The BACTIONTOOL command is used in the Block Editor on page 231 either on the ribbon or by action tools on the Actions tab of the Block Authoring palettes.

List of Prompts

The following prompts are displayed.
Select action type [Array/"Lookup"/Flip/Move/Rotate/Scale/sTretch/"Polar stretch"]:
Array

Button

Block Editor contextual tab $>$ Action Parameters panel $>$ Array

Specifies that the selection set of objects arrays when the action is triggered in a dynamic block reference. An array action can be associated with a linear, polar, or XY parameter.

Select Parameter Select a parameter to associate with the action.
Select Objects Defines the objects that will be included in the action when modified.

Enter Distance Between Columns When a linear or polar parameter is selected, specifies the distance between the selected objects when the array action is modified. To specify the distance, use the mouse pointer.

■ Specify opposite corner.

Enter Distance Between Rows or Specify Unit Cell When an XY parameter is selected, specifies the distance between the selected objects when the array action is modified. To specify the distance, use the mouse pointer. To specify unit cell, enter two values separated by a comma for each of the two points.

Specify Action Location When BACTIONBARMODE on page 2164 is set to 0 , determines where the action is placed within the Block Editor.

Lookup

Button

Block Editor contextual tab $>$ Action Parameters panel $>$ Lookup
The lookup action displays the Property Lookup Table dialog box where you can create a lookup table for the block reference.

Flip

Bllton

Block Editor contextual tab $>$ Action Parameters panel $>$ Flip

A set of objects is flipped around the reflection line of the flip parameter when the action is triggered in the block reference. A flip action can only be associated with a flip parameter.
Specify Selection Set Determines the objects that will be mirrored about the flip parameter reflection line.

Move
 Butlon

Block Editor contextual tab $>$ Action Parameters panel $>$ Move
Specifies that the selection set of objects moves when the action is triggered in a dynamic block reference. A move action can be associated with a point, linear, polar, or XY parameter.

Select Parameter Select Parameter on page 197
Select Objects Select Objects on page 197
Specify Action Location Specify Action Location on page 197
Specify Parameter Point When a linear or polar parameter is selected, determines whether the start or end point of the parameter is used to determine the base point of the action.
When an XY parameter is selected, determines which corner of the parameter will be associated with the action. The objects selected for the action will be moved relative to this point.

Multiplier When BACTIONBARMODE on page 2164 is set to 0 and the action is triggered, changes the associated parameter value by the specified distance.

Offset When BACTIONBARMODE on page 2164 is set to 0 and the action is triggered, increases or decreases the angle of the selected parameter by the specified value.

XY When an XY parameter is selected, specifies whether the distance applied to the action is the parameter's X distance, Y distance, or $X Y$ distance from the parameter's base point.

Rotate

Button

Block Editor contextual tab $>$ Action Parameters panel $>$ Rotate
Specifies that the selection set of objects rotates when the action is triggered in a dynamic block reference. A rotate action can only be associated with a rotation parameter.

Select Parameter Select Parameter on page 197
Select Objects Select Objects on page 197
Specify Action Location Specify Action Location on page 197
Base Type Specifies whether the base point for the action is dependent or independent of the associated parameter's base point.

Dependent Scales or moves selected objects relative to the base point of the associated parameter.

Independent Scales or moves selected objects relative to a base point defined separately from that of the associated parameter.

Scale

Bution

Block Editor contextual tab > Action Parameters panel > Scale

Specifies that the selection set of objects scales relative to the defined base point when the action is triggered in a dynamic block reference. A scale action can only be associated with a linear, polar, or XY parameter.
Select Parameter Select Parameter on page 197
Select Objects Select Objects on page 197
Specify Action Location Specify Action Location on page 197
Base Type Base Type on page 199
■ Dependent on page 199
■ Independent on page 199

XY When an XY parameter is selected, sets the Scale Type custom property.

- X. Scales the selected object only along the X-axis of the $X Y$ parameter.

■ Y. Scales the selected object only along the Y-axis of the $X Y$ parameter.
■ XY. Scales the selected object along both the X - and Y-axes of the $X Y$ parameter.

Stretch

\rightarrow
Butlon
Block Editor contextual tab $>$ Action Parameters panel $>$ Stretch
Specifies that the selection set of objects will stretch or move when the action is triggered in a dynamic block reference. A stretch action can be associated with a point, linear, polar, or XY parameter.

Select Parameter Select Parameter on page 197
Specify Parameter Point When a linear or polar parameter is selected, determines whether the start or end point of the parameter is used to determine the base point of the action.
When an XY parameter is selected, determines which corner of the parameter will be associated with the action. The objects selected for the action will be stretched relative to this point.

Specify Stretch Frame Creates a box that represents the boundary area for the action when modified.

■ Specify opposite corner.

- Specify objects.

CPolygon Creates a polygon that represents the boundary area for the action when modified.

- First polygon point.
- Specify endpoint.

Specify Action Location Specify Action Location on page 197

- Multiplier on page 198
- Offset on page 198
- XY on page 198

Select Objects Select Objects on page 197

Polar Stretch

$1+8$

Butlon

Block Editor contextual tab $>$ Action Parameters panel $>$ Polar Stretch
Specifies that the selection set of objects stretches or moves when the action is triggered in a dynamic block reference. A polar stretch action can only be associated with a polar parameter.
Select Parameter Select Parameter on page 197
Specify Parameter Point Determines whether the start or end point of the parameter is used to determine the base point of the action.

Specify Stretch Frame Specify Stretch Frame on page 200

- CPolygon on page 201

Specify Objects to Rotate Only Determines the objects in the selection that will rotate and not stretch.

Specify Action Location Specify Action Location on page 197

- Multiplier on page 198

■ Offset on page 198

BASE

Quick Reference

See also:

- Insert Blocks

Sets the insertion base point for the current drawing.

Access Methods

Button
$\$$ Ribbon: Insert tab $>$ Block panel $>$ Set Base Point
$\$$ Menu: Draw $>$ Block $>$ Base
並 Command entry: base (or 'base for transparent use)

Summary

The base point is expressed as coordinates in the current UCS. When you insert or externally reference the current drawing into other drawings, this base point is used as the insertion base point.

BASSOCIATE

Quick Reference

See also:
■ Modify Dynamic Block Definitions

Associates an action with a parameter in a dynamic block definition.

Summary

Associates an orphaned action with a parameter. You can only use the BASSOCIATE command in the Block Editor on page 231. An action becomes
orphaned when the parameter with which it is associated is removed from the block definition.

NOTE The BASSOCIATE command is disabled when the BACTIONBARMODE on page 2164 system variable is set to 1 .

List of Prompts

The following prompts are displayed.
Select action object: Select an action in the current block definition that is not associated with a parameter
Select parameter to associate with action: Select a parameter to associate with the action (if you selected a lookup action, you can select one or more lookup parameters)
If you selected an action and parameter combination that requires that the action be associated with a key point on the parameter, prompts are displayed to select the parameter point to associate with the action.

BATTMAN

Quick Reference

See also:

- Modify a Block Attribute Definition

Manages the attributes for a selected block definition.

Access Methods

Button
$\$$ Ribbon: Insert tab $>$ Attributes panel $>$ Manage
\$ Menu: Modify $>$ Object $>$ Attribute $>$ Block Attribute Manager
$\%$ Toolbar: Modify II

Summary

The Block Attribute Manager is displayed.
If the current drawing does not contain any blocks with attributes, a message is displayed.

This command controls all attribute properties and settings of a selected block definition. Any changes to the attributes in a block definition are reflected in the block references.

Block Attribute Manager

Quick Reference

See also:
■ Modify a Block Attribute Definition

Manages the attribute definitions for blocks in the current drawing.

Access Methods

Button
$\$$ Ribbon: Insert tab $\boldsymbol{>}$ Attributes panel $>$ Manage
$\$$ Menu: Modify $>$ Object $>$ Attribute $>$ Block Attribute Manager
$\$$ Toolbar: Modify II
菐 Command entry: battman

Summary

You can edit the attribute definitions in blocks, remove attributes from blocks, and change the order in which you are prompted for attribute values when inserting a block.

Attributes of the selected block are displayed in the attribute list. By default, Tag, Prompt, Default, Mode, and Annotative attribute properties are displayed in the attribute list. You can specify which attribute properties you want displayed in the list by choosing Settings.

For each selected block, a description below the attribute list identifies the number of its instances in the current drawing and in the current layout.

List of Options

The following options are displayed.

Select Block

You can use your pointing device to select a block from the drawing area. When you choose Select Block, the dialog box closes until you select a block from the drawing or you cancel by pressing ESC.

If you modify attributes of a block and then select a new block before you save the attribute changes you made, you are prompted to save the changes before selecting another block.

Block

Lists all block definitions in the current drawing that have attributes. Select the block whose attributes you want to modify.

List of Attributes

Displays the properties of each attribute in the selected block.

Blocks Found in Drawing

Reports the total number of instances of the selected block in the current drawing.

Blocks Found in Current Space

Reports the number of instances of the selected block in the current model space or layout.

Sync

Updates all instances of the selected block with the attribute properties currently defined. This does not affect any values assigned to attributes in each block.

Move Up

Moves the selected attribute tag earlier in the prompt sequence. The Move Up button is not available when a constant attribute is selected.

Move Down

Moves the selected attribute tag later in the prompt sequence. The Move Down button is not available when a constant attribute is selected.

Edit

Opens the Edit Attribute dialog box, where you can modify attribute properties.

Remove

Removes the selected attribute from the block definition. If Apply Changes to Existing References is selected in the Settings dialog box before you choose Remove, the attribute is removed from all instances of the block in the current drawing. The Remove button is not available for blocks with only one attribute.

Settings

Opens the Block Attribute Settings dialog box, where you can customize how attribute information is listed in the Block Attribute Manager.

Apply
Applies the changes you made, but leaves the dialog box open.

Edit Attribute Dialog Box

Quick Reference

See also:

- Modify a Block Attribute Definition

Allows you to edit attributes for a block definition.

Access Methods

Button
$\$$ Ribbon: Insert tab $>$ Attributes panel $>$ Manage
$\$$ Menu: Modify $>$ Object $>$ Attribute $>$ Block Attribute Manager
$\$$ Toolbar: Modify II
菐 Command entry: battman

Summary

The Edit Attribute dialog box contains the following tabs:
■ Attribute

- Text Options on page 207
- Properties on page 210

List of Options

The following options are displayed.

Block Name

Displays the name of the block whose attributes are to be edited.

Auto Preview Changes

Controls whether or not the drawing area is immediately updated to display any visible attribute changes you make. If Auto Preview Changes is selected, changes are immediately visible. If Auto Preview Changes is cleared, changes are not immediately visible.

Clearing Auto Preview Changes results in a small improvement in performance. Auto Preview Changes is not available if Apply Changes to Existing References is not selected.

Attribute Tab (Edit Attribute Dialog Box)

Defines how a value is assigned to an attribute and whether or not the assigned value is visible in the drawing area, and sets the string that prompts users to enter a value. The Attribute tab also displays the tag name that identifies the attribute.

Mode

Mode options determine whether and how attribute text appears.

Invisible

Displays or hides the attribute in the drawing area. If selected, hides the attribute value in the drawing area. If cleared, displays the attribute value.

Constant

Identifies whether the attribute is set to its default value. You cannot change this property. If a check mark is shown in the check box, the attribute is set to its default value and cannot be changed. If the check box is empty, you can assign a value to the attribute.

Verify

Turns value verification on and off. If selected, prompts you to verify the values you assign to the attribute when inserting a new instance of the block. If this option is cleared, verification is not performed.

Preset

Turns default value assignment on and off. If selected, sets the attribute to its default value when the block is inserted. If cleared, ignores the attribute's default value and prompts you to enter a value when inserting the block.

Multiple Lines

Indicates whether the attribute was defined as a Multiple Lines attribute and can contain multiple lines of text.

Data

Data options set the attribute text that is displayed.
Tag

Sets the identifier assigned to the attribute.

Prompt

Sets the text for the prompt that is displayed when you insert the block.

Default

Sets the default value assigned to the attribute when you insert the block.

Text Options Tab (Edit Attribute Dialog Box)

Sets the properties that define the way an attribute's text is displayed in the drawing. Change the color of attribute text on the Properties tab.

Text Style

Specifies the text style for attribute text. Default values for this text style are assigned to the text properties displayed in this dialog box.

Justification

Specifies how attribute text is justified.

Height

Specifies the height of the attribute text.

Rotation

Specifies the rotation angle of the attribute text.

Annotative

Specifies that the attribute is . Click the information icon to learn more about annotative objects.

Backwards

Specifies whether or not the text is displayed backwards.
Upside Down

Specifies whether or not the text is displayed upside down.

Width Factor

Sets the character spacing for attribute text. Entering a value less than $\mathbf{1 . 0}$ condenses the text. Entering a value greater than 1.0 expands it.

Oblique Angle
Specifies the angle that attribute text is slanted away from its vertical axis.

Properties Tab (Edit Attribute Dialog Box)

Defines the layer that the attribute is on and the color, lineweight, and linetype for the attribute's line. If the drawing uses plot styles, you can assign a plot style to the attribute using the Properties tab.

Layer
Specifies the layer that the attribute is on.

Linetype

Specifies the linetype of attribute text

Color

Specifies the attribute's text color

Plot Style

Specifies the plot style of the attribute.
If the current drawing uses color-dependent plot styles, the Plot Style list is not available.

Lineweight

Specifies the lineweight of attribute text.

Changes you make to this option are not displayed if the LWDISPLAY system variable is off.

Block Attribute Settings Dialog Box

Quick Reference

See also:

■ Modify a Block Attribute Definition

Controls the appearance of the attribute list in the Block Attribute Manager.

Access Methods

Button
$\$$ Ribbon: Insert tab $>$ Attributes panel $>$ Manage
$\$$ Menu: Modify $>$ Object $>$ Attribute $>$ Block Attribute Manager
$\%$ Toolbar: Modify II
菐 Command entry: battman

List of Options

The following options are displayed.
Display in List
Specifies the properties to be displayed in the attribute list. Only the selected properties are displayed in the list. The Tag property is always selected.

Select All

Selects all properties.

Clear All

Clears all properties.

Emphasize Duplicate Tags

Turns duplicate tag emphasis on and off. If this option is selected, duplicate attribute tags are displayed in red type in the attribute list. If this option is cleared, duplicate tags are not emphasized in the attribute list.

Apply Changes to Existing References

Specifies whether or not to update all existing instances of the block whose attributes you are modifying. If selected, updates all instances of the block with the new attribute definitions. If cleared, updates only new instances of the block with the new attribute definitions.

You can choose Sync in the Block Attribute Manager to apply changes immediately to existing block instances. This temporarily overrides the Apply Changes to Existing References option.

BATTORDER

Quick Reference

See also:

■ Attach Data to Blocks (Block Attributes)

Specifies the order of attributes for a block.

Summary

Displays the Attribute Order dialog box, which controls the order in which attributes are listed and prompted for when you insert or edit a block reference. You can only use the BATTORDER command in the Block Editor on page 231.

Attribute Order Dialog Box

Quick Reference

See also:

- Attach Data to Blocks (Block Attributes)

Access Methods

锉 Command entry: bedit > battorder

Summary

Specifies the order in which attributes are listed and prompted for when you insert or edit a block reference.

List of Options

The following options are displayed.
Attribute Definitions

Lists the attribute definitions in the current block.

Move Up

Moves the selected attribute definition up in the list.

Move Down

Moves the selected attribute definition down in the list.

BAUTHORPALETTE

Quick Reference

See also:
■ Create Custom Block Authoring Tools

Opens the Block Authoring Palettes window in the Block Editor.
Access Methods

Button
$\$$ Ribbon: Block Editor contextual tab $>$ Manage panel $>$ Authoring Palettes

Summary

Displays the Block Authoring Palettes window in the Block Editor. You can open the Block Authoring Palettes window only from the Block Editor.

The Block Authoring Palettes window contains the following tabs:

- Parameters tab
- Actions tab
- Parameter Sets tab
- Constraints tab

BAUTHORPALETTECLOSE

Quick Reference

See also:
■ Create Custom Block Authoring Tools

Closes the Block Authoring Palettes window in the Block Editor.
Summary
You can close the Block Authoring Palettes window only from the Block Editor.

BCLOSE

Quick Reference

See also:

- Overview of the Block Editor

Closes the Block Editor.

Access Methods

Button

8 Ribbon: Block Editor contextual tab $>$ Close panel $>$ Close Block Editor Shortcut menu: In the Block Editor, right-click in the drawing area. Click Close Block Editor

Summary

Closes the Block Editor. If you have modified the block definition since it was last saved, you are prompted to save or discard the changes.

BCONSTRUCTION

Quick Reference

See also:

- Create Construction Geometry Within a Block

Converts geometry into construction geometry.

Access Methods

Button
$\$$ Ribbon: Block Editor contextual tab $>$ Constraint Parameters panel $>$ Construction Geometry

Summary

The BCONSTRUCTION command is used in the Block Editor on page 231 to convert geometry into construction geometry. This command also controls the display of construction geometry and changes construction geometry back to regular geometry.

Construction geometry is not displayed in the block reference; in the Block Editor it is displayed with a gray dashed linetype. You cannot modify the color, linetype, or layer of the construction geometry.

List of Prompts

The following prompts are displayed.
Select objects or [Show all on page 217/Hide all on page 217]: Select objects to convert or revert geometry
Enter an option [Convert/Revert] <Convert>: Specify an option

Convert

Converts the valid selected objects into construction geometry and displays the number of objects converted. Authoring objects are not converted.

Revert

Changes the selected objects back to regular geometry．The geometry is set to the current layer．

Show All

Displays all construction geometry．
Hide All
Hides all construction geometry．

BCPARAMETER

Quick Reference

See also：
■ Overview of Constraints in Dynamic Blocks
Applies constraint parameters to selected objects，or converts dimensional constraints to parameter constraints．

Access Methods

皿	苗y 會	\square
Linear		Block Table
	Dimensional	＊

Panel
$\$$ Ribbon：Block Editor contextual tab $>$ Dimensional panel

Summary

The BCPARAMETER command is used in the Block Editor on page 231．This command applies a constraint parameter to an object or between constraint points on object（s）．

List of Prompts

The following prompts are displayed．

Enter an option
[Linear/Horizontal/Vertical/Aligned/ANgular/Radial/Diameter/Convert] <last>: Specify an option

Linear

Butlon

Block Editor contextual tab > Dimensional panel $>$ Linear
Creates a horizontal or vertical constraint parameter based on the locations of the extension line origins and the location of the dimension line similar to the DIMLINEAR on page 599 command.
Object Selects an object instead of a constraint point. Press Enter or click the drop-down list to select the object.

Horizontal

$\stackrel{\rightarrow}{\square}$
Butlon

Block Editor contextual tab $>$ Dimensional panel $>$ Horizontal
Constrains the X distance of a line or between two points on different objects. Valid objects include lines and polyline segments.

Object Object on page 218
Vertical
-I
Bulton

Block Editor contextual tab $>$ Dimensional panel $>$ Vertical
Constrains the Y distance of a line or between two points on different objects. Valid objects include lines and polyline segments.

Object Object on page 218
Aligned

Button

Block Editor contextual tab $\boldsymbol{>}$ Dimensional panel $>$ Aligned
Constrains the length of a line or the distance between two lines, a point on an object and a line, or two points on different objects.

Object Object on page 218
Point \& Line Selects a point and a line object. The aligned constraint controls the distance between a point and the closest point on a line.

2Lines Selects two line objects. The lines are made parallel and the aligned constraint controls the distance between the two lines.

Angular

Bution

Block Editor contextual tab $>$ Dimensional panel $>$ Angular
Constrains the angle between two lines or polyline segments. It is similar to an angular dimension.

3Point Selects three valid constraint points on the object.

Valid Objects or Points	Characteristics
Pair of lines Pair of polyline subobjects Three constraint points Arc	When you select two lines, the angle between the lines is constrained. The initial value always defaults to a value less than 180 degrees. When you specify three constraint points, the following applies: First point - angle vertex - Second and third points - endpoints of the angle When you select an arc, a three-point angular constraint is created. The angle vertex is at the center of the arc and the angle endpoints of the arc are at the endpoints of the arc.

When you enter or edit an angle value that is either negative or is greater than 360 degrees, the number entered is stored for the expression (for example, 390), but the value displayed is based on the formatting of the units (for example, 30 if decimal degrees).

When an expression with variables evaluates to greater than 360 or less than -360 , the constraint value is displayed in the Parameters Manager palette based on the units of the drawing.

Radial

Butlon

Block Editor contextual tab $>$ Dimensional panel $>$ Radius
Creates a radial constraint parameter for a circle, arc, or polyline arc segment.

Valid Objects or Points	Characteristics
Circle	■ Constrains the radius of the circle or
Arc	arc.

Diameter

Button

Block Editor contextual tab $>$ Dimensional panel $>$ Diameter
Creates a diameter constraint parameter for a circle, arc, or polyline arc segment.

Valid Objects or Points	Characteristics
Circle \square Arc Constrains the diameter of the circle or arc.	

Convert

Block Editor contextual tab $\boldsymbol{>}$ Dimensional panel $\boldsymbol{>}$ Convert
Converts the dimensional constraints to constraint parameters.
Objects other than dimensional constraints are ignored and filtered from the selection set.

-BCPARAMETER

Quick Reference

See also:
■ Overview of Constraints in Dynamic Blocks
Applies constraint parameters to selected objects, or converts dimensional constraints to parameter constraints.

Summary

If you enter -bcparameter in the Command prompt, options are displayed on page 217.

BCYCLEORDER

Quick Reference

See also:

■ Insert Blocks

Changes the cycling order of grips for a dynamic block reference.

Summary

Displays the Insertion Cycling Order dialog box. The BCYCLEORDER command is available only in the Block Editor on page 231.

Insertion Cycling Order Dialog Box

Quick Reference

See also:
■ Insert Blocks

Specifies the grip-cycling order for the insertion point of a dynamic block reference.

Access Methods

座 Command entry: bedit > bcycleorder

Summary

When you insert a dynamic block reference in a drawing, you can use the Ctrl key to cycle through the grips that have cycling turned on in the block definition. The grip you select as you cycle is used as the insertion point for the block reference.

List of Options

The following options are displayed.

Grip Cycling List

Lists the grips in the dynamic block definition. A check mark in the cycling column indicates that cycling is turned on for that grip.

Move Up

Moves the selected grip up in the cycling order for the dynamic block reference.

Move Down

Moves the selected grip down in the cycling order for the dynamic block reference.

Cycling

Turns cycling on or off for the selected grip. A check mark in the cycling column indicates that cycling is turned on for that grip.

BEDIT

Quick Reference

See also:

- Modify Dynamic Block Definitions

Opens the block definition in the Block Editor.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Block panel $>$ Block Editor
$\$$ Toolbar: Standard
$\%$ Menu: Tools $>$ Block Editor
Shortcut menu: Select a block reference. Right-click in the drawing area.
Click Block Editor.

Summary

The Edit Block Definition dialog box on page 224 is displayed. Select a block definition to edit or enter a name for a new block definition to create, then click OK to open the Block Editor. If the ribbon is active, the Block Editor ribbon contextual tab on page 226 is displayed. Otherwise, the Block Editor toolbar is displayed.

When the BLOCKEDITLOCK system variable is set to 1, the Block Editor cannot be opened.

The Block Editor is a separate environment for creating and changing block definitions for the current drawing. You can also use it to add dynamic behavior to blocks.

Edit Block Definition Dialog Box

Quick Reference

See also:

■ Modify Dynamic Block Definitions

Select from a list of block definitions that are saved in the drawing to edit in the Block Editor. You can also enter a name for a new block definition to create in the Block Editor.

Access Methods

Ribbon: Home tab $>$ Block panel $>$ Block Editor
Toolbar: Standard
Menu: Tools > Block Editor
Command entry: bedit

Summary

When you click OK, the Edit Block Definition dialog box closes, and the Block Editor is displayed.

■ If you selected a block definition from the list, that block definition is displayed and is available for editing in the Block Editor.

- If you entered a name for a new block definition, the Block Editor is displayed, and you can start adding objects to the block definition.

List of Options

The following options are displayed.

Block to create or edit

Specifies the name of the block to edit or create in the Block Editor. If you select <Current Drawing>, the current drawing is opened in the Block Editor. After you add dynamic elements to the drawing, you can then save it and insert it as a dynamic block reference in a drawing.

Name List (Unlabeled)

Displays a list of block definitions that are saved in the current drawing. When you select a block definition from the list, the name is displayed in the Name box. When you click OK, this block definition is opened in the Block Editor. When you select <Current Drawing>, the current drawing is opened in the Block Editor.

Preview

Displays a preview of the selected block definition. A lightning bolt icon indicates that the block is a dynamic block.

Description

Displays the block definition description specified in the Block area of the Properties palette in the Block Editor.

Block Editor Ribbon Contextual Tab

Quick Reference

See also:
■ Modify Dynamic Block Definitions

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Block panel $>$ Block Editor
$\$$ Menu: Tools > Block Editor
䱂 Command entry: bedit
Shortcut menu: Select a block reference. Right-click in the drawing area. Click Block Editor.

List of Options

The following options are displayed.

Open/Save Panel

Edit Block Opens the block definition in the Block Editor.
Save Block Saves the current block definition.
Test Block Displays a window within the Block Editor to test a dynamic block.
Save Block As Saves a copy of the current block definition under a new name.

Geometric Panel

Auto Constrain Applies geometric constraints to a selection set of objects based on orientation of the objects relative to one another.

Coincident (GEOMCONSTRAINT on page 848) Constrains two points together or a point to a curve (or an extension of a curve).

Colinear (GEOMCONSTRAINT on page 848) Causes two or more line segments to lie along the same line.

Concentric (GEOMCONSTRAINT on page 848) Constrains two arcs, circles, or ellipses to the same center point.

Fix (GEOMCONSTRAINT on page 848) Locks points and curves in position.
Parallel (GEOMCONSTRAINT on page 848) Causes selected lines to lie parallel to each other.

Perpendicular (GEOMCONSTRAINT on page 848) Causes selected lines to lie 90 degrees to one another.

Horizontal (GEOMCONSTRAINT on page 848) Causes lines or pairs of points to lie parallel to the X axis of the current coordinate system.

Vertical (GEOMCONSTRAINT on page 848) Causes lines or pairs of points to lie parallel to the Y axis of the current coordinate system.

Tangent (GEOMCONSTRAINT on page 848) Constrains two curves to maintain a point of tangency to each other or their extensions.

Smooth (GEOMCONSTRAINT on page 848) Constrains a spline to be contiguous and maintain G2 continuity with another spline, line, arc, or polyline.

Symmetric (GEOMCONSTRAINT on page 848) Causes selected objects to become symmetrically constrained about a selected line.

Equal (GEOMCONSTRAINT on page 848) Resizes selected arcs and circles to the same radius, or selected lines to the same length.

Show Constraints Displays constraint bars for the selected objects with geometric constraints applied to them.

Show All Displays all geometric constraints in the drawing.
Hide All Hides all geometric constraints in the current drawing.
Constraint Settings Controls the display of geometric constraints on constraint bars.

Dimensional Panel

Linear (BCPARAMETER on page 217) Creates a horizontal or vertical constraint parameter based on the locations of the extension line origins and the location of the dimension line similar to the DIMLINEAR command.

Horizontal (BCPARAMETER on page 217) Creates a horizontal constraint parameter by picking two constraint points. Valid objects include lines and polyline segments.

Vertical (BCPARAMETER on page 217) Creates a vertical constraint parameter by picking two constraint points. Valid objects include lines and polyline segments.

Aligned (BCPARAMETER on page 217) Creates an aligned constraint parameter using one of the following ways.

- Selects a point and a line object. The aligned constraint controls the distance between a point and the closest point on a line.
- Selects two line objects. The lines are made parallel and the aligned constraint controls the distance between the two lines.

Radius (BCPARAMETER on page 217) Creates a radial constraint parameter for a circle, arc, or polyline arc segment.

Diameter (BCPARAMETER on page 217) Creates a diameter constraint parameter for a circle, arc, or polyline arc segment.

Angular (BCPARAMETER on page 217) Creates an angular constraint parameter by picking two lines or polyline segments or an arc. It is similar to an angular dimension.

Convert (BCPARAMETER on page 217) Converts the dimensional constraints to constraint parameters.

Block Table Displays a dialog box to define variations of a block.
Constraint Settings Sets preferences in behavior when displaying dimensional constraints.

Manage Panel

Delete Constraints Removes all geometric and dimensional constraints from a selection set of objects.

Construction Geometry Converts geometry into construction geometry.
Block Constraint Status Turns the constraint display status on and off and controls the shading of objects based on their constraint level.

Parameters Manager Controls the associative parameters used in the drawing.
Authoring Palettes Opens the Block Authoring Palettes window in the Block Editor.

Block Editor Settings Displays the Block Editor Settings dialog box.

Action Parameters Panel

Point (BPARAMETER on page 262) Defines custom X and Y properties for the block reference.

Linear (BPARAMETER on page 262) Defines the distance between two key points in the block definition.

Polar (BPARAMETER on page 262) Defines a distance and angle for two key points in the block definition.

XY (BPARAMETER on page 262) Defines an X and Y distance from the base point of a block definition.

Rotation (BPARAMETER on page 262) Defines an angle for the block reference.
Flip (BPARAMETER on page 262) Mirrors objects or the entire block reference about a reflection line.

Alignment (BPARAMETER on page 262) Rotates the block reference about a point to align with other objects in the drawing.

Visibility (BPARAMETER on page 262) Defines objects that will either display or not display within the block definition.

Lookup (BPARAMETER on page 262) Defines user parameters that are determined by a lookup table.

Basepoint (BPARAMETER on page 262) Defines a changeable base point for the dynamic block reference in relation to the geometry in the block.

Move (BACTIONTOOL on page 196) Specifies that the selection set of objects moves when the action is triggered in a dynamic block reference. A move action can be associated with a point, linear, polar, or XY parameter.

Stretch (BACTIONTOOL on page 196) Specifies that the selection set of objects will stretch or move when the action is triggered in a dynamic block reference. A stretch action can be associated with a point, linear, polar, or XY parameter.

Polar Stretch (BACTIONTOOL on page 196) Specifies that the selection set of objects stretches or moves when the action is triggered in a dynamic block reference. A polar stretch action can only be associated with a polar parameter.

Scale (BACTIONTOOL on page 196) Specifies that the selection set of objects scales relative to the defined base point when the action is triggered in a dynamic block reference. A scale action can only be associated with a linear, polar, or XY parameter.

Rotate (BACTIONTOOL on page 196) Specifies that the selection set of objects scales relative to the defined base point when the action is triggered in a
dynamic block reference. A scale action can only be associated with a linear, polar, or XY parameter.

Flip (BACTIONTOOL on page 196) A set of objects is flipped around the reflection line of the flip parameter when the action is triggered in the block reference. A flip action can only be associated with a flip parameter.

Array (BACTIONTOOL on page 196) Specifies that the selection set of objects arrays when the action is triggered in a dynamic block reference. An array action can be associated with a linear, polar, or XY parameter.

Lookup (BACTIONTOOL on page 196) A set of objects is flipped around the reflection line of the flip parameter when the action is triggered in the block reference. A flip action can only be associated with a flip parameter.

Attribute Definition Creates an attribute definition for storing data in a block.
Show All Actions (BACTIONBAR on page 193) Displays all action bars for the parameter objects in the Block Editor.

Hide All Actions (BACTIONBAR on page 193) Hides all action bars for the parameter objects in the Block Editor.

Visibility Panel

Visibility States Creates, sets, or deletes a visibility state in a dynamic block.
Visibility Mode (BVMODE) Controls how objects that are made invisible for the current visibility state are displayed in the Block Editor.

Make Visible (BVSHOW) Makes objects visible in the current visibility state or all visibility states in a dynamic block definition.

Make Invisible (BVHIDE) Makes objects invisible in the current visibility state or all visibility states in a dynamic block definition.

Block Visibility States Specifies the current visibility state displayed in the Block Editor.

Close Panel

Close Block Editor Closes the Block Editor.

Block Editor

Quick Reference

See also:

- Modify Dynamic Block Definitions

The Block Editor contains a special authoring area in which you can draw and edit geometry as you would in the drawing area.

Access Methods

Button

8 Toolbar: Standard
Shortcut menu: Select a block reference. Right-click in the drawing area.
Click Block Editor.
$\%$ Menu: Tools > Block Editor
业 Command entry: bedit

Summary

You use the Block Editor to define dynamic behavior for a block definition. In the Block Editor, you add parameters and actions, which define custom properties and dynamic behavior.

The following commands are used for creating dynamic blocks and are available only in the Block Editor:

- BACTION
- BACTIONBAR on page 193
- BACTIONSET

■ BACTIONTOOL

- BASSOCIATE

■ BATTORDER

■ BAUTHORPALETTE
■ BAUTHORPALETTECLOSE

- BCLOSE
- BCPARAMETER on page 217

■ BCYCLEORDER

- BCONSTRUCTION on page 216
- BGRIPSET
- BLOOKUPTABLE

■ BPARAMETER

- BSAVE
- BSAVEAS
- BTABLE on page 276
- BTESTBLOCK on page 281

■ BVHIDE
■ BVSHOW

- BVSTATE

When the BLOCKEDITLOCK system variable is set to 1, the Block Editor cannot be opened.

The Block Editor also provides a Block Editor toolbar and Block Authoring palettes that contain tools for creating dynamic blocks. The Block Authoring Palettes window contains the following tabs:

- Parameters tab on page 234
- Actions tab on page 236
- Parameter Sets tab on page 237
- Constraints tab on page 238

Block Editor Toolbar

Provides tools for working in the Block Editor, creating dynamic blocks, and working with visibility states.

The Block Editor toolbar is displayed when the ribbon is not active. It is also displayed only when you enter the Block Editor with the ribbon closed.

Edit or Create Block Definition Displays the Edit Block Definition dialog box.

Save Block Definition Saves the current block definition.
Save Block As Saves a copy of the current block definition under a new name.
Name Displays the name of the current block definition.
Test Block (BTESTBLOCK on page 281) Displays a window within the Block Editor to test a dynamic block.

Automatically Constrain Objects (AUTOCONSTRAIN on page 185) Applies geometric constraints to a selection set of objects based on orientation of the objects relative to one another.

Apply Geometric Constraint (GEOMCONSTRAINT on page 848) Applies or persists geometric relationships between objects or points on objects.

Display / Hide Constraints Bar (CONSTRAINTBAR on page 350) Displays or hides the geometric constraints on an object.

Parameter Constraint (BCPARAMETER on page 217) Applies constraint parameters to selected objects, or converts dimensional constraints to parameter constraints.

Block Table (BTABLE on page 276) Displays a dialog box to define variations of a block.

Parameter (BPARAMETER) Adds a parameter with grips to a dynamic block definition.

Action (BACTION) Adds an action to a dynamic block definition.
Define Attribute (Attribute Definition Dialog Box) Creates an attribute definition for storing data in a block.

Authoring Palettes (BAUTHORPALETTE on page 214) Opens the Block Authoring Palettes window in the Block Editor.

Parameters Manager (PARAMETERS on page 1402) Controls the associative parameters used in the drawing.

Learn About Dynamic Blocks Displays demonstrations in the New Features Workshop for creating dynamic blocks.

Close Block Editor (BCLOSE on page 215) Closes the Block Editor.
Visibility Mode (BVMODE) Controls how objects that are made invisible for the current visibility state are displayed in the Block Editor.

Make Visible (BVSHOW) Makes objects visible in the current visibility state or all visibility states in a dynamic block definition.

Make Invisible (BVHIDE) Makes objects invisible in the current visibility state or all visibility states in a dynamic block definition.

Manage Visibility States (Visibility States Dialog Box on page 284) Creates, sets, or deletes a visibility state in a dynamic block.

Visibility State Specifies the current visibility state displayed in the Block Editor.

Parameters Tab (Block Authoring Palettes Window)

Provides tools for adding parameters to a dynamic block definition in the Block Editor. Parameters specify positions, distances, and angles for geometry in the block reference. When you add a parameter to a dynamic block definition, it defines one or more custom properties for the block.

Point Parameter (BPARAMETER) Adds a point parameter to the dynamic block definition and defines custom X and Y properties for the block reference. A point parameter defines an X and Y location in the drawing. In the Block Editor, a point parameter looks similar to an ordinate dimension.

Linear Parameter (BPARAMETER) Adds a linear parameter to the dynamic block definition and defines a custom distance property for the block reference. A linear parameter shows the distance between two anchor points. A linear parameter constrains grip movement along a preset angle. In the Block Editor, a linear parameter looks similar to an aligned dimension.

Polar Parameter (BPARAMETER) Adds a polar parameter to the dynamic block definition and defines custom distance and angle properties for the block reference. A polar parameter shows the distance between two anchor points and displays an angle value. You can use both grips and the Properties palette to change both the distance value and the angle. In the Block Editor, a polar parameter looks similar to an aligned dimension.

XY Parameter (BPARAMETER) Adds an XY parameter to the dynamic block definition and defines custom horizontal and vertical distance properties for the block reference. An XY parameter shows the X and Y distances from the base point of the parameter. In the Block Editor, an XY parameter displays as a pair of dimensions (horizontal and vertical). These dimensions share a common base point.

Rotation Parameter (BPARAMETER) Adds a rotation parameter to the dynamic block definition and defines a custom angle property for the block reference. A rotation parameter defines an angle. In the Block Editor, a rotation parameter displays as a circle.

Alignment Parameter (BPARAMETER) Adds an alignment parameter to the dynamic block definition. An alignment parameter defines an X and Y location and an angle. An alignment parameter always applies to the entire block and needs no action associated with it. An alignment parameter allows the block reference to automatically rotate around a point to align with other objects in the drawing. An alignment parameter affects the angle property of the block reference. In the Block Editor, an alignment parameter looks like an alignment line.

Flip Parameter (BPARAMETER) Adds a flip parameter to the dynamic block definition and defines a custom flip property for the block reference. A flip parameter flips objects. In the Block Editor, a flip parameter displays as a reflection line. Objects can be flipped about this reflection line. A flip parameter displays a value that shows if the block reference has been flipped or not.

Visibility Parameter (BPARAMETER) Adds a visibility parameter to the dynamic block definition and defines a custom visibility property for the block reference. With visibility parameter, you can create visibility states and control the visibility of objects in the block. A visibility parameter always applies to the entire block and needs no action associated with it. In a drawing, you click the grip to display a list of visibility states available for the block reference. In the Block Editor, a visibility parameter displays as text with an associated grip.

Lookup Parameter (BPARAMETER) Adds a lookup parameter to the dynamic block definition and defines custom lookup properties for the block reference. A lookup parameter defines a custom property that you can specify or set to evaluate to a value from a list or table you define. It can be associated with a single lookup grip. In the block reference, you click the grip to display a list of available values. In the Block Editor, a lookup parameter displays as text.

Base Point Parameter (BPARAMETER) Adds a base point parameter to the dynamic block definition. A base point parameter defines a base point for the dynamic block reference relative to the geometry in the block. A base point
parameter cannot be associated with any actions, but can belong to an action's selection set. In the Block Editor, a base point parameter displays as a circle with crosshairs

Actions Tab (Block Authoring Palettes Window)

Provides tools for adding actions to a dynamic block definition in the Block Editor. Actions define how the geometry of a dynamic block reference move or change when the custom properties of a block reference are manipulated in a drawing. You associate actions with parameters.

Move Action (BACTIONTOOL) Adds a move action to the dynamic block definition when you associate the action with a point, linear, polar, or XY parameter. A move action is similar to the MOVE command. In a dynamic block reference, a move action causes objects to move a specified distance and angle.

Scale Action (BACTIONTOOL) Adds a scale action to the dynamic block definition when you associate the action with a linear, polar, or XY parameter. A scale action is similar to the SCALE command. In a dynamic block reference, a scale action causes its selection set to scale when the associated parameter is edited by moving grips or by using the Properties palette.

Stretch Action (BACTIONTOOL) Adds a stretch action to the dynamic block definition when you associate the action with a point, linear, polar, or XY parameter. A stretch action causes objects to move and stretch a specified distance in a specified location.

Polar Stretch Action (BACTIONTOOL) Adds a polar stretch action to the dynamic block definition when you associate the action with a polar parameter. A polar stretch action rotates, moves, and stretches objects a specified angle and distance when the key point on the associated polar parameter is changed through a grip or the Properties palette

Rotate Action (BACTIONTOOL) Adds a rotate action to the dynamic block definition when you associate the action with a rotation parameter. A rotate action is similar to the ROTATE command. In a dynamic block reference, a rotate action causes its associated objects to rotate when the associated parameter is edited through a grip or the Properties palette.

Flip Action (BACTIONTOOL) Adds a flip action to the dynamic block definition when you associate the action with a flip parameter. With a flip action you can flip a dynamic block reference about a specified axis called a reflection line.

Array Action (BACTIONTOOL) Adds an array action to the dynamic block definition when you associate the action with a linear, polar, or XY parameter.

An array action causes its associated objects to copy and array in a rectangular pattern when the associated parameter is edited through a grip or the Properties palette.

Lookup Action (BACTIONTOOL) Adds a lookup action to the dynamic block definition. When you add a lookup action to a dynamic block definition and associate it with a lookup parameter, it creates a lookup table. You can use a lookup table to assign custom properties and values to a dynamic block.

Parameter Sets Tab (Block Authoring Palettes Window)

Provides tools for adding a parameter and at least one action at the same time to a dynamic block definition in the Block Editor. When you add a parameter set to a dynamic block, the actions are automatically associated with the parameter. After you add a parameter set to a dynamic block, you double-click the yellow alert icon (or use the BACTIONSET command) and follow the Command prompts to associate the action with a selection set of geometry.

Point Move Automatically adds a move action associated with the point parameter.

Linear Move Automatically adds a move action associated with the endpoint of the linear parameter.
Linear Stretch Automatically adds a stretch action associated with the linear parameter.

Linear Array Automatically adds an array action associated with the linear parameter.

Linear Move Pair Automatically adds a two move action, one associated with the base point and one associated with the endpoint of the linear parameter.

Linear Stretch Pair Automatically adds two stretch actions, one associated with the base point and one associated with the endpoint of the linear parameter.
Polar Move Automatically adds a move action associated with the polar parameter.

Polar Stretch Automatically adds a stretch action associated with the polar parameter.

Polar Array Automatically adds an array action associated with the polar parameter.

Polar Move Pair Automatically adds two move actions, one associated with the base point and one associated with the endpoint of the polar parameter.

Polar Stretch Pair Automatically adds two stretch actions, one associated with the base point and one associated with the endpoint of the polar parameter.

XY Move Automatically adds a move action associated with the endpoint of the XY parameter.

XY Move Pair Automatically adds two move actions, one associated with the base point and one associated with the endpoint of the XY parameter.
XY Move Box Set Automatically adds four move actions, one associated with each key point on the XY parameter.

XY Stretch Box Set Automatically adds four stretch actions, one associated with each key point on the XY parameter.

XY Array Box Set Automatically adds an array action associated with the XY parameter.

Rotation Set Automatically adds a rotation action associated with the rotation parameter.

Flip Set Automatically adds a flip action associated with the flip parameter.
Visibility Set Adds a visibility parameter to the dynamic block definition and allows visibility states to be defined. No action is necessary with the visibility parameter.

Lookup Set Automatically adds a lookup action associated with the lookup parameter.

Constraints Tab (Block Authoring Palettes Window)

Provides tools for applying geometric constraints and constraint parameters to objects. When you apply geometric constraint to a pair of objects, the order in which the objects are selected and the point on which each object is selected can affect how the objects are positioned relative to each other.

Geometric Constraints

Coincident Constraint (GCCOINCIDENT on page 825) Constrains two points together or a point to a curve (or an extension of a curve).

Perpendicular Constraint (GCPERPENDICULAR on page 834) Causes selected lines to lie 90 degrees to one another.

Parallel Constraint (GCPARALLEL on page 833) Causes selected lines to lie parallel to each other.

Tangent Constraint (GCTANGENT on page 838) Constrains two curves to maintain a point of tangency to each other or their extensions.

Horizontal Constraint (GCHORIZONTAL on page 831) Causes lines or pairs of points to lie parallel to the X axis of the current coordinate system.

Vertical Constraint (GCVERTICAL on page 839) Causes lines or pairs of points to lie parallel to the Y axis of the current coordinate system.

Colinear Constraint (GCCOLLINEAR on page 827) Causes two or more line segments to lie along the same line.

Concentric Constraint (GCCONCENTRIC on page 828) Constrains two arcs, circles, or ellipses to the same center point.

Smooth Constraint (GCSMOOTH on page 835) Constrains a spline to be contiguous and maintain G2 continuity with another spline, line, arc, or polyline.

Symmetric Constraint (GCSYMMETRIC on page 836) Causes selected objects to become symmetrically constrained about a selected line.

Equal Constraint (GCEQUAL on page 829) Resizes selected arcs and circles to the same radius, or selected lines to the same length.

Fix Constraint (GCFIX on page 830) Locks points and curves in position.

Constraint Parameters

Aligned Constraint (BCPARAMETER on page 217) Constrains the length of a line or the distance between two lines, a point on an object and a line, or two points on different objects.

Horizontal Constraint (BCPARAMETER on page 217) Constrains the X distance of a line or between two points on different objects. Valid objects include lines and polyline segments.

Vertical Constraint (BCPARAMETER on page 217) Constrains the Y distance of a line or between two points on different objects. Valid objects include lines and polyline segments.

Angular Constraint (BCPARAMETER on page 217) Constrains the angle between two lines or polyline segments. It is similar to an angular dimension.

Radial Constraint (BCPARAMETER on page 217) Constrains the radius of a circle, arc, or polyarc segment.

Diameter Constraint (BCPARAMETER on page 217) Constrains the diameter of a circle, arc, or polyarc segment.

-BEDIT

Quick Reference

See also:

■ Modify Dynamic Block Definitions

Summary

If you select a block in a drawing and enter -bedit at the Command prompt, the selected block is opened in the Block Editor on page 231. If nothing is selected, the following prompt is displayed:

List of Prompts

The following prompts are displayed
Enter block name on page 240 or [? on page 240]: Enter a name or ?

Block Name

Specifies the name of a block saved in the current drawing to open in the Block Editor or specifies the name of a new block to create.

?-List Previously Defined Blocks

Lists the block names in the text window.
Enter block(s) to list <*>: Enter a name list or press Enter

BESETTINGS

Quick Reference

See also:
■ Create and Edit Dynamic Blocks

Displays the Block Editor Settings dialog box.

Access Methods

Ribbon: Block Editor contextual tab $>$ Manage panel $>$ Dialog Box Launcher \Downarrow

Command entry: besettings

Summary

The Block Editor Settings dialog box on page 241 is displayed.

Block Editor Settings Dialog Box

Quick Reference

See also:

- Create and Edit Dynamic Blocks

[^0]
Summary

Controls the environment settings of the Block Editor.

List of Options

The following options are displayed.

Authoring Objects

Controls the color of parameter and grip objects and specifies the orientation of the parameter text.

Parameter Color
Sets the color of parameters in the Block Editor.
(BPARAMETERCOLOR on page 2170 system variable)

Grip Color

Sets the color of grips in the Block Editor.
(BGRIPOBJCOLOR on page 2166 system variable)

Parameter Text Alignment

Forces the text displayed for action parametes and constraint parameters in the Block Editor to be horizontal.
(BPTEXTHORIZONTAL on page 2171 system variable)

Parameter Font

Sets the font for the authoring objects.

Font Name

Sets the font used for parameters and actions in the Block Editor.
(BPARAMETERFONT on page 2170 system variable)

Font Style

Specifies font character formatting for the authoring objects, such as italic, bold, or regular.

Parameter and Grip Size

Controls the size of the parameter and grip objects.

Parameter Size

Sets the size of parameter text and features in the Block Editor relative to the screen display.
(BPARAMETERSIZE on page 2171 system variable)

Grip Size

Sets the display size of custom grips in the Block Editor relative to the screen display.
(BGRIPOBJSIZE on page 2167 system variable)

Constraint Status

Specifies the color overrides for objects in the Block Editor to show constraint status.

Unconstrained
Sets the color of the unconstrained objects.
Partially Constrained
Sets the color of the partially constrained objects.
Fully Constrained
Sets the color of the fully constrained objects.
Improperly Constrained
Sets the color of the over-constrained objects.

Highlight Dependent Objects During Selection

Automatically highlights all objects that are dependent on the currently selected authoring objects. Use this option when you need to confirm or change dependent objects.

Display Tickmarks for Parameters With Value Sets

Controls whether or not value set markers are displayed for dynamic block references.
(BTMARKDISPLAY on page 2172 system variable)

Display Action Bars

Indicates whether the action bars or the legacy action objects are displayed in the Block Editor.
(BACTIONBARMODE on page 2164 system variable)

Reset Values

Resets the Block Editor settings to default values.

BGRIPSET

Quick Reference

See also:

- Specify Grips for Dynamic Blocks

Creates, deletes, or resets grips associated with a parameter.

Access Methods

Shortcut menu: Select a parameter in the block definition. Right-click in the Block Editor drawing area. Click Grip Display, and then click an option.

Summary

Specifies the number of grips displayed for a parameter. Also resets the position of grips for a parameter to their default location. You can only use the BGRIPSET command in the Block Editor on page 231.

List of Prompts

The following prompts are displayed.
Select parameter: Select a parameter in the current dynamic block definition Enter number of grip objects for parameter or reset position [0/1/2/4/Reposition]: Enter the number of grips to display for the parameter (the number of grips available will vary depending on the type of parameter you selected) or enter reposition to reposition the existing grips in the block definition to their default locations

BHATCH

Quick Reference

See also:

- Overview of Hatch Patterns and Fills

Fills an enclosed area or selected objects with a hatch pattern or gradient fill.

Summary

The BHATCH command has been renamed to HATCH. If you enter bhatch, the Hatch and Gradient dialog box on page 870is displayed. If you enter -bhatch or -hatch, Command prompts are displayed.

BLIPMODE

Quick Reference

See also:

- Customize Object Selection

Controls the display of marker blips.

Access Methods

並 Command entry: 'blipmode for transparent use

Summary

When Blip mode is on, a temporary mark in the shape of a plus sign (+) appears where you specify a point. BLIPMODE is off by default.

objects drawn with BLIPMODE on

objects drawn with
BLIPMODE off

To remove marker blips, use REDRAW, REGEN, ZOOM, PAN, or other commands that redraw or regenerate the drawing.

BLOCK

Quick Reference

See also:

- Define Blocks

Creates a block definition from selected objects.
Access Methods

Button
$\$$ Ribbon: Insert tab $>$ Block panel $>$ Create
$\$$ Menu: Draw $>$ Block $>$ Make
$\$$ Toolbar: Draw

Summary

The Block Definition dialog box is displayed.
If you enter -block at the Command prompt, options are displayed.
You create a block definition by selecting objects, specifying an insertion point, and giving it a name. You can create your own blocks or use the blocks provided in the DesignCenter or tool palettes.

Block Definition Dialog Box

Quick Reference

See also:

- Define Blocks

Defines and names a block.

A. Block Definition			x^{-3}
Name:			
1	-		
Base point	Objects	Behavior	
\square Specify On-screen	\square Specify On-screen	\square Annotative (i)	
$\square \square^{\text {a }}$ Pick point		Match block orientation to layout	
$\underline{x} \quad 0.0000$	Retain	\checkmark Scale uniformly	
\underline{Y} : 0.0000	- Convert to block	V Allow exploding	
乙: 0.0000	(1) No objects selected		
Settings	Description		
Block ynit:			-
Inches *			
Hyperink...			-
\square Open in block editor	OK	Cancel Help	

Access Methods

Button

$\%$ Ribbon: Insert tab $>$ Block panel $>$ Create
$\$$ Menu: Draw $>$ Block $>$ Make
$\$$ Toolbar: Draw
曼 Command entry: block

List of Options

The following options are displayed.

Name

Names the block. The name can have up to 255 characters and can include letters, numbers, blank spaces, and any special character not used by the operating system or the program for other purposes.

The block name and definition are saved in the current drawing.

Preview

If an existing block is selected under Name, displays a preview of the block.

Base Point

Specifies an insertion base point for the block. The default value is $0,0,0$.
Specify On-Screen

Prompts you to specify the base point when the dialog box is closed.

Pick Insertion Base Point

Temporarily closes the dialog box so that you can specify an insertion base point in the current drawing.

X
Specifies the X coordinate value.
Y

Specifies the Y coordinate value.

Z
Specifies the Z coordinate value.

Objects

Specifies the objects to include in the new block and whether to retain or delete the selected objects or convert them to a block instance after you create the block.

Specify On-Screen

Prompts you to specify the objects when the dialog box is closed.

Select Objects

Closes the Block Definition dialog box temporarily while you select the objects for the block. When you finish selecting objects, press Enter to redisplay the Block Definition dialog box.

Quick Select

Displays the Quick Select dialog box, which defines a selection set.

Retain

Retains the selected objects as distinct objects in the drawing after you create the block.

Convert to Block

Converts the selected objects to a block instance in the drawing after you create the block.

Delete

Deletes the selected objects from the drawing after you create the block.

Objects Selected

Displays the number of selected objects.

Behavior

Specifies the behavior of the block.
Annotative
Specifies that the block is. Click the information icon to learn more about annotative objects.

Match Block Orientation to Layout

Specifies that the orientation of the block references in paper space viewports matches the orientation of the layout. This option is unavailable if the Annotative option is cleared.

Scale Uniformly

Specifies whether or not the block reference is prevented from being non-uniformly scaled.

Allow Exploding
Specifies whether or not the block reference can be exploded.

Settings

Specifies settings for the block.

Block Unit

Specifies the insertion units for the block reference.

Hyperlink

Opens the Insert Hyperlink dialog box, which you can use to associate a hyperlink with the block definition.

Description

Specifies the text description of the block.

Open in Block Editor

Opens the current block definition in the Block Editor on page 231 when you click OK.

-BLOCK

Quick Reference

See also:

■ Define Blocks

If you enter -block at the Command prompt, the following prompts are displayed.

List of Prompts

The following prompts are displayed.
Enter block name or [?]: Enter a name or ?

Block Name

Names the block. The name can have up to 255 characters and can include letters, numbers, blank spaces, and any special character not used by Microsoft Windows and the program for other purposes if the system variable EXTNAMES is set to 1 .

If you enter the name of an existing block, you are prompted as follows:
Redefine Block Reference By redefining a block, you automatically update all references to that block. Attributes attached to existing block references remain unchanged in the drawing. However, new insertions of the block do not prompt for attributes unless the attribute definitions are included in the new block definition (use ATTREDEF to redefine blocks that contain attributes).

Specify Insertion Base Point The point specified as the base point is used for subsequent insertions of the block. Typically, a base point is the center of the block or its lower-left corner. The base point is also the point about which you can rotate the block during insertion. A block with 0 rotation is oriented according to the UCS in effect when it was created. Entering a 3D point inserts the block at a specific elevation. Omitting the Z coordinate uses the current elevation.

■ Annotative:
Enter a to create an block.

If you enter yes, the block becomes annotative.

Match Orientation to Layout in Paper Space Viewports If you enter yes, the block's orientation in paper space viewports will match the orientation of the layout.

Select Objects If you specify the insertion base point, you are prompted to select the objects.
The program defines a block using the objects selected, the insertion base point, and the name provided, and then erases the selected objects from the drawing. You can restore the deleted objects by entering the OOPS command immediately after BLOCK.

The insertion base point becomes the origin of the block's coordinate system, which is parallel to the UCS in effect at the time that you define the block. When you insert the block into a drawing, its coordinate system is aligned parallel to the current UCS. Thus, you can insert a block at any orientation in space by setting the UCS first.

?-List Previously Defined Blocks

Lists the block names in the text window.
Enter Blocks to List In the list, external references (xrefs) are indicated with the notation Xref: resolved.

In addition, externally dependent blocks (blocks in an xref) are indicated with the notation xdep: XREFNAME, where xrefname is the name of an externally referenced drawing. The following terms are used in the list:

- User Blocks: Number of user-defined blocks in the list.

■ External References: Number of xrefs in the list.
■ Dependent Blocks: Number of externally dependent blocks in the list.

- Unnamed Blocks: Number of unnamed (anonymous) blocks in the drawing.

BLOCKICON

Quick Reference

See also:

- Overview of Blocks

Generates preview images for blocks displayed in DesignCenter.

Access Methods

$\$$ Menu: File $>$ Drawing Utilities $>$ Update Block Icons

Summary

Use this command to generate icons for blocks created with an earlier release. You can enter a series of comma-delimited block names or wild-card characters. For example, enter b1,?2, to specify that block B1 and all two-character blocks ending with 2 should be updated.

After you enter the block names, a message is displayed describing the process as it proceeds. Press ESC at any time to stop.

BLOOKUPTABLE

Quick Reference

See also:

- Lookup Actions

Displays or creates a lookup table for a dynamic block definition.

Summary

When a lookup action is applied to a lookup parameter on page 269 , the Property Lookup Table dialog box is automatically displayed.
If a table is already defined for the lookup action, then that table is displayed in the dialog box.

NOTE The BLOOKUPTABLE command is disabled when the BACTIONBARMODE on page 2164 system variable is set to 1 .

Property Lookup Table Dialog Box

Quick Reference

See also:

- Lookup Actions

Creates and modifies a lookup table for custom properties within the dynamic block definition.

Access Methods

桽 Command entry: bedit > blookuptable

Pointing device: Double-click a lookup action

Summary

The lookup table assigns custom property values to the dynamic block reference. If Reverse Lookup is selected for a lookup property, the block reference displays a lookup grip with a list of properties that change the display of the dynamic block reference.

The lookup table also allows the values of lookup parameters to be controlled by the values of other parameters (input properties).

List of Options

The following options are displayed.

Action Name

Displays the associated lookup action name, which you can edit in the Properties palette.

Add Properties

Displays the Add Parameter Properties dialog box on page 254.
Audit
Checks the data to ensure that each row is unique.

Input Properties

Displays the parameters you select in the Add Parameter Properties dialog box on page 254 as columns. When a parameter value matches the input property column, the corresponding lookup property is assigned to the block reference.

Lookup Properties

Displays the custom value assigned to the input properties. Click the bottom of a lookup column to make the lookup property read-only or to allow reverse lookup. Allow Reverse Lookup enables a drop-down list associated with the lookup grip that changes the block reference to match the input property values in the table.

Add Parameter Properties Dialog Box

Quick Reference

See also:

■ Lookup Actions

Adds parameter properties to a lookup table.

Access Methods
 锉 Command entry: bedit > blookuptable

List of Options

The following options are displayed.

Parameter Properties

Displays a list of parameters not yet added to the lookup table. Select a parameter and click OK to add it to the lookup table.

Property Type

Specifies the type of property to add to the lookup table.
Add Input Properties
Displays the available custom properties in parameters you've already added to the block definition.

Add Lookup Properties

Displays the available lookup property parameters that can be added to the lookup table.

BMPOUT

Quick Reference

See also:

- Export Raster Files

Saves selected objects to a file in device-independent bitmap format.

Summary

The Create Raster File dialog box (a standard file selection dialog box) is displayed. Enter the file name in the dialog box.

A bitmap file that contains the objects you select is created. The file reflects what is displayed on the screen. Light glyphs that are displayed in the drawing appear in the new file, even if the Plot Glyph property of the lights is set to No.

NOTE When the FILEDIA system variable is set to 0 (Off), Command prompts are displayed.

BOUNDARY

Quick Reference

See also:

- Create and Combine Areas (Regions)

Creates a region or a polyline from an enclosed area.

Access Methods

Button

Ribbon: Home tab $>$ Draw panel $>$ Boundary

Menu: Draw $>$ Boundary
Summary
The Boundary Creation dialog box is displayed.
If you enter -boundary at the Command prompt, options are displayed.
Each point that you specify identifies the surrounding objects and creates a separate region or polyline.

Boundary Creation Dialog Box

Quick Reference

See also:

- Create and Combine Areas (Regions)

Defines the object type, boundary set, and island detection method for creating a region or polyline using a specified point within an area enclosed by objects.

A. Boundary Creation		${ }_{5}$
50] Pick Points		
\checkmark Island detection		
Boundary retention		
\checkmark Retain boundaries		
Object type: Polyline		
Boundary set		
Current viewport Cl_{6}	New	
OK Cancel	Help	

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Draw panel $>$ Boundary
$\$$ Menu: Draw $>$ Boundary
座 Command entry: boundary

List of Options

The following options are displayed.

Pick Points

Determines a boundary from existing objects that form an enclosed area around the specified point.

Island Detection

Controls whether boundary detects internal closed boundaries, called islands.

Object Type

Controls the type of the new boundary object. boundary creates the boundary as a region or a polyline object.

Boundary Set

Defines the set of objects boundary analyzes when defining a boundary from a specified point.

Current Viewport Defines the boundary set from everything in the current viewport extents. Selecting this option discards any current boundary set.

New Prompts you to select the objects that define the boundary set. boundary includes only the objects that can be used to create a region or closed polyline when it constructs the new boundary set.

For more information about the options in this dialog box, see HATCH.

-BOUNDARY

Quick Reference

See also:

- Create and Combine Areas (Regions)

If you enter -boundary at the Command prompt, the following prompts are displayed.

Specify internal point or [Advanced options]: Specify a point or enter a

Internal Point

Creates a region or polyline from existing objects that form an enclosed area. Specify a point inside the area.

Advanced Options

Sets the method BOUNDARY uses to create the boundary.
Enter an option [Boundary set/Island detection/Object type]: Enter an option or press Enter to return to the previous prompt
Boundary Set Defines the set of objects boundary analyzes when it creates a boundary from a specified point. For information about defining a boundary set at the Command prompt, see the HATCH Command prompt option.

Island Detection Specifies whether boundary uses objects within the outermost boundary as boundary objects. For information about specifying island detection at the Command prompt, see the HATCH Command prompt option.

Object Type Specifies the type of object that boundary creates.

- Region
- Polyline

Quick Reference

See also:

■ Create a Solid Box

Creates a 3D solid box.

Access Methods

Button

$\$$ Ribbon: Home tab $>$ Modeling panel $>$ Box
\% Menu: Draw $>$ Modeling $>$ Box
$\$$ Toolbar: Modeling

List of Prompts

The following prompts are displayed.
Specify first corner or [Center]: Specify a point or enterc for center Specify other corner or [Cube/Length]: Specify the other corner of the box or enteran option

If the other corner of the box is specified with a Z value that differs from the first corner, then no height prompt is displayed.

Specify height or [2Point] <default>: Specify the height or enter 2P for the 2 Point option

Entering a positive value draws the height along the positive Z axis of the current UCS. Entering a negative value draws the height along the negative Z axis.

The base of the box is always drawn parallel to the $X Y$ plane of the current UCS (workplane). The height of the box is specified in the Z-axis direction. You can enter both positive and negative values for the height.

Center

Creates the box by using a specified center point.

Cube Creates a box with sides of equal length.

Length Creates a box with length, width, and height values you specify. The length corresponds to the X axis, the width to the Y axis, and the height to the Z axis.

Cube

Creates a box with sides of equal length.

Length

Creates a box with length, width, and height values you specify. If you enter values, the length corresponds to the X axis, the width to the Y axis, and the height to the Z axis. If you pick a point to specify the length, you also specify the rotation in the $X Y$ plane.

2Point

Specifies that the height of the box is the distance between the two specified points.

BPARAMETER

Quick Reference

See also:
■ Add Parameters to Dynamic Blocks

Adds a parameter with grips to a dynamic block definition.

Access Methods

Panel

$\$$ Ribbon: Block Editor contextual tab $>$ Action Parameters panel

Summary

You can use the bparameter command only in the Block Editor on page 231. A parameter defines custom properties for the block reference. After you add a parameter, you must associate an action with the parameter to make the block dynamic.

List of Prompts

The following prompts are displayed.
Enter parameter type [Alignment/Base on page
264/pOint/Linear/Polar/XY/Rotation/Flip/"Visibility"/looKup] <last>: Enter a parameter type

Alignment

$-$

Bution

Block Editor contextual tab $>$ Action Parameters panel $>$ Alignment
Rotates the block reference about a point to align with other objects in the drawing.

Specify Base Point of Alignment Specifies the grip about which the block reference will rotate to align with another object in the drawing.

Name Sets the Name custom property for this parameter.
Specify Alignment Direction Determines the angle of alignment for the block reference.

Type Determines whether the block reference will align tangent or perpendicular to objects in the drawing.

Base

Button
Block Editor contextual tab $>$ Action Parameters panel $>$ Basepoint
Defines a changeable base point for the dynamic block reference in relation to the geometry in the block.

Specify Parameter Location Determines the default location of the basepoint for the block definition. This will be the location of the basepoint grip in the block reference.

Point

Button

Block Editor contextual tab > Action Parameters panel > Point
Defines custom X and Y properties for the block reference.
Specify Parameter Location Determines the X and Y location of the point parameter in the block definition. This will be the location of the point grip in the block reference.

Name Name on page 263
Label Defines a custom descriptive label for the location of the parameter.
Chain Determines whether the parameter is included in the selection set of an action that is associated with a different parameter.

- Yes. A change to an action associated with this parameter will also trigger other actions associated with this parameter, just as if you had edited the parameter through a grip or custom property.

■ No. Associated actions are not triggered.

Description Defines an extended description of the Label on page 264 custom property. When the block reference is inserted, this description is displayed at the bottom of the Properties palette.

Palette Specifies whether the Label custom property is displayed in the Properties palette when the block reference is selected in a drawing.

Linear

Button

Block Editor contextual tab > Action Parameters panel > Linear
Defines the distance between two key points in the block definition.
Specify Start Point/Endpoint Specifies the key points for the parameter in the block definition.

Name Name on page 263
Label Label on page 264
Chain Chain on page 264
Description Description on page 264
Base Specifies the Base Location property for the parameter.

- Startpoint. The start point of the parameter remains fixed when the endpoint of the parameter is edited in the block reference.

■ Midpoint. The midpoint of the parameter remains fixed, and the start point and endpoint of the parameter move simultaneously equal distances from the midpoint.

Palette Palette on page 264
Value Set Limits the available values for the parameter to the values specified in the set.

- List. Specifies a list of available values for the parameter in a block reference.
- Increment. Specifies a value increment and minimum and maximum values for the parameter in the block reference.

Specify Label Location Specifies the location of the parameter label on page 264 in the block definition.

Enter Number of Grips Determines the number of grips that will display in the block reference.

■ 0. No grips will be displayed in the block reference. Rather, the selected geometry can be edited in the Properties palette or a lookup table on page 252.

- 1. A grip will be displayed at just the endpoint of the parameter.

■ 2. A grip will be displayed at both the start point and endpoint of the parameter.

Polar

品
Butlon

Block Editor contextual tab $>$ Action Parameters panel $>$ Polar
Defines a distance and angle for two key points in the block definition.
Specify Base Point Determines the point in the block definition relative to which the grip will be placed.

Name Name on page 263
Label Label on page 264
Chain Chain on page 264
Description Description on page 264
Palette Palette on page 264
Value Set Value Set on page 265
Specify Endpoint Determines the distance and angle from the base point. The distance and angle are custom properties in the Properties palette.

Specify Label Location Specify Label Location on page 265
Enter Number of Grips Enter Number of Grips on page 265
XY

Butlon

Block Editor contextual tab > Action Parameters panel > XY
Defines an X and Y distance from the base point of a block definition.
Specify Base Point Determines the maximum X distance for the parameter.
Name Name on page 263

Label Label on page 264
Chain Chain on page 264
Description Description on page 264
Palette Palette on page 264
Value Set Value Set on page 265
Specify Endpoint Determines the maximum Y distance for the parameter.
Specify Number of Grips Determines the number of grips that will display in the block reference.

- 0 . on page 265
- 1. A grip will be displayed at the endpoint of the Y distance.

■ 2. A grip will be displayed at both endpoints.

- 4. Grips will be displayed at all four corners of the parameter.

Rotation

Bution

Block Editor contextual tab $>$ Action Parameters panel $>$ Rotation
Defines an angle for the block reference.
Specify Base Point Determines the point about which the selected block geometry will be rotated.

Name Name on page 263
Label Label on page 264
Chain Chain on page 264
Description Description on page 264
Palette Palette on page 264
Value Set Value Set on page 265
Specify Radius of Parameter Determines the distance between the base point of the parameter and the grip.

Specify Default Rotation Angle Determines the location of the grip in the block reference.

Base Angle Specifies a base angle other than 0 for the parameter grip.

Flip

\Rightarrow
Bution

Block Editor contextual tab $>$ Action Parameters panel $>$ Flip
Mirrors objects or the entire block reference about a reflection line.
Specify Base Point Determines the first point for the line of reflection. The parameter grip will be displayed at this point.

Name Name on page 263
Label Label on page 264
Description Description on page 264
Palette Palette on page 264
Specify Endpoint of Reflection Line Determines the endpoint of the reflection line.

Specify Label Location Specify Label Location on page 265
Visibility
氚
Bution

Block Editor contextual tab $>$ Action Parameters panel $>$ Visibility
Defines objects that will either display or not display within the block definition.

Specify Parameter Location Determines a location for the parameter grip. The parameter can be placed anywhere within the block definition.

Name Name on page 263
Label Label on page 264
Description Description on page 264

Palette Palette on page 264

Lookup

∇

Bution

Block Editor contextual tab $>$ Action Parameters panel $>$ Lookup
Defines user parameters that are determined by a lookup table.
Specify Parameter Location Specify Parameter Location on page 268
Name Name on page 263
Label Label on page 264
Description Description on page 264
Palette Palette on page 264

BREAK

Quick Reference

See also:

- Break and Join Objects

Breaks the selected object between two points.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Modify panel $>$ Break
$\$$ Ribbon: Home tab $>$ Modify panel $>$ Break at Point
$\$$ Menu: Modify $>$ Break
$\$$ Toolbar: Modify

Summary

You can create a gap between two specified points on an object, breaking it into two objects. If the points are off of an object, they are automatically projected on to the object. break is often used to create space for a block or text.

List of Prompts

The following prompts are displayed.
Select object: Use an object selection method, or specify the first break point (1) on an object

The prompts that are displayed next depend on how you select the object. If you select the object by using your pointing device, the program both selects the object and treats the selection point as the first break point. At the next prompt, you can continue by specifying the second point or overriding the first point.

Specify second break point or [First point]: Specify the second break point (2) or enter \mathbf{f}
Second Break Point Specifies the second point to use to break the object.
First Point Overrides the original first point with the new point that you specify.
Specify first break point:
Specify second break point:

The portion of the object is erased between the two points that you specify. If the second point is not on the object, the nearest point on the object is selected; therefore, to break off one end of a line, arc, or polyline, specify the second point beyond the end to be removed.

To split an object in two without erasing a portion, enter the same point for both the first and second points. You can do this by entering @ to specify the second point.

Lines, arcs, circles, polylines, ellipses, splines, donuts, and several other object types can be split into two objects or have one end removed.

The program converts a circle to an arc by removing a piece of the circle starting counterclockwise from the first to the second point.

You can also break selected objects at a single point with the Break at Point tool.

Valid objects include lines, open polylines, and arcs. Closed objects such as circles cannot be broken at a single point.

BREP

Quick Reference

See also:

- Display Original Forms of Composite Solids

Removes the history from 3D solids and composite solids, and associativity from surfaces.

Summary

When a solid loses the history of the original parts from which it was created, the original parts can no longer be selected and modified. BREP also removes surface associativity. When a surface loses associativity it loses any mathematical expressions or information about how the surface was created.

Composite solid with Show History set to Yes

Composite solid with history removed and Show History set to Yes

BROWSER

Quick Reference

See also:

■ Get Started with Internet Access

Launches the default web browser defined in your system's registry.

Access Methods

Button

Toolbar: Web

Summary

Pressing Enter displays your web browser, which automatically connects to the location you specify. Because browser does not append "http://" to web locations, you can specify an FTP or file location to your default web browser.

BSAVE

Quick Reference

See also:

- Create Blocks Within a Drawing

Saves the current block definition.

Access Methods

Button

8 Ribbon: Block Editor contextual tab $>$ Open/Save panel $>$ Save Block

Summary

Saves changes to the current block definition.
You can only use the BSAVE command in the Block Editor on page 231.

BSAVEAS

Quick Reference

See also:
■ Create Blocks Within a Drawing

Saves a copy of the current block definition under a new name.
Access Methods

Button

Ribbon: Block Editor contextual tab $>$ Open/Save panel $>$ Save Block As

Summary
Displays the Save Block As dialog box on page 274.
You can only use the BSAVEAS command in the Block Editor on page 231.

Save Block As Dialog Box

Quick Reference

See also:

- Create Blocks Within a Drawing

Saves a copy of the current block definition under a new name.

274 | Chapter 3 B Commands

Access Methods

Button
\$ Ribbon: Block Editor contextual tab $>$ Open/Save panel $>$ Save Block As桽 Command entry: bedit > bsaveas

List of Options

The following options are displayed.
Block Name
Specifies a new name under which to save a copy of the current block definition.

Block List

Displays a list of block definitions that are saved in the current drawing.

Preview

Displays a preview of the selected block definition.

Description

Displays the block definition description specified in the Block area of the Properties palette in the Block Editor.

Save Block Definition to Drawing File

Saves the block definition as a drawing file. Selecting a pre-existing drawing file overwrites the saved file. By default, the block name specified is taken as the drawing file name.

BTABLE

Quick Reference

See also:

■ Define User Parameters in Dynamic Blocks

Displays a dialog box to define variations of a block.

Access Methods

\qquad
Button

8 Ribbon: Block Editor contextual tab $\boldsymbol{>}$ Dimensional panel $\boldsymbol{>}$ Block Table

Summary

You can only use the btable command in the Block Editor on page 231. The Block Properties Table dialog box on page 277 is displayed after you specify a location point. The location point determines where the grip and table icon are located in the block definition. The grip location determines where the grip appears in the block reference and displays a context menu based on the contents of the block properties table. The type of properties that can be included in the block properties table include legacy parameters, parameter constraints, user parameters, and attributes. The legacy action parameters that are added to the lookup tables cannot be added to the Block Properties Table.

Each row in the table defines a different variation of the block reference, and can be accessed by the lookup grip.

If a block table is already created in the block editor, entering the btable command directly displays the Block Properties Table dialog box (see BLOOKUPTABLE on page 252 command).

List of Prompts

The following prompts are displayed.
Specify parameter location or [Palette]: Specify a location point

Palette

Specifies whether the block table item is displayed in the Properties palette for the block reference.

Block Properties Table Dialog Box

Quick Reference

See also:

■ Define User Parameters in Dynamic Blocks

Defines the variations for a set of user-defined properties in the block definition through a grid control.

Access Methods

Button

8 Ribbon: Block Editor contextual tab $>$ Dimensional panel $>$ Block Table並 Command entry: bedit > btable

Summary

You can press Shift+Enter to add a new line for a multiline attribute value in the grid in the Block Properties Table dialog box.

List of Options

The following options are displayed.

Add Properties

Displays the Add Parameter Properties dialog box on page 278 where you can add parameters already defined in the Block Properties Table.

New Properties

Displays the New Parameter dialog box on page 280 where you can create and add new user parameters to the Block Properties Table.

Audit

Checks the Block Properties Table for errors.
Grid Control Displays the name of parameters added to the table. You can also modify the properties of the table.

Block Properties Must Match A Row In The Table

Specifies whether the properties added to the grid control can be modified individually for a block reference.

Default Value When Properties Do Not Match Table
Displays the default values when other properties are changed without matching a row.

Add Parameter Properties Dialog Box

Quick Reference

See also:
■ Define User Parameters in Dynamic Blocks

Adds parameter properties to the block properties table.

Access Methods

Button
$\$$ Ribbon: Block Editor contextual tab $>$ Dimensional panel $>$ Block Table亜 Command entry: bedit > btable

List of Options

The following options are displayed.

Parameter Properties

Displays a list of dimensional constraint parameters, user parameters, legacy parameters, and attribute definitions.

Name
Displays the names of parameters available to add to the block properties table.

Type

Identifies the type of the parameter.

New Parameter Dialog Box

Quick Reference

See also:
■ Define User Parameters in Dynamic Blocks

Creates and defines a new user parameter to be added to the block properties table.

Access Methods

\square
Button

Ribbon: Block Editor contextual tab $\boldsymbol{>}$ Dimensional panel $\boldsymbol{>}$ Block Table Command entry: bedit > btable

List of Options

The following options are displayed.
Name
Displays the name of the new user parameter.
Value
Displays the value of the user parameter.
Type

Determines the type of the new parameter. You can select a real, distance, area, volume, angle, or string parameter type.

Display in Properties Palette

Specifies whether to display the user parameter as a property in the Properties palette for the block reference.

BTESTBLOCK

Quick Reference

See also:

■ Test Blocks Within the Block Editor

Displays a window within the Block Editor to test a dynamic block.

Access Methods

Button
$\$$ Ribbon: Block Editor contextual tab $>$ Open $/$ Save panel $>$ Test Block

Summary

You can only use the btestblock command in the Block Editor on page 231. With the Test Block window you can test a dynamic block without closing the Block Editor. You can select the block reference and test the grips or display the Properties palette and test the behavior when changing the properties. You can also insert additional copies of the block to test the inserting behavior. You can make changes and test the block without saving the changes to the block definition.

In the Test Block window, all AutoCAD commands operate the same way except the BEDIT on page 223 , SAVE on page 1685 , SAVEAS on page 1685 , and QSAVE on page 1583 commands. The bedit command is not available in Test Block window. The save, saveas, and qsave commands remove the Test Block status from the window and the Test Block window becomes an open drawing.

A Close Test Block Window contextual panel is added to the ribbon when you are in the Test Block mode.

In the Block Editor, the BCLOSE on page 215, BTESTBLOCK on page 281, and CLOSE on page 335 commands automatically close the Test Block window and discard the temporary file. The btestblock command closes the current Test Block window and opens a new window with the current definition.

NOTE Please ensure that there are entities present in the block being tested before running the btestblock command.

BVHIDE

Quick Reference

See also:

■ Control the Visibility of Objects in a Block
Makes objects invisible in the current visibility state or all visibility states in a dynamic block definition.

Access Methods

Button
$\$$ Ribbon: Block Editor contextual tab $>$ Visibility panel $>$ Make Invisible Shortcut menu: Select objects to hide for visibility states. Right-click in the Block Editor drawing area. Click Object Visibility > Hide for Current State or click Object Visibility > Hide for All States

Summary

Makes objects invisible for the current visibility state. You can only use the bvhide command in the Block Editor on page 231.

List of Prompts

The following prompts are displayed.

Select objects to hide: Select objects to hide for the current visibility state or all visibility states
Hide for current state or all visibility states [Current/All] <Current>: Enter currentto hide the selected objects for the current visibility state or enter all to hide the selected objects for all visibility states in the block definition

BVSHOW

Quick Reference

See also:

- Control the Visibility of Objects in a Block

Makes objects visible in the current visibility state or all visibility states in a dynamic block definition.

Access Methods

Button
$\$$ Ribbon: Block Editor contextual tab $>$ Visibility panel $>$ Make Visible Shortcut menu: Select objects to make visible for visibility states. Right-click in the Block Editor drawing area. Click Object Visibility $>$ Show for Current State or click Object Visibility $>$ Show for All States

Summary

Allows you to make objects visible for visibility states. You can only use the bvshow command in the Block Editor on page 231.

List of Prompts

The following prompts are displayed
Select objects to make visible: Select objects to make visible for the current visibility state or all visibility states
Make visible for current state or all visibility states [Current/All] <Current>: Enter current to make the selected objects visible for the current visibility state or enter all to make the selected objects visible for all visibility states in the block definition

BVSTATE

Quick Reference

See also:
■ Control the Visibility of Objects in a Block

Creates, sets, or deletes a visibility state in a dynamic block.
Access Methods

Button
$\$$ Ribbon: Block Editor contextual tab $>$ Visibility panel $>$ Visibility States

Summary
Displays the Visibility States dialog box on page 284. You can only use the BVSTATE command in the Block Editor on page 231 after a visibility parameter has been added to the block definition.

Visibility States Dialog Box

Quick Reference

See also:

- Control the Visibility of Objects in a Block

Creates or modifies visibility states.

Access Methods

Button
$\$$ Ribbon: Block Editor contextual tab $>$ Visibility panel $>$ Visibility States座 Command entry: bedit > bvstate

List of Options

The following options are displayed.
Visibility States
Lists the available visibility states for the current dynamic block definition. The order of this list is reflected in the dynamic block reference when the grip is clicked to display the list of visibility states. The state at the top of the list is the default state for the block reference.

Set Current

Sets the selected visibility state as the current state to display in the Block Editor. Does not change the default visibility state that is displayed when the block is inserted in a drawing, nor does it change the displayed visibility state for block references already inserted and edited in the drawing.

New

Displays the New Visibility State dialog box. on page 286

Rename

Renames the selected visibility state.

Delete
Deletes the selected visibility state.
Move Up
Moves the selected visibility state up in the list.

Move Down

Moves the selected visibility state down in the list.

New Visibility State Dialog Box

Quick Reference

See also:
■ Control the Visibility of Objects in a Block

Creates a new visibility state.

Access Methods

Button

Ribbon: Block Editor contextual tab $>$ Visibility panel $>$ Visibility States
Command entry: bedit > bvstate

List of Options

The following options are displayed.

Visibility State Name

Specifies the name for the new visibility state.
Visibility Options for New States
Displays options for the new visibility state.
Hide All Existing Objects in New State
Specifies that all objects in the block definition will be hidden in the new visibility state.

Show All Existing Objects in New State

Specifies that all objects in the block definition will be shown in the new visibility state.

Leave Visibility of Existing Objects Unchanged in New State
Specifies that the visibility of objects in the new visibility state will be the same as in the current visibility state on which the new state is based.

-BVSTATE

Quick Reference

See also:

■ Control the Visibility of Objects in a Block

Access Methods

㟇 Command entry: bedit > -bvstate

List of Prompts

The following prompts are displayed.
Current visibility state: <Name of current visibility state>
Enter an option [New on page 287/Set on page 288/Delete on page 288] <New>:
Enter an option or press Enter
New
Creates a new visibility state.
Hide All

Specifies that all objects in the block definition will be hidden in the new visibility state.

Show All

Specifies that all objects in the block definition will be shown in the new visibility state.

Current Visibility

Specifies that the visibility of objects in the new visibility state will be the same as in the current visibility state on which the new state is based.

Set

Specifies the visibility state to set as current.

Delete

Deletes a visibility state.

C Commands

CAL

Quick Reference

See also:
■ Use the Command Prompt Calculator
Evaluates mathematical and geometric expressions.

Access Methods

㹵 Command entry: 'cal for transparent use

Summary

CAL is an online geometry calculator that evaluates point (vector), real, or integer expressions. The expressions can access existing geometry using the object snap functions such as CEN, END, and INS.
You can insert AutoLISP ${ }^{\circledR}$ variables into the arithmetic expression and assign the value of the expression back to an AutoLISP variable.

You can use these arithmetic and vector expressions in any command that expects points, vectors, or numbers.

Understand Syntax of Expressions

Quick Reference

See also:

- Use the Command Prompt Calculator

CAL evaluates expressions according to standard mathematical rules of precedence:

- Expressions in parentheses first, starting with the innermost set
- Operators in standard order: exponents first, multiplication and division second, and addition and subtraction last

■ Operators of equal precedence from left to right

Numeric Expressions

Numeric expressions are real integer numbers and functions combined with the operators in the following table.

Numeric operators	
Operator	Operation
()	Groups expressions
^	Indicates exponentiation
+, /	Multiplies, divides

The following are examples of numeric expressions:
3
$3+0.6$
$\left(5.8^{\wedge} 2\right)+\mathrm{PI}$

Vector Expressions

A vector expression is a collection of points, vectors, numbers, and functions combined with the operators in the following table.

Vector operators	
Operator	Operation
()	Groups expressions
$\&$	Determines the vector product of vectors (as a vector) $[a, b, c] \&[x, y, z]=\left[\left(b^{*} z\right)-\left(c^{*} y\right),\left(c^{*} x\right)-\left(a^{*} z\right),\left(a^{*} y\right)-\left(b^{*} x\right)\right]$
$*$	Determines the scalar product of vectors (as a real number) $[a, b, c]^{*}[x, y, z]=a x+b y+c z$
	Multiplies, divides a vector by a real number $a^{*}[x, y, z]=\left[a^{*} x, a^{*} y, a^{*} z\right]$
,+-	Adds, subtracts vectors (points) $[a, b, c]+[x, y, z]=[a+x, b+y, c+z]$

The following are examples of vector expressions:
$A+[1,2,3]$ provides the point located $[1,2,3]$ units relative to point A.
The expression
[$2<45<45]+[2<45<0]-[1.02,3.5,2]$
adds two points and subtracts a third point. The first two points are expressed in spherical coordinates.

Format Feet and Inches

Quick Reference

See also:
■ Use the Command Prompt Calculator

Enter feet and inches using the following format:
feet'-inches" or feet' inches" or feet'inches"

You can separate feet, inches, and fractional inches with a dash, a space, or nothing. You can use any of the following syntax cases to enter valid feet-inch formatted values:

- 5^{\prime} or $60^{\prime \prime}$

■ $5^{\prime}-99^{\prime \prime}$ or $5^{\prime} 9^{\prime \prime}$ or $5^{\prime \prime} 9^{\prime \prime}$

- $5^{\prime}-1 / 2^{\prime \prime}$ or $5^{\prime} 1 / 2^{\prime \prime}$ or $5^{\prime} 1 / 2^{\prime \prime}$

■ $5^{\prime}-9-1 / 2^{\prime \prime}$ or $5^{\prime} 9-1 / 2^{\prime \prime}$ or $5^{\prime} 9-1 / 2^{\prime \prime}$

- $5^{\prime}-91 / 2^{\prime \prime}$ or $5^{\prime} 91 / 2^{\prime \prime}$ or $5^{\prime} 91 / 2^{\prime \prime}$

To designate inches for linear calculations, entering double quotes (") is optional. For example, instead of entering $5^{\prime} 9-1 / 2^{\prime \prime}$, you could enter 5'9-1/2.

WARNING With imperial units, CAL interprets a minus or a dash (-) as a unit separator rather than a subtraction operation. To specify subtraction, include at least one space before or after the minus sign. For example, to subtract $9^{\prime \prime}$ from 5^{\prime}, enter 5' $\mathbf{- 9}^{\prime \prime}$ rather than $5^{\prime}-9^{\prime \prime}$.

Format Angles

Quick Reference

See also:

■ Use the Command Prompt Calculator
The default units for angles are decimal degrees. Enter angles using the following format:
<degrees>d<minutes>'<seconds>"
You must enter $\mathbf{0 d}$ when entering an angle that is less than 1 degree (minutes and seconds only). You can omit the minutes or seconds if they are zero.

Enter a number followed by \mathbf{r} to enter angles in radians. Enter a number followed by \mathbf{g} to enter angles in grads.
The following examples show ways of entering angles:
5d10'20"
0d10'20"
124.6r

14 g
Angles entered in any format are converted to decimal degrees.
Pi radians is equal to 180 degrees, and 100 grads is equal to 90 degrees.

Use Points and Vectors

Quick Reference

See also:

■ Use the Command Prompt Calculator

Both points and vectors are pairs or triples of real numbers. A point defines a location in space, but a vector defines a direction (or translation) in space.

Some CAL functions, such as pld and plt, return a point. Other functions, such as nor and vec, return a vector.

Formatting Points and Vectors

A point or vector is a set of three real expressions enclosed in brackets ([]): [r1,r2,r3]

The notation $p 1, p 2$, and so forth designates points. The notation $v 1, v 2$, and so forth designates vectors. In drawings, points are displayed as dots, and vectors are displayed as lines with arrows.

CAL supports points expressed in all formats.

Point formats	
Coordinate system	Point format
Polar	[dist<angle]
Cylindrical	[dist<angle,z]
Spherical	[dist<angle1<angle2]
Relative	Uses the @ prefix $[@ x, y, z]$

Point formats

Coordinate system	Point format
WCS (instead of UCS)	Uses the * prefix $\left[{ }^{*} x, y, z\right]$

You can omit the following components of a point or vector: coordinate values of zero and a comma immediately preceding the right bracket (]).

The following are valid points:
$[1,2]$ is the same as $[1,2,0]$
$[, 3]$ is the same as $[0,0,3]$
[] is the same as $[\mathbf{0}, \mathbf{0}, 0$]
In the following example, the point is entered in the relative spherical coordinate system with respect to the (WCS). The distance is $1+2=3$; the angles are $10+20=30$ degrees and 45 degrees, 20 minutes.
[* $1+2<10+20<45 \mathrm{~d} 20$ "]
The following is a valid point that contains arithmetic expressions as its components:

[2*(1.0+3.3),0.4-1.1,2*1.4]

The following example uses the Endpoint object snap and the vector [2,0,3] to calculate a point that is offset from a selected endpoint:
end + $[2,3]$
The calculated point is offset 2 units in the X direction and 3 units in the Z direction relative to the selected endpoint.

Use AutoLISP Variables

Quick Reference

See also:

■ Use the Command Prompt Calculator

You can use AutoLISP variables within arithmetic expressions. The variables must be one of the following types: real, integer, or 2D or 3D point (vector).

This example defines a point located 5 units in the X direction and 1 unit in the Y direction from the point stored in AutoLISP variable A.

$\mathrm{A}+[5,1]$

If you enter an AutoLISP variable with a name containing a character with special meaning in CAL, such as,,+- *, or /, enclose the variable name in apostrophes ('), for example:
'number-of-holes'

Assigning Values to AutoLISP Variables

To assign a value to an AutoLISP variable, precede the arithmetic expression with the variable name and the equal sign (=). Later, you can use the value of this variable for other calculations.

This example saves the values of two expressions in AutoLISP variables $P 1$ and R1.

Command: cal
>> Expression: $\mathbf{P 1}=\mathbf{c e n}+[\mathbf{1 , 0}]$
>> Select entity for CEN snap: Select a circle or an arc
Command: cal
>> Expression: R1=dist(end,end)/3
\gg Select entity for END snap: Select an object with an endpoint
This example uses the values of variables $P 1$ and $R 1$:
Command: circle
Specify center point for circle or [3P/2P/Ttr (tangent tangent radius)]: 'cal >> Expression: $\mathbf{P 1 + [0 , 1]}$
Specify radius of circle or [Diameter] <last>: 'cal
>> Expression: R1+0.5

Use System Variables in Calculations

Quick Reference

See also:
■ Use the Command Prompt Calculator

You can use the getvar function to read the value of a system variable.

The syntax is
getvar(variable_name)
The following example uses getvar to obtain the point that is the center of the view in the current viewport.

getvar(viewctr)

With this method, you can also access the user system variables, USERI1-5 and USERR1-5. For example, to retrieve the value stored in USERR2, enter the following:
getvar(userr2)

Convert Units of Measurement

Quick Reference

See also:
■ Use the Command Prompt Calculator

The cvunit function converts either a number or a point from one unit of measurement to another. See the acad.unt file for a list of units that you can convert. The syntax is
cvunit(value, from_unit, to_unit)
The following example converts the value 1 from inches to centimeters:
cvunit(1,inch,cm)

Use Standard Numeric Functions

Quick Reference

See also:

- Use the Command Prompt Calculator

CAL supports the standard numeric functions in the following table.

Numeric functions	
Function	Description
sin(angle)	Sine of the angle
cos(angle)	Cosine of the angle
tang(angle)	Tangent of the angle
asin(real)	Arcsine of the number; the number must be between -1 and 1
acos(real)	Arccosine of the number; the number must be between -1 and 1
atan(real)	Arctangent of the number
\ln (real)	Natural log of the number
log(real)	Base-10 log of the number
exp(real)	Natural exponent of the number
exp10(real)	Base-10 exponent of the number
sqr(real)	Square of the number
sqrt(real)	Square root of the number; the number must be nonnegative
abs(real)	Absolute value of the number
round(real)	Number rounded to the nearest integer
trunc(real)	Integer portion of the number
r2d(angle)	Angles in radians converted to degrees; for example, r2d(pi) converts the pi radians to 180 degrees
d2r(angle)	Angles in degrees converted to radians; for example, d2r(180) con- verts 180 degrees to radians and returns the value of pi

Calculate a Vector from Two Points

Quick Reference

See also:

- Use the Command Prompt Calculator

The functions vec and vec1 calculate a vector from two points.
$\mathbf{v e c}(\mathbf{p} 1, \mathbf{p} 2)$ Provides the vector from point $p 1$ to point $p 2$.
$\mathbf{v e c} 1(\mathbf{p} 1, \mathbf{p} 2)$ Provides the unit vector from point $p 1$ to point $p 2$.
The following example uses CAL to move selected objects 3 units in the direction from the center of one selected circle to the center of another selected circle:

Command: move
Select objects
Specify base point or displacement: 'cal >> Expression: 3*vec1(cen,cen)
Select entity for CEN snap: Specify a circle or an arc
Specify second point of displacement or <use first point as displacement>: Specify a point or press Enter
The following examples illustrate the meaning of vector and point calculations.

Examples of vector and point calculations	
Expression	Meaning
$\operatorname{vec}(a, b)$	Determines vector translation from point a to point b.
$\operatorname{vec} 1(a, b)$	Determines unit vector direction from point a to point b.
$L^{*} \operatorname{vec} 1(a, b)$	Determines vector of length L in the direction from point a to point b.
$a+v$	Determines point b, which is a translation of the point a through vector v.
$a+[5<20]$	Determines point b located 5 units away from point a at an angle of 20 degrees. Note that $[5<20]$ is a vector in polar co- ordinates.

Calculate the Length of a Vector

Quick Reference

See also:
■ Use the Command Prompt Calculator

The abs function calculates the length of a vector.
abs(v) Calculates the length of vector v, a nonnegative real number.
In spherical coordinates (dist<ang<ang), the dist is the length of the vector.
The following example calculates the length of the vector $[1,2,3]$:
abs([1,2,3])

Obtain a Point by Cursor

Quick Reference

See also:
■ Use the Command Prompt Calculator

To enter a point using the pointing device, use the cur function. The program prompts you to specify a point and uses the coordinate values of the point in the expression. The point coordinate values are expressed in terms of the current UCS. The cur function sets the value of theLASTPOINT system variable.

The following example adds the vector [3.6,2.4,0]-the result of $1.2 *[3,2]$-to the point you select. This expression produces a point that is offset from the selected point
cur+1.2*[3,2]

Obtain the Last-Specified Point

Quick Reference

See also:

■ Use the Command Prompt Calculator

Use the character in the expression to obtain the coordinate of the last point, as shown in the following example:

Command: line
Specify first point: 'cal
>> Expression: cen $+[0,1]$
>> Select entity for CEN snap: Select a circle or an arc
Specify next point or [Close/Undo]: 'cal
>> Expression: +3*vec1(cen,cen)
The first point of the line is 1 unit in the Y direction from the center of the first selected circle. The second point of the line is 3 units away from the first point. The direction of the line is from the center of the first selected circle to the center of the second selected circle.

Use Snap Modes in Arithmetic Expressions

Quick Reference

See also:
■ Use the Command Prompt Calculator

You can use Snap modes as parts of arithmetic expressions. The program prompts you to select an object and returns the coordinate of the appropriate snap point. Using arithmetic expressions with Snap modes greatly simplifies entering coordinates relative to other objects.

When you use these Snap modes, enter only the three-character name. For example, when you use the Center Snap mode, enter cen. CAL Snap modes set the value of the LASTPOINT system variable.

CAL Snap modes	
Abbreviation	Snap mode
END	ENDPOINT
INS	INSERT
INT	INTERSECTION
MID	MIDPOINT
CEN	NENTER
NEA	NODE
NOD	QUADRANT
QUA	PERPENDICULAR
PER	TANGENT
TAN	

The following example uses the Center and Endpoint Snap modes in a CAL expression:
(cen+end)/2
CAL prompts for a circle or arc and an object. It then determines the midpoint between the center of the circle or arc and the end of the selected object.
Using the Midpoint Snap mode, in the following example CAL prompts for an object and returns a point 1 unit in the Y direction from the midpoint of the selected object:
mid+[,1]
The following example uses the Endpoint Snap mode to calculate the centroid of a triangle defined by three endpoints:
(end+end+end)/3

Convert Points Between UCS and WCS

Quick Reference

See also:

■ Use the Command Prompt Calculator

Normally, the program assumes all coordinates to be relative to the current UCS. The following functions convert points between UCS and WCS.
$\mathbf{w} \mathbf{2 u}(\mathbf{p} 1)$ Converts point $p 1$ expressed in the WCS to the current UCS.
$\mathbf{u} 2 \mathbf{w}(\mathbf{p} 1)$ Converts point $p 1$ expressed in the current UCS to the WCS.
You can use w2u to find the WCS origin in terms of the current UCS:
w2u([0,0,0])
Filtering the \mathbf{X}, Y, and \mathbf{Z} Components of a Point or Vector
The following functions filter the X, Y, and Z components of a point or vector.

Point-filter functions	
Function	Description
xyof $(p 1)$	X and Y components of a point; Z component is set to 0.0
$x z o f(p 1)$	X and Z components of a point; Y component is set to 0.0
$\operatorname{yzof}(p 1)$	Y and Z components of a point; X component is set to 0.0
$\operatorname{xof}(p 1)$	X component of a point; Y and Z components are set to 0.0
$\operatorname{yof}(p 1)$	Y component of a point; X and Z components are set to 0.0
$\operatorname{zof}(p 1)$	Y component of a point
$\operatorname{rxof}(p 1)$	Z component of a point
$\operatorname{ryof}(p 1)$	
$\operatorname{rzof}(p 1)$	

The following example provides the Z component of a point expressed in spherical coordinates:
zof([2<45<45])
The following example provides a point whose X and Y coordinate values are taken from point a and the Z coordinate value from point b :
xyof(a)+zof(b)

Calculate a Point on a Line

Quick Reference

See also:
■ Use the Command Prompt Calculator

The plt and pld functions return a point on a given line. You can specify the location of the point on the line either by its distance from the first point or parametrically by a t parameter.
$\mathbf{p l d}(\mathbf{p} 1, \mathbf{p} 2$, dist) Calculates a point on the line passing through points $p 1$ and $p 2$. The parameter dist defines the distance of the point from the point $p 1$.
$\operatorname{plt}(\mathbf{p} 1, \mathbf{p} 2, \mathbf{t})$ Calculates a point on the line passing through points $p 1$ and $p 2$. The parameter t defines the parametric location of the point on the line.

The following are examples of the parameter t :
If $t=0$ the point is $p 1$
If $t=0.5$ the point is the midpoint between $p 1$ and $p 2$
If $t=1$ the point is $p 2$

Rotate a Point About an Axis

Quick Reference

See also:
■ Use the Command Prompt Calculator

The rot function rotates a point about an axis and returns the resulting point.
$\operatorname{rot}(\mathbf{p}$, origin, ang) Rotates point p through angle ang about the Z axis passing through the point origin, as shown in the following example:

$\operatorname{rot}(\mathbf{p}, \mathbf{A x P 1}, \mathbf{A x P 2}$, ang) Rotates point p through an angle ang about the axis passing through points $A x P 1$ and $A x P 2$, as shown in the following example. The axis is oriented from the first point to the second point.

Obtain an Intersection Point

Quick Reference

See also:

■ Use the Command Prompt Calculator

The ill and ilp functions determine intersection points.
ill(p1,p2,p3,p4) Determines the intersection point between two lines ($p 1, p 2$) and ($p 3, p 4$). All points are considered three-dimensional.
$\mathbf{i l p}(\mathbf{p} 1, \mathbf{p} 2, \mathbf{p} 3, \mathbf{p} 4, \mathbf{p} 5)$ Determines the intersection point between a line ($p 1, p 2$) and a plane passing through three points ($p 3, p 4, p 5$).

Calculate a Distance

Quick Reference

See also:

■ Use the Command Prompt Calculator
$\operatorname{dist}(\mathbf{p} 1, \mathbf{p} 2)$ Determines the distance between two points, $p 1$ and $p 2$. This is the same as the vector expression abs(p1-p2).
$\mathbf{d p l}(\mathbf{p}, \mathbf{p} 1, \mathbf{p} 2)$ Determines the shortest distance between point p and the line passing through points $p 1$ and $p 2$.

$\mathbf{d p p}(\mathbf{p}, \mathbf{p} 1, \mathbf{p} 2, \mathbf{p} 3)$ Determines the distance from a point p to a plane defined by three points ($p 1, p 2, p 3$).
$\operatorname{dist}(\mathbf{p} 1, \mathbf{p} 2)$ Determines the distance between two points, $p 1$ and $p 2$. This is the same as the vector expression abs(p1-p2).

The following example returns half the distance between the centers of two selected objects:
dist(cen,cen)/2
The following example finds the distance between the point $3,2,4$ and a plane you define by selecting three endpoints:
dpp([3,2,4],end, end, end)

Obtain a Radius

Quick Reference

See also:

■ Use the Command Prompt Calculator

The rad function determines the radius of a selected object.
rad Determines the radius of a selected object. The object can be a circle, an arc, or a 2D polyline arc segment.
The following example uses rad with the CIRCLE command. The radius of the new circle is two-thirds of the radius of the selected polyline arc segment: Command: circle
Specify center point for circle or [3P/2P/Ttr (tangent tangent radius)]: cen of Select the circle

Specify radius of circle or [Diameter] <last>: 'cal
>> Expression: 2/3*rad
>> Select circle, arc or polyline segment for RAD function: Select the circle

Obtain an Angle

Quick Reference

See also:

■ Use the Command Prompt Calculator

The ang function determines the angle between two lines. Angles are measured counterclockwise with respect to either the X axis, in the two-dimensional case, or to a user-specified axis, in the three-dimensional case.
$\operatorname{ang}(\mathbf{v})$ Determines the angle between the X axis and vector v. The vector v is considered 2D, projected on the $X Y$ plane of the current UCS.
ang($\mathbf{p} 1, \mathbf{p} 2$) Determines the angle between the X axis and the line ($p 1, p 2$), oriented from $p 1$ to $p 2$. The points are considered 2D, projected on the $X Y$ plane of the current UCS.
ang(apex,p1,p2) Determines the angle between lines (apex,p1) and (apex,p2). The points are considered 2D, projected on the $X Y$ plane of the current UCS.
ang(apex,p1,p2,p) Determines the angle between lines (apex,p1) and (apex,p2). The lines are considered 3D. The last parameter, point p, is used to define the orientation of the angle. The angle is measured counterclockwise with respect to the axis going from apex to p.

The following examples show how angles are measured.

You can determine the angle between the two sides of a triangle using the ang function, as shown in the following example:

```
Command: cal
>> Expression: ang(end,end,end)
```

Select the apex of the angle, and then select the two opposite vertices.

Calculate a Normal Vector

Quick Reference

See also:

- Use the Command Prompt Calculator

The nor function calculates the unit normal vector (a vector perpendicular to a line or plane), not a point. The vector defines the direction of the normal, not a location in space. You can add this normal vector to a point to obtain another point.
nor Determines the three-dimensional unit normal vector of a selected circle, arc, or polyline arc segment. This normal vector is the Z coordinate of the object coordinate system (OCS) of the selected object.
nor(v) Determines the two-dimensional unit normal vector to vector v. Both vectors are considered 2D, projected on the $X Y$ plane of the current UCS. The orientation of the resulting normal vector points to the left of the original vector v.
nor($\mathbf{p} 1, \mathbf{p} 2)$ Determines the 2D unit normal vector to line $p 1, p 2$. The line is oriented from $p 1$ to $p 2$. The orientation of the resulting normal vector points to the left from the original line ($p 1, p 2$).
nor($\mathbf{p} 1, \mathbf{p} 2, \mathbf{p} 3)$ Determines the 3D unit normal vector to a plane defined by the three points $p 1, p 2$, and $p 3$. The orientation of the normal vector is such that the given points go counterclockwise with respect to the normal.

The following illustrations show how normal vectors are calculated:

nor

nor ($\mathrm{p} 1, \mathrm{p} 2$)

nor(v)

nor ($\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3$)

The following example sets the view direction perpendicular to a selected object. The program displays the object in plan view and does not distort the object by the parallel projection.

Command: vpoint
Current view direction: VIEWDIR=current
Specify a view point or [Rotate] <display compass and tripod>: 'cal
>> Expression: nor
>> Select circle, arc or polyline for NOR function:

Use Shortcut Functions

Quick Reference

See also:

- Use the Command Prompt Calculator

The functions in the table are shortcuts for commonly used expressions that combine a function with the Endpoint Snap mode.

Shortcut functions	Shortcut for	Description
function	dist(end,end)	Distance between two endpoints
ille	ill(end,end,end,end)	Intersection of two lines defined by four endpoints
mee	nor(end,end)	Unit vector in the $X Y$ plane and normal to two endpoints
nee	pld(d,end,end)	Point at a distance along a line determined bldee two endpoints (see pld)
pltee (t)	plt(t,end,end)	Point at a parametric location on a line de- termined by two endpoints (see plt)
vee	Vend,end)	Vend from two endpoints

Shortcut functions

Function	Shortcut for	Description
vee1	vec1 (end,end)	Unit vector from two endpoints

CAMERA

Quick Reference

See also:

■ Define a 3D View with a Camera

Sets a camera and target location to create and save a 3D perspective view of objects.

Access Methods

Button
$\$$ Ribbon: Render tab $>$ Camera panel $>$ Create Camera.
$\$$ Toolbar: View

List of Prompts

The following prompts are displayed
Current camera settings: Height=<current> Lens Length=<current> Specify camera location <current>: Enter a value or specify a point

Sets the point from which you view objects in a model.
Specify target location: Enter a value or specify a point
Sets the target location of a camera's lens.
Enter an option["?"/"Name"/"LOcation"/"Height"/"Target"/"LEns"/"Clipping"/"View"/"<eXit>"]:
?-List Cameras Displays a list of the currently defined cameras.

Enter camera name(s) to list <*>: Enter a name list or press Enter to list all cameras.
Name Names a camera.
Enter name for new camera <Camera1>:
Location Specifies the location of the camera.
Specify camera location <current>:
Height Changes the camera height.
Specify camera height <current>:
Target Specifies the target of the camera.
Specify camera target <current>:
Lens Changes the lens length of the camera.
Specify lens length in mm <current>:
Clipping Defines front and back clipping planes and sets their values.
Enable front clipping plane? [Yes/No] <No>: Specify Yes to enable front clipping
Specify front clipping plane offset from target plane <current>: Enter a distance
Enable back clipping Plane? <Yes/No] <No>: Specify Yes to enable back clipping
Specify back clipping plane offset from target plane <current>: Enter a distance
View Sets the current view to match the camera settings.
Switch to camera view? [Yes/No] <No>:
Exit Cancels the command.

Camera Preview Dialog Box

Quick Reference

See also:

- Define a 3D View with a Camera

Displays a preview of a camera view.

Access Methods

Button
$\$$ Ribbon: Render tab $>$ Camera panel $>$ Create Camera.
$\$$ Toolbar: View
㟇 Command entry: camera

List of Options

The following options are displayed.
Preview Displays a preview of a camera view defined with the CAMERA command.

Visual Style Specifies the visual style applied to the preview.
Display This Window When Editing a Camera Specifies that the Camera Preview dialog box is displayed when you edit a camera.

CHAMFER

Quick Reference

See also:

- Create Chamfers

Bevels the edges of objects.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Modify panel $>$ Chamfer and Fillet drop-down

- Chamfer

Menu: Modify $>$ Chamfer

Toolbar: Modify

Summary

The distances and angles that you specify are applied in the order that you select the objects.

You can chamfer lines, polylines, rays, and xlines.
You can also chamfer 3D solids and surfaces. If you select a mesh to chamfer, you can choose to convert it to a solid or surface before completing the operation.

List of Prompts

The following prompts are displayed.
(TRIM mode) Current chamfer Dist1 = current, Dist2 = current Select first line on page 314 or [Undo on page 315/Polyline on page 315/Distance on page 316/Angle on page 316/Trim on page 316/mEthod on page 317/Multiple on page 317]: Use an object selection method or enter an option

First Line

Specifies the first of two edges required to define a 2D chamfer, or the edge of a 3D solid to chamfer.

If you select lines or polylines, their lengths adjust to accommodate the chamfer line. You can hold down Shift while selecting the objects to override the current chamfer distances with a value of 0 .

If the selected objects are line segments of a 2D polyline, they must be adjacent or separated by no more than one segment. If they're separated by another polyline segment, CHAMFER deletes the segment that separates them and replaces it with the chamfer.

If you select an edge on a 3D solid, you must indicate which one of the two surfaces adjacent to the edge is the base surface.
Enter Surface Selection Option Entering o or pressing Enter sets the selected surface as the base surface. Entering \mathbf{n} selects either of the two surfaces adjacent to the selected edge.

After you select the base surface and the chamfer distances, select the edges of the base surface to chamfer. You can select edges individually or all the edges at once.

first edge selected

first base surface

second base surface

Edge Selects an individual edge to chamfer.

select edge

edge selected

chamfered edge

Loop Switches to Edge Loop mode.
Edge Loop Selects all edges on the base surface.

selecting edge loop

edge loop selected

chamfered edge loop

Undo

Reverses the previous action in the command.

Polyline

Chamfers an entire 2D polyline.
The intersecting polyline segments are chamfered at each vertex of the polyline. Chamfers become new segments of the polyline.

If the polyline includes segments that are too short to accommodate the chamfer distance, those segments are not chamfered.

selected polyline

result

Distance

Sets the distance of the chamfer from the endpoint of the selected edge.
If you set both distances to zero, CHAMFER extends or trims the two lines so they end at the same point.

equal distances

unequal distances

Angle

Sets the chamfer distances using a chamfer distance for the first line and an angle for the second line.

Trim

Controls whether CHAMFER trims the selected edges to the chamfer line endpoints.

NOTE Trim sets the TRIMMODE system variable to 1 ; No Trim sets TRIMMODE to 0 .

If the TRIMMODE system variable is set to 1, CHAMFER trims the intersecting lines to the endpoints of the chamfer line. If the selected lines do not intersect,

CHAMFER extends or trims them so that they do. If TRIMMODE is set to 0 , the chamfer is created without trimming the selected lines.

Method

Controls whether CHAMFER uses two distances or a distance and an angle to create the chamfer.

Multiple

Chamfers the edges of more than one set of objects.

Expression

Controls the chamfer distance with a mathematical expression. See Control Geometry with the Parameters Manager for a list of operators and functions allowed.

CHAMFEREDGE

Quick Reference

See also:

- Create Chamfers

Bevels the edges of 3D solids and surfaces.

Access Methods

$\$$ Ribbon: Solid tab $>$ Solid Editing panel $>$ Chamfer Edge
$\$$ Menu: Modify $>$ Solid Editing $>$ Chamfer Edge
$\$$ Toolbar: Solid Editing

Summary

You can select more than one edge at a time, as long as they belong to the same face. Enter a value for the chamfer distance or click and drag the chamfer grips.

List of Prompts

Select an Edge Selects a single solid or surface edge to chamfer.
Distance 1 Sets the distance of the first chamfer edge from the selected edge. The default value is 1 .

Distance 2 Sets the distance of the second chamfer edge from the selected edge. The default value is 1 .

Loop Chamfers all edges on a single face.
Expression Controls the chamfer distance with a mathematical expression.
See Control Geometry with the Parameters Manager for a list of operators and functions allowed.

CHANGE

Quick Reference

See also:

- Display and Change the Properties of Objects

Changes the properties of existing objects.

List of Prompts

The following prompts are displayed
Select objects:
Specify "change point" or ["Properties"]: Specify a new point, or press Enter to enter new values
Specify Objects
If you select lines and other changeable objects in the same selection set, you get varying results depending on the object selection sequence. The easiest way to use CHANGE is to select only lines in a selection set or select only objects other than lines in a selection set.
Except for zero-thickness lines, the objects selected must be parallel to the current user coordinate system (UCS).

Change Point or Values

Changes the selected objects. The result depends on the type of objects you select.

Lines Moves the endpoints of the selected lines that are closest to the change point to the new point, unless Ortho mode is on. If Ortho mode is on, the selected lines are modified so that they become parallel to either the X or the Y axis; their endpoints are not moved to the specified coordinate.

Ortho off

Ortho on

Circles Changes the circle radius. If you selected more than one circle, the prompt is repeated for the next circle.

Text Changes text location and other properties.
Specify New Text Insertion Point Relocates the text.

Attribute Definitions Changes the text and text properties of an attribute that is not part of a block.

Blocks Changes the location or rotation of a block.
Specifying a new location relocates the block. Pressing Enter leaves the block in its original location.

Properties

Modifies properties of existing objects.
$\overline{\text { NOTE The Plotstyle option is displayed only when you are using named plot styles. }}$
You can change several properties at a time. The Enter Property to Change prompt is redisplayed after each option is completed.
Color Changes the color of the selected objects.
For example, to change a color to red, enter red or $\mathbf{1}$. If you enter bylayer, the object assumes the color of the layer on which it is located. If you enter byblock, the object inherits the color of the block of which it is a component.

- True Color. Specifies a true color to be used for the selected object. The integer values range from 0 to 255 seperated by commas.
- Color Book. Specifies a color from a loaded color book to be used for the selected object.

Elev Changes the Z-axis elevation of 2D objects.
You can change the elevation of an object only if all its points have the same Z value.

Elev = 0

Elev = 2

Layer Changes the layer of the selected objects.
Ltype Changes the linetype of the selected objects.
If the new linetype is not loaded, the program tries to load it from the standard linetype library file, acad.lin. If this procedure fails, use LINETYPE to load the linetype.

Ltscale Changes the linetype scale factor of the selected objects.
Lweight Changes the lineweight of the selected objects. Lineweight values are predefined values. If you enter a value that is not a predefined value, the closest predefined lineweight is assigned to the selected objects.

Thickness Changes the Z-direction thickness of 2D objects.
Changing the thickness of a 3D polyline, dimension, or layout viewport object has no effect.

Transparency Changes the transparency level of selected objects.
Set the transparency to ByLayer or ByBlock, or enter a value from 0 to 90.
Material Changes the material of the selected objects if a material is attached.
Annotative Changes the property of the selected objects.

CHECKSTANDARDS

Quick Reference

See also:

- Check Drawings for Standards Violations

Checks the current drawing for standards violations.

Access Methods

Button
$\$$ Ribbon: Manage tab $>$ CAD Standards panel $>$ Check
$\$$ Menu: Tools $>$ CAD Standards $>$ Check

Toolbar: CAD Standards

Summary

Set standards by creating a file that defines properties for layers, dimension styles, linetypes, and text styles, and save it as a standards file with the .dws file name extension.

The Check Standards dialog box is displayed.

Check Standards Dialog Box

Quick Reference

See also:

- Check Drawings for Standards Violations

Analyzes the current drawing for standards violations.

Access Methods

Button

Ribbon: Manage tab $>$ CAD Standards panel $>$ Check
Menu: Tools $>$ CAD Standards $>$ Check
Toolbar: CAD Standards
Command entry: checkstandards

List of Options

The following options are displayed.

Problem

Provides a description of a nonstandard object in the current drawing. To fix a problem, select a replacement from the Replace With list, and then click Fix.

Replace With

Lists possible replacements for the current standards violation. If a recommended fix is available, it is preceded by a check mark. If a recommended fix is not available, no items are highlighted in the Replace With list.

Preview of Changes

Indicates the properties of the nonstandard object that will be changed if the fix currently selected in the Replace With list is applied.

Fix

Fixes the nonstandard object using the item currently selected in the Replace With list, and advances to the next nonstandard object in the current drawing. This button is unavailable if a recommended fix does not exist or if an item is not highlighted in the Replace With list.

Next Problem

Advances to the next nonstandard object in the current drawing without applying a fix.

Mark This Problem as Ignored

Flags the current problem as ignored. If the Show Ignored Problems option is turned off in the CAD Standards Settings dialog box, problems flagged as ignored are not displayed the next time the drawing is checked.

Settings

Displays the CAD Standards Settings dialog box, which specifies additional settings for the Check Standards dialog box and the Configure Standards dialog box.

Close

Closes the Check Standards dialog box without applying a fix to the standards violation currently displayed in Problem.

CHPROP

Quick Reference

See also:

■ Display and Change the Properties of Objects

Changes the properties of an object.

List of Prompts

The following prompts are displayed.
Select objects:
Enter property to change [Color on page 324/LAyer on page 324/LType on page 324/ltScale on page 324/LWeight on page 324/Thickness on page 325/TRansparency on page 325/Material on page 325/Annotative on page 325]:

NOTE The Plotstyle option is displayed only when you are using named plot styles.
If you select several objects with different values for the property you want to change, varies is displayed as the current value.

Color

Changes the color of the selected objects.
For example, to change a color to red, enter red or 1. If you enter bylayer, the object assumes the color of the layer on which it is located. If you enter byblock, the object inherits the color of the block of which it is a component.

True Color Specifies a true color to be used for the selected object.
Color Book Specifies a color from a loaded color book to be used for the selected object.

Layer

Changes the layer of the selected objects.

Ltype

Changes the linetype of the selected objects.
If the new linetype is not loaded, the program tries to load it from the standard linetype library file, acad.lin. If this procedure fails, use LINETYPE to load the linetype.

Ltscale

Changes the linetype scale factor of the selected objects.

Lweight

Changes the lineweight of the selected objects. Lineweight values are predefined values. If you enter a value that is not a predefined value, the closest predefined lineweight is assigned to the selected objects.

Thickness

Changes the Z-direction thickness of 2D objects.
Changing the thickness of a 3D polyline, dimension, or layout viewport object has no effect.

Transparency

Changes the transparency level of selected objects.
Set the transparency to ByLayer or ByBlock, or enter a value from 0 to 90.

Material

Changes the material of the selected objects if a material is attached.

Annotative

Changes the property of the selected objects.

CHSPACE

Quick Reference

See also:

■ Move Objects

Moves objects between model space and paper space.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Modify panel $>$ Change Space
$\$$ Menu: Modify $>$ Change Space

Summary

The moved object is scaled appropriately in the new space.

When transferring objects to paper space, the SOURCE viewport that you click determines the paper space location of the transferred objects. When transferring objects to model space, the TARGET viewport that you click determines the model space location of the transferred objects.

List of Prompts

The following prompts are displayed.
Select objects:
Set the SOURCE viewport active and press Enter to continue:
Returns prompts similar to the following:
N object(s) changed from MODEL space to PAPER space.
Objects were scaled by a factor of n to maintain visual appearance.

CIRCLE

Quick Reference

See also:

- Draw Circles

Creates a circle.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Draw panel $>$ Circle drop-down
$\%$ Menu: Draw $>$ Circle
$\$$ Toolbar: Draw

List of Prompts

The following prompts are displayed.
Specify center point on page 327 for circle or [3P on page 327/2P on page 328/Ttr (\tan tan radius) on page 329]: Specify a point or enter an option

Center Point

Home tab > Draw panel $\boldsymbol{>}$ Circle drop-down $>$ Center, Radius Draws a circle based on a center point and a diameter or a radius.
Radius Defines the radius of the circle. Enter a value, or specify a point. For example:

Diameter Defines the diameter of the circle. Enter a value, or specify a second point.

For example:

3P (Three Points)

Home tab $>$ Draw panel $>$ Circle drop-down $>$ 3-point Draws a circle based on three points on the circumference. For example:

Tan, Tan, Tan
Click Home tab $>$ Draw panel $>$ Circle drop-down $>$ Tan, Tan, Tan
Creates a circle tangent to three objects.
For example:

2P (Two Points)

Home tab $>$ Draw panel $>$ Circle drop-down $>$ 2-Point Draws a circle based on two endpoints of the diameter. For example:

TTR (Tangent, Tangent, Radius)

Home tab $>$ Draw panel $>$ Circle drop-down $>$ Tan, Tan, Radius
Draws a circle with a specified radius tangent to two objects.
Sometimes more than one circle matches the specified criteria. The program draws the circle of the specified radius whose tangent points are closest to the selected points.
For example:

CLASSICIMAGE

Quick Reference

See also:

- Manage Raster Images

Manages referenced image files in the current drawing.

Summary

The legacy Image Manager is displayed. The IMAGE command now displays the External References palette.

NOTE This command will be removed in future releases.

CLASSICLAYER

Quick Reference

See also:

- Use Layers to Manage Complexity

Opens the legacy Layer Properties Manager.

Summary

The legacy Layer Properties Manager is displayed. The LAYER command displays the current Layer Properties Manager.

NOTE This command will be removed in future releases.

CLASSICXREF

Quick Reference

See also:
■ Attach and Detach Referenced Drawings

Manages referenced drawing files in the current drawing.

Summary

The legacy Xref Manager is displayed. The EXTERNALREFERENCES on page 771 command displays the current External References palette.

NOTE This command will be removed in future releases.

CLEANSCREENON

Quick Reference

See also:

- Control the Display of Toolbars

Clears the screen of toolbars and dockable windows, excluding the command window.

Access Methods

$\$$ Menu: View $>$ Clean Screen

Summary

The screen displays only the menu bar, the Model and layout tabs at the bottom of the drawing, the status bars, and the command line. Use CLEANSCREENOFF to restore display of interface items except menu bar, status bar, and the command line. Press Ctrl+0 (zero) to switch between CLEANSCREENON and CLEANSCREENOFF. A Clean Screen button is available in the lower-right corner of the application status bar.

CLEANSCREENOFF

Quick Reference

See also:
 - Control the Display of Toolbars

Restores display of toolbars and dockable windows, excluding the command window.

Access Methods

$\$$ Menu: View $>$ Clean Screen

Summary

Restores the state of the display before CLEANSCREENON was used. Use CLEANSCREENON to clear the screen of toolbars and dockable windows (excluding the command line). Press Ctrl+0 (zero) to switch between CLEANSCREENON and CLEANSCREENOFF. The Clean Screen button is available in the lower-right corner of the application status bar.

CLIP

Quick Reference

See also:

- Clip Underlays

Crops a selected external reference, image, viewport, or underlay (DWF, DWFx, PDF, or DGN) to a specified boundary.

Access Methods

Button

Ribbon: Insert tab $>$ Reference panel $>$ Clip

Summary

The clipping boundary determines a portion of an image, underlay, viewport, or external reference to hide. The visibility of the clipping boundary is controlled by the FRAME on page 2323 system variable.

List of Prompts

The list of prompts varies depending on whether you are clipping an underlay, image, external reference, or viewport.

Underlay and Image Prompts

The following prompts are displayed.
On Turns on clipping and displays the underlay clipped to the previously defined boundary.

Off Turns off clipping and displays the entire PDF underlay and frame. If you clip the underlay again while clipping is off, clipping automatically turns on. You are prompted to delete the old boundary even when clipping is off and the clipping boundary is not visible.

Delete Removes a predefined clipping boundary and redisplays the full original underlay.

New Boundary Defines a rectangular or polygonal clipping boundary, or generates a polygonal clipping boundary from a polyline.
NOTE You can only create a new clipping boundary for an underlay when the old boundary is deleted.

Select Polyline Defines the boundary with the selected polyline. The polyline can be open but must consist of straight line segments and cannot intersect itself.

Polygonal Defines a polygonal clipping boundary with three or more points that you specify for the vertices of a polygon.

Rectangular Defines a rectangular boundary with the points that you specify for opposite corners.

Invert Clip Inverts the mode of the clipping boundary: objects are clipped either outside the boundary or inside the boundary.

External Reference Prompts

The following prompts are displayed.
Select objects: Use an object selection method and press Enter when you finish selecting objects
Enter clipping option [ON on page 2113/OFF on page 2114/Clipdepth on page 2114/Delete on page 2114/generate Polyline on page 2114/New boundary on page
2114] <New>: Select an option or press Enter
On Displays the clipped portion of the external reference or block in the current drawing.

Off Displays all of the geometry of the external reference or block in the current drawing, ignoring the clipping boundary.
Clipdepth Sets the front and back clipping planes on an xref or block. Objects outside the volume defined by the boundary and the specified depth are not
displayed. Regardless of the current UCS, the clip depth is applied parallel to the clipping boundary.
■ Front Clip Point. Creates a clipping plane passing through and perpendicular to the clipping boundary.

- Distance. Creates a clipping plane the specified distance from and parallel to the clipping boundary.
- Remove. Removes both the front and back clipping planes.

Delete Removes a clipping boundary for the selected xref or block. To temporarily turn off a clipping boundary, use the Off option. Delete erases the clipping boundary and the clipdepth. The ERASE on page 730 command cannot be used to delete clipping boundaries.

Generate Polyline Automatically draws a polyline coincident with the clipping boundary. The polyline assumes the current layer, linetype, lineweight, and color settings. Use this option when you want to modify the current clipping boundary using PEDIT on page 1435 and then redefine the clipping boundary with the new polyline. To see the entire xref while redefining the boundary, use the Off option.

New Boundary Defines a rectangular or polygonal clipping boundary, or generates a polygonal clipping boundary from a polyline.
NOTE You can only create a new clipping boundary for a selected XREF underlay when the old boundary is deleted.

- Select Polyline. Defines the boundary with the selected polyline. The polyline can be open but must consist of straight line segments and cannot intersect itself.
- Polygonal. Defines a polygonal clipping boundary with three or more points that you specify for the vertices of a polygon.
■ Rectangular. Defines a rectangular boundary with the points that you specify for opposite corners.
- Invert Clip. Inverts the mode of the clipping boundary: objects are clipped either outside the boundary or inside the boundary.

Viewport Prompts

NOTE You cannot clip a viewport in model space. You must be in paper space.
Clipping Object Select the viewport to clip.

Polygonal Draws a clipping boundary. You can draw line segments or arc segments by specifying points.
The descriptions of the Next Point, Arc, Close, Length, and Undo options match the descriptions of the corresponding options in the PLINE command.

Delete Deletes the clipping boundary of a selected viewport. This option is available only if the selected viewport has already been clipped. If you clip a viewport that has been previously clipped, the original clipping boundary is deleted, and the new clipping boundary is applied.

CLOSE

Quick Reference

See also:
 ■ Open a Drawing

Closes the current drawing.

Access Methods

Summary

The current drawing is closed. If you modified the drawing since it was last saved, you are prompted to save or discard the changes.

You can close a file that has been opened in read-only mode if you have made no changes or if you are willing to discard changes. To save changes to a read-only file, you must use the SAVEAS command.

CLOSEALL

Quick Reference

See also:
■ Open a Drawing

Closes all currently open drawings.

Access Methods

Summary
All open drawings are closed. A message box is displayed for each unsaved drawing, in which you can save any changes to the drawing before closing it.

COLOR

Quick Reference

See also:
■ Set the Current Color

Sets the color for new objects.

Access Methods

Button

Ribbon: Home tab $>$ Properties panel $>$ Object Color
Menu: Format $>$ Color

Summary
The Select Color dialog box is displayed.
If you enter -color at the Command prompt, options are displayed.

Select Color Dialog Box

Quick Reference

See also:
■ Set the Current Color

Defines the color of objects.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Properties panel $>$ Object Color
$\$$ Menu: Format $>$ Color
两 Command entry: color (or 'color for transparent use)

Summary

You can select from the 255 AutoCAD Color Index (ACI) colors, true colors, and Color Book colors.

List of Options

The following options are displayed.

- Index Color
- True Color
- Color Books

Index Color Tab (Select Color Dialog Box)

Quick Reference

See also:
■ Set the Current Color

Specifies color settings using the 255 AutoCAD Color Index (ACI) colors.

Access Methods

Button

Ribbon: Home tab $>$ Properties panel $>$ Object Color
$\$$ Menu: Format $>$ Color
Command entry: color (or 'color for transparent use)

List of Options

The following options are displayed.
AutoCAD Color Index (ACI) Palettes Specifies a color from the AutoCAD Color Index. If you hover over a color, the number of the color and its red,
green, blue value are displayed below the palette. Click a color to select it, or enter the color number or name in the Color box.
The large palette displays colors 10 through 249.
The second palette displays colors 1 through 9; these colors have names as well as numbers.

The third palette displays colors 250 through 255 ; these colors are shades of gray.
Index Color Indicates the ACI color number when you hover over a color.
Red, Green, Blue Indicates the RGB color value when you hover over a color.

Bylayer

Specifies that new objects assume the color assigned to the layer on which you create them. When BYLAYER is selected, the color of the current layer is displayed in the Old and New color swatches.

Byblock

Specifies that new objects use the default color (white or black, depending on your background color) until you group the objects into a block and insert the block. When you insert the block into a drawing, the objects in the block inherit the current Color setting.

NOTE The BYLAYER and BYBLOCK options do not apply to the LIGHT command.

Color

Specifies a color name, BYLAYER or BYBLOCK color, or an AutoCAD Color Index (ACI) number of 1 through 255. The New color swatch shows the most recently selected color.

Old Color Swatch
Displays the previously selected color.

New Color Swatch

Displays the currently selected color.

True Color Tab (Select Color Dialog Box)

Quick Reference

See also:
■ Set the Current Color

Access Methods

Button

Ribbon: Home tab $>$ Properties panel $>$ Object Color
Menu: Format > Color
Command entry: color (or 'color for transparent use)

Summary

Specifies color settings using true colors (24-bit color) with either the Hue, Saturation, and Luminance (HSL) color model or the Red, Green, and Blue (RGB) color model. Over sixteen million colors are available when using true color functionality. The options available on the True Color tab are dependent on whether the HSL or RGB color model is specified.

List of Options

The following options are displayed.

HSL Color Model

Specifies the HSL color model for selecting colors.
Hue, saturation, and luminance are properties of colors. By manipulating the values of these properties, you can specify a wide range of colors.

Hue
Specifies the hue of a color. Hues represent a specific wavelength of light within the visible spectrum. To specify a hue, use the color spectrum or specify a value in the Hue box. Adjusting this value affects the RGB value. Valid hue values are from 0 to 360 degrees.

Saturation

Specifies the purity of a color. High saturation causes a color to look more pure while low saturation causes a color to look washed-out. To specify color saturation, use the color spectrum or specify a value in the Saturation box. Adjusting this value affects the RGB value. Valid saturation values are from 0 to 100%.

Luminance

Specifies the brightness of a color. To specify color luminance, use the color slider or specify a value in the Luminance box. Valid luminance values are from 0 to 100%. A value of 0% represents the color black, 100% represents white, and 50% represents the optimal brightness for the color. Adjusting this value also affects the RGB value.

Color Spectrum Specifies the hue and purity of a color. To specify a hue, move the crosshairs from side to side over the color spectrum. To specify color saturation, move the crosshairs from top to bottom over the color spectrum.

Color Slider Specifies the brightness of a color. To specify color luminance, adjust the bar on the color slider or specify a value in the Luminance box.

RGB Color Model

Specifies the RGB color model for selecting colors. The options available on the True Color tab are dependent on whether the HSL or RGB color model is specified.

Colors can be broken down into components of red, green, and blue. The values specified for each component represent the intensity of the red, green, and blue components. The combination of these values can be manipulated to create a wide range of colors.

Red

Specifies the red component of a color. Adjust the slider on the color bar or specify a value from 1 to 255 in the Red box. If this value is adjusted, it will be reflected in the HSL color mode values.

Green

Specifies the green component of a color. Adjust the slider on the color bar or specify a value from 1 to 255 in the Green box. If this value is adjusted, it will be reflected in the HSL color mode values.

Blue

Specifies the blue component of a color. Adjust the slider on the color bar or specify a value from 1 to 255 in the Blue box. If this value is adjusted, it will be reflected in the HSL color mode values.

Color

Specifies the RGB color value. This option is updated when changes are made to HSL or RGB options. You can also edit the RGB value directly using the following format: 000,000,000.

True Color Stored as RGB
Indicates the value for each RGB color component.
Old Color Swatch
Displays the previously selected color.

New Color Swatch

Displays the currently selected color.

Color Books Tab (Select Color Dialog Box)

Quick Reference

See also:
- Set the Current Color

Specifies colors using third-party color books (such as PANTONE ${ }^{\circledR}$) or user-defined color books.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Properties panel $>$ Object Color
$\$$ Menu: Format $>$ Color
善 Command entry: color (or 'color for transparent use)

Summary

Once a color book is selected, the Color Books tab displays the name of the selected color book.

List of Options

The following options are displayed.

Color Book

Specifies the color book to be used when selecting colors. The list consists of all the color books that are found in the Color Book Locations specified in the Options dialog box, Files tab.

Displays the pages of the selected color book and the colors and color names on each page. Color books containing up to ten colors per page are supported. If a color book is not paginated, the colors are organized into pages containing
seven colors per page. To view color book pages, select an area on the color slider or use the up and down arrows to browse.

RGB Equivalent Indicates the value for each RGB color component.

Color

Indicates the currently selected color book color. You can search for a specific color in a color book by entering the number of the color swatch and pressing TAB. This action updates the New color swatch with the requested color number. If the specified color is not found in the color book, the closest number match is displayed.

Old Color Swatch
Displays the previously selected color.

New Color Swatch

Displays the currently selected color.

-COLOR

Quick Reference

See also:

■ Set the Current Color

If you enter -color at the Command prompt, the following prompts are displayed.

Enter default object color ["Truecolor"/"COlorbook"] <BYLAYER>: Enter a color, enter \mathbf{t}, enter co, or press Enter

You can enter a color from the AutoCAD Color Index (a color name or number), a true color, or a color from a color book.

You can enter the color number (1 through 255) or the color name (the names for the first seven colors). For example, you can specify the color red by entering the ACI number 1 or the ACI name red.

You can also enter bylayer or byblock. If you enter byblock, all new objects are drawn in the default color (white or black, depending on your background color) until they are grouped into a block. When you insert the block in a drawing, the objects in the block inherit the current setting of COLOR.

WARNING If you used a mixture of color methods to draw the objects that make up a block, inserting that block or changing its color produces complex results.

If you enter bylayer, new objects assume the color assigned to the layer on which you create them. See the LAYER command for information about assigning a color to a layer.

List of Prompts

The following prompts are displayed.
True Color Specifies a true color to be used for the selected object. Enter three integer values from 0 to 255 separated by commas to specify a true color

Color Book Specifies a color from a loaded color book to be used for the selected object. Enter the name of a color book that has been installed, such as Pantone.

If you enter a color book name, you are prompted to enter the color name in the color book.

COMMANDLINE

Quick Reference

See also:
■ Dock, Resize, and Hide the Command Window

Displays the Command Line window.

Access Methods

Button

8 Ribbon: View tab $>$ Palettes panel $>$ Command Line
$\%$ Menu: Tools $>$ Command Line

Summary

Displays the Command Line window when it has been hidden.

You can display commands, system variables, options, messages, and prompts in a dockable and resizable window called the Command Line window.

COMMANDLINEHIDE

Quick Reference

See also:

■ Dock, Resize, and Hide the Command Window

Hides the Command Line window.

Access Methods

$\$$ Menu: Tools $>$ Command Line

Summary

Hides the Command Line window. When the Command Line window is hidden, you can still enter commands with dynamic prompts turned on.

COMPILE

Quick Reference

See also:
■ Overview of Shape Files

Compiles shape files and PostScript font files into SHX files.

Summary

The Select Shape or Font File dialog box (a standard file selection dialog box) is displayed. Enter the SHP or PFB file name in the dialog box. The compiled file is assigned this name with the file extension .shx.

CONE

Quick Reference

See also:

- Create a Solid Cone

Creates a 3D solid cone.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Modeling panel $>$ Cone
$\$$ Menu: Home $>$ Modeling $>$ Solid Modeling drop-down $>$ Cone
$\$$ Toolbar: Modeling

Summary

Creates a 3D solid with a circular or elliptical base that tapers symmetrically to a point or to a circular or elliptical planar face. You can control the smoothness of 3D curved solids, such as a cone, in a shaded or hidden visual style with the FACETRES system variable.

Use the Top Radius option to create a cone frustum.
Initially, the default base radius is not set to any value. During a drawing session, the default value for the base radius is always the previously entered base radius value for any solid primitive.

List of Prompts

The following prompts are displayed.
Specify center point of base or [3P on page 349/2P on page $349 / \mathrm{Ttr}$ on page 349/Elliptical on page 349]: Specify a point (1) or enter an option
Specify base radius or [Diameter on page 348] <default>: Specify a base radius, enter \mathbf{d} to specify a diameter, or press Enter to specify the default base radius value Specify height or [2Point on page 348/Axis endpoint on page 348/Top radius on page 348] <default>: Specify a height, enter an option, or press Enter to specify the default height value

Center Point of Base

2Point Specifies that the height of the cone is the distance between the two specified points.

Axis Endpoint Specifies the endpoint location for the cone axis. The axis endpoint is the top point of the cone or the center point of the top face of the cone frustum (Top Radius option). The axis endpoint can be located anywhere in 3D space. The axis endpoint defines the length and orientation of the cone.

Top Radius Specifies the top radius of the cone, creating a cone frustum.
Initially, the default top radius is not set to any value. During a drawing session, the default value for the top radius is always the previously entered top radius value for any solid primitive.

Diameter Specifies the diameter for the base of the cone.
Initially, the default diameter is not set to any value. During a drawing session, the default value for the diameter is always the previously entered diameter value for any solid primitive.

3P (Three Points)

Defines the base circumference and base plane of the cone by specifying three points.

- 2Point on page 348
- Axis Endpoint on page 348

■ Top Radius on page 348

2P (Two Points)

Defines the base diameter of the cone by specifying two points.

- 2Point on page 348
- Axis Endpoint on page 348

■ Top Radius on page 348

TTR (Tangent, Tangent, Radius)

Defines the base of the cone with a specified radius tangent to two objects.
Sometimes, more than one base matches the specified criteria. The program draws the base of the specified radius whose tangent points are closest to the selected points.

- 2Point on page 348
- Axis Endpoint on page 348
- Top Radius on page 348

Elliptical

Specifies an elliptical base for the cone.

Center Creates the base of the cone by using a specified center point.

- 2Point on page 348
- Axis Endpoint on page 348

■ Top Radius on page 348

CONSTRAINTBAR

Quick Reference

See also:

- Display and Verify Geometric Constraints

Displays or hides the geometric constraints on an object.

Access Methods

Butlon
$\$$ Ribbon: Parametric tab $>$ Geometric panel $>$ Show/Hide
$\$$ Menu: Parametric $>$ Constraints Bars $>$ Select Objects
$\$$ Toolbar: Parametric

Summary

The selection preview behavior for constraint bars is as follows:

- Placing the cursor over an icon on a constraint bar highlights related geometry.
- Placing the cursor over a constrained object (while constraint bars are displayed) highlights the constraint icons associated with the selected object.

The CONSTRAINTBARMODE system variable or the CONSTRAINTSETTINGS command controls the display of geometric constraints on constraint bars, when constraint bar are displayed.

On the ribbon, you can also show or hide all constraint bars for all constrained geometries.

List of Prompts

The following prompts are displayed.
Select objects: Select objects with constraint bars
Enter an option [Show on page 351 /Hide on page 351 /Reset on page 351]
<Show>:Enter the appropriate value to show or hide constraint bars in the drawing.

Show

Displays constraint bars for the selected objects with geometric constraints applied to them.

Hide

Hides constraint bars for the selected objects with geometric constraints applied to them.

Reset

Displays constraint bars for all objects with geometric constraints applied to them and resets them to their default locations relative to their associated parameters.

CONSTRAINTSETTINGS

Quick Reference

See also:

■ Overview of Constraints

Controls the display of geometric constraints on constraint bars.

Access Methods

Button

Toolbar: Parametric

Summary

The Constraint Settings Dialog Box is displayed.

Constraint Settings Dialog Box

Quick Reference

See also:

- Overview of Constraints

Allows you to control the geometric constraints, dimensional constraints, and autoconstrain settings.

Access Methods

Ribbon: Parametric tab $>$ Geometric panel $>$ Dialog Box Launcher
$\$$ Menu: Parametric $>$ Constraint Settings
$\$$ Toolbar: Parametric

List of Options

The following options are displayed.
The Constraint Settings dialog box includes the following:

- Geometric Tab
- Dimensional Tab
- Autoconstrain Tab

Geometric Tab

Controls the display of constraint types on constraint bars.
Infer Geometric Constraints Infers geometric constraints when creating and editing geometry.

Constraint Bar Filters Controls the display of constraint bars or constraint point markers for objects in the drawing editor.
For example, you can hide the display of constraint bars for Horizontal and Vertical constraints.

Select All Selects the geometric constraint types.
Clear All Clears the selected geometric constraint types.
Only Display Constraint Bars for Object in the Current Plane Displays constraint bars for geometrically constrained objects only on the current plane.

Constraint Bar Transparency Sets the transparency level of constraint bars in a drawing.

Show Constraint Bars After Applying Constraints to Selected
Objects Displays relevant constraint bars after you apply a constraint manually or when you use the AUTOCONSTRAIN command.

Temporarily Display Constraint Bars When Objects Are
Selected Temporarily displays the constraint bars of the selected objects.

Dimensional Tab

Sets preferences in behavior when displaying dimensional constraints.
Dimensional Constraint Format Sets the display of the dimensional name format and lock icon.

Dimension Name Format Specifies the format for the text displayed when dimensional constraints are applied.

Set the name format to display: Name, Value, or Name and Expression. For example: Width=Length/2

Show Lock Icon for Annotational Constraints Displays a lock icon against an object that has an annotational constraint applied (DIMCONSTRAINTICON on page 2236 system variable).

Show Hidden Dynamic Constraints for Selected Objects Displays dynamic constraints that have been set to hide when selected.

Autoconstrain Tab

Controls the constraints that are applied to a selection set, and the order in which they are applied when using the AUTOCONSTRAIN command.

The following conditions are checked before multiple geometric constraints are applied:

- Are the objects perpendicular or tangential to each other within the tolerances specified in the AutoConstrain tab?

■ Do they also intersect within the specified tolerances?
If the first condition is met, then tangent and perpendicular constraints are always applied if the check boxes are cleared.

If you select the additional check boxes, then the distance tolerance is considered for intersecting objects. If the objects do not intersect but the nearest distance between them is within the distance tolerance specified, then the constraint will be applied even if the check boxed are selected.

Autoconstrain Headings

- Priority - Controls the order in which constraints are applied.

■ Constraint Type - Controls the type of constraint applied to objects.

- Apply - Controls the constraints that are applied when applying constraints to multiple objects.

Move Up Changes the order of the selected item by moving it up in the list.
Move Down Changes the order of the selected item by moving it down in the list.

Select All Selects all geometric constraint types to autoconstrain.
Clear All Clears all geometric constraint types to autoconstrain.
Reset Resets AutoConstrain settings to default values.

Tangent Objects Must Share an Intersection Point Specifies that two curves must share a common point (as specified within the distance tolerance) for the tangent constraint to be applied.

Perpendicular Objects Must Share an Intersection Point Specifies that lines must intersect or the endpoint of one line must be coincident with the other line or endpoint of the line as specified within the distance tolerance.

Tolerances Sets the acceptable tolerance values to determine whether a constraint can be applied.

- Distance - Distance tolerance are applied to coincident, concentric, tangent, and collinear constraints.

■ Angle - Angular tolerance are applied to horizontal, vertical, parallel, perpendicular, tangent, and collinear constraints.

+CONSTRAINTSETTINGS

Quick Reference

See also:

- Overview of Constraints

Controls the tab that is displayed by default when the Constraint Settings dialog box is invoked.

Tab Index	Tab Displayed
0	Geometric tab
1	Dimensional tab
2	AutoConstrain tab

CONVERT

Quick Reference

See also:

■ Use Drawings from Different Versions and Applications

Optimizes 2D polylines and associative hatches created in AutoCAD Release 13 or earlier.

Sumary

Hatches are not updated automatically when a drawing from a previous release is opened in Release 14 or later. Information about the rotation of a hatch pattern may not be updated properly if you have changed the UCS since creating the hatch. When updating hatches with CONVERT, it is recommended that you use the Select option so that you can check your results.

In most cases, you do not need to update polylines with CONVERT. By default, thePLINETYPE system variable specifies that polylines are updated automatically when you open an older drawing. Polylines may be created in the old format by third-party applications, and they may be contained in an older drawing that was inserted as a block and then exploded.

NOTE Polylines containing curve-fit or splined segments always retain the old format, as do polylines that store extended object data on their vertices. Editing commands make no distinction between the two formats.

List of Prompts

The following prompts are displayed.
Enter type of objects to convert [Hatch/Polyline/All] <All>: Enter h for hatches, p for polylines, or a for both
Hatch Converts all hatches in the drawing.
Polyline Converts all polylines in the drawing.
All Converts all polylines and hatches in the drawing.

CONVERTCTB

Quick Reference

See also:

■ Switch the Type of Plot Style Table

Converts a color-dependent plot style table (CTB) to a named plot style table (STB).

Summary

Displays the Select File dialog box (a standard file selection dialog box), where you can select the color-dependent plot style table file you want to convert. The Save As dialog box is then displayed. If necessary, specify a new location or name for the converted plot style table file.

CONVERTCTB saves a copy of a color-dependent plot style table as a named plot style table, which you can then attach to drawings that use named plot styles. The original color-dependent plot style table is not affected by CONVERTCTB. The default location for the new named plot style table file is in the Plot Styles folder. The default name for the new named plot style table file is the same as the color-dependent plot style table name.

CONVERTCTB creates one named plot style for each color that has unique plot properties, one named plot style for each group of colors that are assigned the same plot properties, and a default named plot style called NORMAL.

For example, if all the colors in a color-dependent plot style table have the same plot properties, CONVERTCTB creates only two named plot styles in the named plot style table: NORMAL, the default plot style, and STYLE 1, which assumes the plot properties that were assigned to all the colors in the color-dependent plot style table. However, suppose that all the colors in a color-dependent plot style table have the same plot properties except for two colors, BLUE and GREEN. If these colors each have unique plot properties, CONVERTCTB creates four named plot styles in the named plot style table: NORMAL, the default plot style; STYLE 1, which assumes the plot properties of GREEN; STYLE 2, which assumes the plot properties of BLUE; and STYLE 3 , which assumes the plot properties that were assigned to all the other colors.

CONVERTCTB gives the plot styles in the new named plot style table generic names such as STYLE 1, STYLE 2. You can modify these generic plot style names in the Plot Style Table Editor. Click the Edit button on the Plot Device
tab in the Page Setup dialog box. If you want to rename the plot styles, you must do so before applying them to drawing layouts.

CONVERTOLDLIGHTS

Quick Reference

See also:

■ Work with Lights in Drawings from Previous Versions of AutoCAD

Converts lights created in previous drawing file formats to the current format.

Summary

The lights in the drawing that were originally created in a previous drawing file format are updated to the current drawing file format. Drawing file format changes occur infrequently in AutoCAD-based products. For example, format changes occurred in AutoCAD 2000, AutoCAD 2004, and AutoCAD 2007.

WARNING The conversion may not be correct in all cases. You may need to adjust intensity, for example.

CONVERTOLDMATERIALS

Quick Reference

See also:
■ Convert Materials

Converts materials created in previous drawing file formats to the current format.

Summary

The materials in the drawing that were originally created in a previous drawing file format are updated to the current drawing file format. Drawing file format changes occur infrequently in AutoCAD-based products. For example, format
changes occurred in AutoCAD 2000, AutoCAD 2004, AutoCAD 2007, and AutoCAD 2010.

WARNING The conversion may not be correct in all cases. You may need to adjust material mapping, for example.

CONVERTPSTYLES

Quick Reference

See also:

■ Switch the Type of Plot Style Table

Converts the current drawing to either named or color-dependent plot styles.

Summary

A drawing can use either named or color-dependent plot styles, but not both.
CONVERTPSTYLES converts a currently open drawing from color-dependent plot styles to named plot styles, or from named plot styles to color-dependent plot styles, depending on which plot style method the drawing is currently using.

- Converting drawings from color-dependent plot styles to named plot styles

■ Converting drawings from named plot styles to color-dependent plot styles

When you convert a drawing, CONVERTPSTYLES sets the PSTYLEMODE system variable to the appropriate setting ($0=$ named, $1=$ color-dependent $)$.

For example, a drawing using color-dependent plot styles assigns plot properties to objects and layers by color. In other words, all objects with the same color have the same plot properties. CONVERTPSTYLES converts the drawing to use named plot styles that can be applied to objects or layers independent of color assignment. In other words, all objects with the same color can have different plot properties.

Converting Drawings from Color-Dependent to Named Plot Styles

A dialog box advises you to convert the drawing's plot style tables before converting the drawing. You can convert the color-dependent plot style tables assigned to the drawing to named plot style tables using CONVERTCTB.
The Select File dialog box (a standard file selection dialog box) is displayed, where you select the named plot style table file to attach to the converted drawing.

CONVERTPSTYLES requires you to select a named plot style table that was converted using CONVERTCTB or created from a PC2 or PCP file. Normally you should select the named plot style table that was converted from the color-dependent plot style table that was assigned to the same drawing.

CONVERTPSTYLES attaches the selected named plot style table to model space and to all layouts. Drawing layers are each assigned a named plot style (from the converted plot style table) that has the same plot properties that their color-dependent plot style had.

- Drawing objects that had the same color-dependent plot style as their layer are assigned the named plot style BYLAYER.
- Drawing objects that had a color-dependent plot style that was different from their layer are assigned a named plot style that has the same properties that their color-dependent plot style had.

After a drawing is converted to named plot styles, you can change the named plot style table assignment or assign other named plot styles tables to model space or layouts. You can also assign individual plot styles to drawing objects.

Converting Drawings from Named to Color-Dependent Plot Styles

A dialog box advises you that the named plot styles attached to objects and named plot style tables attached to model space and layouts will be detached.

After a drawing is converted to color-dependent plot styles, you can assign a color-dependent plot style table. Plot styles will be applied by color.

CONVTOMESH

Quick Reference

See also:

- Create Meshes by Conversion

Converts 3D objects such as polygon meshes, surfaces, and solids to mesh objects.

Access Methods

Bution

Ribbon: Home tab $>$ Mesh panel $>$ Smooth Objects
$\$$ Menu: Draw $>$ Modeling $>$ Meshes $>$ Smooth Mesh
Toolbar: Smooth Mesh

Summary

Take advantage of the detailed modeling capabilities of 3D mesh by converting objects such as 3D solids and surfaces to mesh.

Use this method to convert 3D faces (3DFACE) and legacy polygonal and polyface meshes (from AutoCAD 2009 and earlier). You can also convert 2D objects such as regions and closed polylines.

The default mesh settings are defined in the Mesh Tessellation Options dialog box. The level of smoothness upon conversion depends on the mesh type setting in this dialog box. If the mesh type is not set to be optimized, the converted object is not smoothed.

To convert mesh objects to 3D surfaces or solids, use CONVTOSOLID or CONVTOSURFACE commands.

Objects That Can Be Converted to Mesh
Object type
3D solids

Object type

3D surfaces
3D faces

Polyface and polygon meshes (legacy)
Regions
Closed polylines

CONVTONURBS

Quick Reference

See also:

- Create NURBS Surfaces

Converts 3D solids and surfaces into NURBS surfaces.

Access Methods

$\$$ Ribbon: Surface tab $>$ Control Vertices panel $>$ Convert to NURBS
$\$$ Menu: Modify $>$ Surface Editing $>$ Convert to NURBS
$\$$ Toolbar: Surface Editing

Summary

Converts solids and procedural surfaces to NURBS surfaces.

To convert meshes to NURBS surfaces, convert them to a solid or surface first with CONVTOSOLID on page 363 or CONVTOSURFACE on page 366 and then convert them to NURBS surfaces.

CONVTOSOLID

Quick Reference

See also:

- Create 3D Solids from Objects

Converts 3D meshes and polylines and circles with thickness to 3D solids.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Solid Editing panel $>$ Convert to Solid
$\$$ Menu: Modify $>$ 3D Operations $>$ Convert to Solid

Summary

Take advantage of the solid modeling capabilities available for 3D solids. When you convert mesh, you can specify whether the converted objects are smoothed or faceted, and whether the faces are merged.

The smoothness and number of faces of the resulting 3D solid are controlled by the SMOOTHMESHCONVERT system variable. Whereas the previous example shows a conversion to a smooth, optimized 3D solid, the following example shows a conversion to a faceted 3D solid in which the faces are not merged, or optimized.

The following tables list the objects that can be converted to solid objects and some limitations on their conversion.
Objects that Can Be Converted to 3D Solids

Object	Required properties
Mesh	Encloses a volume with no gaps between edges (watertight)
Polyline	Closed, uniform-width, with thickness
Polyline	Closed, zero-width, with thickness
Surface	Encloses a volume with no gaps between edges (such as a revolved surface that is capped at both ends or closed mesh objects that

Object	Required properties
	were converted to surfaces). If the surfaces enclose a watertight area, you can also convert to a solid with the SURFSCULPT on page 1885 command.
Limitations on Conversion to Solid Objects	
Object	Description
Polyline	Cannot contain zero-width vertices.
Polyline	Cannot contain segments of variable width.
Separate objects that simulate a closed surface	Cannot be a planar surface with contiguous edges or an exploded 3D solid box into six regions. However, you cannot convert those objects back to a solid with CONVTOSOLID. separate
Planar surfaces with contiguous edges	Cannot convert separate objects unless they enclose a volume without gaps. If the surfaces enclose a watertight area, you can convert to a solid with the SURFSCULPT on page 1885 command.
Exploded 3D solid	Cannot convert separate objects (in this case, regions) with the CONVTOSOLID command. You can, however, convert them to a solid with the SURFSCULPT on page 1885 command.

You can select the objects to convert before you start the command.
The DELOBJ system variable controls whether the geometry used to create 3D objects is automatically deleted when the new object is created or whether you are prompted to delete the objects.

List of Prompts

The following prompts are displayed.
Select objects Specifies one or more objects to convert to 3D solid objects. You can select objects with thickness or mesh objects.
If one or more objects in the selection set are invalid for the command, you will be prompted again to select objects.

CONVTOSURFACE

Quick Reference

See also:
■ Convert Objects to Procedural Surfaces

Converts objects to 3D surfaces.

Access Methods

Button

Ribbon: Home tab $\boldsymbol{>}$ Solid Editing panel $>$ Convert to Surface
Menu: Modify $>$ 3D Operations $>$ Convert to Surface

Summary

As you convert objects to surfaces, you can specify whether the resulting object is smooth or faceted.

When you convert a mesh, the smoothness and number of faces of the resulting surface are controlled by the SMOOTHMESHCONVERT system variable. Whereas the previous example shows a conversion to a smooth, optimized surface, the following example shows a conversion to a faceted surface in which the faces are not merged, or optimized.

With the CONVTOSURFACE command, you can convert the following objects into surfaces:

Objects That Can Be Converted to 3D Surfaces

Objects
\qquad
3D solids
Regions
Open, zero-width polylines with thickness
Lines with thickness
Arcs with thickness

Mesh objects

Objects

Planar 3D faces

objects converted to surfaces

You can select the objects to convert before you start the command.
NOTE You can create surfaces from 3D solids with curved faces, such as a cylinder, with the EXPLODE command.

The DELOBJ system variable controls whether the geometry used to create 3D objects is automatically deleted when the new object is created or whether you are prompted to delete the objects.

List of Prompts

The following prompts are displayed.
Select objects Specifies one or more objects to convert to surfaces.
If one or more objects in the selection set are invalid for the command, you will be prompted again to select objects.

COPY

Quick Reference

See also:

- Copy Objects

Copies objects a specified distance in a specified direction.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Modify panel $>$ Copy
\$ Menu: Modify $>$ Copy
$\$$ Toolbar: Modify
Shortcut menu: Select the objects to copy, and right-click in the drawing area. Click Copy Selection.

Summary

With the COPYMODE system variable, you can control whether multiple copies are created automatically.

List of Prompts

The following prompts are displayed.
Select objects: Use an object selection method and press Enter when you finish Specify base point or [Displacement/mOde/Multiple] <Displacement>: Specify a base point or enter an option
Displacement
Specifies a relative distance and direction using coordinates.

The two points you specify define a vector that indicates how far the copied objects are to be moved and in what direction.

If you press Enter at the Specify Second Point prompt, the first point is interpreted as a relative X, Y, Z displacement. For example, if you specify $\mathbf{2 , 3}$ for the base point and press Enter at the next prompt, the objects are copied 2 units in the X direction and 3 units in the Y direction from their current location.

Mode

Controls whether the command repeats automatically (COPYMODE system variable).

Multiple

Overrides the Single mode setting. The COPY command is set to repeat automatically for the duration of the command.

COPYBASE

Quick Reference

See also:

- Use Windows Cut, Copy, and Paste

Copies selected objects to the Clipboard along with a specified base point.

Access Methods

Button
$\$$ Menu: Edit $>$ Copy with Base Point
Shortcut menu: End any active commands, right-click in the drawing area, and choose Copy with Base Point from Clipboard.

Summary

The selected objects are copied to the Clipboard.

- Use PASTECLIP to move the copied objects from the Clipboard to a location in the same document or to another document.

■ When you paste an object copied with COPYBASE, it is placed relative to the specified base point.

COPYCLIP

Quick Reference

See also:

- Use Windows Cut, Copy, and Paste

Copies selected objects to the Clipboard.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Clipboard panel $>$ Copy Clip
$\$$ Menu: Edit $>$ Copy
$\$$ Toolbar: Standard
Shortcut menu: End any active commands, right-click in the drawing area, and choose Copy from Clipboard.

Summary

COPYCLIP copies all objects you select to the Clipboard. You can paste the contents of the Clipboard into a document or drawing as an OLE object.

NOTE You can also use Ctrl+C to run COPYCLIP. If the cursor is in the drawing area, the selected objects are copied to the Clipboard. If the cursor is on the command line or in the text window, the selected text is copied to the Clipboard.

When you copy objects to the Clipboard, information is stored in all available formats. When you paste the Clipboard contents into a drawing, the format that retains the most information is used. You can also use Copy and Paste to transfer objects between drawings.

COPYHIST

Quick Reference

See also:
■ Navigate and Edit Within the Command Window

Copies the text in the command line history to the Clipboard.
Summary
The text is copied to the Clipboard.

COPYLINK

Quick Reference

See also:
■ Edit OLE Objects in Drawings

Copies the current view to the Clipboard for linking to other OLE applications.
Access Methods

Button

Menu: Edit > Copy Link

Summary

You can copy the current view to the Clipboard and then paste the contents of the Clipboard into another document as a linked OLE object.

COPYTOLAYER

Quick Reference

See also:
■ Use Layers to Manage Complexity

Copies one or more objects to another layer.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Layers panel $>$ Copy Objects to New Layer
$\$$ Menu: Format $>$ Layers $>$ Copy Objects to New Layer
$\%$ Toolbar: Layers II
Summary
Creates duplicates of selected objects on a layer that you specify. You can also specify a different location for the duplicated objects.

If you enter -copytolayer at the Command prompt, options are displayed.

List of Prompts

The following prompts are displayed.
Select objects to copy:
Select object on destination layer or [Name] <Name>: Select an object or enter n

Select Object on Destination Layer

Specifies the layer on which the selected objects are placed.
Specify Base Point Specifies the base point of the copied objects.
Displacement Enters coordinate values that specify a relative distance and direction.

Name

Displays the Copy to Layer dialog box.
■ Specify Base Point on page 373
■ Displacement on page 373

Copy To Layer Dialog Box

Quick Reference

See also:

- Use Layers to Manage Complexity

Specifies the layer on which the selected objects are placed.

Access Methods

Button
$\$$ Ribbon: Home tab $>$ Layers panel $>$ Copy Objects to New Layer
$\$$ Menu: Format $>$ Layers $>$ Copy Objects to New Layer
$\$$ Toolbar: Layers II
䱂 Command entry: copytolayer

List of Options

The following options are displayed.

Destination Layer

Displays a list of layers that you can select as the destination layer. You can also enter a name to create a new layer. The new layer inherits the properties (on/off, freeze/thaw, locked/unlocked, etc.) of the current layer.

-COPYTOLAYER

Quick Reference

See also:

- Use Layers to Manage Complexity

List of Prompts

The following prompts are displayed.
Select objects to copy:
Specify the destination layer name or ["?"/= (select object)] <0>: Select an object on the destination layer, enter?, or enter=

Specify the Destination Layer Name

Displays a list of layers that you can select as the destination layer. You can also enter a name to create a new layer. The new layer inherits the properties (on/off, freeze/thaw, locked/unlocked, etc.) of the current layer

?-List Layers

Enter layer name(s) to list <*>: *

=-Layer By Object

Selects a destination layer by selecting an object on that layer.

Quick Reference

See also:

- Create and Manage Customization Files

Manages the customized user interface elements in the product.

Access Methods

Button
$\$$ Ribbon: Manage tab $>$ Customization panel $>$ User Interface
$\$$ Menu: Tools $>$ Customize $>$ Interface

Summary

User interface elements such as workspaces, toolbars, menus, ribbon panels, shortcut menus, and keyboard shortcuts are all managed from this dialog box.

The Customize User Interface Editor is displayed.
NOTE The XML-based CUIx file replaces the CUI file used in AutoCAD 2006 through AutoCAD 2009, and both the legacy menu (MNS) and legacy menu template (MNU) files used in releases prior to AutoCAD 2006.

For information about customizing the different user interface elements found in the Customize User Interface dialog box, see User Interface Customization in the Customization Guide.

Customize User Interface Editor

Quick Reference

See also:

- Create and Manage Customization Files

Manages customized user interface elements such as workspaces, toolbars, menus, shortcut menus, and keyboard shortcuts.

Access Methods

CUI

Button
$\$$ Ribbon: Manage tab $>$ Customization panel $>$ User Interface
$\$$ Menu: Tools $>$ Customize $>$ Interface
曼 Command entry: cui

List of Tabs
■ Customize

■ Transfer

For more information, see User Interface Customization in the Customization Guide.

Customize Tab (Customize User Interface Editor)

Quick Reference

See also:

- Basics of Customization Files

Manages customized user interface elements such as workspaces, toolbars, menus, shortcut menus, and keyboard shortcuts.

Access Methods

Button

Ribbon: Manage tab $>$ Customization panel $>$ User Interface
Menu: Tools $>$ Customize $>$ Interface
䱂 Command entry: cui

Summary

Provides an interface for customizing workspaces, toolbars, menus, ribbon panels, shortcut menus, and other user interface elements.

NOTE When the Customize User Interface Editor is displayed using the Customize Commands option from the Tool Palettes window or the Customize option from the Quick Access toolbar or a toolbar, the Customizations In pane is collapsed and the Command List pane is expanded.

List of Options

The following options are displayed.

Customizations In Pane

Displays a tree structure of user interface elements that can be customized, such as workspaces, toolbars, menus, ribbon panels, partial CUIx files, and so on.

List box Displays a list of CUIx files that are loaded and an Open option.
Available Customizations In toolbar Contains Load Partial Customization File and Save All Current Customization Files buttons.

Load Partial Customization File Loads a CUIx file that you can add to the acad.cuix file.

Save All Current Customization Files Saves changes to all loaded CUIx files.
Image Manager Displays the Image Manager on page 389, in which you can import, export, and delete images stored in a loaded CUIx file.

Tree View Displays the current customization file in a structured view so you can add and modify the user interface elements.

Dynamic Display Pane

Displays content specific to the user interface element you select in the tree view in the left pane.

Information Describes selected user interface elements that do not have properties (such as the Toolbars node, Menus node, and Shortcut Menus node).

Properties Displays the properties of user interface elements or items selected in the tree view. Elements or items that display properties include specific menus, menu commands, toolbars, and toolbar buttons.

Button Image Displays the images that can be assigned to a command. You can create new and edit existing images with the Button Editor on page 387.

Shortcuts Displays a list of shortcut key names and temporary override names, their corresponding shortcut key combinations, keyboard shortcut type (shortcut key or temporary override), and the source CUIx file name.

Toolbar Preview Displays a preview of the selected toolbar.

Panel Preview Displays a preview of the selected ribbon panel.
Quick Properties Displays a list of object types and associated properties. You can specify which object types and properties are enabled to use with the Quick Properties panel and rollover tooltips.

Command List Pane
Displays a list of commands that are loaded in the program.
Categories Displays filters for the command list, including All Commands, <Product> Commands, User Defined, Toolbar Control Elements, or Ribbon Control Elements. You can also filter the list to display commands within a specific CUIx file.

Find Command or Text Searches the current CUIx for a selected command or matching text string. Displays the Find and Replace dialog box.

Create a New Command Creates a new command. You can add or change properties and create or edit a button.

Properties Pane

Displays user interface properties that you can view, edit, or delete.
General Displays the name and description of a command or user interface element.

- Name - Displays the name of the user interface element. The name you enter is the label or tooltip name displayed in the program.
- Description - Displays the description for the user interface element. The description you enter is displayed in the status bar or in a tooltip.

Properties for Ribbon Tabs and Panels:

- Display Text - Displays the name of the ribbon tab or panel.

Properties for Ribbon Tabs:

- Contextual Display Type - Specifies whether the ribbon tab replaces all ribbon tabs on the ribbon or is merged with the ribbon tabs already displayed on the ribbon. (Full or Merged)

Display Determines which user interface elements are displayed after start up or when a workspace is set current.

■ Start On - Specifies if the Model tab or last used layout is set current. (Model, Layout, or Do Not Change)

■ Menu Bar - Specifies the display of the menu bar. (Off or On)

- Status Bar - Specifies the display of the application and drawing status bars. (Application Only, All Off, All On, or Drawing Status Bar Only)
- Model/Layout Tabs - Specifies the display of the Model and layout tabs along the bottom of the drawing window. (Off, On, or Do Not Change)

■ Screen Menus - Specifies the display of the screen menu. (Off, On, or Do Not Change)

- Scroll Bars - Specifies the display of the scroll bars in the drawing window. (Off, On, or Do Not Change)

Partial File Behavior Controls how ribbon tabs are displayed when in a CUIx file that is being loaded as a partial customization file.

- Default Display - Specifies whether the ribbon tab is displayed on the ribbon when in a CUIx file that is loaded as a partial customization file. (Do Not Add to Workspaces or Add to Workspaces)
- Workspace Behavior - Specifies how the ribbon tab is merged or added to the ribbon when this CUIx file is loaded as a partial customization file. (Add Tab Only, Merge Tab Only, or Merge or Add Tab)

Appearance Controls the appearance of toolbars, ribbon panels, commands on a ribbon panel, ribbon tabs, and screen menus.

Properties for Ribbon Panels:

- Resize Style - Specifies the resize style for a ribbon panel when the ribbon is reduced in size. (Collapse as Needed, Never Collapse, or Collapse Last)

Properties for Ribbon Panels on Fold Panels and Sub-Panel:

■ Top Justify - Specifies the vertical justification for contents within sub-panels, or for fold panels of different heights.

- Resize - Specifies whether the panel can be resized.
- Resize Priority - Specifies the resizing priority of panels. When the ribbon is compressed, panels with lower values resize first. When a ribbon is expanded, panels with higher values resize first.

Properties for a Command on Ribbon Panels:

- Button Style - Specifies the orientation, size, and label display of the command. (Large With Text (Vertical), Large With Text (Horizontal), SmallWithText, or SmallWithoutText)
- Group Name - Specifies the group name for the command when grouping is enabled for a drop-down.

Properties for Drop-downs on Quick Access Toolbars and Ribbon Panels:

■ Behavior - Specifies if the button executes a command or displays a list of commands. (Drop Down Menu with Recent, Drop Down Menu, Split with Recent, Split, or Split with Recent (Static))

- SplitButtonListStyle - Specifies how the commands on the drop-down will be displayed. (Icon, IconText, or Descriptive)
- Button Style - Specifies the orientation, size, and label display of the button for the drop-down. (Large With Text (Vertical), Large With Text (Horizontal), SmallWithText, or SmallWithoutText)

■ Grouping - Specifies whether commands under a drop-down are grouped together using their assigned group names. (Yes or No)

Properties for Toolbars:

- Default Display - Specifies whether the toolbar is displayed when in a CUIx file that is loaded as a partial customization file. (Do Not Add to Workspaces or Add to Workspaces)

■ Orientation - Specifies the location of the toolbar. (Floating, Top, Bottom, Left, or Right)

■ Default X Location - Specifies the X location of the toolbar when floating.

- Default Y Location - Specifies the Y location of the toolbar when floating.

■ Rows - Specifies the number of rows the items on the toolbar are displayed in when the toolbar is floating.

Properties for a Separator on Ribbon Panels:

- Separator Style - Specifies the style for the separator. (Line or Spacer)

Properties for Screen Menus:

- Start Line - Specifies where the first line of a submenu should be displayed.

■ Number of Lines - Specifies the number of lines that make up the screen menu.

Access Controls the key combination assigned to a shortcut key.
■ Key(s) - Specifies the key combination assigned to a shortcut key.

- KeyTip - Specifies the keytip character to access a command or control from the ribbon.

Properties for Drop-downs on Quick Access Toolbars Ribbon Panels:
■ ToolTip Title - Specifies the alternate title for the tooltip of a drop-down when its Behavior property is set to Drop Down Menu.

Resize Style

- Hide Text - Specifies that the text is never removed.

■ Wrap - Specifies that the content does not wrap inside the panel.
■ Shrink - Specifies the width of Row Panel never decreases below the default size.

Properties for Ribbon Fold Panels:

- Default Size - Specifies the size of the panel contents in a floating panel.

■ Minimum Size - Specifies the smallest size each control in the panel collapses.

■ Maximum Size - Specifies the largest size each control in the panel expands.

IMPORTANT Maximum Size must be greater than or equal to the Default Size, and Default Size must be greater than or equal to Minimum Size.

Size Controls the size of a tablet menu.

- Rows - Specifies the number of rows for a tablet menu.

■ Columns - Specifies the number of columns for a tablet menu.

Slide Specifies the slide library and slide to use for a command in an image menu.

- Slide library - Specifies the slide library for the slide used for the command in an image menu.

■ Slide label - Specifies the slide to use for the command in an image menu.

Shortcut Controls the key combination and macros assigned to a temporary override key.
■ Key(s) - Specifies the key combination for the temporary override. Click the [..] button to display the Shortcut Keys dialog box. Click in the Press New Shortcut Key text box and assign the desired key combination.

■ Macro 1 (Key Down) - Displays the macro to execute when the key combination is pressed.

■ Macro 2 (Key Up) - Displays the macro to execute when the key combination is released.

Command Displays the properties assigned to a command.

- Name - Displays the name of the command. The name you enter is the label or tooltip name displayed in the program.

■ Description - Displays the description for the command. The description you enter is displayed in the status bar or in a tooltip.

- Extended Help File - Displays the file name and ID from the extended help file that should be displayed when the cursor continues to hover over a toolbar, panel button, or menu item for a specified period of time. Click the [..] button to display the Select Extended Help File dialog box. Select a XAML file that contains tooltip definitions and then select the tooltip content to display from the Select Help ID dialog box.
- Command Display Name - Displays the command line text string that is shown in the command tooltip.

■ Macro - Displays the macro assigned to a selected command. You can create a macro or edit an existing macro.
Click the [..] button to display the Long String Editor dialog box and the full contents of the macro.

■ Tags - Displays the user-defined keywords that are associated with a command. Tags can be used to search for commands in the menu browser. Click the [..] button to display the Tag Editor dialog box. Click the Tags text box to add, modify or remove tags. Each tag must be separated by a
comma and the total number of characters for all the tags and separators cannot be more than 256 characters.

Advanced Displays the aliases and element IDs that you can define for each user interface element.

- Aliases - Specifies a unique value for a user interface element that is used to programmatically reference the user interface element.
Click the [..] button to display the Aliases dialog box. Click in the text box and edit the list of assigned aliases.

■ Object Name - Specifies the object type associated with a double click action.

- Element ID - Displays the tag that uniquely identifies a command or user interface element.

Images Determines which images are assigned to a command when displayed on a user interface element.

- Small Image - Specifies the small image file to use when a command is added to a toolbar, menu, or ribbon panel.
- Large Image - Specifies the large image file to use when a command is added to a toolbar or ribbon panel.

Quick Properties Pane

Displays a list of object types and the properties associated to the selected object type.

Edit Object Type List Controls which object types are used with the Quick Properties panel or rollover tooltips. Displays the Edit Object Type List dialog box.

Object Type List Displays a list of the object types you can use with Quick Properties panel or rollover tooltips.

General Displays the general properties that are available for all object types in the Properties list.

Properties List Displays the properties for the selected object type or the general properties available for all object types.

Reset Overrides Overrides the selected general properties for all object types.

Transfer Tab (Customize User Interface Editor)

Quick Reference

See also:

- Transfer and Migrate Customization

Transfers user interface elements to or from a main or partial customization (CUIx) file, where your interface element data is stored.

Access Methods

Button

Ribbon: Manage tab $>$ Customization panel $>$ User Interface $\$$ Menu: Tools $>$ Customize $>$ Interface

Command entry: cui

Summary

You open a CUIx, CUI, MNS, or MNU file to import or export user interface data. When you open CUI, MNU, or MNS files, they are not converted automatically to a CUIx file format until you save the new file that is created. The original CUI, MNU, or MNS file is not modified.

List of Options

Customizations In panes When you enter cuiimport at the Command prompt, the main CUIx file is displayed (acad.cuix by default) in the right pane. You open a CUIx or legacy customization file in the left pane to transfer data. When you enter cuiexport at the Command prompt, the main CUIx file is displayed in the left pane. You open another CUIx or legacy customization file in the right pane to transfer data.

Button Editor Dialog Box

Quick Reference

See also:

- Create and Edit Custom Images for Commands

Modifies or creates custom images used for commands.

Access Methods

Button
$\$$ Ribbon: Manage tab $>$ Customization panel $>$ User Interface
$\$$ Menu: Tools > Customize > Interface
Shortcut menu: Right-click any toolbar and click Customize
䱂 Command entry: cui

List of Options

The following options are displayed.

Color Palette

Sets the current color used by the editing tools.
Standard Color Swatches Color swatches used to set of the standard 16 colors current.

More Opens the Select Color dialog box.
Editing Tools
Provides tools for editing a custom image.
Pencil Edits one pixel at a time using the current color.
Line Creates lines using the current color. Click and drag to set the start point and draw the line. Release to complete the line.

Circle Creates circles using the current color. Click to set the center and drag to set the radius. Release to complete the circle.

Erase Sets pixels to white. Click and drag over colored pixels to change them to white.

Editing Area

Provides a close-up view of the image for editing.

Preview

Displays a preview of the image currently being edited. The preview displayed shows the actual size of the image.

Clear

Clears the editing area.

Undo

Undoes the last editing action.

Grid

Displays a grid in the editing area. Each grid square represents a single pixel.

Save

Displays the Save Image dialog box, which allows you to save the customized image to the working customization file.
Import
Imports an externally stored image for editing. Images are stored in the working customization file as bitmap (BMP) files.

Export

Exports the customized image to an external local or network storage location.
NOTE When exporting an image, the Create File dialog box defaults to the folder defined under Custom Icon Location of the Files tab in the Options dialog box. Images that are located in this folder can be migrated with the Migrate Custom Settings dialog box.

Image Manager Dialog Box

Quick Reference

See also:

- Manage, Import, and Export Custom Images

Manages the images that are in the selected customization file.

Access Methods

CUI

Button
$\$$ Ribbon: Manage tab $>$ Customization panel $>$ User Interface
$\$$ Menu: Tools $>$ Customize $>$ Interface
Shortcut menu: Right-click any toolbar and click Customize曼 Command entry: cui

List of Options

The following options are displayed.
Loaded Customization Files List Lists the customization files that are currently loaded.

Custom Images List Lists the images that are stored in the customization file selected from the Loaded Customization Files list.

Import Imports an externally stored image into the selected customization file from the Loaded Customization Files list.

Export Exports the selected custom images from the Custom Images list to an external local or network storage location.

Delete Permanently deletes the selected image from the Custom Images list and the customization file.

Preview Displays a preview of the selected image in the Custom Images list.

Find and Replace Dialog Box - CUI

Quick Reference

See also:

- Find and Replace Commands and Text in a CUIx File

Finds a search string in a command or command property in either the Command List pane or the Available Customizations in <file name> pane, or replaces a search string with a new search string

Access Methods

Button
$\$$ Ribbon: Manage tab $>$ Customization panel $>$ User Interface
$\$$ Menu: Tools $>$ Customize $>$ Interface
座 Command entry: cui

Summary

Locates and replaces commands or command properties (command names, descriptions, or macros). Use the Find tab to locate a specified text string, and the Replace tab to locate and replace a specified text string.

List of Options

The following options are displayed.

Common

Find What Displays the search string you want to locate. If you select a command in the Command List pane, this box displays that string. You can also enter a string. Any previous strings entered in this box are stored in the drop-down list.

Ignore Case Locates all commands or command properties regardless of their case (for example, the program would search for both LINE and line).

Restrict Search To Limits the search to the CUIx file you select from the drop-down list. By default, the main CUIx file (acad.cuix by default) is searched.

Find Next Locates the next instance of the search string in the Name, Description, or Macros box in the Properties pane. If you search in the Command List pane, only commands in the list are located. If you search in the tree view in the Customizations In pane, the search starts in the tree view and continues to the commands in the Command List pane.

Find Tab

Find Selected Command When a command is selected in the Command List pane, locates the next interface element in the tree view that references the selected command.

Replace Tab

Replace With Displays the string that will replace the string you searched for.
Replace Replaces a single instance of the search string. In the Customize User Interface dialog box, the location of the search string is displayed in the Command List pane, tree view, and Properties pane.

Replace All Replaces all instances where the search string is found. You cannot undo this operation.

CUIEXPORT

Quick Reference

See also:

- Transfer and Migrate Customization

Exports customized settings from the main CUIx file to an enterprise or partial CUIx file.

Access Methods

Button
$\$$ Ribbon: Manage tab $>$ Customization panel $>$ Export
$\$$ Menu: Tools $>$ Customize $>$ Export Customizations

Summary

Customization information can be transferred between the main and partial CUIx files.

Opens with the Transfer Tab (Customize User Interface Editor) opened by default. The main CUIx file (acad.cuix) is open in the left pane. You can drag items from one CUIx file to the other. Click Apply to save the changes and view the updated CUIx file.

CUIIMPORT

Quick Reference

See also:

- Transfer and Migrate Customization

Imports customized settings from an enterprise or partial CUIx file to the main CUIx file.

Access Methods

Button

Ribbon: Manage tab $>$ Customization panel $>$ Import
Menu: Tools $>$ Customize $>$ Import Customizations

Summary

Customization information can be transferred between the main and partial CUIx files.

Opens with the Transfer Tab (Customize User Interface Editor) opened by default. You can drag items from one CUIx file to the other. Click Apply to save the changes and view the updated CUIx file.

CUILOAD

Quick Reference

See also:

- Create and Manage Customization Files

Loads a CUIx file.

Summary

Opens the Load/Unload Customizations dialog box, where you can locate and load a CUIx file to customize or transfer user interface settings.

When FILEDIA is set to 0 (off), CUILOAD displays the following Command prompt.

Enter name of customization file to load: Enter a file name
NOTE The Legacy Menu (MNS), Legacy Menu Template (MNU), and
Customization (CUI) files used in past releases have been replaced with just one file type, the XML-based CUIx file.

Load/Unload Customizations Dialog Box

Quick Reference

See also:

- Create and Manage Customization Files

Controls the display of customization groups and interface elements.

Access Methods

锉 Command entry: cuiload

List of Options

The following options are displayed.

Loaded Customization Groups

Lists the currently loaded customization files.
File Name
Specifies the file to load when you choose Load. You can either enter the file name or choose Browse to display the Select Customization File dialog box (a standard file selection dialog box).

Unload

Unloads the customization group selected in the Customization Groups list.

Load

Loads the file specified under File Name.

Browse

Displays the Select Menu File dialog box (a standard file selection dialog box), in which you can select a menu file to load.

CUIUNLOAD

Quick Reference

See also:

- Create and Manage Customization Files

Unloads a CUIx file.

Summary

Opens the Load/Unload Customizations dialog box, which has the same options as CUILOAD. The only difference between the two commands is in the Command prompts.

WhenFILEDIA is set to 0 (off), CUIUNLOAD displays the following Command prompt.

NOTE The Legacy Menu (MNS), Legacy Menu Template (MNU), and Customization (CUI) files used in past releases have been replaced with just one file type, the XML-based CUIx file.

CUSTOMIZE

Quick Reference

See also:

- Organize Tool Palettes

Customizes tool palettes and tool palette groups.

Access Methods

Button
$\$$ Ribbon: Manage tab $>$ Customization panel $>$ Tool Palettes
$\$$ Menu: Tools $>$ Customize $>$ Tool Palettes
Shortcut menu: Right-click any tool palette and choose Customize Palettes.

Summary
The Customize dialog box is displayed.

Customize Dialog Box

Quick Reference

See also:

- Organize Tool Palettes

Creates, modifies, and organizes tool palettes, tool palette groups, and block authoring palettes. Imports and exports tool palette files.

Access Methods

$\$$ Ribbon: Manage tab $>$ Customization panel $>$ Tool Palettes
$\$$ Menu: Tools $>$ Customize $>$ Tool Palettes
Shortcut menu: Right-click any tool palette and choose Customize Palettes.㗀 Command entry: customize

List of Options

The following options are displayed.
Palettes Lists all available tool palettes.
When you export a palette, it is saved to a file with an .xtp extension. Right-click in the Palettes area to import a palette or to create a new, blank one.
The shortcut menus also provide options to

- Rename an existing palette
- Create a new palette
- Delete a tool palette

■ Export a tool palette (as an XTP file)

- Import a tool palette

Palette Groups Displays the organization of your palettes in a tree view.

Right-click a palette group, and then click Set Current on the shortcut menu to display the palette group.
The shortcut menus also provide options to

- Create a new palette group
- Delete an existing palette group
- Rename an existing palette group
- Remove a tool palette from a group
- Export a palette group (as an XPG file)

■ Export all palette groups (as an XPG file)

- Import a palette group

NOTE You might need to collapse all palette groups to expose a blank area within the Palette Groups area. Then, right-click in the blank area to display shortcut menu options that are not specific to any existing palette groups.

Current Palette Group

Displays the name of the palette group currently shown. Displays All Palettes when all available palettes are shown.

CUTCLIP

Quick Reference

See also:

■ Use Windows Cut, Copy, and Paste

Copies selected objects to the Clipboard and removes them from the drawing.

Access Methods

Button

```
Ribbon: Home tab > Clipboard panel > Cut
Menu: Edit > Cut
Toolbar: Standard
Shortcut menu: End any active commands, right-click in the drawing area,
and choose Cut from Clipboard.
```


Summary

CUTCLIP copies selected objects to the Clipboard, removing them from the drawing. You can paste the contents of the Clipboard into a document or drawing as an embedded OLE object (see PASTECLIP and PASTESPEC). CUTCLIP does not create OLE link information.

When you want to use objects from a drawing file in another application, you can cut these objects to the Clipboard and then paste them into another application. You can also use Cut and Paste to transfer objects between drawings.

CVADD

Quick Reference

See also:

■ Edit NURBS Surfaces

Adds control vertices to NURBS surfaces and splines.

Access Methods

Ribbon: Surface tab $>$ Control Vertices panel $>$ Add
Menu: Modify $>$ NURBS Surface Editing $>$ Add CV
Toolbar: Surface Editing

Summary

Adds control vertices in the U or V direction, or adds points directly on a surface or spline. This illustration shows a row of control vertices added in the V direction.

List of Prompts

The following prompts are displayed.
Select a NURBS surface or curve to add control vertices. Select a valid NURBS surface or curve and press Enter.

Point Select a valid NURBS surface or curve and press Enter.
Insert Knots Turns off the display of control vertices and allows you to place a point directly on a surface. This option only displays if you select a surface; it does not display for splines.

Insert Edit Point Turns off the display of control vertices and allows you to place a point directly on a spline. This option only displays if you select a spline; it does not display for surfaces.

Direction Specifies whether to add control vertices in the U or V direction.
This option only displays if you select a surface; it does not display for splines.

CVHIDE

Quick Reference

See also:

■ Edit NURBS Surfaces

Turns off the display of control vertices for all NURBS surfaces and curves.

Access Methods

Ribbon: Surface tab $>$ Control Vertices panel $>$ Hide CV
Menu: Modify $>$ NURBS Surface Editing $>$ Hide CV
Toolbar: Surface Editing
Summary
Turns off the CV display for all NURBS objects.

CVREBUILD

Quick Reference

See also:
■ Edit NURBS Surfaces

Rebuilds the shape of NURBS surfaces and curves.

Access Methods

$\$$ Ribbon: Surface tab $>$ Control Vertices panel $>$ Rebuild Surface
$\$$ Menu: Modify $>$ Surface Editing $>$ NURBS Surface Editing $>$ Rebuild CV
$\$$ Toolbar: Surface Editing

Summary

If you have difficulties editing the control vertices or there are too many control vertices, you can rebuild a surface or curve with less control vertices in the U or V direction. CVREBUILD also allows you to change the degree of the surface or curve.

If you select a surface, the Rebuild Surface dialog box on page 403 is displayed. If you select a spline, the Rebuild Curve dialog box on page 405 is displayed.

Rebuild Surface Dialog Box

Quick Reference

See also:

■ Rebuild NURBS Surfaces and Curves

- CVREBUILD on page 402

Rebuilds the CV hull of a NURBS surface.

Access Methods

\otimes Ribbon: Surface tab $>$ Control Vertices panel $>$ Rebuild Surface
\& Menu: Modify $>$ Surface Editing $>$ NURBS Surface Editing $>$ Rebuild CV

8 Toolbar: Surface Editing
㟇 Command entry: cvrebuild

Summary

Reshapes a NURBS surface by rebuilding the CV hull

List of Options

The following options are displayed.

Control Vertices Count

Specifies the number of control vertices in the U and V directions.
In U Direction
Specifies the number of control vertices in the U direction. (REBUILDU on page 2486 system variable)

In V Direction

Specifies the number of control vertices in the V direction. (REBUILDV on page 2487 system variable)

Degree

Specifies the number of control vertices available per span. The higher the number, the more complex the surface.

In U Direction

Specifies the degree of the NURBS surface in the U direction. (REBUILDDEGREEU on page 2485 system variable)

In V Direction

Specifies the degree of the NURBS surface in the V direction. (REBUILDDEGREEV on page 2485 system variable)

Options

Specifies the build options. (REBUILDOPTIONS on page 2486 system variable)

Delete Input Geometry

Specifies whether the original surface is retained along with the rebuilt surface. (REBUILDOPTIONS on page 2486 system variable)

Retrim Previously Trimmed Surface

Specifies whether trimmed areas from the original surface are applied to the rebuilt surface. (REBUILDOPTIONS on page 2486 system variable)

Maximum Deviation

Displays the maximum deviation between the original surface and the new one.

Rebuild Curve Dialog Box

Quick Reference

See also:

- Rebuild NURBS Surfaces and Curves
- CVREBUILD on page 402

Rebuilds the shape of a NURBS curve.

Access Methods

$\$$ Ribbon: Surface tab $>$ Control Vertices panel $>$ Rebuild Surface
$\$$ Menu: Modify $>$ Surface Editing $>$ NURBS Surface Editing $>$ Rebuild CV
$\$$ Toolbar: Surface Editing
菐 Command entry: cvrebuild

Summary

Changes the number of control vertices and the degree of a NURBS curve. Rebuilding the curve changes its shape.

List of Options

The following options are displayed.
Curve Geometry Details Control Vertices Count
Specifies the number of control vertices. (REBUILD2DCV on page 2483 system variable)

Degree
Specifies the degree of the NURBS curve. (REBUILD2DDEGREE on page 2483 system variable)

Options
Specifies the build options. (REBUILDOPTIONS on page 2486 system variable)

Delete input geometry
Specifies whether the original curve is retained along with the rebuilt curve. (REBUILD2DOPTION on page 2484 system variable)

Maximum Deviation

Displays the maximum deviation between the original curve and the new one.

CVREMOVE

Quick Reference

See also:
■ Edit NURBS Surfaces

Removes control vertices from NURBS surfaces and curves.

Access Methods

$\$$ Ribbon: Surface tab $>$ Control Vertices panel $>$ Remove
$\$$ Menu: Modify $>$ NURBS Surface Editing $>$ Remove CV
$\$$ Toolbar: Surface Editing

Summary

Removes control vertices in the U or V direction. This illustration shows a row of control vertices deleted in the V direction.

NOTE The minimum number of control vertices that you can have on a surface or curve is two in any direction. If you try to remove more, an error displays.

List of Prompts

The following prompts are displayed.
Select a NURBS surface or curve to remove control vertices Select a valid NURBS surface or curve and press Enter.

Point Specifies a valid NURBS surface or curve and press Enter.
Remove Knots Turns off the display of control vertices and allows you to remove a point directly from the surface. This option only displays if you select a surface; it does not display for splines.

Remove Edit Point Turns off the display of control vertices and allows you to remove a point directly from the spline. This option only displays if you select a spline, it does not display for surfaces.

Direction Specifies whether to remove control vertices in the U direction. This option only displays if you have selected a surface; it does not display for splines.

CVSHOW

Quick Reference

See also:

■ Edit NURBS Surfaces

Displays the control vertices for specified NURBS surfaces or curves.

Access Methods

Ribbon: Surface tab $>$ Control Vertices panel $>$ Show CV
$\$$ Menu: Modify $>$ NURBS Surface Editing $>$ Show CV
Toolbar: Surface Editing

Summary

Prompts you to select the NURBS surfaces and curves whose control vertices you want to display. Non-NURBS surfaces do not have control vertices. You can convert objects to NURBS surfaces with the CONVTONURBS command.

CYLINDER

Quick Reference

See also:

- Create a Solid Cylinder

Creates a 3D solid cylinder.

Access Methods

Button

```
Ribbon: Home tab > Modeling panel > Solid Primitives drop-down >
Cylinder
Menu: Draw > Modeling > Cylinder
Toolbar: Modeling
```


Summary

In the illustration, the cylinder was created using a center point (1), a point on the radius (2), and a point for the height (3). The base of the cylinder is always on a plane parallel with the workplane. You can control the smoothness of curved 3D solids, such as a cylinder, in a shaded or hidden visual style with the FACETRES system variable.

During a drawing session, the default value for the base radius is always the previously entered base radius value.

List of Prompts

The following prompts are displayed.
Specify center point of base or [" $3 \mathrm{P} " /$ " $2 \mathrm{P} " /$ " Ttr "/"Elliptical"]: Specify a center point or enter an option
Specify base radius or [Diameter] <default>: Specify a base radius, or enter do to specify a diameter, or press Enter to specify the default base radius value
Specify height or ["2Point"/"Axis endpoint"] <default>: Specify a height, enter an option, or press Enter to specify the default height value

3P (Three Points)

Defines the base circumference and base plane of the cylinder by specifying three points.

2Point Specifies that the height of the cylinder is the distance between the two specified points.

Axis Endpoint Specifies the endpoint location for the cylinder axis. This endpoint is the center point of the top face of the cylinder. The axis endpoint can be located anywhere in 3D space. The axis endpoint defines the length and orientation of the cylinder.

2P (Two Points)

Defines the base diameter of the cylinder by specifying two points.

- 2Point on page 409
- Axis Endpoint on page 409

TTR (Tangent, Tangent, Radius)

Defines the base of the cylinder with a specified radius tangent to two objects.
Sometimes more than one base matches the specified criteria. The program draws the base of the specified radius whose tangent points are closest to the selected points.

■ 2Point on page 409

- Axis Endpoint on page 409

Elliptical

Specifies an elliptical base for the cylinder.

Center Creates the base of the cylinder by using a specified center point.
2Point on page 409
■ Axis Endpoint on page 409

Diameter

Specifies the diameter for the base of the cylinder.

- 2Point on page 409
- Axis Endpoint on page 409

D Commands

DATAEXTRACTION

Quick Reference

See also:

- Extract Data Using the Data Extraction Wizard

Extracts drawing data and merges data from an external source to a data extraction table or external file.

Access Methods

Button
$\$$ Ribbon: Annotate tab $>$ Tables panel $>$ Extract Data
$\$$ Menu: Tools > Data Extraction
$\$$ Toolbar: Modify II

Summary

Exports object property, block attribute, and drawing information to a data extraction table or to an external file, and specifies a data link to an Excel spreadsheet

The Data Extraction wizard on page 414 is displayed.
If you enter -dataextraction at the Command prompt, options are displayed. on page 444

Data Extraction Wizard

Quick Reference

See also:

- Extract Data Using the Data Extraction Wizard

Provides step-by-step instructions for extracting information from objects, blocks, and attributes, including drawing information in the current drawing or a set of drawings.

Access Methods

Button
\oint Ribbon: Annotate tab $>$ Tables panel $>$ Extract Data
$\$$ Menu: Tools $>$ Data Extraction
$\$$ Toolbar: Modify II

Summary

The information is used to create a data extraction table in the current drawing, or is saved to an external file, or both.

List of Options

The Data Extraction wizard includes the following pages:
■ Begin on page 415

- Define Data Source on page 416

■ Select Objects on page 417

- Select Properties on page 419
- Refine Data on page 420

■ Choose Output on page 422
■ Table Style on page 423
■ Finish on page 425

Begin

Starts the data extraction process. Options include creating a new data extraction, using a template, or editing an existing data extraction.

Create a New Data Extraction Creates a new data extraction and save it to a DXE file. Also makes the Use a Previous Extraction as a Template button available so you can select a data extraction template (DXE) file or attribute extraction (BLK) file.

Use a Previous Extraction as a Template Uses settings previously saved in a data extraction (DXE) file or an attribute extraction template (BLK) file. As you move through the wizard, each page is already filled in with the settings in the template file. You can change these settings. Click the [...] button to select the file in a standard file selection dialog box.

Edit an Existing Data Extraction Allows you to modify an existing data extraction (DXE) file. Click the [...] button to select the data extraction file in a standard file selection dialog box.

Define Data Source

Specifies the drawing files, including folders from which to extract data. Allows selection of objects in the current drawing from which to extract information.

Data Source

Drawings/Sheet Set Makes the Add Folder and Add Drawings buttons available for specifying drawings and folders for the extraction. The drawings and folders for the extraction are listed in the Drawing Files view.

Include Current Drawing Includes the current drawing in the data extraction. The current drawing can be empty (not contain objects) if additional drawings are selected for extraction.

Select Objects in the Current Drawing Makes the Select Objects in the Current Drawing button available so you can select objects for data extraction.

Select Objects button Closes the wizard temporarily so that you select objects and blocks in the current drawing.

Drawing Files and Folders Lists the selected drawing files or folders. Checked folders are included in the extraction.

Add Folder Displays the Add Folder Options dialog box on page 426, where you can specify folders to include in the data extraction.

Add Drawings Displays the standard file selection dialog box, where you can specify drawings to include in the data extraction.

Remove Removes the checked drawings or folders listed in the Drawing Files and Folders list from the data extraction.

Settings Displays the Data Extraction - Additional Settings dialog box on page 427, where you can specify data extraction settings.

Folders Shortcut Menu

You can see the shortcut menu for Folders (and the drawings listed within the selected folder) only after you explicitly add a folder using the Add Folder button.

Edit Folder Settings Displays the Add Folder Options dialog box where you can specify the folders to be used for data extraction. Drawings in the selected folders are monitored for data changes.

Remove Removes the selected folder.
Check All Selects all the drawings listed below the selected folder.
Uncheck All Clears all the drawings listed below the selected folder.
Invert Selection Inverts the current selected items below the selected folder.

Select Objects

Specifies the types of objects (blocks and non-blocks) and drawing information to be extracted.

Valid objects are checked by default. Objects that do not exist in the selected drawing are not checked. Click the column head to reverse the sort order. Columns can be resized. Property data from checked objects is displayed on the Select Properties page.

Objects

Object Displays each object by its name. Blocks are listed by block name. Non-blocks are listed by their object name.

Display Name Provides a place to enter an optional alternative name for an object as it will appear in the extracted information. Select a display name, right-click in the list, and click Edit Display Name.

Type Displays whether the object is a block or non-block.
Preview Displays a preview image of the checked block in the Object list view.

Display Options

Display All Object Types Displays a list of all object types (blocks and non-blocks) in the Object list view. This option is selected by default.

Display Blocks Only Displays only blocks in the Object list view.
Display Non-Blocks Only Displays only those objects that are not blocks in the Object list view.

Display Blocks with Attributes Only Displays only those blocks in the Object list view that contain attributes. Dynamic blocks are listed if they have special properties assigned to them (for example, actions and parameters).

Display Objects Currently In-Use Only Displays objects in the Object list view that exist in the selected drawings.

Select Properties

Controls the object, block, and drawing properties to extract.
Each row displays a property name, its display name, and category.
Right-click a column head and use options on the shortcut menu to check all or clear all items, invert the selection set, or edit the display name. Click the column head to reverse the sort order. Columns can be resized.

Properties

Property Displays object properties from objects selected on the page. The property list is filtered according to the filter categories that are selected. Properties are the same as those listed in the Properties palette.

Display Name Provides a place to enter an optional alternative name for a property as it will appear in the extracted information. Select the property display name, right-click in the list, and click Edit Display Name.

Category Displays a category for each property. For example, General designates ordinary object properties, such as color or layer. Attribute designates user-defined attributes. Dynamic designates user-defined property data for dynamic blocks. Categories are the same as those listed in the Properties palette.

Category Filter

Property Category List Displays a list of categories that are extracted from the property list. Unchecked categories filter the Properties list. Categories include 3D Visualization, Attribute, Drawing, Dynamic Block, General, Geometry, Misc, Pattern, Table, and Text.

Property Grid Shortcut Menu

Check All Selects all the properties in the property grid.
Uncheck All Clears all the properties in the property grid.
Invert Selection Inverts the current checked items in the property grid.
Edit Display Name Allows in-place editing of the property display name for the selected row.

Refine Data

Modifies the structure of the data extraction table. You can reorder and sort columns, filter results, add formula columns and footer rows, and create a link to data in a Microsoft Excel spreadsheet.

Data Grid View

Columns Displays properties in a columnar format as they were specified in the Select Properties page. Right-click any column header to display a shortcut menu of options. The Count column and Name column display by default.

Icons display in the column header for inserted formula columns and columns extracted from a Microsoft Excel spreadsheet.

Combine Identical Rows Groups identical records by row in the table. Updates the Count column with the sum of all aggregated objects.

Show Count Column Displays the Count column in the grid.
Show Name Column Displays the Name column in the grid.

Link External Data

Displays the Link External Data dialog box on page 430, where you can create a link between the extracted drawing data and data in an Excel spreadsheet.

Sort Columns Options

Displays the Sort Columns dialog box on page 433, where you can sort data across multiple columns.

Full Preview

Displays a full preview of the final output, including linked external data, in the text window. The preview is for viewing only.

Column Shortcut Menu

Sort Descending Sorts column data in a descending order.
Sort Ascending Sorts column data in an ascending order.
Sort Column Options Displays the Sort Columns dialog box on page 433, where you can sort data across multiple columns.

Rename Column Allows in-place editing of the selected column name.
Hide Column Hides the selected column.
Show Hidden Columns Displays the hidden column. The flyout option includes Display All Hidden Columns.

Set Column Data Format Displays the Set Cell Format dialog box on page 436, where you can set a data type for cells in the selected column.

Insert Formula Column Displays the Insert Formula Column dialog box on page 434, where you can specify the formula that is inserted into the table. Inserts the formula column to the right of the selected column. An existing formula column cannot be used as a value for another formula column.

Edit Formula Column Displays the Edit Formula Column dialog box on page 439. This option is only available when a formula column is selected.

Remove Formula Column Removes the selected formula column. This option is only available when a formula column is selected.

Combine Record Mode Displays numeric data in the selected column as separate values or collapses identical property rows into one row and displays the sum of all the numeric data in the selected column. This option is available when the Combine Identical Rows is checked and the selected column contains numerical data.

Show Count Column Displays a Count column that lists the quantity of each property.

Show Name Column Displays a Name column that displays the name of each property.

Insert Totals Footer Displays a flyout menu with options for Sum, Max, Min, and Average. Creates a footer row for the selected column that is placed below all the data rows and displays values based on the selected arithmetic function. This option is available only for columns that have a numeric data type.

Sum Displays a sum of all the values in the selected column in a footer row.
Max Displays the maximum value in the selected column in a footer row.
Min Displays the minimum value in the selected column in a footer row.
Average Displays the average value in the selected column in a footer row.
Remove Totals Footer Removes the Totals footer. This option is available when a footer row exists.

Filter Options Displays the Filter Column dialog box on page 441, where you can specify filter conditions for the selected column.

Reset Filter Restores the default filter for the selected column.
Reset All Filters Restores default filters for all columns that have filters.
Copy to Clipboard Copies all the data cells, including column names, to the Clipboard.

Choose Output

Specifies the type of output to which the data is extracted.

Output Options

Insert Data Extraction Table into Drawing Creates a table that is populated with extracted data. You are prompted to insert the table into the current drawing when you click Finish on the Finish on page 425 page.

Output Data to External File Creates a data extraction file. Click the [...] button to select the file format in a standard file selection dialog box. Available file formats are Microsoft Excel (XLS), comma-separated file format (CSV), Microsoft Access (MDB), and tab-separated file format (TXT). The external file is created when you click Finish on the Finish page.
The maximum number of columns that can be exported to an XLS and MDB file is 255 .

Table Style

Controls the appearance of the data extraction table. This page is displayed only if AutoCAD Table is selected on the Choose Output page.

Table Style

Select the Table Style to Use for the Inserted Table Specifies the table style. Click the Table Style button to display the Table Style Dialog Box on page 1908, or select a table style from the drop-down list that is defined in the drawing.

Formatting and Structure

Use Table in Table Style for Label Rows Creates the data extraction table with a set of top rows that contain label cells and a bottom set of label rows that contain header and footer cells. Extracted data is inserted between the top and bottom label rows. This option is only available when the selected table style contains a template table.

Manually Setup Table Provides for manually entering a title and specification of the title, header, and data cells style.

Enter a Title for Your Table Specifies a title for the table. This row is not overwritten when the table is updated. The default table style, STANDARD, includes a title row. If the selected table style does not include a title row, this option is not available.

Title Cell Style Specifies the style for the title cell. Click the drop-down list to select a title cell style defined in the selected table style.

Header Cell Style Specifies the style for the header row. Click the drop-down list to select a cell style defined in the selected table style.

Data Cell Style Specifies the style for data cells. Click the drop-down list to select a cell style defined in the selected table style.

Use Property Names as Additional Column Headers Includes column headers and uses the Display Name as the header row.

Display Preview

Displays a preview of the table layout. If the table style does not include a title row or header row, none is displayed.

Finish

Completes the process of extracting object property data that was specified in the wizard and creates the output type that was specified on the Choose Output page. If data linking and column matching to an Excel spreadsheet was defined in the Link External Data dialog box on page 430, the selected data in the spreadsheet is also extracted.

If the Insert Data Extraction Table into Drawing option was selected on the Choose Output page, you are prompted to insert the table into the drawing when you click Finish.

If the Output Data to External File option was selected, the extracted data is saved to the specified file type.
Al Data Extraction - Finish (Page 8 of 8)
If you chose to insert a table, you will be prompted for an insertion point after you click Finish.
Any external files to create will be created when clicking Finish.
Cancel

Add Folder Options Dialog Box

Quick Reference

See also:

- Extract Data Using the Data Extraction Wizard

Specifies the folders to be used for data extraction.

Access Methods

Button
$\$$ Ribbon: Annotate tab $>$ Tables panel $>$ Extract Data
$\$$ Menu: Tools $>$ Data Extraction
$\$$ Toolbar: Modify II
锉 Command entry: dataextraction

Summary

Drawings in the selected folders are monitored for data changes.

List of Options

The following options are displayed.

Folder

Displays the path to the specified folder.

Folder Button

Click the [...] button to select the folder in a standard file selection dialog box.

Options

Automatically Include New Drawings Added in this Folder to the Data Extraction

Includes new drawings to the data extraction when they are added to the folder. The New Drawings Found dialog box on page 429 displays when new drawings are added. When this option is selected, the specified folders are "live." When this option is not selected, the folders are "static."

Include Subfolders

Includes drawings in subfolders of selected folders in the data extraction process.

Utilize a Wild-card Character to Select Drawings
Activates a text entry field where you can enter search criteria using wild-card characters to select specific drawings.

Wild-Card field
Enter wild-card characters. Valid characters are * ? .

Data Extraction - Additional Settings Dialog Box

Quick Reference

See also:

- Extract Data Using the Data Extraction Wizard

Provides options for extracting objects in nested and xref blocks, options for counting blocks, and whether all objects are extracted or only those in model space.

```
A. Data Extraction - Additional Settings
            x
    Extraction settings
        V Extract objects from blocks
        \ Extract objects from xrefs
        \square \text { Include xrefs in block counts}
    Extract from
        Objects in model space
        (O) All objects in drawing

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Tables panel \(>\) Extract Data
\(\$\) Menu: Tools \(>\) Data Extraction
\(\$\) Toolbar: Modify II
並 Command entry: dataextraction

\section*{List of Options}

The following options are displayed.

\section*{Extraction Settings}

Extract Objects from Blocks
Includes objects nested in blocks.

\section*{Extract Objects from Xrefs}

Includes objects and blocks in externally referenced (xref) files.
Include Xrefs in Block Counts
Includes xrefs when counting blocks.
Extract From
Objects in Model Space
Includes only those objects in model space and ignores objects in paper space.

\section*{All Objects in Drawing}

Includes all objects in model space and paper space in the drawing, including drawing information. On by default.

\section*{New Drawings Found Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Extract Data Using the Data Extraction Wizard

Displays a list of new drawings added to the folder selected for the data extraction after the extraction was performed.
\begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline New drawings exist in one or more folders in this data extraction. \\
Select the drawings that you want to include in this extraction: \\
\begin{tabular}{|l|l|}
\hline\(\square\) & Drawing 13.dwg \\
Nolder
\end{tabular} \\
C:VProgram Files \Auto... \\
Note: Drawings not added now can be added later by checking them on the \\
Define Data Source Page
\end{tabular} \\
\hline OK
\end{tabular}

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Tables panel \(>\) Extract Data
\(\$\) Menu: Tools \(>\) Data Extraction
\(\$\) Toolbar: Modify II

\section*{List of Options}

The following options are displayed.
Drawing Name Displays the name of the drawing that was added to the data extraction folder.

Folder Displays the path and folder name for each new drawing.

\section*{Link External Data Dialog Box}

\section*{Quick Reference}

See also:
■ Link an Excel Spreadsheet to Access Data

Matches the extracted drawing data to a Microsoft Excel spreadsheet through a data link and data matching.


\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Tables panel \(>\) Extract Data
\(\$\) Menu: Tools > Data Extraction
\(\$\) Toolbar: Modify II

\section*{List of Options}

The following options are displayed.

\section*{Data Link}

Choose the Source of the External Data
Displays a list of established links to an Excel spreadsheet.

\section*{Data Link Manager Button}

Displays the Data Link Manager on page 445, where you can specify a link to a Microsoft Excel spreadsheet.

\section*{Data Matching}

Drawing Data Column
Displays a list of extracted property columns.

\section*{External Data Column}

Displays a list of column names from the linked data in the Excel spreadsheet.

\section*{Check Match}

Compares the data in the specified drawing data key column and the external data key column. If the data is unique across all rows in the external data key columns, and there is at least one data match between the drawing data and in data in the spreadsheet, a message displays the check key is successful. If the check key is unsuccessful, a warning message is displayed.

Matching Options Provides two options for the Check Match function: Case Sensitive and Ignore Prefix and Suffix White Space.

\section*{Case Sensitive}

When Case Sensitive is selected, the case of the data is checked.

\section*{Ignore Prefix and Suffix White Space}

Removes blank spaces in front of and after each data source before the check matching process proceeds. When this option is clear, white spaces are evaluated.

Learn About Data Matching Displays Understand Data Linking and Matching topic in the User's Guide.

\section*{Additional Columns for Data Table Select External Data Columns to Include}

Displays the column names in the order in which they appear in the spreadsheet. Selected columns are linked to the drawing data through data matching.

\section*{Use Top Row of External Data as Column Names}

Uses the top row of data in the data link as the column name for the linked data. Otherwise, column names are labeled "Column 1, Column 2" and so on.

Learn About Using External Data Displays the New Features Workshop.

\section*{Sort Columns Dialog Box}

\section*{Quick Reference}

See also:
- Organize and Refine the Extracted Data

Specifies a sort order for columns.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{A. Sort Columns} & \(x^{x}\) \\
\hline \multicolumn{4}{|l|}{Define sort order:} \\
\hline Column & Order & & Add \\
\hline \multirow[t]{3}{*}{Select column} & Ascending & & Remove \\
\hline & & & \begin{tabular}{l}
Move UP \\
Move Down
\end{tabular} \\
\hline & OK & Cancel & Help \\
\hline
\end{tabular}

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Tables panel \(>\) Extract Data
\(\$\) Menu: Tools \(>\) Data Extraction
\(\%\) Toolbar: Modify II

\section*{List of Options}

The following options are displayed.
Define Sort Order

Specifies the sort order of columns. The Column section contains column names from the Refine Data page.

\section*{Add}

Adds a new item of sorting criteria to the Column list.

\section*{Remove}

Removes the currently selected sort criteria.
Move Up
Moves the selected item up in the list view.

\section*{Move Down}

Moves the selected item down in the list view.

\section*{Insert Formula Column Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Organize and Refine the Extracted Data

Specifies the formula for the column that is inserted into the extracted data.


\section*{Access Methods}

\(\$\) Ribbon: Annotate tab \(>\) Tables panel \(>\) Extract Data
\(\$\) Menu: Tools > Data Extraction
\(\$\) Toolbar: Modify II

\section*{List of Options}

The following options are displayed.

\section*{Column Name}

Specifies a name for the column that can be edited. Duplicate column names cannot be used.

\section*{Formula}

Displays the selected formula or functions that are available for QUICKCALC on page 1588 and CAL on page 289.

Addition (+) Button
Adds the numerical data from one column to another.

\section*{Minus (-) Button}

Subtracts the numerical data from one column to another.

\section*{Multiply (*) Button}

Multiplies the numerical data from one column to another.

\section*{Division (/) Button}

Divides the numerical data from one column to another.

\section*{Validate}

Checks the validity of the specified equation. A formula column can only be inserted when the formula is validated.

\section*{Columns}

Displays the column names from the extracted drawing data and external data (if data linking was established). Column names can be double-clicked to be added to the Formula field or dragged from the Column list to the Formula field. Existing formula columns are not listed and cannot be used as values for creating additional formula columns.

\section*{Set Cell Format Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Organize and Refine the Extracted Data

Defines the formatting for cells in the table.


\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Tables panel \(>\) Extract Data
\(\$\) Menu: Tools \(>\) Data Extraction
\(\$\) Toolbar: Modify II

\section*{List of Options}

The following options are displayed.

\section*{Data Type}

Displays a list of data types (Angle, Date, Decimal Number, and so on) that you can format for table rows.

Preview Displays a preview of the option you selected in the Format list.
Format Depending on the data type you select, displays a list of relevant format types. For example, if you select Angle as the data type, Format includes options such as Decimal Degrees, Grads, Radians, and so on.

Precision For Angle, Decimal Number, and Points data types only, sets the precision for applicable formats. For example, if you select Angle as the data type and Radians as the format type, Precision includes options such as Current Precision, \(0.0 \mathrm{r}, 0.00 \mathrm{r}, 0.000 \mathrm{r}\), and so on.

List Separator For a Point data type only, displays a list of options (comma, semicolon, or colon) that you can use to separate list items.

Symbol For Currency data types only, displays a list of currency symbols that you can use.

Append Symbol For Currency data types, places the currency symbol after the number. For Percentage data types, the percent symbol is placed after the number.

Negative Numbers For Currency data types only, lists options for displaying negative numbers.

X, Y, and Z Coordinates For Point data types only, filters X, Y, or Z coordinates.

Additional Format For Angle, Decimal Number, Point, and Whole Number data types only, opens the Additional Format dialog box on page 438, where you set additional formatting options for table cells.

Examples For the Date data types only, displays a list of date display options in the Format field. Click a date in the Format field to see an example.

\section*{Additional Format Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Organize and Refine the Extracted Data

Provides additional formatting options for fields and table cells.


\section*{Access Methods}
\(\$\) Menu: Format > Data Extraction

\section*{List of Options}

The following options are displayed.
Current Value Displays the value in base drawing units.
Preview Displays updates to the format as you change the conversion factor and other settings.

Conversion Factor Specifies the conversion factor to use on the current value. The default is 1 for no conversion.

Additional Text Specifies a prefix or a suffix for the value.
Number Separators Specifies a decimal separator and the formatting for numbers over 1000.
- Decimal

Specifies the separator for decimal values. Select a period, a comma, or a space.
- Thousands

Inserts a comma to group thousands in a field value.

Zero Suppression Controls the suppression of leading and trailing zeros, and of feet and inches that have a value of zero.
- Leading

Suppresses leading zeros in all decimal values. For example, 0.5000 becomes . 5000 .
- Trailing

Suppresses trailing zeros in all decimal values. For example, 12.5000
becomes 12.5 , and 30.0000 becomes 30 .
- 0 Feet

Suppresses the feet portion of a feet-and-inches value when the distance is less than one foot. For example, \(0^{\prime}-61 / 2^{\prime \prime}\) becomes \(61 / 2^{\prime \prime}\).
- 0 Inches

Suppresses the inches portion of a feet-and-inches value when the distance is an integral number of feet. For example, \(1^{\prime}-0{ }^{\prime \prime}\) becomes \(1^{\prime}\).

\section*{Edit Formula Column Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Organize and Refine the Extracted Data

Displays the equation for the selected formula column.


\section*{Access Methods}


Button

Ribbon: Annotate tab \(>\) Tables panel \(>\) Extract Data
\(\$\) Menu: Tools \(>\) Data Extraction
Toolbar: Modify II

\section*{List of Options}

The following options are displayed.

\section*{Column Name}

Specifies a name for the column that can be edited.

\section*{Formula}

Displays the existing formula or function.
Plus (+)
Adds the numerical data from one column to another.
Minus (-)
Subtracts the numerical data from one column to another.

\section*{Multiply (*)}

Multiplies the numerical data from one column to another.

\section*{Division (/)}

Divides the numerical data from one column to another.

\section*{Validate}

Checks the validity of the specified equation. A formula column can only be inserted when the formula is validated.

\section*{Columns}

Displays the column names from the extracted drawing data and external data (if data linking was established). Column names can be double-clicked to be added to the Formula field or dragged from the Column list to the Formula field. Existing formula columns are not listed and cannot be used as values for creating additional formula columns.

\section*{Filter Column Dialog Box}

\section*{Quick Reference}

\begin{abstract}
See also:
- Organize and Refine the Extracted Data
\end{abstract}

Filters column data by specifying filters.


\section*{Access Methods}


Button
\(\oint\) Ribbon: Annotate tab \(>\) Tables panel \(>\) Extract Data
\(\$\) Menu: Tools \(>\) Data Extraction
\(\$\) Toolbar: Modify II

\section*{List of Options}

The following options are displayed.
Filter Based on the Following Conditions
Displays conditions based on the type of data in the selected column.

\section*{First Column}

Specifies the first condition.

\section*{Second Column}

Available when the specified filter uses two conditions.

\section*{Filter Across These Values}

Displays a list of values depending on the type of data being filtered. Filters for numeric data include Greater than >, Equal To, Between, and so on. Filters for textual data include Equal To, Not Equal To, Contains, and Begins With.

\section*{Data Extraction - Outdated Table Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Update Data Extraction Table Automatically

Offers options to update the data extraction table, update all tables, skip the update, or skip all updates.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Tables panel \(>\) Extract Data
\(\$\) Menu: Tools > Data Extraction
\(\$\) Toolbar: Modify II

\section*{List of Definitions}

The following options are displayed.
Update
Updates the data extraction table in the current drawing.
Update All
Updates all the data extraction tables.
Skip Update
Does not update the table.

\section*{Skip All Updates}

Does not update any tables.

\section*{-DATAEXTRACTION}

\section*{Quick Reference}

\section*{See also:}
- Extract Data Using the Data Extraction Wizard

Extracts data as specified in an existing attribute extraction template (BLK) file created with the Attribute Extraction wizard in AutoCAD 2006 or data extraction (DXE) file created in AutoCAD 2007.

\section*{Summary}

If you enter -dataextraction at the Command prompt, prompts are displayed.

\section*{List of Prompts}

The following prompts are displayed.
Enter the template file path for the extraction: type: Specify the path and file name for the attribute extraction template (BLK) or data extraction (DXE) file that describes how to extract the information

Subsequent prompts depend on the information set up in the template file. If the template specifies extracting data to an external file, the following prompts are displayed:

Enter the output filetype [Csv/Txt/Xls/Mdb] <Csv>: Enter c for comma-separated (CSV), \(\mathbf{t}\) for tab-separated (TXT), \(\mathbf{x}\) for Microsoft Excel (XLS), or \(\mathbf{m}\) for Microsoft Access (MDB)
Enter output filepath: Specify the names of the path and file where the data will be extracted

NOTE The maximum number of columns that can be exported to an XLS and MDB file is 255.

If the template specifies a table, the following prompt is displayed:
Specify insertion point:

\section*{DATALINK}

\section*{Quick Reference}

\section*{See also:}
- Link a Table to External Data

Displays the Data Link dialog box.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Linking \& Extraction panel \(>\) Data Link
\(\$\) Menu: Tools \(>\) Data Links \(>\) Data Link Manager

\section*{Summary}

A table can be linked to data in a Microsoft Excel (XLS, XLSX, or CSV) file. You can link to an entire spreadsheet, individual row, column, cell, or cell range in Excel.

The Data Link Manager on page 445 is displayed.

\section*{Data Link Manager}

\section*{Quick Reference}

\section*{See also:}
- Link a Table to External Data

Creates, edits, and manages data links.


\section*{Access Methods}


Button

Ribbon: Insert tab \(\boldsymbol{>}\) Linking \& Extraction panel \(>\) Data Link
\(\$\) Menu: Tools \(>\) Data Links \(>\) Data Link Manager
幾 Command entry: datalink

\section*{List of Options}

The following options are displayed.

\section*{Data Link Tree View}

Displays links contained within the drawing. Also gives options for creating new data links.

\section*{Excel Links}

Lists the Microsoft Excel data links within the drawing. If the icon displays a linked chain, then the data link is valid. If the icon displays a broken chain, then the data link is broken.

Create a New Excel Data Link Launches a dialog box where you enter the name for a new data link. Once a name has been created, the New Excel Data Link dialog box on page 447 is displayed.

\section*{Details}

Lists information for the data link selected in the tree view above.

\section*{Preview}

Displays a preview of the linked data as it would appear in the drawing table. When a data link is not currently selected then no preview is displayed.

\section*{New Excel Data Link Dialog Box}

\section*{Quick Reference}

See also:
■ Link a Table to External Data

Links data from a spreadsheet created in Microsoft Excel to a table within your drawing.

\section*{Access Methods}


Button

8 Ribbon: Insert tab \(>\) Linking \& Extraction panel \(>\) Data Link
\(\$\) Menu: Tools \(>\) Data Links \(>\) Data Link Manager
业 Command entry: datalink


\section*{List of Options}

The following options are displayed.

\section*{File}

Specifies the file and file path from which to create a data link.

\section*{Choose an Excel File}

Allows you to choose an established Microsoft XLS, XLSX, or CSV file to link to your drawing. At the bottom of this drop-down list, you can select a new XLS, XLSX, or CSV file from which to create a data link.

Click the [...] button to browse for another Microsoft Excel file on your computer.

Path Type Determines the path that will be used to find the file specified above. There are three path options: full path, relative path, and no path.
■ Full Path. Uses the full path of the file specified above, including the root directory and all subdirectories that contain the linked Microsoft Excel file.

■ Relative Path. Uses the file path relative to the current drawing file to reference the linked Microsoft Excel file. To use a relative path, the linked file must be saved.
- No Path. Uses only the filename of the linked Microsoft Excel file for referencing.

\section*{Link Options}

Specifies the data in your Excel file to link to your drawing.

\section*{Select the Excel Sheet to Link to}

Displays the names of all sheets within the specified XLS, XLSX, or CSV file. The link options specified below are applied to the sheet you choose here.

\section*{Link Entire Sheet}

Links the entire specified sheet within your Excel file to a table in your drawing.

\section*{Link to a Named Range}

Links a named range of cells already contained within your Excel file to a table in your drawing.

Clicking the arrow displays the available named ranges found in the linked spreadsheet.

\section*{Link to Range}

Specifies a range of cells in your Excel file to link to a table in your drawing.
In the text box, enter the range of cells you want linked to your drawing. Valid ranges include
- Rectangular regions (for example, A1:D10)
- Entire columns (for example, A:A)
- Sets of columns (for example, A:D)

Click the button to the right of the text box to preview the linked range.

\section*{Preview Window}

Displays a preview of your table using the options you have applied.

\section*{More Options}

Displays more options. This button becomes available when you use an existing Excel file or browse for a new one.

\section*{Cell Contents}

Options in this box will determine how data is imported into your drawing from your external source.

Keep Data Formats and Formulas
Imports data with formulas and supported data formats attached.
Keep Data Formats, Solve Formulas in Excel

Imports data formats. Data is calculated from formulas in Excel.

\section*{Convert Data Formats to Text, Solve Formulas in Excel}

Imports Microsoft Excel data as text with data calculated from formulas in Excel (supported data formats not attached).

\section*{Allow Writing to Source File}

Specifies that the DATALINKUPDATE on page 450 command can be used to upload any changes made to linked data in your drawing to the original external spreadsheet.

\section*{Cell Formatting}

Use Excel Formatting
Specifies that any formatting specified in the original XLS, XLSX, or CSV file will be brought into your drawing. When this option is not selected, the table style on page 1897 formatting specified in the Insert Table dialog box on page 1896 is applied.

\section*{Keep Table Updated to Excel Formatting}

If the option above is selected, updates any changed formatting when the DATALINKUPDATE on page 450 command is used.

Start With Excel Formatting, Do Not Update
Imports the formatting specified in the original XLS, XLSX, or CSV file into your drawing, but any changes made to the formatting are not included when the DATALINKUPDATE on page 450 command is used.

\section*{DATALINKUPDATE}

\section*{Quick Reference}

See also:
■ Link a Table to External Data

Updates data to or from an established external data link.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Tables panel \(>\) Download from Source
\(\$\) Menu: Tools \(>\) Data Links \(>\) Update Data Links

\section*{Summary}

Updates changes to linked data between a table in a drawing and an external data file.

\section*{List of Prompts}

The following prompts are displayed.
Select an option [Update data link/Write data link] <Update data link>:
Update Data Link
Updates the linked data in a table in your drawing with data that has been changed in the external source file.

Select Objects Updates selected tables containing data links with data that has been changed in the external source file.

Data Link Specifies the name of a data link to update with data that has been changed in the external source file.
Entering [?] lists the data links in the current drawing.
All Data Links Updates all data links in all tables in the drawing with data that has been changed in the external source file.

\section*{Write Data Link}

Annotate tab > Tables panel > Upload to Source
Updates the linked data in an external file with data that has been changed in a table in your drawing.

A table that contains data links displays indicators around linked cells. If you hover your cursor over the data link, information about the data link is displayed.
Select Objects Uploads data that has been changed from the original linked content to the source file.

\section*{DBCONNECT}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Provides an interface to external database tables.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Palettes \(>\) dbConnect.

\section*{Summary}

The dbConnect Manager is displayed and the dbConnect menu is added to the menu bar.

The four primary interfaces (the dbConnect Manager, the Data View window, the Query Editor, and the Link Select dialog box) are described first, followed by descriptions of each additional dialog box presented in alphabetical order. The Column Values dialog box, a sub-dialog box of the Query Editor, is described in the Query Editor section. The section describing each dialog box contains a list of methods that you can use to access it.
- dbConnect Manager on page 453
- Data View window on page 458
- Query Editor on page 466
- Column Values dialog box on page 474

■ Link Select dialog box on page 494
■ Configure a Data Source dialog box on page 474
■ Data View and Query Options dialog box on page 475
- Export Links dialog box on page 478

■ Export Query Set dialog box on page 479
- Export Template Set dialog box on page 479

■ Find dialog box on page 480
- Format dialog box on page 481
- Import Query Set dialog box on page 482
- Import Template Set dialog box on page 483
- Label Template dialog box on page 484
- Label Template Properties dialog box on page 489

■ Link Conversion dialog box on page 490
- Link Manager on page 493

■ Link Template dialog box on page 498
- Link Template Properties dialog box on page 499
- New Label Template dialog box on page 500
- New Link Template dialog box on page 501
- New Query dialog box on page 502
- Replace dialog box on page 503

■ Select a Database Object dialog box on page 504
- Select Data Object dialog box on page 505
- Sort dialog box on page 506
- Synchronize dialog box on page 507

\section*{dbConnect Manager}

\section*{Quick Reference}

\section*{See also:}
- Configure a Database for Use with PRODNAME Drawings

Provides the primary interface for the connectivity feature.


\section*{Access Methods}

Menu: Tools \(>\) Palettes \(>\) dbConnect.

\section*{Summary}

You can view and edit database tables, execute structured query language (SQL) queries, and link table records to graphical objects. By default, the dbConnect Manager opens as a docked window on the left side of the drawing area.

When you open the dbConnect Manager, a small red X is displayed in the lower right corner of each database and data object. The X indicates that these objects are currently unconnected. To connect to a database or data object, double-click it in the dbConnect Manager.

\section*{List of Options}

\section*{dbConnect Manager Buttons}

Display and manipulate database objects.


View Table Opens an external database table in Read-only mode. This button is not available unless a single table, link template, or label template is selected in the tree view.

Edit Table Opens an external database table in Edit mode. This button is not available unless a single table, link template, or label template is selected in the tree view.

Execute Query Executes a query. This button is not available unless a query is selected in the tree view.

New Query Displays the New Query dialog box. This button is not available unless a single table, link template, or query is selected. If a query is selected, you can use this button to display the Query Editor, in which you can edit the query.

New Link Template Displays the New Link Template dialog box. This button is not available unless a single table or link template is selected. If a link template is selected, you can use this button to display the Link Template dialog box, in which you can edit the link template. Not available for link templates with links already defined in a drawing.

New Label Template Displays the New Label Template dialog box. This button is not available unless a single table, link template, or label template is selected. If a label template is selected, you can use this button to display the Label Template dialog box, in which you can edit the label template.

\section*{dbConnect Manager Tree View}

Contains nodes for each drawing that's currently open and a Data Sources node that contains all available data sources configured on your system.

\section*{Drawing Nodes Shortcut Menu}

Provides options available for an open drawing. Right-click the node of an open drawing.


Export Template Set Opens the Export Template Set dialog box, in which you can save all link and label templates stored in the drawing to an external file.

Import Template Set Opens the Import Template Set dialog box, in which you can import a set of link and label templates that are stored in an external file.

Export Query Set Opens the Export Query Set dialog box, in which you can save all queries stored in the drawing to an external file. The exported query set is saved with the file extension .dbq.

Import Query Set Opens the Import Query Set dialog box, in which you can import a set of queries stored in an external file with the file extension.\(d b q\).

Show Labels Turns on visibility of all labels in the selected drawing.

Hide Labels Turns off visibility of all labels in the selected drawing.
Reload Labels Refreshes the field values of the labels in the selected drawing, updating them to reflect any changes made in the source database table.

\section*{Database Objects Shortcut Menu}

Provides options available for database objects (such as link templates, label templates, and queries) attached to the drawing nodes. Different database objects have different subsets of menu options available to them. For example, the shortcut menu options that are displayed when you right-click a query differ from the options that are available when you right-click a link template. The following shortcut menu options are available for various database objects.

View Table Opens an external database table in Read-only mode. Available only for link templates.

Edit Table Opens an external database table in Edit mode. Available only for link templates.

Edit Opens a dialog box in which you can edit the properties of the selected database object. Available for link templates, label templates, and queries. Not available for link templates with links already defined in the drawing.

Delete Deletes the selected database object. Available for link templates, label templates, and queries.

Duplicate Makes a copy of the selected database object and inserts it in the current drawing. Available for link templates, label templates, and queries.

Rename Opens a dialog box in which you can rename the selected database object. Available for link templates, label templates, and queries. Not available for link templates with links already defined in the drawing.

New Query Opens the New Query dialog box. Available only for link templates.
Link Select Opens the Link Select dialog box on page 494. Available only for link templates.

New Label Template Opens the New Label Template dialog box. Available only for link templates.

Show Labels Displays all labels that are associated with the selected database object. Available for link templates and label templates.

Hide Labels Hides all labels that are associated with the selected database object. Available for link templates and label templates.

Delete Links Deletes all links in the current drawing that use the selected link template. Available only for link templates.

Delete Labels Deletes all labels in the current drawing that use the selected label template. Available only for label templates.

Synchronize Verifies that all links in the current drawing based on the selected link template contain valid values. Any detected problems are reported in the Synchronize dialog box. Available only for link templates.

Reload Refreshes the field values of all labels associated with the selected label template in the current drawing, updating them to reflect any changes made in the source database table. Available only for label templates.

Execute Executes the selected query. Available only for queries.
Delete Links Deletes all links in the current drawing that use the selected link template. Available only for link templates.

Data Sources Node Shortcut Menu
Provides options available for data sources. Right-click the data sources node.


Configure Data Source Opens the Configure a Data Source dialog box where you can configure a new data source or edit an existing one.

Data Objects Shortcut Menu
Provides options available for data objects. Right-click a data object (such as a catalog or table) in the data sources node.
Connect Establishes a connection to the selected data object. Available for data sources, catalogs, and schemas.

Disconnect Closes the connection to the selected data object. Available for data sources, catalogs, and schemas.

Synchronize Opens the Synchronize dialog box. Available only for connected data sources.

Configure Opens the Configure a Data Source dialog box where you can configure a new data source or edit an existing one. Available only for disconnected data sources.

View Table Opens the selected database table in Read-only mode. Available only for tables.

Edit Table Opens the selected database table in Edit mode. Available only for tables.

New Link Template Opens the New Link Template dialog box. Available only for database tables.

New Label Template Opens the New Label Template dialog box. Available only for database tables.

New Query Opens the New Query dialog box. Available only for database tables.

\section*{Data View Window}

\section*{Quick Reference}

See also:
■ Configure a Database for Use with PRODNAME Drawings
Provides the primary interface for viewing and editing external database tables from within the program. You can open this dialog box using the following methods:


\section*{Access Methods}
\$ Menu: dbConnect > View Data > View External Table, Edit External Table, View Linked Table, or Edit Linked Table. (Displays a dialog box in which you can select a database table to open.)
\$ Toolbar: dbConnect Manager buttons \(>\) Select a link template, a label template, or a table from the dbConnect Manager and choose View Table or Edit Table.
Shortcut menu: Right-click a link template or a database table in the dbConnect Manager and choose View Table or Edit Table.
Pointing device: Double-click a database table or a link template in the dbConnect Manager. Double-clicking a link template that has no links created in the drawing it's associated with opens the Link Template dialog box. The database table is opened in either Edit mode or Read-only mode, depending on the dbConnect Settings specified on the System tab of the Options dialog box. See OPTIONS on page 1314.

\section*{Summary}

The Data View window displays records from the selected database table. The Data View contains a set of buttons, a grid window for viewing and editing records, and a set of navigation controls for navigating through the record set. After you open the Data View window, the Data View menu is added to the menu bar. You can specify whether the Data View window can be docked or anchored by right-clicking the title bar and choosing an option from the shortcut menu.

The appearance of the Data View window is governed by your computer's system settings, and it can be changed in the Windows Control Panel. Text in the cells is displayed using the system window text color. If the database table is opened in Read-only mode, the cell background is shown using the system 3D objects button shade color (light gray by default). If it is opened in Edit mode, the cell background is shown using the system window color (white by default). When a cell is selected, it is shown using the systemselected items background and text colors.

\section*{List of Options}

\section*{Data View Buttons}

Create links and display linked records and graphical objects.

\section*{Link}

Links the currently selected database table row or rows to one or more graphical objects. The link and, if desired, the label from the currently selected link and label templates are created in the Data View window. To change the current link creation setting, choose the Link and Label Settings button. Three distinct link methods are available:

Link Creates a link to one or more graphical objects without creating a corresponding label. If the current drawing has a selection set already established, a link is created for each object in the selection set. If the current
drawing does not have a current selection set, you are prompted to select objects to link to.

Create Freestanding Label Creates a freestanding label that isn't associated with a graphical object. You are prompted to specify an insertion point for the label.

Create Attached Label Creates a link to one or more graphical objects and creates a corresponding label. If the current drawing has a selection set already established, a link is created for all objects in the selection set. If the current drawing does not have a current selection set, you are prompted to select objects to link to.

\section*{View Linked Objects in Drawing}

Selects graphical objects in the current drawing that are linked to the currently selected Data View row or rows.

\section*{View Linked Records in Table}

Selects records in the Data View window that are linked to the current selection set of graphical objects.

\section*{AutoView Linked Objects in Drawing}

Displays linked objects automatically in the current drawing as you select rows from the database table.

\section*{AutoView Linked Records in Table}

Displays linked records automatically in the Data View window as you select graphical objects in the current drawing.

\section*{Print Data View}

Prints the contents of the Data View window to the current Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR}\) system printer.

\section*{Data View and Query Options}

Opens the Data View and Query Options dialog box, in which you can specify a number of settings that affect the interaction and display of linked objects in the Data View window and the current drawing.

Query, Return to Query, and Return to Link Select
Opens either the New Query dialog box, the Query Editor, or the Link Select dialog box, depending on the method used to open the Data View window. If the Data View window was opened to view or edit a database table, this button's tooltip is Query, and choosing it opens the New Query dialog box. If the Data View window was opened to return the results of a query, this button's tooltip is Return to Query, and choosing it returns you to the Query Editor. If the Data View window was opened to return the results of a Link

Select operation, this button's tooltip is Return to Link Select, and choosing it returns you to the Link Select dialog box.

\section*{Link Template List}

Creates a new link template, or specifies a link template from those that are defined for the open table. The selected link template is applied when you create new links in the current drawing. To create a new link template, select the New Link Template option from the Link Template list, and then choose the Link button flyout.

\section*{Label Template List}

Creates a new label template, or specifies a label template from those that are defined for the currently selected table. The selected label template is applied when you create new labels in the current drawing. To create a new label template, select the New Label Template option from the Label Template list and choose either the Create Freestanding Label or the Create Attached Label button flyout. If there is no link template defined for the selected database table in the current drawing, the New Link Template dialog box is displayed.

\section*{Data View Grid Window}

Displays a subset of the records from a database table. You can select records by clicking the following elements:
- Column header: Selects all records in that column. Double-clicking a column header sorts its records in ascending order. Double-clicking a column header a second time sorts its records in descending order.
- Record header: Selects an individual record. Double-clicking a record header selects any graphical objects that the record is linked to in the drawing area.
- Grid cell: Selects one field of a given record. Double-clicking a cell selects it for editing.
- Grid header: Selects the entire table. Double-clicking the grid header commits any changes made during an editing session and closes the Data View window.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline & Emp_Id & Last_Name \\
\hline - & 1000 & Torbati \\
\hline & 1001 & Weinn \\
\hline & 1002 & Ginsburg \\
\hline & 1003 & Cox \\
\hline
\end{tabular}

\section*{Column Shortcut Menu}

Displays the following options when you right-click one or more selected column headers.

Sort Opens the Sort dialog box, in which you can select a combination of up to five columns to use in specifying a sort order for the Data View.

A small triangle in the column header indicates that the data is sorted by that column.

Hide Removes all selected columns from the Data View display.
Unhide All Restores all hidden columns to the Data View display. Available only if you have hidden one or more columns.

Freeze Freezes all selected columns so that they do not scroll when you use the horizontal scroll bar. Available only if the selected columns are contiguous.

Unfreeze All Unfreezes all frozen columns so that they scroll when you use the horizontal scroll bar. Available only if you have frozen one or more columns.

Align Aligns the current column. Standard right-aligns numeric fields and left-aligns all others, Left left-aligns the column cells, Center center-aligns the cells, and Right right-aligns the cells.

Find Opens the Find dialog box, which you can use to search for a specific value. Find is limited to the values stored in the currently selected column.

Replace Opens the Replace dialog box, which you can use to search for a specific value to overwrite with a replacement value that you specify. Replace is limited to the values stored in the currently selected column. Available only for database tables that are opened in Edit mode.

\section*{Cell Shortcut Menu}

Displays the following options when you right-click the selected cell.
View Linked Objects Indicates graphical objects in the current drawing that are linked to the selected database record.

Link Links the current row to a graphical object. The link and, if desired, the label from the currently selected link and label templates are created in the Data View. You can specify whether a link, a freestanding label, or an attached label is created by changing the settings from the Link and Label Settings cell shortcut menu option.

Link and Label Settings Lists the currently selected link creation mode. You can specify whether a link, a freestanding label, or an attached label is created when the Link shortcut menu option is chosen.

Find Opens the Find dialog box, which you can use to search for a specific value. The Find shortcut menu option limits its search to records contained in the same column as the currently selected cell.

Replace Opens the Replace dialog box, which you can use to search for a specific value to overwrite with a replacement value that you specify. Replace limits its search to records contained in the same column as the currently selected cell. Available only for database tables that are opened in Edit mode.

Edit Enables you to change the value of the currently selected cell. Available only for database tables that are opened in Edit mode.

Cut Clears the current cell and copies its value to the Clipboard. Available only for database tables that are opened in Edit mode.

Copy Copies the value from the current cell to the Clipboard.
Paste Inserts the value currently stored on the Clipboard into the selected cell. Available only for database tables that are opened in Edit mode.

Clear Deletes the value in the current cell. Available only for database tables that are opened in Edit mode.

\section*{Record Shortcut Menu}

Displays the following options when you right-click one or more selected record headers.

View Linked Objects Indicates graphical objects in the current drawing that are linked to the selected database records.

Link Links the selected row or rows to one or more graphical objects. The link and, if desired, the label from the currently selected link and label templates are created in the Data View window. You can specify whether a link, a freestanding label, or an attached label is created by choosing the Link and Label Settings shortcut menu option.

Link and Label Settings Lists the currently selected link creation mode. You can specify whether a link, a freestanding label, or an attached label is created when the Link shortcut menu option is chosen.

Copy Copies the selected records to the Clipboard.
Delete Record Deletes the selected records. Available only for database tables that are opened in Edit mode.

Add New Record Adds a new record with blank field values to the end of the record set. Available only for database tables that are opened in Edit mode.

Clear All Marks Clears record selection marks from the selected records in the Data View window.

\section*{Grid Header Shortcut Menu}

Displays the following options when you right-click the grid header.
Commit Saves all changes made in the Data View window to the source database table and closes the Data View window. Available only when a database table is open in Edit mode and you have edited its values.

Restore Undoes any changes made to a database table during an editing session and closes the Data View window. Available only when a database table is open in Edit mode and you have edited its values.

Unhide All Columns Restores any hidden columns to the Data View window display.

Unfreeze All Columns Unfreezes any frozen columns so that they scroll when you use the horizontal scroll bar.

Clear All Marks Clears all record selection marks from the Data View window.
Print Preview Opens the Print Preview window in the Data View window, in which you can preview your printed report.

Print Prints the contents of the Data View window to the current Windows system printer.

Format Opens the Format dialog box, in which you can control how data is displayed in the Data View window.

\section*{Navigation Controls}

Cycle quickly through the records in the Data View window. The following controls are available:

First Button Selects the first record.
Previous Button Selects the previous record.
Next Button Selects the next record.
Last Button Selects the last record.


\section*{Data View Print Preview Window}

Loads into the Data View window a preview image of how the current table appears when you print it. When the Data View window is in Preview mode, none of the primary Data View buttons is available and the navigation buttons are removed from the bottom of the window. You can open this dialog box using the following methods:

Data View > Print Preview
Right-click the grid header in the Data View window and choose Print Preview.


Print Opens the default system Print dialog box.
Next Page Presents a preview image of the next page of the database table.
Prev Page Restores the preview image of the previous page of the database table.

Two Page Toggles the display between one and two preview pages. If you choose Two Page, the name of the button changes to One Page and vice versa.

Zoom In Magnifies the preview page so that you can view the details more closely.

Zoom Out Shrinks the preview page to display a larger region of the database table.

Close Closes the Data View Print Preview window and restores the default Data View window display.

\section*{Query Editor}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Consists of a series of tabs that you can use to build and execute queries.

\section*{Access Methods}
\(\$\) Menu: dbConnect \(>\) Queries \(>\) New Query on an External Table, New Query on a Link Template, or Edit Query. (Displays a dialog box in which you can select a database object to query.)
\(\$\) Toolbar: dbConnect buttons \(>\) Select a database table or a link template in the dbConnect Manager and choose the New Query button.
\(\$\) Toolbar: Data View buttons > Choose the Query or Return to Query button in the Data View window.
Shortcut menu: Right-click a database table or link template in the dbConnect Manager and choose New Query, or right-click a query and choose Edit.

\section*{Summary}

If you are creating a new query, the New Query dialog box is displayed first.
■ Quick Query on page 467
■ Range Query on page 468
■ Query Builder on page 469
■ SQL Queries on page 472

\section*{Quick Query Tab (Query Editor)}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Develops simple queries based on a single database field, single operator, and single value.


\section*{List of Options}

The following options are displayed.
Field
Lists the fields from the current database table, from which you can select one to apply to the query.

Operator
Displays a list of available operators that can be applied to the query. For information about operators, see "Construct Simple Queries" in the User's Guide.

\section*{Value}

Specifies a value for the field that you are using to construct your query.

\section*{Look Up Values}

Returns a list of all values for the specified field from the database table in the Column Values dialog box, from which you can select the value you want.

Indicate Records in Data View
Indicates records that match your search criterion in the Data View window.

\section*{Indicate Objects in Drawing}

Indicates linked objects that match your search criterion in the current drawing.

\section*{Execute}

Issues the finished query and closes the dialog box.
Close Closes the dialog box without issuing the query.

\section*{Store}

Saves the query with the current drawing.

\section*{Options}

Opens the Data View and Query Options dialog box.

\section*{Range Query Tab (Query Editor)}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Constructs a query that returns all records or objects that fall within a given range of values.

\section*{List of Options}

The following options are displayed.
Field Lists the fields from the current database table, from which you can select one to apply to the query.

\section*{From}

Specifies the first value of the range. The query returns all records or graphical objects that are greater than or equal to this value.

\section*{Look Up Values (From, Through)}

Returns a list of all values for the specified field from the database table in the Column Values dialog box, from which you can select the value you want.

\section*{Through}

Specifies the second value of the range. The query returns all records or graphical objects that are less than or equal to this value.

Indicate Records in Data View Indicates records that match your search criterion in the Data View window.

Indicate Objects in Drawing Indicates linked objects that match your search criterion in the current drawing.

Execute Issues the finished query and closes the dialog box.
Close Closes the dialog box without issuing the query.
Store Saves the query with the current drawing.
Options Opens the Data View and Query Options dialog box.

\section*{Query Builder Tab (Query Editor)}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Constructs queries based on multiple search criteria. You can also group criteria parenthetically, select which fields to display in the returned query, and specify a sort order for the fields.


\section*{List of Options}

The following options are displayed.

\section*{Query Builder Grid}

Provides a space for you to construct queries based on multiple search parameters.

Parenthetical Grouping Groups a series of search criteria by bracketing them within parentheses. You can nest up to four sets of parentheses within a single statement. To insert a beginning parenthesis, click in the cell to the left of the first Field cell that you want to group. To insert an end parenthesis, click in the cell to the right of the last Value cell that you want to group.

Field Provides a space where you can select the field or fields to include in your query. Double-click in the Field cell of the current row to display a list of available fields from the current database table that you can use in constructing your query. To add an additional parameter, specify an operator and a value for the current row and then select the Logical cell.

Operator Provides a space where you can select an operator to apply to the query condition of the current row. Double-click in the Operator cell to display a list of operators that you can use in constructing your query.

Value Provides a space where you can specify a value for the query condition of the current row. Click in the Value cell and enter a value, or choose the [...] button to retrieve a list of available values for the selected field in the Column Values dialog box.

Logical Provides either an And or an Or operator to the query statement. Click in the Logical cell to add an And value. To change the value to Or, click in the Logical cell again.

\section*{Fields in Table}

Displays a list of available fields from the current database table, from which you can specify the fields to display in the Data View window when the query is executed. If you don't specify any fields to display, the query displays all fields from the database table. Double-clicking in a field in this list or selecting a field and choosing Add (Show Fields) adds the field to the list of those that are displayed in the Data View window by the returned query. You can also drag fields to add them to the Show Fields and Sort By areas.

\section*{Show Fields}

Specifies the fields that are displayed in the Data View window when the query is executed. To remove a field from this list, drag it from the list to any area on the Query Builder tab.

\section*{Add (Show Fields)}

Adds a field to include in the Data View window display of the returned query. To add a field, select it in the Fields in Table list window and then choose Add.

\section*{Sort By}

Specifies a sort order for the returned query. The first field added to the Sort By list is the primary sort. To change the sort order for a field, drag the field to a new location in the Sort By list. By default, fields are added to the Sort By list in an ascending sort order. To apply a descending sort, select a field and choose the Ascending/Descending Sort button, or double-click in the field. To remove a field, drag it from the list to any area on the Query Builder tab or select the field and press DELETE.

\section*{Add (Sort By)}

Adds a field to the Sort By list. To add a sort field, select it in the Fields in Table list window and then choose Add. Repeat for additional fields that you want to apply to the sort.

\section*{Ascending/Descending Sort}

Reverses the sort order for the currently selected field. If an ascending sort order is currently applied, choosing this button reverses the sort to descending order, and vice versa.

\section*{Indicate Records in Data View}

Indicates records that match your search criteria in the Data View window.

\section*{Indicate Objects in Drawing}

Indicates linked objects that match your search criteria in the current drawing.

\section*{Execute}

Issues the finished query and closes the dialog box.

\section*{Close}

Closes the dialog box without issuing the query.

\section*{Store}

Saves the query with the current drawing.
Options
Opens the Data View and Query Options dialog box.

\section*{SQL Query Tab (Query Editor)}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Constructs any query statement that conforms with the SQL 92 protocol. The SQL Query tab provides both a query editor text box where you can type a free-form SQL statement and a set of tools to assist you in constructing your query. As not all database management systems are fully compliant with the SQL 92 standard, you should review your system's documentation to see what SQL commands are valid for your particular database.


\section*{List of Options}

The following options are displayed.
SQL Text Editor

Provides a space for you to type a free-form SQL query or add elements that you select using the various SQL Query tools.

\section*{Table}

Lists all database tables that are available in the current data source. You can add database tables to the SQL text editor by double-clicking them, by selecting them and choosing Add in the Table area, by dragging them from the Table list to the SQL text editor, or by entering their names directly in the SQL text editor.

\section*{Add (Table)}

Adds the currently selected database table to the SQL text editor.
Fields Displays a list of the fields in the selected database table. You can add fields to the SQL text editor by double-clicking them, by selecting them and choosing Add in the Fields area, or by dragging them from the Fields list to the SQL text editor.

\section*{Add (Fields)}

Adds the selected field to the SQL text editor.
Operator Displays a list of operators that you can apply to your query.

\section*{Add (Operator)}

Adds the selected operator to the SQL text editor.
Values Specifies a value for the selected field.
Add (Values)
Adds the value specified in the Values area to the SQL text editor.
[...] Button Returns a list of available values for the specified field from the selected database table in the Column Values dialog box, from which you can select a value to apply to the query.

Indicate Records in Data View Indicates records that match your search criteria in the Data View window.

Indicate Objects in Drawing Indicates linked objects that match your search criteria in the current drawing.

Execute Issues the finished query and closes the dialog box.
Close Closes the dialog box without issuing the query.
Store Saves the query with the current drawing.

\section*{Check}

Checks your SQL query for proper syntax without actually executing it. This function helps you isolate syntax errors before you issue your query.

Options Opens the Data View and Query Options dialog box.

\section*{Column Values Dialog Box}

\section*{Quick Reference}

See also:
■ Configure a Database for Use with PRODNAME Drawings

Lists values for the selected database column; you can select a value to apply to the current operation.

\section*{List of Options}

The following options are displayed.

\section*{Column Values}

Lists all values for the selected database column. Select a value from the list and choose OK to apply it to the current operation. If you are constructing a query using the In operator, you can add additional values to the query by pressing the Ctrl or Shift key as you select values.

\section*{Configure a Data Source Dialog Box}

\section*{Quick Reference}

See also:
■ Configure a Database for Use with PRODNAME Drawings

Configures an external database so it can be accessed from the program.

\section*{Access Methods}

Menu: dbConnect \(>\) Data Sources \(>\) Configure

Shortcut menu: Right-click the Data Sources node and choose Configure Data Source.

\section*{Summary}

For detailed information about configuring a particular database system, refer to "Configure External Databases" in the Driver and Peripheral Guide.

\section*{List of Options}

The following options are displayed.
Data Source Name
Specifies a name for the OLE DB data source that you are configuring.

\section*{Data Sources}

Lists all OLE DB data sources configured for use with the program that are present on your system.

OK Opens the Microsoft Data Links Properties dialog box, in which you can continue configuring your data source.

\section*{Data View and Query Options Dialog Box}

\section*{Quick Reference}

See also:
■ Configure a Database for Use with PRODNAME Drawings
Controls a number of settings related to the display of linked records and objects and the processing of SQL queries.
\begin{tabular}{|c|c|c|}
\hline A Data View and Query Options & & \(x^{3}\) \\
\hline AutoPan and Zoom & \multicolumn{2}{|l|}{Record Indication Settings} \\
\hline \(\square\) Automatically pan drawing & \multicolumn{2}{|l|}{(0) Show only indicated records} \\
\hline \(\square\) Automatically zoom drawing & \multicolumn{2}{|l|}{O Show all records, select indicated records} \\
\hline 50 Zoom factor & \multicolumn{2}{|l|}{\(\checkmark\) Mark Indicated records} \\
\hline & \multicolumn{2}{|l|}{\(\square\) Yellow - Marking Color} \\
\hline Query Options & \multicolumn{2}{|l|}{Accumulate Options} \\
\hline \(\square\) Send as native SQL & \multicolumn{2}{|l|}{\(\square\) Accumulate selection set in drawing} \\
\hline \(\square\) Automatically Store & \multicolumn{2}{|l|}{\(\square\) Accumulate record set in data view} \\
\hline & OK Cancel Help & \\
\hline
\end{tabular}

\section*{Access Methods}
\$ Toolbar: Data View buttons
\(\$\) Menu: Data View \(>\) Options. (The Data View menu is available only if you currently have a database table open in the Data View window.)

\section*{List of Options}

The following options are displayed.

\section*{AutoPan and Zoom}

Control how linked objects are displayed in the current drawing when you select their corresponding records in the Data View window.

\section*{Automatically Pan Drawing}

Pans the drawing automatically to display objects that are associated with the current selection set of Data View records.

\section*{Automatically Zoom Drawing}

Zooms the drawing automatically so that all objects associated with the current record set are displayed.

\section*{Zoom Factor}

Specifies a zoom factor that limits the size of the extents of the indicated object set to a defined percentage of the drawing area. The available range is 20 to 90 percent with a default value of 50 percent. A value of 50 percent means that either the height of the extents is 50 percent of the height of the window, or the width of the extents is 50 percent of the window, whichever value is less.

\section*{Record Indication Settings}

Control the appearance of linked records in the Data View window when their corresponding objects are selected in the current drawing.

\section*{Show Only Indicated Records}

Displays in the Data View window only the record set that is associated with the current selection set. Any records not linked to the current drawing selection set are not displayed.

Show All Records, Select Indicated Records
Displays all records in the current database table. All records that are linked to the current selection set are selected in the Data View window.

\section*{Mark Indicated Records}

Applies a marking color to linked Data View records to clearly differentiate them from records without links.

\section*{Marking Color}

Specifies the marking color to apply to linked Data View records. The default color is yellow.

\section*{Query Options}

Specify options for SQL query processing.

\section*{Send as Native SQL}

Issues queries to database tables in the format of the source table rather than SQL 92 format. You can use this option to issue proprietary commands in native database format.

Automatically Store
Automatically stores queries when they are executed with the current drawing.

\section*{Accumulate Options}

Control the accumulation of selection and record sets.

\section*{Accumulate Selection Set in Drawing}

Adds additional objects to the selection set as you select additional Data View records. If this option is cleared, the current drawing indicates a new set of objects each time you select a new set of Data View records.

Accumulate Record Set in Data View

Adds additional records to the record set as you select additional graphical objects. If this option is cleared, the Data View window indicates a new set of records each time you select a new set of graphical objects.

\section*{Export Links Dialog Box}

\section*{Quick Reference}

See also:
■ Configure a Database for Use with PRODNAME Drawings

Exports a set of links that are associated with a selection set of graphical objects.


\section*{Access Methods}

Menu: dbConnect \(>\) Links \(>\) Export Links

\section*{Summary}

If more than one link template exists for the set of graphical objects that you select, the Select a Database Object dialog box is displayed, in which you can select a link template whose links you want to export.

\section*{List of Options}

The following options are displayed.

\section*{Include Fields}

Specifies the database table fields to export. The key fields for the selected link template are included automatically. The handle of the object that each link is associated with is also exported.

File Name Specifies a name for the exported link file.
Save as Type Specifies the file format for the exported links. You can save the file in the native database format of the current database table or as a comma-delimited or space-delimited text file.

Link Template Name
Displays the name of the link template whose links you're exporting.

\section*{Export Query Set Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Exports a set of queries that are associated with the current drawing.

\section*{Access Methods}
\$ Menu: dbConnect > Queries > Export Query Set
Shortcut menu: In the dbConnect Manager, right-click the drawing node of a drawing that contains one or more queries and choose Export Query Set.

\section*{List of Options}

The following options are displayed.
File Name Specifies a name for the query set.
Save as Type Specifies the file format for the query set. Query sets are always saved with the.\(d b q\) file extension.

\section*{Export Template Set Dialog Box}

\section*{Quick Reference}

See also:
■ Configure a Database for Use with PRODNAME Drawings

Exports a set of link templates and label templates that are associated with the current drawing.

\section*{Access Methods}
\(\$\) Menu: dbConnect \(>\) Templates \(>\) Export Template Set
Shortcut menu: In the dbConnect Manager, right-click the drawing node of a drawing that has one or more templates defined and choose Export Template Set.

\section*{List of Options}

The following options are displayed.
File Name Specifies a name for the template set.
Save as Type Specifies the file format for the template set. Template sets are always saved with the .dbt extension.

\section*{Find Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Searches for specified text or a numeric value in the currently loaded Data View table.

\section*{Access Methods}
\(\$\) Menu: Data View > Find. (The Data View menu is available only if you currently have a database table open in the Data View window.)
Shortcut menu: Right-click a record header or a single cell in the Data View window and choose Find.

\section*{Summary}

The search is limited to a single table column. It is not possible to conduct a global search that scans all columns in the table.

\section*{List of Options}

The following options are displayed.
Find What Specifies the value to search for.
Match Case Searches for the exact value, including case, of what you enter in Find What. If this option is cleared, the program searches for the value regardless of case.

Find Next Finds the next occurrence of the value that you're searching for.
Direction Toggles the direction that the program searches for the specified value in the Data View window.

\section*{Format Dialog Box}

\section*{Quick Reference}

See also:
■ Configure a Database for Use with PRODNAME Drawings

Controls how database table records are displayed in the Data View window.

\section*{Access Methods}
\(\$\) Menu: Data View \(>\) Format. (The Data View menu is available only if you currently have a database table open in the Data View window.)
Shortcut menu: Right-click the grid header in the Data View window and choose Format.

\section*{List of Options}

The following options are displayed.
Font
Specifies the font style that is applied to the current Data View table.

\section*{Font Style}

Specifies a style to apply to the current font. The available options are Normal, Italic, Bold, Bold Italic, Not Bold, and Not Italic.

Size

Specifies the size in points that is applied to the current font.

\section*{Effects}

Applies additional formatting to the Data View window on page 458 display. Strikeout draws a line through the center of all column data. Underline applies an underline to all column data. Color applies a color to all column data.

\section*{Sample}

Displays how the current Format option values look when applied to the Data View window.

Script
Specifies the script that is applied to the current font.

\section*{Import Query Set Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Imports a set of queries into the current drawing.

\section*{Access Methods}
\(\$\) Menu: dbConnect > Queries > Import Query Set
Shortcut menu: Right-click a drawing node in the dbConnect Manager and choose Import Query Set.

\section*{Summary}

If the query set contains a name that matches a query in the current drawing, an alert box is displayed, and you can enter a different name for the query.

\section*{List of Options}

The following options are displayed.
Look In Specifies the directory where the query set is located.
File Name Specifies the name of the query set to import.

Files of Type Specifies the file extension of the query set that you're importing. Query sets always have the .dbq extension.

\section*{Import Template Set Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings
Imports a set of link templates and label templates into the current drawing.

\section*{Access Methods}
\(\$\) Menu: dbConnect \(>\) Templates \(>\) Import Template Set Shortcut menu: Right-click a drawing node in the dbConnect Manager and choose Import Template Set.

\section*{Summary}

If the template set contains a link or label template with a name that matches a template in the current drawing, an alert box is displayed where you can enter a different name for the template.

\section*{List of Options}

The following options are displayed.
Look In Specifies the directory where the template set is located.
File Name Specifies the name of the template set to import.
Files of Type Specifies the file extension of the template set that you're importing. Template sets always have the .dbt extension.

\section*{Label Template Dialog Box}

\section*{Quick Reference}

See also:
■ Configure a Database for Use with PRODNAME Drawings

Applies formatting to labels.

\section*{Access Methods}
\(\$\) Menu: dbConnect \(>\) Templates \(>\) New Label Template. Select a link template in the Select a Database Object dialog box and choose Continue.
\(\$\) Toolbar: dbConnect Manager buttons > Select a database table, link template, or label template and choose the New Label Template button. If a label template is selected, the program opens the Label Template dialog box without first displaying the New Label Template dialog box.
\(\$\) Toolbar: Data View buttons \(>\) Choose New Label Template from the Label Template list, and then choose either the Create Freestanding Label or the Create Attached Label button flyout. If there is no link template defined for the selected database table in the current drawing, the program displays the New Link Template dialog box.
Shortcut menu: Right-click a link template or a database table in the dbConnect Manager and choose New Label Template.
Pointing device: Double-click a label template in the dbConnect Manager. This method opens the Label Template dialog box directly without first displaying the New Label Template dialog box.

\section*{Summary}

Before the Label Template dialog box opens, the New Label Template dialog box is displayed, in which you can name the label template.

\section*{List of Options}

The following options are displayed.

\section*{Character Tab}

Controls character formatting for text that is entered at the keyboard or imported.


Font Specifies a font for new text or changes the font of selected text.
Height Sets the character height in drawing units for new text or changes the height of selected text. The default value is based on the current text style. If the current text style has no fixed height, the text height is the value stored in the TEXTSIZE on page 2552 system variable.

Bold Turns bold formatting on and off for new or selected text. This option is available only for characters using TrueType fonts.

Italic Turns italic formatting on and off for new or selected text. This option is available only for characters using TrueType fonts.

Underline Turns underlining on and off for new or selected text.
Undo Undoes actions, including changes to either text content or text formatting. You can also use Ctrl+Z.

Redo Redoes actions, including changes to either text content or text formatting. You can also use Ctrl+Y.

Stack, Unstack Creates stacked text, for example, fractions, if the selected text contains stack characters. Also, unstacks text if stacked text is selected. When the stack characters, carat ( \(\wedge\) ), forward slash (/), and pound sign (\#), are used, the text to the left of the stack character is stacked on top of the text to the right.
By default, text that contains a carat converts to left-justified tolerance values. Text that contains the forward slash converts to center-justified fractional numbers; the slash is converted to a horizontal bar the length of the longer text string. Text that contains the pound sign converts to a fraction separated by a diagonal bar the height of the two text strings. The characters above the diagonal fraction bar are bottom-right aligned; the characters beneath the diagonal bar are top-left aligned.

Text Color Specifies a color for new text or changes the color of selected text. You can assign text the color associated with the layer it is on (ByLayer) or the color of the block it is contained in (ByBlock). You can also select one of the
colors in the color list or click Other to open the Select Color dialog box. on page 337

Symbol Inserts a symbol or a nonbreaking space at the cursor position. Symbols can also be inserted manually. See Symbols and Special Characters on page 1244.
Commonly used symbols are listed on the submenu. Click Other to display the Character Map dialog box, which contains the entire character set for each font available on your system. Select a character and click Select to place it in the Characters to Copy box. When you have selected all the characters that you want to use, click Copy and close the dialog box. In the Label Template dialog box, right-click and click Paste.
You can use the euro symbol with SHX fonts and their TrueType equivalent fonts shipped with AutoCAD 2000 and later releases. If your keyboard does not contain a euro symbol, hold down the Alt key and enter 0128 on the numeric keypad.
Symbols are not supported in vertical text.
NOTE In the dialog box, the diameter symbol is displayed as \%\%c, but it is displayed correctly in the label. The nonbreaking space is unavailable in double-byte operating systems.

\section*{Properties Tab}

Controls properties that apply to the whole label template.


Style Applies a text style to the label. The current style is saved in the TEXTSTYLE on page 2552 system variable. Character formatting for font, height, and bold or italic attributes is overridden if you apply a new style to an existing label template. Stacking, underlining, and color attributes are retained in characters to which a new style is applied.Styles that have backward or upside-down effects are not applied. If a style defined with a vertical effect is applied to an SHX font, the text is displayed horizontally in the Label Template dialog box.

Justification Sets justification and alignment for the label. Top Left is the default setting. Spaces entered at the end of a line are included as part of the
text and affect the justification of the line. Text is center-, left-, or right-justified with respect to the left and right text boundaries. Text is middle-, top-, or bottom-aligned with respect to the top and bottom text boundaries. See -MTEXT on page 1240 for an illustration of the nine justification options.

Width Sets a paragraph width for new or selected text. The No Wrap option produces a single line. The width of individual characters is not affected by this option.

Rotation Sets the rotation angle for the label in the current unit of angle measurement (degrees, radians, or grads).

\section*{Find/Replace Tab}

Searches for specified text strings in the label template and replaces them with new text.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{A Label Template - Employees_by_RoomLabel1} \\
\hline Character & Properties & Find/Replace & Label Fields & Label Offset & & & & OK \\
\hline Find & & - Re & place with & & - \({ }_{\triangle}\) & \(\square \mathrm{Wh}\) & & Cancel \\
\hline \multicolumn{9}{|l|}{\#(First_Name) \(\quad\) ImportTerser} \\
\hline \multicolumn{8}{|l|}{\#(Last_Name)} & Help \\
\hline \multicolumn{9}{|l|}{Find and replace text in this object. Ln 1 Col \(\left.10\right|_{\text {AutoCAF }}\)} \\
\hline
\end{tabular}

Find Defines the text string to search for.
Find Button Starts a search for the text string in Find. To continue the search, click the Find button again.

Replace With Defines the text string to replace the text in Find What.
Replace Button Replaces the highlighted text with the text in Replace With.
Match Case Finds text only if the case of all characters in the text string is identical to the case of the text in Find. When this option is cleared, a match is found for specified text strings regardless of case.

Whole Word Matches the text in the Find box only if it is a single word. Text that is part of another word is ignored. When this option is cleared, a match is found for text strings, whether they are single words or parts of other words.

\section*{Label Fields Tab}

Specifies which database table fields are displayed when you create labels based on this template.


\section*{Field}

Displays a list of available fields from the current database table that you can include in your label. You may include any number of fields from the source table.

\section*{Add}

Adds the selected field in the Field list to the label.

\section*{Table}

Displays the name of the current database table.

\section*{Label Offset Tab}

Defines \(X\) and \(Y\) coordinate offsets for the insertion point of both your label and, if it is an attached label, its associated leader object.


\section*{Start}

Specifies the start point for the leader object. The point is defined with respect to the extents of the graphical object that the label is attached to. The Start option has no effect on freestanding labels, as they have no associated leader object.

\section*{Leader Offset}

Specifies an \(X\) and \(Y\) offset for the multiline text object with respect to the associated leader object. By default, the X and Y Leader Offset options are set to 1 , indicating that the label text is offset 1 unit in the \(X\) and \(Y\) planes from
the tip of the leader object. The Leader Offset settings apply only to attached labels.

\section*{Tip Offset}

Specifies the leader tip or label text offset values for attached and freestanding labels. For attached labels, the Tip Offset specifies the \(X\) and \(Y\) offset from the value specified in Start for the tip of the leader object. For freestanding labels, the Tip Offset specifies the \(X\) and \(Y\) offset from the insertion point you specified for the label.

\section*{Label Template Properties Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

\section*{Access Methods}
\$ Menu: dbConnect \(>\) Templates \(>\) Label Template Properties

\section*{Summary}

Displays the full data source path to a label template's database table. You can use this dialog box to update a label template with new data source information.

Before the Label Template Properties dialog box opens, the Select a Database Object dialog box is displayed, from which you can select a label template.
You can open this dialog box using the following method:

\section*{List of Options}

The following options are displayed.
Template Name
Displays the name of the selected label template.

\section*{Data Source}

Displays the name of the data source specified for the selected label template. You can select a new data source from this list to apply to the label template.

\section*{Catalog}

Displays the name of the catalog specified for the selected label template. You can select a new catalog from this list to apply to the label template.

\section*{Schema}

Displays the name of the schema specified for the selected label template. You can select a new schema from this list to apply to the label template.

\section*{Table}

Displays the name of the database table specified for the selected label template. You can select a new database table from this list to apply to the label template.

\section*{Fields}

Displays the fields specified for the selected label template.

\section*{Link Conversion Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Converts links created in AutoCAD Release 12, Release 13, and Release 14 to AutoCAD 2000 (and later) format. You can open this dialog box using the following method:


\section*{Access Methods}

Menu: dbConnect \(>\) Link Conversion
Because legacy links are stored in formats that differ significantly from AutoCAD 2000 and later, the link conversion process requires that you specify a mapping of the old AutoCAD SQL Extension \({ }^{\text {TM }}\) (ASE) link values to the new ones used by AutoCAD 2000 and later. For example, you must identify the environment used by a particular link in Release 14 and specify the corresponding data source that you want substituted for this environment in AutoCAD 2000 and later. Similar mappings must be established between all old ASE link values and the new values that you want substituted for them.

\section*{List of Options}

The following options are displayed.

\section*{Link Format}

Specifies the format of the link that you are converting. Different fields are displayed depending on whether you select R12 or R13/R14.

R12
Specifies settings for converting R12 links.

\section*{R13/R14}

Specifies settings for converting R13 and R14 links.

\section*{Old Link Format (R12)}

Specifies the path to the database table used by the link that you're converting.

\section*{DBMS}

Specifies the database management system used by the link that you're converting

\section*{Database}

Specifies the database used by the link that you're converting.
Table
Specifies the database table used by the link that you're converting.
Old Link Format (R13/R14)
Specifies the path to the database table used by the link that you're converting.

\section*{Environment}

Specifies the environment used by the link that you're converting.
Catalog
Specifies the catalog used by the link that you're converting.
Schema
Specifies the schema used by the link that you're converting

\section*{Table}

Specifies the database table used by the link that you're converting.
Link Path Name
Specifies the link path name used by the link that you're converting.

\section*{New Link Format}

Specifies the path to the database table used by the converted link.
Data Source
Lists available data sources that you can select for the converted link.

\section*{Catalog}

Lists available catalogs that you can select for the converted link.

\section*{Schema}

Lists available schemas that you can select for the converted link.

\section*{Table}

Lists available database tables that you can select for the converted link.

\section*{Link Template}

Lists available link templates that you can select for the converted link.
OK
Writes conversion mapping information to the asi.ini file and closes the dialog box.

\section*{Apply}

Writes conversion mapping information to the asi.ini file but keeps the dialog box open so that you can specify conversions for additional links.

\section*{Cancel}

Closes the dialog box without converting any links.

\section*{Link Manager}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Edits the values of the key fields for a selected linked object. You can open the Link Manager using the following methods:


\section*{Access Methods}

8 Menu: dbConnect \(>\) Links \(>\) Link Manager. Select a linked graphical object.
Shortcut menu: Select and then right-click a linked graphical object, and then choose Link > Link Manager.

\section*{List of Options}

The following options are displayed.

\section*{Link Templates}

Lists all link templates that are associated with the selected graphical object. Select the link template whose link values you want to view or edit.

Key Displays the key fields of the currently selected link template.

\section*{Value}

Displays all key values that are defined for the selected link. To display a list of values for a specific field, click a Value cell and choose [...].

Delete
Deletes the currently selected link from the graphical object it's associated with.

\section*{Link Select Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Constructs iterative selection sets of graphical objects and database records.


\section*{Access Methods}
\(\$\) Menu: dbConnect \(>\) Links \(>\) Link Select
Shortcut menu: Right-click a link template in the dbConnect Manager and choose Link Select.

\section*{Summary}

The Link Select dialog box, known as ASE Select in previous releases, is an advanced implementation of the Query Editor. You begin a Link Select operation by creating an initial query or selection set of graphical objects (set A), which can be operated on by an additional query or selection set (set B). The results of the returned operation become the new running selection set (set A), and you can apply additional queries or selection sets to further refine your running query.

In order to work with the Link Select dialog box, you must have a drawing open that has a number of links already created. You can open this dialog box using the following methods:

The Link Select dialog box contains the Quick Query, Range Query, and Query Builder tabs from the Query Editor, and the following additional controls.

\section*{List of Options}

The following options are displayed.

\section*{Do}

Applies a Link Select operator to the current query or selection set. The following operators are available: Select, Union, Intersect, Subtract A-B, Subtract A-B.

Select Creates an initial query or selection set. This selection set can be refined through subsequent Link Select operations.


Union Adds the results of the new query or selection set to the running selection set. This operation returns all records or objects that are members of set A or set B
```

(0)

```

Intersect Returns the intersection of the existing running selection and the results of the new query or drawing selection. This operation returns all records or objects that are members of set A and set B.


Subtract A-B Subtracts the results of the new query or drawing selection from the existing running selection.


Subtract B-A Subtracts the existing running selection from the results of the new query or drawing selection.


\section*{Using}

Lists available link templates that you can apply to the current selection set.

\section*{Use Query}

Uses any of the available Query Editor tabs to construct a query that returns a selection set to the Link Select operation.

\section*{Select in Drawing}

Closes the Link Select dialog box when you choose the Select button so that you can construct a selection set of graphical objects to return to the Link Select operation.

\section*{Execute/Select}

Executes the current Link Select query or temporarily dismisses the Link Select dialog box so you can select graphical objects from the drawing. If the Use Query option is selected, the Execute button is displayed. If the Select in Drawing option is selected, the Select button is displayed. After choosing the Execute or Select button, you can apply more queries or select additional graphical objects to further refine your selection set.

\section*{Venn Diagram}

Displays a diagram of the currently selected Do operation.

\section*{Reset}

Clears the Link Select dialog box and discards all previous actions so that you can begin a new Link Select operation.

\section*{Cancel}

Closes the dialog box and discards all actions.

\section*{Finish}

Completes the Link Select operation and closes the dialog box. Returns either a selection set of graphical objects, a subset of Data View records, or both, depending on the parameters specified in the Link Select operation.

\section*{Status Bar}

Displays the current status information based on the running Link Select operation. The current drawing and table are displayed, as well as the number of linked objects and records that currently meet the specified Link Select parameters.

\section*{Link Template Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Specifies the key fields that are used by a link template.


\section*{Summary}

Before the Link Template dialog box opens, the New Link Template dialog box is displayed, in which you can name the link template. You can open this dialog box using the following methods:

\section*{Access Methods}
\(\$\) Toolbar: dbConnect Manager buttons \(>\) Select a database table and choose the New Link Template button.
\(\$\) Toolbar: Data View buttons \(>\) Choose New Link Template from the Link Template list, and then choose the Link button flyout.
\(\$\) Menu: dbConnect \(>\) Templates \(>\) New Link Template. Navigate to and select a database table from the Select a Database Object dialog box and choose Continue.

Shortcut menu: Right-click a database table in the dbConnect Manager and choose New Link Template.
Pointing device: Double-click a link template in the dbConnect Manager. This method opens the Link Template dialog box directly, without first displaying the New Link Template dialog box.

\section*{List of Options}

The following options are displayed.
Template Name
Displays the name of the link template.

\section*{Table}

Displays the current database table. The first line lists the name of the table, and the second line lists the full data source path to the table in the following syntax: environment.catalog.schema.table

\section*{Key Fields}

Displays all fields that are available for the current database table, as well as the field type and, in the case of character fields, the field length. You specify the link template's key fields by selecting the check box to the left of the field name.

\section*{Link Template Properties Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Displays the full data source path to a link template's table. You can use this dialog box to update a link template with new data source information.

\section*{Access Methods}
\(\$\) Menu: dbConnect \(>\) Templates \(>\) Link Template Properties

\section*{Summary}

Before the Link Template Properties dialog box opens, the Select a Database Object dialog box is displayed, from which you can select a link template.

\section*{List of Options}

The following options are displayed.
Template Name Displays the name of the selected link template.

\section*{Data Source}

Displays the name of the data source specified for the selected link template. You can select a new data source from this list to apply to the link template.

\section*{Catalog}

Displays the name of the catalog specified for the selected link template. You can select a new catalog from this list to apply to the link template.

\section*{Schema}

Displays the name of the schema specified for the selected link template. You can select a new schema from this list to apply to the link template.

Table
Displays the name of the database table specified for the selected link template. You can select a new table from this list to apply to the link template.

Keys
Displays the key fields specified for the selected link template.

\section*{New Label Template Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Creates a new label template. You can open this dialog box using the following methods:

\section*{Access Methods}
\(\$\) Menu: dbConnect \(>\) Templates \(>\) New Label Template. Select a link template from the Select a Database Object dialog box and choose Continue. \(\%\) Toolbar: dbConnect Manager buttons \(>\) Select a database table and choose the New Label Template button.
\(\$\) Toolbar: Data View buttons \(>\) Choose New Label Template from the Label Template list, and then choose either the Create Freestanding Label or the Create Attached Label button flyout. If there is no link template defined for the selected database table in the current drawing, the program displays the New Link Template dialog box.
Shortcut menu: Right-click a database table in the dbConnect Manager and choose New Label Template.

\section*{Summary}

After you enter a name for the label template and choose Continue, the Label Template dialog box opens, in which you specify the fields to display in your label and how to format them.

\section*{List of Options}

The following options are displayed.

\section*{New Label Template Name}

Specifies a name for the label template.

\section*{Start with Template}

Lists available label templates in the current drawing, from which you can select one to use as a start point for your new label template.

\section*{New Link Template Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Creates a new link template. You can open this dialog box using the following methods:

\section*{Access Methods}
\(\$\) Menu: dbConnect \(>\) Templates \(>\) New Link Template. Navigate to and then select a database table in the Select a Data Object dialog box and choose Continue.
8 Toolbar: dbConnect Manager buttons \(>\) Select a database table and choose the New Link Template button.
\(\$\) Toolbar: Data View buttons \(>\) Choose New Link Template from the Link Template list, and then choose the Link button flyout.
Shortcut menu: Right-click a table in the dbConnect Manager and choose New Link Template.

\section*{Summary}

After you enter a name for the link template and choose Continue, the Link Template dialog box opens, in which you specify the key fields that the link uses.

\section*{List of Options}

The following options are displayed.
New Link Template Name
Specifies a name for the link template.

\section*{Start with Template}

Lists all available link templates from the current drawing, from which you can select one to use as a starting point for the new link template.

\section*{New Query Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Creates a new query and opens the Query Editor.

\section*{Access Methods}
\(\$\) Menu: dbConnect > Queries > New Query on an External Table or New Query on a Link Template. (A dialog box is displayed in which you can select a database object to query.)
\(\$\) Toolbar: dbConnect Manager buttons \(>\) Select a link template, database table, or existing query and choose the New Query button.
Shortcut menu: Right-click a link template, database table, or existing query in the dbConnect Manager and choose New Query.

\section*{Summary}

After you enter a name for the query and choose Continue, the Query Editor is displayed, in which you can construct a new query.

\section*{List of Options}

The following options are displayed.
Query for Records in Table
Read-only field that indicates the table to query.

\section*{New Query Name}

Specifies a name for the query.

\section*{Existing Query Names}

Lists all available queries from the current drawing.

\section*{Replace Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Searches for specified text or numeric value in the currently loaded Data View table.

\section*{Access Methods}
\(\$\) Menu: Data View \(>\) Replace. (This menu is available only if you have a database table open in the Data View window.)

Shortcut menu: Right-click a single cell or column header in the Data View window and choose Replace.

\section*{Summary}

You can specify a replacement value that overwrites the value that you're searching for. The search is limited to a single database table column. It is not possible to conduct a global search that scans all columns in the database table. You can open this dialog box using the following methods:

\section*{List of Options}

The following options are displayed.
Find What Specifies the value to search for.
Replace With Specifies a replacement value for the value that you're searching for.

Match Case Searches for the exact value, including case, of what you enter in Find What. If this option is cleared, the program searches for the value regardless of case.

Find Next Finds the next occurrence of the value that you're searching for.
Replace Replaces the next occurrence of the value that you're searching for with the value specified in Replace With.

Replace All Replaces all occurrences of the value that you're searching for with the value specified in Replace With.

\section*{Select a Database Object Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Displays a list of the database objects, such as link templates, label templates, or queries, that are associated with the current drawing.

\section*{Access Methods}
\(\$\) Menu: dbConnect \(>\) Templates \(>\) New Label Template, Edit Link Template, Edit Label Template, Delete Link Template, or Delete Label Template; Queries > Execute Query, New Query on a Link Template, Edit Query, or Delete Query; Links > Delete Links; Labels > Reload Labels, Show Labels, Hide Labels, or Delete Labels; View Data > View Linked Table, Edit Linked Table

\section*{Summary}

You can select a database object from this list to apply to the current operation.

\section*{List of Options}

The following options are displayed.

\section*{Database Object List}

Lists the available database objects that are associated with the current drawing, from which you must select one to apply to the current operation.

OK/Continue Either completes the current operation or opens a secondary dialog box in which you can continue the current operation.
If, for example, you are creating a new label template, the New Label Template dialog box is displayed.

\section*{Select Data Object Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Displays the Data Sources node of the dbConnect Manager, from which you can navigate to and select a database table that the current operation is applied to.

\section*{Access Methods}
\(\$\) Menu: dbConnect > Data Sources > Connect; Templates > New Link Template; Queries > New Query on an External Table; View Data > View External Table or Edit External Table

\section*{List of Options}

The following options are displayed.

\section*{Tree View Window}

Lists the available data sources, from which you can select a database table to apply to the current operation.

\section*{OK/Continue}

Either completes the current operation or opens a secondary dialog box or window, in which you can continue the current operation.

If, for example, you are creating a new link template, the New Link Template dialog box is displayed.

\section*{Sort Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Specifies a sort order that is applied to the database table records displayed in the Data View window.

Access Methods
Shortcut menu: Right-click a column header in the Data View window and choose Sort.

\section*{Summary}

You can select a combination of up to five columns to apply to the sort order.

\section*{List of Options}

The following options are displayed.

\section*{Sort By}

Specifies the primary column to apply to the sort operation. The data from this column is sorted first, and then the data from any additional Then By columns that are specified is sorted.

\section*{Ascending}

Applies an ascending sort order to the selected column. The column data is ordered with the smallest value at the beginning of the Data View record set and the largest value at the end of the record set.

\section*{Descending}

Applies a descending sort order to the selected column. The column data is ordered with the largest value at the beginning of the Data View record set and the smallest value at the end of the record set.

\section*{Then By}

Specifies an additional column to apply to the sort operation.

\section*{Reset}

Clears all columns that are specified for the current sort order so that you can specify a new sort order.

\section*{Synchronize Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Configure a Database for Use with PRODNAME Drawings

Updates links that the program is unable to resolve.


\section*{Access Methods}
\(\$\) Menu: dbConnect \(>\) Synchronize
Shortcut menu: Right-click a link template in the dbConnect Manager and choose Synchronize.

\section*{Summary}

Links can become invalid if you change the underlying structure of their source database table, or if you move the source table to a new location. In these cases, the structure specified by the link template used to create the links is no longer valid, and link templates and any associated links must be updated.
The Synchronize dialog box provides a list of detected errors. Certain errors (such as a resized column in the source database table) can be fixed directly from the Synchronize dialog box. Other errors (such as links that point to nonexistent records) must be fixed in the source database table.

\section*{List of Options}

The following options are displayed.

\section*{Errors}

Displays a list of errors detected. You can select an error to fix.

\section*{Description}

Provides a brief description of the error selected in the Errors list.

\section*{Fix}

Fixes the currently selected error.

\section*{Delete}

Deletes the invalid link template and any associated links from the current drawing.

\section*{Close}

Closes the dialog box.

\section*{Indicate Drawing Objects}

Indicates all objects in the current drawing that are associated with the invalid link template.

\section*{DBLIST}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings

Lists database information for each object in the drawing.

\section*{Summary}

The text window displays information about each object in the current drawing. The program pauses when the window fills with information. Press Enter to resume output, or press Esc to cancel.

\section*{DCALIGNED}

\section*{Quick Reference}

\section*{See also:}
- Apply Dimensional Constraints

Constrains the distance between two points on different objects.

\section*{Access Methods}

会y

Bution
\(\$\) Ribbon: Parametric tab \(>\) Dimensional panel \(>\) Aligned

\section*{Summary}

This command is equivalent to the Aligned option in DIMCONSTRAINT on page 584.

The following table outlines the valid constraint objects and points:
\begin{tabular}{ll}
\hline Valid Objects or Points & Characteristics \\
\hline Line & \begin{tabular}{l} 
When a line or an arc is selected, the \\
distance between the endpoints of the \\
object is constrained.
\end{tabular} \\
Polyline segment & \begin{tabular}{l} 
When a line and a constraint point are \\
Arc \\
selected, the distance between the \\
point and the closest point on the line \\
is constrained.
\end{tabular} \\
\begin{tabular}{l} 
Line and constraint point \\
Two lines
\end{tabular} & \begin{tabular}{l} 
When two lines are selected, the lines \\
are made parallel and the distance \\
between them is constrained.
\end{tabular} \\
&
\end{tabular}

\section*{List of Prompts}

The following prompts are displayed.
Specify first contraint point on page 510 or [Object on page 510/Point \& line on page 510/2Lines on page 511] <Object>: Pick a constraint point or select an object, a point and a line, or two lines to be constrained

\section*{Constraint Point}

Specifies a constraint point for the object.
First Constraint Point Specifies the first point of the object to be constrained.
Second Constraint Point Specifies the second point of the object to be constrained.

Dimension Line Location Determines where the dimension line is located on the constrained object.

\section*{Object}

Selects an object instead of a constraint point.
Dimension Line Location Dimension Line Location on page 510

\section*{Point \& Line}

Selects a point and a line object. The aligned constraint controls the distance between a point and the closest point on a line.

Constraint Point Constraint Point on page 510
Line Selects a line object.
Dimension Line Location Dimension Line Location on page 510

\section*{2Lines}

Selects two line objects. The lines are made parallel and the aligned constraint controls the distance between the two lines.

First Line Select the first line to be constrained.
Second Line to Make Parallel Select the second line to constrain the distance between the two selected lines.

Dimension Line Location Dimension Line Location on page 510

\section*{DCANGULAR}

\section*{Quick Reference}

\section*{See also:}
- Apply Dimensional Constraints

Constrains the angle between line or polyline segments, the angle swept out by an arc or a polyline arc segment, or the angle between three points on objects.

\section*{Access Methods}

Bution
\(\$\) Ribbon: Parametric tab \(>\) Dimensional panel \(>\) Angular

\section*{Summary}

This command is equivalent to the Angular option in DIMCONSTRAINT on page 584.

When you enter or edit an angle value that is either negative or is greater than 360 degrees, the number entered is stored for the expression (for example, 390), but the value displayed is based on the formatting of the units (for example, 30 if decimal degrees).

When an expression with variables evaluates to greater than 360 or less than -360 , the constraint value is displayed in the Parameters Manager based on the units of the drawing.

The following table outlines the valid constraint objects and points:
\begin{tabular}{|c|c|}
\hline Valid Objects or Points & Characteristics \\
\hline \begin{tabular}{l}
Pair of lines \\
Pair of polyline segment \\
Three constraint points Arc
\end{tabular} & \begin{tabular}{l}
When two lines are selected, the angle between the lines is constrained. The initial value always defaults to a value less than 180 degrees. \\
When three constraint points are specified, the following applies: \\
■ First point - angle vertex \\
- Second and third points - endpoints of the angle
\end{tabular} \\
\hline & When an arc is selected, a three-point angular constraint is created. The angle vertex is at the center of the arc and the angle endpoints of the arc are at the endpoints of the arc. \\
\hline
\end{tabular}

\section*{List of Prompts}

The following prompts are displayed.
Select first line on page 512 or arc on page 512 or [3Point on page 512] <3Point>: Pick a line, or an arc, or three points to be constrained

\section*{Line}

Selects a line object.
First Line Specifies the first line to be constrained.
Second Line Specifies the second line to be constrained.
Dimension Line Location Determines where the dimension line is located on the constrained object.

\section*{Arc}

Selects an arc and constrains the angle.
Dimension Line Location Dimension Line Location on page 512

\section*{3Point}

Selects three valid constraint points on the object.
Angle Vertex Specifies the angle vertex, which is at the centerpoint of the constraint.

First Angle Constraint Point Specifies the first angle endpoint of the arc.
Second Angle Constraint Point Specifies the second angle endpoint of the arc.

Dimension Line Location Dimension Line Location on page 512

\section*{DCCONVERT}

\section*{Quick Reference}

\section*{See also:}
- Apply Dimensional Constraints

Converts associative dimensions to dimensional constraints.

\section*{Access Methods}


Ribbon: Parametric tab \(>\) Dimensional panel \(>\) Convert

\section*{Summary}

This command is equivalent to the Convert option in DIMCONSTRAINT on page 584.

Objects other than associative dimensions are ignored and filtered from the selection set.

\section*{List of Prompts}

The following prompts are displayed.
Select associative dimensions to convert: Select the associative dimensions to be converted to dimensional constraints

\section*{DCDIAMETER}

\section*{Quick Reference}

See also:
- Apply Dimensional Constraints

Constrains the diameter of a circle or an arc.

\section*{Access Methods}


Button

Ribbon: Parametric tab \(>\) Dimensional panel \(\boldsymbol{>}\) Diameter

\section*{Summary}

This command is equivalent to the Diameter option in DIMCONSTRAINT on page 584.

The following table outlines the valid contraint objects and points:
\begin{tabular}{ll}
\hline Valid Objects or Points & Characteristics \\
\hline \begin{tabular}{ll} 
Circle & Constrains the diameter of the circle \\
Arc & or arc.
\end{tabular} \\
\hline
\end{tabular}

\section*{List of Prompts}

The following prompts are displayed.
Select arc or circle: Select an arc or a circle to be constrained

\section*{Dimension Line Location}

Determines where the dimension line is located on the constrained object.

\section*{DCDISPLAY}

\section*{Quick Reference}

\section*{See also:}

■ Control the Display of Dimensional Constraints

Displays or hides the dynamic constraints associated with a selection set of objects.

\section*{Access Methods}

\(\$\) Ribbon: Parametric tab \(>\) Dimensional panel \(>\) Show/Hide
\(\$\) Menu: Parametric \(>\) Dynamic Dimensions \(>\) Select Objects
\(\$\) Toolbar: Parametric

\section*{List of Prompts}

The following prompts are displayed.
Select objects: Select objects to display or hide the dimensional constraints
Enter an option [Show on page 515/Hide on page 515] <Show>: Enter the
appropriate value to show or hide dynamic constraints for the selection set of objects
Show
Displays the dynamic dimensional constraints for any selection set of objects.
Hide
Hides the dynamic dimensional constraints for any selection set of objects.

\section*{DCFORM}

\section*{Quick Reference}
```

See also:

- Apply Dimensional Constraints

```

Specifies whether the dimensional constraint being created is dynamic or annotational.

\section*{Summary}

This command is equivalent to the Form option in DIMCONSTRAINT on page 584.

Setting the value for this command defines the Constraint Form property of the object.

\section*{List of Prompts}

The following prompts are displayed.
Enter constraint form [Annotational on page 516/Dynamic on page 516] <Dynamic>: Select a constraint form

\section*{Annotational}

Applies annotational dimensional constraints to objects.

\section*{Dynamic}

Applies dynamic dimensional constraints to objects.

\section*{DCHORIZONTAL}

\section*{Quick Reference}

See also:
- Apply Dimensional Constraints

Constrains the X distance between points on an object, or between two points on different objects.

Access Methods
\(\leftrightarrow\)
Button

Ribbon: Parametric tab \(\boldsymbol{>}\) Dimensional panel \(\boldsymbol{>}\) Horizontal

\section*{Summary}

This command is equivalent to the Horizontal option in DIMCONSTRAINT on page 584.

The following table outlines the valid contraint objects and points:
\begin{tabular}{ll}
\hline Valid Objects or Points & Characteristics \\
\hline Line & ■ \\
\begin{tabular}{l} 
When a line or an arc is selected, the \\
horizontal distance between the end- \\
points of the object is constrained.
\end{tabular} \\
Arc & \\
Two constraint points on objects & \\
\hline
\end{tabular}

\section*{List of Prompts}

The following prompts are displayed.
Specify first constraint point on page 517 or [Object on page 517] <Object>: Pick a constraint point or select an object

\section*{Constraint Point}

Specifies a constraint point for the object.
First Constraint Point Specifies the first point of the object to be constrained.
Second Constraint Point Specifies the second point of the object to be constrained.

Dimension Line Location Determines where the dimension line is located on the constrained object.

Object
Selects an object instead of a constraint point.

\section*{DCLINEAR}

\section*{Quick Reference}

See also:
- Apply Dimensional Constraints

Creates a horizontal, vertical, or rotated constraint based on the locations of the extension line origins and the dimension line.

\section*{Access Methods}
\(\stackrel{\square}{\square}\)
Button

Ribbon: Parametric tab \(>\) Dimensional panel \(\boldsymbol{>}\) Linear

\section*{Summary}

This command is equivalent to the Linear option in DIMCONSTRAINT on page 584.

The following table outlines the valid contraint objects and points:
\begin{tabular}{ll}
\hline Valid Objects or Points & Characteristics \\
\hline Line & \(\boxed{\text { When a line or an arc is selected, the }}\) \\
Polyline segment & \begin{tabular}{l} 
horizontal or vertical distance between \\
the endpoints of the object is con-
\end{tabular} \\
Arc & \begin{tabular}{l} 
strained.
\end{tabular} \\
Two constraint points on objects &
\end{tabular}

\section*{List of Prompts}

The following prompts are displayed.
Specify first constraint point on page 518 or [Object on page 518] <Object>: Pick a constraint point or select an object

\section*{Constraint Point}

Specifies a constraint point for the object.
First Constraint Point Specifies the first point of the object to be constrained.
Second Constraint Point Specifies the second point of the object to be constrained.

Dimension Line Location Determines where the dimension line is located on the constrained object.

\section*{Object}

Selects an object instead of a constraint point.

\section*{DCRADIUS}

\section*{Quick Reference}

See also:
- Apply Dimensional Constraints

Constrains the radius of a circle or an arc.

\section*{Access Methods}


Bution

Ribbon: Parametric tab \(>\) Dimensional panel \(>\) Radius

\section*{Summary}

This command is equivalent to the Radius option in DIMCONSTRAINT on page 584.

The following table outlines the valid contraint objects and points:
\begin{tabular}{ll}
\hline Valid Objects or Points & Characteristics \\
\hline Circle & Constrains the radius of the circle or \\
Arc & arc.
\end{tabular}

\section*{List of Prompts}

The following prompts are displayed.
Select arc or circle: Select an arc or a circle to be constrained

\section*{Dimension Line Location}

Determines where the dimension line is located on the constrained object.

\section*{DCVERTICAL}

\section*{Quick Reference}

\section*{See also:}

■ Apply Dimensional Constraints

Constrains the Y distance between points on an object, or between two points on different objects.

\section*{Access Methods}
-1
Bllton

Ribbon: Parametric tab > Dimensional panel \(\boldsymbol{>}\) Vertical

\section*{Summary}

This command is equivalent to the Vertical option in DIMCONSTRAINT on page 584.

The following table outlines the valid contraint objects and points:
\begin{tabular}{ll}
\hline Valid Objects or Points & Characteristics \\
\hline Line & \begin{tabular}{l} 
When a line or an arc is selected, the \\
vertical distance between the end- \\
Polyline segment
\end{tabular} \\
\begin{tabular}{ll} 
Arc & points of the object is constrained.
\end{tabular} \\
Two constraint points on objects &
\end{tabular}

\section*{List of Prompts}

The following prompts are displayed.
Specify first constraint point on page 520 or [Object on page 521] <Object>: Pick a constraint point or select an object

\section*{Constraint Point}

Specifies a constraint point for the object.
First Constraint Point Specifies the first point of the object to be constrained.

Second Constraint Point Specifies the second point of the object to be constrained.

Dimension Line Location Determines where the dimension line is located on the constrained object.

\section*{Object}

Selects an object instead of a constraint point.

\section*{DDEDIT}

\section*{Quick Reference}

\section*{See also:}
- Change Text

Edits single-line text, dimension text, attribute definitions, and feature control frames.

\section*{Access Methods}

A,
Butlon
\(\%\) Menu: Modify \(>\) Object \(>\) Text \(>\) Edit
8 Toolbar: Text
Shortcut menu: Select a text object, right-click in the drawing area, and click Edit.
Pointing device: Double-click a text object.

\section*{List of Prompts}

The following prompts are displayed.
Select an annotation object or [Undo]:
Object Selection Displays the appropriate editing method for the type of text you select:
- When the TEXTED system variable is set to 0 or 2 , text created using TEXT on page 1932 displays the In-Place Text Editor without the Text Formatting toolbar and the ruler. Right-click to display options on page 1936.
- Text created using MTEXT on page 1214 displays the In-Place Text Editor.

■ Attribute definitions (not part of a block definition) display the Edit Attribute Definition dialog box.

■ Feature control frames display the Geometric Tolerance dialog box.
DDEDIT repeats the prompt until you press Enter to end the command.
Undo Returns the text or attribute definition to its previous value. You can use this option immediately after editing.

\section*{Edit Text Dialog Box}

\section*{Quick Reference}

See also:
■ Change Text

\section*{Access Methods}

A
Butlon
\(\$\) Toolbar: Text
Shortcut menu: Select a text object, right-click in the drawing area, and click Edit.
㟇 Command entry: ddedit

\section*{Summary}

When the TEXTED on page 2549 system variable is set to 1 , modifies text created with TEXT on page 1932. Enter the new text and click OK.
To add a field to the text, right-click the text where you want to insert the field and click Insert Field on the shortcut menu to display the Field dialog box.

\section*{Edit Attribute Definition Dialog Box}

\section*{Quick Reference}

See also:
■ Change Text

\section*{Access Methods}
\(A\)
Button

8 Toolbar: Text
Shortcut menu: Select a text object, right-click in the drawing area, and click Edit.
巢 Command entry: ddedit
Modifies an attribute definition's tag, prompt, and default value.

\section*{List of Options}

The following options are displayed.
Tag
Specifies the attribute tag, which identifies the attribute in the drawing. The tag can contain exclamation marks (!). The case change is not immediately displayed in the tag field.

\section*{Prompt}

Specifies the attribute prompt that is displayed when you insert a block containing this attribute definition.

\section*{Default}

Specifies the default attribute value.
To use a field as the value, right-click and click Insert Field on the shortcut menu to display the Field dialog box.

\section*{DDPTYPE}

\section*{Quick Reference}

See also:
■ Draw Reference Points

Specifies the display style and size of point objects.
Access Methods


Ribbon: Home tab \(>\) Utilities panel \(>\) Point Style
Menu: Format \(>\) Point Style
曼 Command entry: 'ddptype for transparent use

\section*{Summary}

The Point Style dialog box is displayed.

\section*{Point Style Dialog Box}

\section*{Quick Reference}

See also:
- Draw Reference Points

Shows the current point style and size. Change the point style by selecting an icon.


\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Utilities panel \(>\) Point Style
\(\$\) Menu: Format > Point Style
㟇 Command entry: ddptype (or 'ddptype for transparent use)

\section*{List of Options}

The following options are displayed.

\section*{Point Display Images}

Specifies the image used to display point objects. The point style is stored in the PDMODE on page 2446 system variable.

\section*{Point Size}

Sets the point display size. The value you enter can be relative to the screen or in absolute units. The point display size is stored in the PDSIZE system variable. Subsequent point objects that you draw use the new value.

Set Size Relative to Screen Sets the point display size as a percentage of the screen size. The point display does not change when you zoom in or out.

Set Size in Absolute Units Sets the point display size as the actual units you specify under Point Size. Points are displayed larger or smaller when you zoom in or out.

\section*{DDVPOINT}

\section*{Quick Reference}

See also:
- Control the 3D Projection Style

Sets the 3D viewing direction.
Access Methods
\(\$\) Menu: View \(>\) 3D Views \(>\) Viewpoint Presets

Summary
The Viewpoint Presets dialog box is displayed.

\section*{Viewpoint Presets Dialog Box}

\section*{Quick Reference}

See also:
- Control the 3D Projection Style

Defines 3D view settings.


\section*{Access Methods}
\(\$\) Menu: View > 3D Views > Viewpoint Presets
並 Command entry: ddvpoint

\section*{List of Options}

The following options are displayed.

\section*{Set Viewing Angles}

Sets the direction of the view relative to either the world coordinate system (WCS) or a user coordinate system (UCS).


Absolute to WCS Sets the view direction relative to the WCS.
Relative to UCS Sets the view direction relative to the current UCS.

\section*{From}

Specifies viewing angles.
X Axis Specifies the angle from the \(X\) axis.
XY Plane Specifies the angle from the \(X Y\) plane.

You can also use the sample image to specify viewing angles. The black arm indicates the new angle. The gray arm indicates the current angle. Specify an angle by selecting the inner region of the circle or half-circle. Selecting the bounded outer regions rounds off the angle to the value displayed in that region. If you select the inner arc or an area inside it, the angle is not rounded off, and the result may be a fractional number.

\section*{Set to Plan View}

Sets the viewing angles to display the plan view ( \(X Y\) plane) relative to the selected coordinate system.

\section*{DELAY}

\section*{Quick Reference}

See also:
- Run Slide Shows from Scripts

Provides a timed pause within a script.

\section*{Access Methods}

並 Command entry: 'delay for transparent use

\section*{Summary}

Specifies the duration of a pause. Entering delay 1000 in your script delays the start of execution of the next command for about one second. The longest delay available is 32767 , which is slightly less than 33 seconds.

\section*{DELCONSTRAINT}

\section*{Quick Reference}

See also:
■ Modify Objects with Dimensional Constraints Applied

Removes all geometric and dimensional constraints from a selection set of objects.

\section*{Access Methods}

Button
\(\$\) Ribbon: Parametric tab \(>\) Manage panel \(>\) Delete Constraints
\(\$\) Menu: Parametric \(>\) Delete Constraints
\(\$\) Toolbar: Parametric

Summary
The number of constraints removed are displayed on the command line.
Removes all geometric and dimensional constraints from the selected objects.

\section*{DETACHURL}

\section*{Quick Reference}

See also:
- Add Hyperlinks to a Drawing

Removes hyperlinks in a drawing.

\section*{Summary}

Hyperlinks are removed from the selected objects. If an area is selected, the polyline is deleted. You can use PURGE to remove the URLLAYER layer.

\section*{DGNADJUST}

\section*{Quick Reference}

\section*{See also:}
- Adjust Underlay Contrast, Fade, Monochrome, and Colors for the Background

Adjust the fade, contrast, and monochrome settings of a DGN underlay.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Adjust

\section*{Summary}

You can change the default values for Fade, Contrast, and Monochrome for a single or multiple DGN underlays. To confirm the settings on a selected DGN underlay, use the Properties palette.

NOTE You can also use the ADJUST on page 105 command to change the fade, contrast, and monochrome settings for DGN underlays as well as DWF, DWFx and PDF underlays or the fade, contrast and brightness for images.

\section*{List of Prompts}

The following prompts are displayed.
Select DGN underlay: Select one or more DGN underlays
Enter DGN underlay option [Fade/Contrast/Monochrome] <Fade>:
Enter fade value (0-100): Enter a value
Enter contrast value (0-100): Enter a value
Monochrome? [Yes/No]: Enter yes or no and then press Enter

\section*{Fade}

Controls the fade effect of the underlay. Values range from 0 through 100. The greater the value, the more transparent the underlay appears against the background. The lesser the value, the less transparent and closer to opaque the underlay appears. A value of 0 makes the underlay appear fully opaque.

\section*{Contrast}

Controls the contrast, and indirectly, the fading effect of the underlay. Values range from 0 through 100. The greater the value, the more each pixel is forced to its primary or secondary color.

\section*{Monochrome}

Controls the color saturation of all linework while maintaining the luminance. When turned on, the linework appears in varying shades of gray starting at black if the background color luminance is 50 percent or more. If the background color luminance is less than 50 percent, then the colors are
inverted, with the darkest linework displaying in white, and the lightest linework displaying in black.

\section*{DGNATTACH}

\section*{Quick Reference}

\section*{See also:}
- Attach Files as Underlays

Insert a DGN file as an underlay into the current drawing.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Attach
\(\$\) Menu: Insert > DGN Underlay
\(\$\) Toolbar: Insert

\section*{Summary}

When you attach a DGN file as an underlay, you link that referenced file to the current drawing. Any changes to the referenced file are displayed in the current drawing when it is opened or reloaded.

The Select Reference File dialog box (a standard file selection dialog box) is displayed. Once you select a DGN file, the Attach DGN Underlay dialog box is displayed. After the file is attached, you can adjust and clip the underlay through the DGN Underlay Ribbon Contextual tab on page 534.

NOTE DGNATTACH is not limited to files with .dgn extensions. It supports all DGN files, even those that do not have a .dgn extension.

If you enter -dgnattach at the Command prompt, options are displayed.

NOTE When a DGN file is attached as an underlay, its levels structure (layers) are combined into a single layer. The DGN underlay is placed on the current layer. To hide the DGN attachment, freeze the layer on which it was attached.

\section*{Attach DGN Underlay Dialog Box}

\section*{Quick Reference}

See also:
- Attach Files as Underlays

Names, locates, and defines the insertion point, scale, and rotation when attaching DGN underlays.

\section*{Access Methods}

Button

Ribbon: Insert tab \(>\) Reference panel \(>\) Attach
Menu: Insert > DGN Underlay
Toolbar: Insert

\section*{List of Options}

The following options are displayed.
Name
Identifies the DGN file you have selected to attach.

\section*{Browse}

Opens the Select Reference File dialog (a standard file selection dialog box on page 1295).

\section*{Select a design model from the DGN file}

Displays all of the design models that are found in the DGN file. If the DGN file only contains a single design model, that model is listed.

If the DGN file contains multiple design models, only a single model can be selected for attachment. The first model in the list is selected by default.

\section*{Conversion Units}

Matches the DWF files's drawing units to the master units and sub-units specified in the DGN file. For example, if the DGN file has master units set to meters, and sub-units set to millimeters, and you want the DWG to be set to millimeters, select sub-units in the Attach DGN Underlay dialog box.

Master Units Matches the DWG drawing units to the master units set in the DGN file.

Sub Units Matches the DWG drawing units to the sub- units set in the DGN file.

\section*{Path Type}

Selects the full (absolute) path, the relative path to the DGN file, or No Path, the name of the DGN file (the DGN file must be located in the same folder as the current drawing file).

NOTE The Path Type group is disabled when you're attaching a DGN file that is stored on the Vault client server. This information is automatically entered by the Vault.

\section*{Insertion Point}

Specifies the insertion point for the selected DGN file. Specify On-Screen is the default. The default insertion point is \(0,0,0\).

Specify On-Screen Directs input at the Command prompt or the pointing device. If Specify On-Screen is cleared, enter the insertion point in \(\mathrm{X}, \mathrm{Y}\), and Z.

X Sets the \(X\) coordinate value.
Y Sets the \(Y\) coordinate value.
\(Z\) Sets the \(Z\) coordinate value.

\section*{Scale}

Specifies the scale factor of the selected DGN underlay.
If INSUNITS is set to "unitless" or if the underlay does not contain resolution information, the scale factor becomes the underlay width in AutoCAD units. If INSUNITS has a value such as millimeters, centimeters, inches, or feet, and the underlay has resolution information, the scale factor is applied after the true width of the underlay in AutoCAD units is determined.
Specify On-screen Allows you to input at the Command prompt or the pointing device. If Specify On-Screen is cleared, enter a value for the scale factor. The default scale factor is 1 .

Scale Factor Field Enters a value for the scale factor. The default scale factor is 1 .

\section*{Rotation}

Specifies the rotation angle of the selected DGN underlay.
Specify on-screen If Specify On-Screen is selected, you may wait until you exit the dialog box to rotate the object with your pointing device or enter a rotation angle value at the Command prompt.

Angle If Specify On-Screen is cleared, enter the rotation angle value in the dialog box. The default rotation angle is 0 .

\section*{Show Details}

Displays the DGN file path.
Found In Displays the path where the DGN file is located.
Saved Path Displays the path that is saved with the drawing when the DGN file is attached. The path is dependent upon the Path Type setting.

\section*{DGN Underlay Ribbon Contextual tab}

\section*{Quick Reference}

\section*{See also:}

■ Work with Underlays

Change DGN underlay display, clip, layer, and osnap options.


\section*{Summary}

When you select a DGN underlay in a drawing, the DGN Underlay Contextual tab is displayed on the ribbon.

\section*{List of Options}

The following options are displayed.

\section*{Adjust Panel}

Contrast Controls the contrast and the fading effect of the underlay. The greater the value, the more each pixel is forced to its primary secondary color.

Fade Controls the appearance of the linework. The greater the value, the lighter the linework in the underlay appears.

Display in Monochrome Displays the underlay in black and white.

\section*{Clipping Panel}

Create Clipping Boundary (DGNCLIP on page 537) Crops the display of a selected DGN underlay to a specified boundary.

Create Clipping Boundary (DGNCLIP on page 537) Deletes the clipping boundary.

Options Panel
Show Underlay Hides or displays the underlay.
Enable Snap Determines whether object snapping is active for geometry in the DGN underlay.

External References (EXTERNALREFERENCES on page 771) Opens the External References palette.

\section*{DGN Layers Panel}

Edit Layers (ULAYERS on page 1992) Controls the display of layers in a DWF, DWFx, PDF, or DGN underlay.

\section*{-DGNATTACH}

\section*{Quick Reference}

See also:
- Attach Files as Underlays

Attach a DGN underlay from the command line.

\section*{Summary}

When you attach a DGN file as an underlay, you link that referenced file to the current drawing. Any changes to the referenced file are displayed in the current drawing when it is opened or reloaded.

NOTE DGNATTACH is not limited to files with *.dgn extensions. It supports all DGN files, even those that do not have a .dgn extension.

\section*{List of Prompts}

The following prompts are displayed.
TIP You can drag a DGN file onto the drawing window to start the DGNATTACH command.

Path to DGN File to Attach Enters the full path name to the DGN underlay file. The file name can include up to 255 characters and contain letters, digits, spaces, and any special characters not used by Microsoft Windows or this program.
Entering a tilde (~) displays the Select DGN File dialog box (a standard file selection dialog box).
To avoid errors when entering a file name, it is recommended that you specify both the DGN file and path as follows:
path name\filename.dgn
or
"path name\filename.dgn"
If you enter a valid DGN file name without a file extension, the program adds the extension and searches for the file.

Enter Name of Model or ? Enter a model name. For a list of models, enter?.
Enter Model(s) to list <*> Lists the design models available in the DGN file in a separate text window.

Conversion Units Matches the DWF file's drawing units to the master units and sub-units specified in the DGN file. For example, if the DGN file has master units set to meters, and sub-units set to millimeters, and you want the DWG to be set to millimeters, select sub-units in the Attach DGN Underlay dialog box.
- Master Units - Matches the DWG drawing units to the master units set in the DGN file.
- Sub Units - Matches the DWG drawing units to the sub- units set in the DGN file.

Insertion Point Specifies the insertion point for the selected DGN file. Enter the \(\mathrm{X}, \mathrm{Y}\), and Z coordinates at the command prompt, or click onscreen.

Scale Factor Specifies the scale factor of the selected DGN underlay and the scale factor units. You can enter a scale factor at the command prompt or click onscreen with the mouse.
If INSUNITS is set to "unitless" or if the underlay does not contain resolution information, the scale factor becomes the underlay width in AutoCAD units. If INSUNITS has a value such as millimeters, centimeters, inches, or feet, and the underlay has resolution information, the scale factor is applied after the true width of the underlay in AutoCAD units is determined.

Rotation Specifies the rotation angle of the selected DGN underlay by entering an angle value at the command prompt or by clicking onscreen.

\section*{DGNCLIP}

\section*{Quick Reference}

\section*{See also:}
- Clip External References and Blocks

Crops the display of a selected DGN underlay to a specified boundary.

\section*{Access Methods}


Butlon
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Clip
Shortcut menu: Select a DGN underlay to clip, right-click in the drawing area, and click DGN Clip.

\section*{Summary}

The clipping boundary determines the portion of a DGN underlay outside the boundary that is hidden. The visibility of the clipping boundary is controlled by the DGNFRAME on page 2218 system variable.

The boundary you specify must be in a plane parallel to the DGN underlay.
TIP Use the generic CLIP on page 332 command to clip images, external references, viewports, and underlays.

\section*{List of Prompts}

The following prompts are displayed.

\section*{On}

Turns on clipping and displays the DGN underlay clipped to the previously defined boundary.

\section*{Off}

Turns off clipping and displays the entire DGN underlay.
If you reclip the DGN underlay while clipping is turned off, clipping is automatically turned back on. You are prompted to delete the old boundary even when clipping is turned off and the clipping boundary is not visible.

\section*{Delete}

Removes a predefined clipping boundary and displays the entire DGN underlay.

\section*{New Boundary}

Defines a rectangular or polygonal clipping boundary, or generates a polygonal clipping boundary from a polyline.
Specify clipping boundary or select invert option: [Select polyline/Polygonal/Rectangular/Invert clip] <Rectangular>:

Select Polyline Defines the boundary with the selected polyline. The polyline can be open but must consist of straight line segments and cannot intersect itself.

Polygonal Defines a polygonal clipping boundary with three or more points that you specify for the vertices of a polygon.

Rectangular Defines a rectangular boundary with the points that you specify for opposite corners.

Invert Clip Inverts the mode of the clipping boundary: objects are clipped either outside the boundary or inside the boundary.
NOTE You can only create a new clipping boundary for a selected DGN underlay when the old boundary is deleted.

\section*{DGNEXPORT}

\section*{Quick Reference}

\section*{See also:}
- Export MicroStation DGN Files

Creates one or more DGN files from the current drawing.

\section*{Access Methods}
\(\underset{\text { DGN }}{\rightarrow}\)
Bution
\(\$\) Menu: Application menu \(>\) Export \(>\) DGN File

\section*{Summary}

The Export DGN File dialog box (a standard file selection dialog box) is displayed. Once you specify a DGN file name, the Export DGN Settings dialog box is displayed. You can export a V8 or V7 file using DGNEXPORT.

If you enter -dgnexport at the Command prompt, options are displayed on page 547.

See the DGNEXPORT Conversion Table on page 544 specific details about the scope of exporting DWG objects and other data to DGN files.

WARNING Some programs that work with DGN files do not support extended characters that the Windows operating system considers valid for file names. Thus, it is recommended that you do not use accented or Asian characters in file names when using DGNEXPORT.

\section*{Export DGN Settings Dialog Box}

\section*{Quick Reference}

See also:
■ Export MicroStation DGN Files

Controls how objects are processed when exporting them to a DGN file.


\section*{Access Methods}


\section*{List of Options}

The following options are displayed.

\section*{External DWG References}

Controls how xrefs are processed.
Translate All DWG References to DGN Files

All referenced DWG files, including nested DWG references, are converted into DGN files. The resulting DGN files use the same file name as the DWG files, but use a .dgn file extension.
With the following set of options, you can choose whether or not to overwrite DGN reference files
- Prompt to Overwrite
- Overwrite without Prompting
- Do Not Overwrite

\section*{Bind All DWG References into One DGN file}

The parent DWG file and all referenced DWG files are combined into a single DGN file. The referenced DWG files are converted to cells as part of the primary DGN file.

\section*{Ignore DWG References}

Referenced DWG files are not included in the resulting DGN file.

\section*{External DGN References}

Controls whether DGN underlays in the DWG file are exported as DGN references of the resulting DGN file.

\section*{Export DGN Underlays as DGN References}

When checked, any DGN underlays are exported as DGN references along with the base drawing. When cleared, DGN underlays are not exported.

NOTE Do not export drawings that include V8 DGN underlays to a V7 DGN format file. The V8 DGN references cannot display in a V7 DGN file because the V8 DGN file format is not a valid design file for the resulting V7 DGN file.

\section*{Specify Seed File}

A seed file for a DGN file is similar to a drawing template (DWT) file that contains default settings and attributes, such as working units. Selecting the appropriate DGN seed file (imperial, metric, or user-defined), and conversion units is critical to the translation from DWG to DGN. In addition, the seed file contains settings that are not present in a DWG file, and therefore inherited in the exported DGN.

These settings include working units and resolution as well as whether the file is 2 D or 3 D .

\section*{Conversion Units}

Select the appropriate conversion units for the translation. The DGN seed file contains working units (imperial or metric) called master units and sub-units. One DWG unit is converted to either one master unit or one sub-unit.

\section*{Master Units}

Specifies that one DWG drawing unit will convert to one master unit of the specified DGN seed file.

\section*{Sub Units}

Specifies that one DWG drawing unit will convert to one sub-unit of the specified DGN seed file.

NOTE The master units and the sub-units of the selected DGN seed file are displayed next to the buttons for reference.

\section*{Filename drop-down list}

Specify the name of the DGN seed file. Several sample seed files are provided upon installation.

Browse button Displays the Select Seed File dialog box (a Standard File Selection Dialog Boxes on page 1295), in which you can select the DGN seed file.
See the DGNEXPORT Conversion Table on page 544 specific details about the scope of exporting DWG objects and other data to DGN files.

\section*{Sample DGN Seed Files}

The following table lists the default DGN seed files and their settings. You may need to edit these settings or obtain the appropriate seed file to suit your conversion requirements.
\begin{tabular}{llll}
\hline DGN Seed File Name & \begin{tabular}{l} 
Master Unit \\
(label)
\end{tabular} & Sub Unit (label) & Resolution \\
\hline \begin{tabular}{l} 
V7-Imperial-Arch01- \\
Seed2D.dgn
\end{tabular} & Feet (') & Inches (") & \begin{tabular}{l}
\(12^{\prime \prime} / 1^{\prime}\) and 8000 \\
POS
\end{tabular} \\
\hline \begin{tabular}{l} 
V7-Imperial-Arch01- \\
Seed3D.dgn
\end{tabular} & Feet (') & Inches (") & \begin{tabular}{l}
\(12^{\prime \prime} / 1^{\prime}\) and 8000 \\
POS
\end{tabular} \\
\hline \begin{tabular}{l} 
V7-Imperial-Arch02- \\
Seed2D.dgn
\end{tabular} & Feet (') & Inches (") & \begin{tabular}{l}
\(12^{\prime \prime} / 1^{\prime}\) and 1000 \\
POS
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline DGN Seed File Name & Master Unit (label) & Sub Unit (label) & Resolution \\
\hline V7-Imperial-Arch02Seed3D.dgn & Feet (') & Inches (") & \[
\begin{aligned}
& 12^{\prime \prime} / 1^{\prime} \text { and } 1000 \\
& \text { POS }
\end{aligned}
\] \\
\hline V7-Imperial-Civil01Seed2D.dgn & Feet (') & Tenths (tn) & \[
\begin{aligned}
& 10 \mathrm{tn} / 1^{\prime} \text { and } 100 \\
& \text { POS }
\end{aligned}
\] \\
\hline V7-Imperial-Civil01Seed3D.dgn & Feet (') & Tenths (tn) & \[
\begin{aligned}
& 10 \mathrm{tn} / 1^{\prime} \text { and } 100 \\
& \text { POS }
\end{aligned}
\] \\
\hline V7-Imperial-Civil02Seed2D.dgn & Feet (') & Tenths (tn) & \[
\begin{aligned}
& 10 \mathrm{tn} / 1^{\prime} \text { and } 1000 \\
& \text { POS }
\end{aligned}
\] \\
\hline V7-Imperial-Civil02Seed3D.dgn & Feet (') & Tenths (tn) & \[
\begin{aligned}
& 10 \mathrm{tn} / 1^{\prime} \text { and } 1000 \\
& \text { POS }
\end{aligned}
\] \\
\hline V7-Metric-Seed2D.dgn & Meters (m) & Millimeters (mm) & \[
\begin{aligned}
& 1000 \mathrm{~mm} / 1 \mathrm{~m} \text { and } 1 \\
& \text { POS }
\end{aligned}
\] \\
\hline V7-Metric-Seed3D.dgn & Meters (m) & Millimeters (mm) & \(1000 \mathrm{~mm} / 1 \mathrm{~m}\) and 1 POS \\
\hline V8-Imperial-Seed2D.dgn & Feet (') & Inches (") & 304800 per foot \\
\hline V8-Imperial-Seed3D.dgn & Feet (') & Inches (") & 304800 per foot \\
\hline V8-Metric-Seed2D.dgn & Meters (m) & Millimeters (mm) & 1000mm per millimeter \\
\hline V8-Metric-Seed3D.dgn & Meters (m) & Millimeters (mm) & 1000mm per millimeter \\
\hline
\end{tabular}

\section*{Translate DWG Properties to DGN Properties}

Selects and manages the mapping setup used on the current DGN export.

\section*{Select Mapping Setup}

Displays the currently defined mapping setups.
Standard is the default mapping setup which extracts data from the drawing being exported and applies an automatic mapping to DGN layers, linetypes, lineweights, and colors, as shown in the mapping preview.

\section*{Setup Description}

Displays the description of the selected mapping setup.

\section*{Mapping Setups}

Opens the DGN Mapping Setups dialog box on page 560 where new mapping setups can be created and existing mapping setups can be renamed, modified, or deleted (see DGNMAPPING on page 559).

\section*{Mapping Preview for Setup}

Lists all properties of both the exported DWG file in the DWG column and the selected mapping setup in the DGN column.

NOTE The reference properties are not listed in the preview, but any properties that apply to those references that are shown in the mapping preview are applied to the references as well.

\section*{DGNEXPORT Conversion Table}

\section*{Quick Reference}

See also:
■ Export MicroStation DGN Files

The following table lists the DGN objects and features that are supported for export, and notes on the scope of the translation.

DWG to DGN Conversion Table
\begin{tabular}{lll}
\hline AutoCAD & MicroStation & Notes \\
\hline \begin{tabular}{lll} 
Geometric Ob- & \begin{tabular}{l} 
Geometric Ele- \\
jects
\end{tabular} & \begin{tabular}{l} 
The following DWG objects are translated into \\
DGN elements: line, xline, ray, polyline, arc, \\
circle, spline (NURBS), ellipse, elliptical arc, \\
point, donut, mline, hatch (including gradient \\
fills), and wipeout. Variable width polylines \\
maintain only their starting width when \\
translated into SmartLines.
\end{tabular} \\
& & Levels
\end{tabular} & \begin{tabular}{l} 
Invalid DWG characters in layer names are \\
converted to spaces.
\end{tabular} \\
\hline & &
\end{tabular}

DWG to DGN Conversion Table
\begin{tabular}{|c|c|c|}
\hline AutoCAD & MicroStation & Notes \\
\hline Colors & Colors & Colors are matched as closely as possible. Colors set with the ACI (AutoCAD Color Index) are translated directly to the DGN color index. If TrueColor is used and a direct match of RGB values is available in the DGN color index, the colors are also mapped directly. If a TrueColor match is not available, an RGB value is added to the DGN color index. \\
\hline Linetypes & Line Styles & Custom linetypes are unsupported and could produce unexpected results. \\
\hline Blocks & Cells & Blocks are exported as shared cells. Dynamic blocks are also exported as cells and lose their dynamic behavior. Invisible, Constant, Verify, and Preset attributes are all converted into tags. \\
\hline Single-line Text Objects, Multiline Text Objects, Text Styles & Text, Text Nodes, Text Styles & \begin{tabular}{l}
The visual integrity of multiline text is maintained. However, if exported multiline text objects are edited in MicroStation, the formatting is lost. \\
TrueType and SHX fonts in AutoCAD are exported to MicroStation V7 as Engineering. This can result in many visual differences.
\end{tabular} \\
\hline Tables & Tables & Table objects are exported as cell elements composed of lines and text. \\
\hline Fields & Fields & \begin{tabular}{l}
In general, fields are translated as static text. The exceptions are fields that behave identically in both products. This includes the Date fields CreateDate, SaveDate, and PlotDate, and the Document property fields \(A u\) thor, Filename, and Filesize. \\
NOTE Use the MicroStation Key-in utility to update text containing fields (field update all).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lll} 
DWG to DGN Conversion Table & \\
\hline AutoCAD & MicroStation & Notes \\
\hline \begin{tabular}{l} 
Dimensions, Di- \\
mension Styles
\end{tabular} & \begin{tabular}{l} 
Dimensions, Di- \\
mension Styles
\end{tabular} & \begin{tabular}{l} 
The size, spacing, style, and shape of dimen- \\
sions may vary slightly. Dimension associativ- \\
ity is maintained whenever possible, and the \\
correct dimension values are always main- \\
tained.
\end{tabular} \\
\hline Raster Images & Raster Images & \begin{tabular}{l} 
These image file types are supported: .bmp, \\
.cal, .tif, .png, tga, .jpg, .gif, .rlc, .bil, and .pcx. \\
All other image file types are discarded.
\end{tabular} \\
\hline DWG References & DGN References & \begin{tabular}{l} 
Depending on the export option specified, \\
all referenced DWG files, including nested \\
DWG references, are either converted into \\
DGN files, combined into a single DGN file \\
as cells, or discarded.
\end{tabular} \\
\hline & & \begin{tabular}{l} 
NOTE MicroStation V7 does not support \\
nested references to references that are \\
merged into the host file.
\end{tabular} \\
\hline
\end{tabular}

\section*{-DGNEXPORT}

\section*{Quick Reference}

\section*{See also:}
- Export MicroStation DGN Files

If you enter -dgnexport at the Command prompt, the following prompts are displayed.

\section*{List of Prompts}

The following prompts are displayed.
Enter DGN file format [V7/V8] <V8>: Specify whether the file is DGN V7 or V8 Enter filename for DGN export <default path \(\backslash\) filename>: Specify path and filename of DGN file
Specify conversion units [Master/Sub] <Master>: Specify m or s, or press Enter Specify mapping setup or [?] <Standard>: Specify mapping setup or ? to specify filter of mapping setup
Specify seed file or [?] <default path \(\backslash\) filename>: Specify path and filename of seed file

TIP Create a script using -DGNEXPORT to batch process exporting drawings to DGN files.

File Format Specifies the file format of the DGN file being exported.
Filename The file name can include up to 255 characters and contain letters, digits, spaces, and any special characters not used by Microsoft Windows or this program.
To avoid errors when entering a file name, it is recommended that you specify both the DGN file and path as follows:
path\filename
or
"path\filename"
Specify the path and file name of DGN file.
Units Specifies a drawing-units value for scaling the DGN file.
Mapping Setups Specifies the mapping setup of the selected design model.
? After specifying a filter, a list of available export mapping setups that match the filter is displayed and will re-prompt.

Seed File Specify a seed file that matches the existing behavior of other commands with filters.
■ ? on page 548

\section*{DGNIMPORT}

\section*{Quick Reference}

\section*{See also:}
- Import MicroStation DGN Files

Imports the data from a DGN file into a new DWG file.

\section*{Access Methods}
\(\stackrel{\square}{\text { DGN }}\)
Bution
\(\$\) Menu: Application menu \(>\) Open \(>\) DGN File

\section*{Summary}

The Import DGN File dialog box (a standard file selection dialog box) is displayed. Once you select a DGN file, the Import DGN Settings dialog box is displayed.

If you enter -dgnimport at the Command prompt, options are displayed on page 557.
See the DGNIMPORT Conversion Table on page 552 for specific details about the scope of importing MicroStation objects and other data.

See the DGNIMPORT Unit Mapping Table on page 555 for specific details about unit conversions when importing MicroStation objects.

NOTE The type of plot style drawing (Color-dependent or Named) is based on the value of PSTYLEPOLICY on page 2473.

\section*{Import DGN Settings Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Import MicroStation DGN Files

Specifies the import settings for a DGN file.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{Import from: C: My Documents \Architectural - Annotation Scaling and Multieaders.dgn} \\
\hline Select a design model from the DGN fie: & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Translate DGN properties to DWG properties}} \\
\hline \multirow[t]{7}{*}{Model} & & & & & & \\
\hline & \begin{tabular}{l}
Select mapping setup: \\
Standard
\end{tabular} & Layer & Linetype | Lin & weight & Color & \\
\hline & & & DGN & & DWG & - \\
\hline & & 0 & & 0 & & \\
\hline & & Arch_De & etail_Door & Arch_D & Detail_Door & E \\
\hline & & Arch_Se & ection_Celiing & Arch_S & ection_Celing & \\
\hline & & Arch_Se & ection_Handrail & Arch_S & ection_Handrail & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
External DGN references \\
(O) Translate references to DWG xrefs
\end{tabular}} & Setup description: & \multicolumn{2}{|l|}{Arch_Section_Insul} & \multicolumn{3}{|l|}{Arch_Section_Insul} \\
\hline & \multirow[t]{3}{*}{Standard mapping setup.} & \multicolumn{2}{|l|}{Arch_Section_Truss} & \multicolumn{3}{|l|}{Arch_Section_Truss} \\
\hline Prompt to overwrite & & \multicolumn{2}{|l|}{Arch_Section_VP} & \multicolumn{3}{|l|}{Arch_Section_VP} \\
\hline O Ignore all external references & & \multicolumn{2}{|l|}{Arch_Section_Wall} & \multicolumn{3}{|l|}{Arch_Section_Wall} \\
\hline \multirow[t]{2}{*}{O Attach as DGN underlay} & Mapping Setups... & \multicolumn{2}{|l|}{C-241-1} & \multicolumn{3}{|l|}{C-241-1} \\
\hline & \multirow[t]{5}{*}{(I) Select a mapping setup to change the mapping preview for the file you selected.} & \multicolumn{2}{|l|}{Center} & \multicolumn{3}{|l|}{Center} \\
\hline Conversion units & & \multicolumn{2}{|l|}{DEFPOINTS} & \multicolumn{3}{|l|}{DEFPOINTS} \\
\hline Specify DGN units to convert to DWG units & & \multicolumn{2}{|l|}{Dim} & \multicolumn{3}{|l|}{Dim} \\
\hline - Master units Feet & & \multicolumn{2}{|l|}{Foundation_Plan_Dim} & \multicolumn{3}{|l|}{Foundation_Plan_Dim} \\
\hline Oub units Inches & & \multicolumn{2}{|l|}{L1} & \multicolumn{2}{|l|}{L1} & - \\
\hline \multicolumn{7}{|l|}{\(\square\) Explode text nodes to text elements} \\
\hline & & & OK & Can & & \\
\hline
\end{tabular}

\section*{Access Methods}

Bution

Menu: Application menu \(>\) Open \(>\) DGN File

\section*{List of Options}

The following options are displayed.

\section*{Select a Design Model from the DGN file}

The DGN design model that you select is imported into the model space of your current DWG file.

V8 DGN files might contain multiple design and sheet models. A DGN design model is equivalent to model space, and a DGN sheet model is equivalent to paper space. Because a DWG file can have only one model space, you need to select the design model in the DGN file that you want to import.

If a design model is selected and is referenced into a sheet model, then the sheet model is also converted as one or more layouts in the DWG file. Only the sheet models that reference the primary design model are imported. These sheet models are translated to paper space layouts, and will include layout viewports that display each reference to the primary design model.

\section*{External DGN References}

Controls how DGN references are handled in a DWG environment.
Any DGN files are supported as references. These file types include, but not limited to, these extensions: .dgn, .dwg,.cel,.s,.h, .cgm,.rdl,.d files. However, DXF files are not supported and are ignored.

\section*{Translate References to DWG Xrefs}

All referenced DGN design models, including nested references, are converted into individual DWG files and attached as xrefs in model space.

The nesting relationships of these references are maintained. DGN design model references that reference the primary DGN design model, also called circular references or self references, are handled by creating a separate DWG copy of the DGN design model and attaching it to the primary DWG as an xref. Design model references to sheet models, and sheet model references to other sheet models are not supported and are ignored. Unique names for the referenced DWG files are generated by appending the model name to the design file name separated with a dash (-). If necessary, the resulting DWG file names is truncated and one or more of the last characters might be replaced with numerals to make the file name unique.

With the following set of options, you can choose whether or not to overwrite external reference files:
- Prompt to Overwrite

■ Overwrite without Prompting
■ Do Not Overwrite

NOTE If a host folder is read-only, any DWG xrefs will be created in the My Documents (Windows XP) or Documents (Windows Vista) folder.

\section*{Ignore All External References}

Referenced DGN and DWG files that are external to the specified DGN file are not included in the resulting DWG file.

If the DGN file has self references or references to other design models contained within the DGN file, these references are included.

\section*{Attach as DGN Underlay}

All DGN external references in the DGN file are imported as DGN underlays in the resulting DWG file. Referenced DWG files remain xrefs when imported.

NOTE New DWG files are created in this process. These new DWGs are not automatically deleted.

\section*{Conversion Units}

Select the appropriate conversion units for the translation. The imported DGN file contains working units (imperial or metric) called master units and sub-units. The selected working units (master units or sub-units) are converted one-for-one into DWG units.

\section*{Master Units}

Specifies that one master unit of the imported DGN file converts to one DWG drawing unit.

\section*{Sub Units}

Specifies that one sub-unit of the imported DGN file converts to one DWG drawing unit.

NOTE The master units and the sub-units of the selected DGN file are displayed next to the buttons for reference.

\section*{Explode Text Node to Text Elements}

Text node elements in a DGN file are multiple lines of text stored as one element, and are similar to MTEXT objects. Check this option to maintain text which follows a path.

When cleared, multiple lines of text are maintained as a single multiline text object.

When checked, multiple lines of text are separated into individual text objects. Select this option to maintain visual fidelity when you import a DGN file that
includes text created along a curved path. The first character determines the location and rotation of the text object.

\section*{Translate DGN Properties to DWG Properties}

Selects and manages the mapping setup used on the current DGN import.

\section*{Select Mapping Setup}

Displays the currently defined mapping setups.
Standard is the default mapping setup which extracts data from the drawing being exported and applies an automatic mapping to DGN layers, linetypes, lineweights, and colors, as shown in the mapping preview.

\section*{Setup Description}

Displays the description of the selected mapping setup.

\section*{Mapping Setups}

Opens the DGN Mapping Setups dialog box on page 560 where new mapping setups can be created and existing mapping setups can be renamed, modified, or deleted (see DGNMAPPING on page 559).

\section*{Mapping Preview for Setup: Standard}

Lists all properties of both the imported DGN file in the DGN column and the selected mapping setup in the DWG column.

NOTE External reference files properties are not listed in a mapping preview.
See the DGNIMPORT Conversion Table on page 552 for specific details about the scope of importing MicroStation objects and other data.

See the DGNIMPORT Unit Mapping Table on page 555 for specific details about unit conversions when importing MicroStation objects.

\section*{DGNIMPORT Conversion Table}

\section*{Quick Reference}

See also:
- Import MicroStation DGN Files

The following table lists the DGN objects and features that are supported for import, and notes on the scope of the translation.

DGN to DWG Conversion Table
\begin{tabular}{|c|c|c|}
\hline MicroStation & AutoCAD & Notes \\
\hline Geometric Elements & Geometric Objects & The following DGN elements are translated into DWG objects: line, SmartLine, LineString, multiline, shape, complex chain, complex shape, arc, ellipse, curve, B-spline curve, and pattern. Pattern elements are limited to simple pattern styles. Bitonal gradient properties are also supported. \\
\hline Levels & Layers & DGN levels are mapped automatically into the equivalent DWG layers. Invalid DGN characters in level names are converted to spaces. \\
\hline Colors & Colors & All colors are translated using RGB values either to the ACl (AutoCAD Color Index) or TrueColor index as appropriate. \\
\hline Line Styles & Linetypes & \begin{tabular}{l}
Only simple line styles using solid lines, dashes, and dots are supported. Unsupported custom line styles are converted into continuous linetypes. \\
Dynamically scaled line styles are converted into fixed-scale linetypes. The resulting linetypes use a scale near the middle of the scaling range of the dynamic line style. \\
NOTE To import standard V7 line styles correctly, you must "Fit View" and "Save Settings" in MicroStation first.
\end{tabular} \\
\hline Cells & Blocks & Cells are converted into blocks. Tags that are associated with cells are converted into con-stant-mode block attributes. \\
\hline Text Elements, Text Styles & Single-line Text Objects, Multiline & Missing SHX text fonts are converted into the AutoCAD text font specified in the FONTALT \\
\hline
\end{tabular}
\begin{tabular}{lll} 
DGN to DWG Conversion Table & \\
\hline MicroStation & AutoCAD & Notes \\
\hline & \begin{tabular}{l} 
Text Objects, \\
Text Styles
\end{tabular} & \begin{tabular}{l} 
system variable. The acad.fmp file can be used \\
to map SHX text fonts to DGN text fonts. \\
TrueType fonts and SHX fonts in AutoCAD \\
are exported to MicroStation V7 as Engineer- \\
ing. This can result in many visual differences.
\end{tabular} \\
\hline Tables & Tables & \begin{tabular}{l} 
Cells that represent tables in DGN are impor- \\
ted as blocks.
\end{tabular} \\
\hline \begin{tabular}{lll} 
Dimensions, Di- \\
mension Styles & Dimensions, Di- \\
mension Styles
\end{tabular} & \begin{tabular}{l} 
The size, spacing, style, and shape of dimen- \\
sions may vary slightly. Dimension associativ- \\
ity is maintained whenever possible, and the \\
correct dimension values are always main- \\
tained.
\end{tabular} \\
\hline Fields & Fields & \begin{tabular}{l} 
In general, fields are translated as static text. \\
The exceptions are fields that behave \\
identically in both products. This includes the
\end{tabular} \\
\hline
\end{tabular}

\section*{DGNIMPORT Unit Mapping Table}

\section*{Quick Reference}

See also:
- Import MicroStation DGN Files

The following table lists the linear units used in the resulting DWG file as determined by the master units, sub-units, and unit precision of the DGN file being imported.

DGN to DWG Unit Mapping Table
\begin{tabular}{|c|c|c|c|c|}
\hline DGN Master Units & DGN Sub Units & DGN Precision & DWG Units & Notes \\
\hline Feet & Inches & Decimal & Engineering & \\
\hline Feet & Inches & Fractional & Architectural & \\
\hline Inches & Inches & Decimal & Engineering & \\
\hline Inches & Inches & Fractional & Architectural & \\
\hline Inches & Any Other Unit & Decimal & Engineering & Master Units selected in the Import DGN Settings dialog box. \\
\hline Inches & Any Other Unit & Decimal & Decimal & Sub Units selected in the Import DGN Settings dialog box. \\
\hline Inches & Any Other Unit & Fractional & Architectural & Master Units selected in the Im- \\
\hline
\end{tabular}

DGN to DWG Unit Mapping Table
\begin{tabular}{lllll}
\hline \begin{tabular}{lll} 
DGN Master \\
Units
\end{tabular} & \begin{tabular}{l} 
DGN Sub \\
Units
\end{tabular} & \begin{tabular}{l} 
DGN Preci- \\
sion
\end{tabular} & DWG Units & Notes \\
\hline Inches & \begin{tabular}{l} 
Any Other \\
Unit
\end{tabular} & Fractional & Fractional & \begin{tabular}{l} 
Sub Units selec- \\
ted in the Im- \\
tings dialog box
\end{tabular} \\
\hline Inches & \begin{tabular}{ll} 
Any Other DGN Set- \\
tings dialog box
\end{tabular} \\
\hline Unit & Decimal & Decimal & \\
\hline Any Other Unit & \begin{tabular}{ll} 
Any Other \\
Unit
\end{tabular} & Fractional & Fractional & \\
\hline
\end{tabular}

For import of a V7 file, Master unit label will be read and will use the following table to set the Master units based on the unit translation table. The Resolution value will be used to set the Sub units.
\begin{tabular}{llll}
\hline NOTE Unknown labels will be treated as "meters" and "decimeters." \\
\hline \hline V7 DGN Unit Translation Table & & \\
\hline DGN Label & Name & DGN Label & Name \\
\hline km & kilometers & mi & miles \\
\hline m & meters & yd & yard \\
\hline dc & decimeters & ft & feet \\
\hline cm & millimeters & tn & inches \\
\hline mm & microns & ti & \(1 / 10\) feet \\
\hline um & & ui & \(1 / 10\) inches \\
\hline
\end{tabular}

V7 DGN Unit Translation Table
\begin{tabular}{lll}
\hline DGN Label & Name & DGN Label \\
\hline & Name \\
\hline &, & inches \\
\hline
\end{tabular}

\section*{-DGNIMPORT}

\section*{Quick Reference}

See also:
- Import MicroStation DGN Files

If you enter -dgnimport at the Command prompt, the following prompts are displayed.

\section*{List of Prompts}

The following prompts are displayed.
Enter filename on page 557 for DGN Import: Specify path and filename of DGN file
Enter name of model or [? on page 558] <Default>: Enter the name of the design model in the DGN file, enter ? to list all design models, or press Enter
Specify conversion units on page 558 [Master/Sub] <Master>: Specify m or s, or press Enter
Specify mapping setup on page 558 or [?] <Standard>: Specify mapping setup or ? to specify filter command

TIP Create a script using -DGNIMPORT to batch process importing of DGN files.

\section*{Filename}

The file name can include up to 255 characters and contain letters, digits, spaces, and any special characters not used by Microsoft Windows or this program.

To avoid errors when entering a file name, it is recommended that you specify both the DGN file and path as follows:
path \filename.dgn
or
"path\filename.dgn"
If you enter a valid DGN file name without a file extension, the program adds the extension and search for the file.

\section*{? - List of Design Models}

Lists all design models contained in the DGN file.

\section*{Units}

Specifies a drawing-units value for scaling the DGN file.

\section*{Mapping Setups}

Specifies the mapping setup of the selected design model.
? After specifying a filter, a list of available import mapping setups that match the filter is displayed and will re-prompt.

\section*{DGNLAYERS}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Layers in an Underlay

Controls the display of layers in a DGN underlay.

\section*{Access Methods}

4
Shortcut menu: Select a DGN underlay, right-click in the drawing area, and choose DGN Layers.

\section*{Summary}

After selecting the DGN underlay, the Underlay Layers dialog box on page 1992 is displayed.

NOTE The ULAYERS on page 1992 command allows you to manage the layers of all underlays in the current document: DWF, DWFx, PDF, and DGN.

\section*{DGNMAPPING}

\section*{Quick Reference}

\section*{See also:}
- Manage Translation Mapping Setups

Allows users to create and edit user-defined DGN mapping setups.

\section*{Summary}

The DGN Mapping Setups dialog box on page 560 is displayed. It can also be accessed from the Import DGN Settings and Export DGN Settings dialog boxes.

The import/export process translates basic DGN/DWG data into the corresponding DWG/DGN data. The Standard (default) mapping translation is used to map DGN levels, linestyles, lineweights, and colors to equivalent DWG layers, linetypes, lineweights, and colors.

The DGNMAPPING on page 559 command allows you to create, modify, rename, or delete mapping translations based on your company's CAD standards such as:

■ Change DGN level names to appropriate DWG layer names
- Remap unsupported DGN linestyles to DWG linetypes

■ Remap lineweights and adjust color mapping

Therefore, you can streamline the import/export process while minimizing the need for more extensive editing.
The list of translation mapping setups is sorted by mapping type, based on where it was accessed from. The Standard mapping setup is always on the top of the list. This mapping setup is the default translation based on the file being imported or exported. It is not editable.

\section*{DGN Mapping Setups Dialog Box}

\section*{Quick Reference}

See also:
■ Manage Translation Mapping Setups

Creates new mapping setups, renames mapping setups, modifies mapping setups, and deletes mapping setups.


\section*{Access Methods}


\section*{List of Options}

The following options are displayed.

\section*{Current User}

Displays the user's login name.
Name
Lists all mapping setups. If the setup name is too long to be completely displayed, an ellipsis (...) is shown at the end.

Type Specifies the mapping setup type: import or export.
Description Displays the description of the selected mapping setup.

New
Displays the New Mapping Setup dialog box on page 561, in which you can define a new mapping setup.

\section*{Rename}

Starts in-place editing of the currently selected mapping setup (direct editing in the list).

NOTE The Rename button is disabled when the Standard mapping setup is selected.

\section*{Modify}

Displays the Modify DGN Mapping Setup dialog box on page 563, in which you can modify the currently selected mapping setup.

NOTE The Modify button is disabled when the Standard mapping setup is selected.

\section*{Delete}

Deletes the currently selected mapping setup. After deletion, the mapping setup directly below the one deleted is selected. If there is none below, the one directly above it is selected.

NOTE The Delete button is disabled when the Standard mapping setup is selected.

\section*{New Mapping Setup Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Manage Translation Mapping Setups

Names the new mapping setup, sets the mapping setup on which to start the new one, and indicates the mapping types to which you want the new style to apply.


\section*{Access Methods}

\section*{Command entry: dgnmapping}

\section*{List of Options}

The following options are displayed.

\section*{Current User}

Displays the user's login name.

\section*{New DGN Mapping Setup Name}

Specifies the new mapping setup name.

\section*{Based On}

Sets a mapping setup to use as a basis for the new one. For the new mapping setup, you change only the properties that differ from the properties you start with.

\section*{Mapping Type}

Specifies what type of mapping setup to create.
Import
Specifies an import mapping type.
Export
Specifies an export mapping type.

\section*{Continue button}

Opens the Modify DGN Mapping Setup dialog box on page 563. Depending on the mapping type selected (Import or Export), the appropriate import/export dialog box is displayed.

\section*{Modify DGN Mapping Setup Dialog Box}

\section*{Quick Reference}

See also:
- Manage Translation Mapping Setups

Sets the properties for the selected mapping setup.


\section*{Access Methods}

並 Command entry: dgnmapping

\section*{Summary}

When you choose Continue in the New Mapping Setup dialog box, the Modify DGN Mapping Setup dialog box is displayed. You define the properties for the new mapping setup in this dialog box. The dialog box initially displays the properties of the mapping setup that you selected.

\section*{List of Options}

The Modify DGN Mapping Setup dialog box includes the following tabs:
■ Layer on page 564
■ Linetype on page 564
■ Lineweight on page 565
■ Color on page 566

\section*{Layer}

The corresponding cells are automatically filled with the default mapping. The properties are added depending on which of the following mapping setups you are currently working on. Whenever the target cell is blank (right-hand column), the default system mapping is used. You can only make changes to the right-hand column of the Layer tab. The left-hand column is not editable. Use the Add Properties buttons to add layers/levels to the current mapping setup.

New mapping setup: If you have accessed the Modify DGN Mapping Setup dialog box by creating a new mapping setup from the Import/Export DGN Settings dialog boxes, the rows are populated with all defined levels in the imported DGN file or all defined layers in the current drawing file.

Existing mapping setup: If you are editing an existing mapping setup (even if you are editing a setup other than Standard from the Import (or Export) DGN Settings dialog box), the properties listed in the mapping table are not derived from the imported DGN file or the exported drawing file.

\section*{Linetype}

You can map linetypes and linestyles by editing the right-hand column of the Linetype tab. Select a cell in the right-hand column, and click the drop-down list to select a linetype or linestyle that the property in the left-hand column should be mapped to. Linetypes can be loaded for use in the mapping setup by selecting Other from the drop-down list. The left-hand column is not editable. Use the Add Properties buttons to add linetypes/linestyles to the current mapping setup.

Export mapping setup: If you have accessed the Modify DGN Mapping Setups dialog box by creating a new setup from the Export DGN Settings dialog box, the DWG column includes all defined linetypes in the current drawing file. Whenever the target cell is blank (right-hand column), we will use the default system mapping.


You can directly type DGN linestyle names in the cells in the right column. If unknown linestyle names are added to the right column of the mapping table, they are ignored and default to Continuous.

Import mapping setup: If you are in the Modify DGN Mapping Setup dialog box by creating a new setup from the Import DGN Settings dialog box, the DGN column includes all defined DGN linestyles in the imported DGN file, as well as the DGN seed file used when the DGN file was created.

When remapping linetypes in the DWG column, only linetypes from the acad.lin and acadiso.lin files are supported (depending on Units or Measurement type of file). Linetypes stored in custom LIN files are not supported.

\section*{Lineweight}

A predefined set of lineweights is displayed which provides the best match between lineweights used in DGN and DWG files. You can copy and paste single or multiple lineweights using the right-click menu in the right-hand
column. You can only make changes on the right-hand column of the Lineweight tab. The left-hand column is not editable.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{A- Modify DGN Mapping Setup: Copy of Standard} & \(x^{2}\) \\
\hline \multicolumn{4}{|l|}{Specify property mapping for DGN Export} & & DwG & DGN \\
\hline Layer & Linetype & Lineweight & Color & & & \\
\hline \multicolumn{2}{|r|}{DWG} & & - & DGN & & - \\
\hline \multicolumn{2}{|l|}{0.00 mm} & & 0 & & & \\
\hline 0.05 mm & & & 0 & & & \\
\hline 0.09 mm & & & 1 & & & ミ \\
\hline 0.13 mm & & & 1 & & & \\
\hline 0.15 mm & & & 1 & & & \\
\hline 0.18 mm & & & 1 & & & \\
\hline 0.20 mm & & & 1 & & & \\
\hline 0.25 mm & & & 2 & & & \\
\hline 0.30 mm & & & 2 & & & \\
\hline 0.35 mm & & & 2 & & & \\
\hline 0.40 mm & & & 3 & & & \\
\hline 0.50 mm & & & 4 & & & \\
\hline 0.53 mm & & & 4 & & & - \\
\hline \multicolumn{7}{|l|}{Setup description:} \\
\hline & & & OK & Cancel & He & \\
\hline
\end{tabular}

\section*{Color}

You can map color values between DGN to DWG files. By default the Color tab is blank and the default color mapping is used. Color translations between DGN color values is done to the closest AutoCAD color values and AutoCAD color values are mapped to the closest DGN color values. The Color tab is the only tab that allows editing in both columns. Values in the left-hand column must be unique. To remap colors, right-click either column and select Add Color from the right-click menu.


DGN column: Selecting Add Color... from the right-click menu allows you to add a valid DGN color value to the cell. Valid colors include 0-255, ByLevel and ByCell. The DWG column is automatically populated with the equivalent RGB value. You can modify a DGN color by double-clicking the cell and typing a different value.

DWG column: Selecting Add Color... from the right-click menu brings up the Select Color dialog box on page 568. You can add ACI colors, true colors or color from a Color Book. The DGN column is automatically populated with the DGN equivalent color value. You can modify a DWG color by clicking the cell and selecting an option from the drop-down list. The drop-down list displays the standard color list as well as a list of colors previously added to the DWG column and the Select Color option.

\section*{Add Properties from DGN File}

Opens the Add Properties from DGN File dialog box (a standard file selection dialog box). The level and linestyle properties from the chosen DGN file are added to the DGN columns in the Modify DGN Mapping Setups dialog box table.

In Files of Type, the drop-down list includes MicroStation DGN (*.dgn) and All DGN Files (*.*) to recognize DGN files that have other extensions.

NOTE Only unique properties are added to the list in the Layer and Linetype tabs when adding properties from files.

\section*{Add Properties from Drawing File}

Opens the Add Properties from Drawing File dialog box (a standard file selection dialog box). The layer and linetype properties from the chosen DWT/DWG/DWS files are added to the DWG columns in the Modify DGN Mapping Setups dialog box table.

In Files of Type, the drop-down list includes the following:
■ Drawing template (*.dwt)
■ Drawing (*.dwg)
- Standards (*.dws)

\section*{Setup Description}

Specifies a mapping setup description. You can also edit the description for an existing mapping setup.

NOTE Only unique properties are added to the list in the Layer and Linetype tabs when adding properties from files.

\section*{Select Color Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Manage Translation Mapping Setups

The Select Color dialog box is displayed when you click Select Color from the color drop-down list.

\section*{Access Methods}

並 Command entry: dgnmapping

\section*{Summary}

■ Index Color on page 338

■ True Color on page 340
- Color Books on page 342

\section*{DIM and DIM1}

\section*{Quick Reference}

See also:
- Overview of Dimensioning

Accesses Dimensioning mode commands.

\section*{Summary}

The Dim prompt indicates that you're in Dimensioning mode, in which you can use a special set of dimensioning commands on page 569. (DIM and DIM1 are provided only for compatibility with previous releases.)

Use DIM to remain in Dimensioning mode after you have used a dimensioning command. Use DIM1 to execute a dimensioning command and immediately return to the Command prompt. To exit Dimensioning mode, enter e or exit, or press Esc.

\section*{List of Prompts}

The following prompts are displayed.
Dim: Enter a Dimensioning mode command
Dimensioning Mode Commands
The following commands are available at the DIM prompt.
Dimensioning mode commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline EXIT & \begin{tabular}{l} 
Exits Dimensioning mode and returns to the Command prompt. \\
You can also press Esc to exit Dimensioning mode.
\end{tabular} \\
\hline REDRAW & Redraws the current viewport. \\
\hline STYLE & Changes the current text style. \\
\hline
\end{tabular}

\section*{Dimensioning mode commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline UNDO or U & \begin{tabular}{l} 
Erases the most recently created dimension objects and cancels any \\
new dimension system variable setting. When you exit Dimensioning \\
mode, UNDO reverses the effects of the entire dimensioning session.
\end{tabular} \\
&
\end{tabular}

The following table shows which AutoCAD commands are equivalent to the rest of the Dimensioning mode commands. For information about these Dimensioning mode commands, see the equivalent AutoCAD command.
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
Dimensioning mode command equivalents \\
\begin{tabular}{l} 
Dimensioning mode \\
command
\end{tabular} \\
\hline ALIGNED
\end{tabular} \begin{tabular}{l} 
Equivalent \\
command
\end{tabular} \\
\hline ANGULAR & DIMALIGNED \\
\hline BASELINE & DIMANGULAR \\
\hline CENTER & DIMCENTER \\
\hline CONTINUE & DIMCONTINUE \\
\hline DIAMETER & DIMEDIT Home \\
\hline HOMETEXT & DIMLINEAR Horizontal \\
\hline HORIZONTAL & DIMJOGGED \\
\hline LEADER & DIMEDIT New \\
\hline JOG & DIMEDIT Oblique \\
\hline NEWTEXT & DIMOVERRIDE \\
\hline OBLIQUE &
\end{tabular}
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
Dimensioning mode command equivalents \\
\hline \begin{tabular}{l} 
Dimensioning mode \\
command
\end{tabular} \\
\hline RADIUS
\end{tabular} & \begin{tabular}{l} 
Equivalent \\
command
\end{tabular} \\
\hline RESTORE & DIMRADIUS \\
\hline ROTATED & -DIMSTYLE Restore \\
\hline SAVE & DIMLINEAR Rotated \\
\hline STATUS & -DIMSTYLE Save \\
\hline TEDIT & DIMTEDIT \\
\hline TROTATE & DIMEDIT Rotate \\
\hline UPDATE & -DIMSTYLE Apply \\
\hline VARIABLES & DIMLINEAR Vertical \\
\hline VERTICAL &
\end{tabular}

\section*{DIMALIGNED}

\section*{Quick Reference}

\section*{See also:}
- Create Aligned Dimensions

Creates an aligned linear dimension.

\section*{Access Methods}

\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Aligned
\(\$\) Menu: Dimension \(>\) Aligned
\(\$\) Toolbar: Dimension

\section*{Summary}

Creates a linear dimension that is aligned with the origin points of the extension lines.


\section*{List of Prompts}

The following prompts are displayed.
Specify first "extension line origin" or <"select object">: Specify a point for manual extension lines, or press Enter for automatic extension lines

After you specify either manual or automatic extension lines, the following prompt is displayed:

Specify dimension line location or ["Mtext"/"Text"/"Angle"]: Specify a point or enter an option
Extension Line Origin Specifies the first extension line origin (1). You are prompted to specify the second one.

Object Selection Automatically determines the origin points of the first and second extension lines after you select an object.
For polylines and other explodable objects, only the individual line and arc segments are dimensioned. You cannot select objects in a nonuniformly scaled block reference.
If you select a line or an arc, its endpoints are used as the origins of the extension lines. The extension lines are offset from the endpoints by the distance specified in Offset from Origin on the Lines and Arrows tab of the New, Modify, and Override Dimension Style dialog boxes (see DIMSTYLE). This value is stored in the DIMEXO system variable.

object selected

dimension line location designated

If you select a circle, the endpoints of its diameter are used as the origins of the extension line. The point used to select the circle defines the origin of the first extension line.

Dimension Line Location Specifies the placement of the dimension line and determines the direction to draw the extension lines. After you specify the location, the DIMALIGNED command ends.

Mtext Displays the In-Place Text Editor, which you can use to edit the dimension text. The generated measurement is represented with angle brackets \((<>)\). To add a prefix or a suffix to the generated measurement, enter the prefix or suffix before or after the angle brackets. Use control codes and Unicode character strings to enter special characters or symbols. See Control Codes and Special Characters on page 1938.
To edit or replace the generated measurement, delete the angle brackets, enter the new dimension text, and then click OK. If alternate units are not turned on in the dimension style, you can display them by entering square brackets ([]). For more information, see "Change Existing Objects".
The current dimension style determines the appearance of the generated measurements.

Text Customizes the dimension text at the command prompt. The generated dimension measurement is displayed within angle brackets.
Enter the dimension text, or press Enter to accept the generated measurement. To include the generated measurement, use angle brackets \((<\rangle)\) to represent the generated measurement. If alternate units are not turned on in the dimension style, you can display alternate units by entering square brackets ([]).
Dimension text properties are set on the Text tab of the New, Modify, and Override Dimension Style dialog boxes.

Angle Changes the angle of the dimension text.

before angle


\section*{DIMANGULAR}

\section*{Quick Reference}

See also:
- Create Angular Dimensions

Creates an angular dimension.

\section*{Access Methods}


Button

Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Angular
\(\$\) Menu: Dimension \(>\) Angular
\(\$\) Toolbar: Dimension

\section*{Summary}

Measures the angle between selected objects or 3 points. Objects that can be selected include arcs, circles, and lines, among others.


\section*{List of Prompts}

The following prompts are displayed.
Select "arc", "circle", "line", or <"specify vertex">: Select an arc, circle, or line, or press Enter to create the angular dimension by specifying three points
After you define the angle to dimension, the following prompt is displayed:
Specify "dimension arc line location" or ["Mtext"/"Text"/"Angle"/"Quadrant"]: Arc Selection Uses points on the selected arc as the defining points for a three-point angular dimension. The center of the arc is the angle vertex. The arc endpoints become the origin points of the extension lines.


The dimension line is drawn as an arc between the extension lines. The extension lines are drawn from the angle endpoints to the intersection of the dimension line.

Circle Selection Uses the selection point (1) as the origin of the first extension line. The center of the circle is the angle vertex.
The second angle endpoint is the origin of the second extension line and does not have to lie on the circle.


Line Selection Defines the angle using two lines.
The program determines the angle by using each line as a vector for the angle and the intersection of the lines for the angle vertex. The dimension line spans the angle between the two lines. If the dimension line does not intersect the lines being dimensioned, extension lines are added as needed to extend one or both lines. The arc is always less than 180 degrees.


Three-Point Specification Creates a dimension based on three points you specify.
The angle vertex can be the same as one of the angle endpoints. If you need extension lines, the endpoints are used as origin points.


The dimension line is drawn as an arc between the extension lines. The extension lines are drawn from the angle endpoints to the intersection of the dimension line.

Dimension Arc Line Location Specifies the placement of the dimension line and determines the direction to draw the extension lines.

Mtext Displays the In-Place Text Editor, which you can use to edit the dimension text. To add a prefix or a suffix, enter the prefix or suffix text before or after the generated measurement. Use control codes and Unicode character strings to enter special characters or symbols. See Control Codes and Special Characters on page 1938.
For more information, see "Change Existing Objects".
The current dimension style determines the appearance of the generated measurements.

Text Customizes the dimension text at the Command prompt. The generated dimension measurement is displayed within angle brackets.
To include the generated measurement, use angle brackets ( \(<>\) ) to represent the generated measurement.


Dimension text properties are set on the Text tab of the New, Modify, and Override Dimension Style dialog boxes.

Angle Changes the angle of the dimension text.


Quadrant Specifies the quadrant that the dimension should be locked to. When quadrant behavior is on, the dimension line is extended past the extension line when the dimension text is positioned outside of the angular dimension.


\section*{DIMARC}

\section*{Quick Reference}

\section*{See also:}

■ Create Arc Length Dimensions

Creates an arc length dimension.

\section*{Access Methods}


Button

Ribbon: Annotate tab \(\boldsymbol{>}\) Dimensions panel \(>\) Arc Length
\(\$\) Menu: Dimension \(>\) Arc Length
\(\$\) Toolbar: Dimension

\section*{List of Prompts}

The following prompts are displayed.
Select arc or polyline arc segment: Use an object selection method Specify "arc length dimension location" or
["Mtext"/"Text"/"Angle"/"Partial"/"Leader"]: Specify a point or enter an option
Arc length dimensions measure the distance along an arc or polyline arc segment. The extension lines of an arc length dimension can be orthogonal or radial. An arc symbol is displayed either above or preceding the dimension text.

Arc Length Dimension Location Specifies the placement of the dimension line and determines the direction of the extension lines.

Mtext Displays the In-Place Text Editor, which you can use to edit the dimension text. Use control codes and Unicode character strings to enter special characters or symbols. See Control Codes and Special Characters on page 1938.
If alternate units are not turned on in the dimension style, you can display them by entering square brackets ([]). For more information, see "Change Existing Objects".
The current dimension style determines the appearance of the generated measurements.

Text Customizes the dimension text at the Command prompt. The generated dimension measurement is displayed within angle brackets.

To include the generated measurement, use angle brackets \((<\rangle)\) to represent the generated measurement. If alternate units are not turned on in the dimension style, you can display alternate units by entering square brackets ([]).

Dimension text properties are set on the Text tab of the New, Modify, and Override Dimension Style dialog boxes.

Angle Changes the angle of the dimension text.
Partial Reduces the length of the arc length dimension.
Leader Adds a leader object. This option is displayed only if the arc (or arc segment) is greater than 90 degrees. The leader is drawn radially, pointing towards the center of the arc being dimensioned.

No Leader Cancels the Leader option before the leader is created.
To remove a leader, delete the arc length dimension and recreate it without the leader option.

\section*{DIMBASELINE}

\section*{Quick Reference}

\section*{See also:}
- Create Baseline and Continued Dimensions

Creates a linear, angular, or ordinate dimension from the baseline of the previous or selected dimension.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Baseline
\(\$\) Menu: Dimension \(>\) Baseline
\(\$\) Toolbar: Dimension

\section*{Summary}

The default spacing between baseline dimensions can be set from the Dimension Style Manager, Lines tab, Baseline Spacing (DIMDLI system variable).


If no dimension was created in the current session, you are prompted to select a linear, ordinate, or angular dimension to use as the base for the baseline dimension.

\section*{List of Prompts}

The following prompts are displayed.
Select base dimension: Select a linear, ordinate, or angular dimension
Otherwise, the program skips this prompt and uses the dimension object that was last created in the current session. If the base dimension is linear or angular, the following prompt is displayed:
Specify a second extension line origin or ["Undo"/"Select"] <Select>: Specify a point, enter an option, or press Enter to select a base dimension

If the base dimension is ordinate, the following prompt is displayed:
Specify feature location or [Undo/Select] <Select>:
To end the command, press Enter twice, or press Esc. The current dimension style determines the appearance of the text.

Second Extension Line Origin By default, the first extension line of the base dimension is used as the extension line origin for the baseline dimension. To override this default behavior, explicitly select the base dimension; the extension line origin becomes the extension line of the base dimension closest to the pick point of the selection. When you select a second point, the baseline dimension is drawn and the Specify a Second Extension Line Origin prompt is redisplayed. To end the command, press Esc. To select another linear, ordinate, or angular dimension to use as the basis for the baseline dimension, press Enter.


Feature Location Uses the endpoint of the base dimension as the endpoint for the baseline dimension; you are prompted for the next feature location. When you select a feature location, the baseline dimension is drawn and the Specify Feature Location prompt is redisplayed. To select another linear, ordinate, or angular dimension to use as the basis for the baseline dimension, press Enter.

Undo Undoes the last baseline dimension entered during this command session.

Select Prompts you to select a linear, ordinate, or angular dimension to use as the base for the baseline dimension.

\section*{DIMBREAK}

\section*{Quick Reference}

\section*{See also:}
- Dimension Breaks

Breaks or restores dimension and extension lines where they cross other objects.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Break.
\(\$\) Menu: Dimension \(>\) Dimension Break

Toolbar: Dimension

\section*{Summary}

Dimension breaks can be added to linear, angular, and ordinate dimensions, among others.

\section*{List of Prompts}

The following prompts are displayed.
Select a dimension to add/remove break or [Multiple]: Select a dimension, or enter \(\mathbf{m}\) and press Enter

After you select a dimension, the following prompt is displayed:
Select object to break dimension or ["Auto"/"Manual"/"Remove"] <Auto>: Select an object that intersects the dimension or extension lines of the selected dimension, enter an option, or press Enter

After you select an object to break the dimension with, the following prompt is displayed:

Select object to break dimension: Select an object that passes through the dimension or press Enter to end the command

NOTE Dimension breaks can be added to dimensions for objects that do not intersect the dimension or extension lines using the by Manual option.

Multiple Specifies multiple dimensions to add breaks to or remove breaks from.

Auto Places dimension breaks automatically at all the intersection points of the objects that intersect the selected dimension. Any dimension break created using this option is updated automatically when the dimension or an intersecting object is modified.
When a new object is drawn over the top of a dimension that has any dimension breaks, no new dimension breaks are automatically applied at the intersecting points along the dimension object. To add the new dimension breaks, must be run the command again.

Remove Removes all dimension breaks from the selected dimensions.
Manual Places a dimension break manually. You specify two points on the dimension or extension lines for the location of the break. Any dimension break that is created using this option is not updated if the dimension or
intersecting objects are modified. You can only place a single manual dimension break at a time with this option.

\section*{DIMCENTER}

\section*{Quick Reference}

\section*{See also:}
- Create Radial Dimensions

Creates the center mark or the centerlines of circles and arcs.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Center Mark
\(\$\) Menu: Dimension > Center Mark
\(\$\) Toolbar: Dimension

\section*{Summary}

The default sizes of the center mark components can be set from the Dimension Style Manager, Symbols and Arrows tab, Center Marks (DIMCEN system variable).

You can choose between center marks and centerlines and specify their size when you set up the dimension style. See DIMSTYLE. You can also change center mark settings using the DIMCEN system variable.

centerlines

\section*{DIMCONSTRAINT}

\section*{Quick Reference}

\section*{See also:}
- Apply Dimensional Constraints

Applies dimensional constraints to selected objects or points on objects, or converts associative dimensions to dimensional constraints.

\section*{Access Methods}


Panel

Ribbon: Parametric tab \(>\) Dimensional panel
\(\$\) Menu: Parametric \(>\) Dimensional Constraints \(>\) Horizontal
\(\$\) Toolbar: Dimensional Constraints

\section*{Summary}

Applies a dimensional constraint to a selected object or converts an associative dimension to a dimensional constraint.

NOTE The L option (last object drawn) is not allowed in the DIMCONSTRAINT command as the constraint behavior is dependent on where you pick the object.

The following table outlines the valid constraint points for an object.
\begin{tabular}{ll}
\hline Objects & Valid Constraint Points \\
\hline Line & Endpoints, Midpoint \\
\hline Arc & Center, Endpoints, Midpoint \\
\hline Spline & Endpoints \\
\hline Ellipse, Circle & Center \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Objects & Valid Constraint Points \\
\hline Polyline & \begin{tabular}{l} 
Endpoints, midpoints of line and arc sub- \\
objects, center of arc subobjects
\end{tabular} \\
\hline
\end{tabular}

Block, Xref, Text, Mtext, Attribute, Table Insertion point

After you specify the dimensional constraint type, you can either enter an expression value or accept the default (constraintname=value).

The DIMCONSTRAINT command gives the same options as the following commands:

Linear (DCLINEAR on page 517) Creates a horizontal, vertical, or rotated constraint based on the locations of the extension line origins and the dimension line.

Horizontal (DCHORIZONTAL on page 516) Constrains the \(X\) distance between points on an object, or between two points on different objects.

Vertical (DCVERTICAL on page 520) Constrains the \(Y\) distance between points on an object, or between two points on different objects.

Aligned (DCALIGNED on page 509) Constrains the distance between two points on different objects.

Angular (DCANGULAR on page 511) Constrains the angle between line or polyline segments, the angle swept out by an arc or a polyline arc segment, or the angle between three points on objects.

Radius (DCRADIUS on page 519) Constrains the radius of a circle or an arc.
Diameter (DCDIAMETER on page 514) Constrains the diameter of a circle or an arc.

Form (DCFORM on page 515) Specifies whether the dimensional constraint being created is dynamic or annotational.

Convert (DCCONVERT on page 513) Converts associative dimensions to dimensional constraints.

\section*{DIMCONTINUE}

\section*{Quick Reference}

\section*{See also:}

■ Create Baseline and Continued Dimensions

Creates a dimension that starts from an extension line of a previously created dimension.

\section*{Access Methods}


\section*{Button}
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Continue
\(\$\) Menu: Dimension \(>\) Continue
\(\$\) Toolbar: Dimension

\section*{Summary}

Automatically continues creating additional dimensions from the last linear, angular, or ordinate dimension created, or from a selected extension line. The dimension lines are lined up automatically.

If no dimension was created in the current session, you are prompted to select a linear, ordinate, or angular dimension to use as the base for the continued dimension.

\section*{List of Prompts}

The following prompts are displayed.
Select continued dimension: Select a linear, ordinate, or angular dimension
Otherwise, the program skips this prompt and uses the dimension object that was last created in the current session. If the base dimension is linear or angular, the following prompt is displayed:

Specify a "second extension line origin" or ["Undo"/"Select"] <Select>: Specify a point, enter an option, or press Enter to select a base dimension

If the base dimension is ordinate, the following prompt is displayed:
Specify "feature location" or [Undo/Select] <Select>:
To end the command, press Enter twice, or press Esc. The current dimension style determines the appearance of the text.


Second Extension Line Origin Uses the second extension line origin of the continued dimension for the first extension line origin of the next dimension. The current dimension style determines the appearance of the text.
After you select a continued dimension, the Specify a Second Extension Line Origin prompt is redisplayed. To end the command, press Esc. To select another linear, ordinate, or angular dimension to use as the basis for the continued dimension, press Enter.
Select continued dimension: Select a linear, ordinate, or angular dimension Select a base dimension, or press Esc to end the command.


Feature Location Uses the endpoint of the base dimension as the endpoint for the continued dimension; you are prompted for the next feature location. When you select a feature location, the continued dimension is drawn and the Specify Feature Location prompt is redisplayed. To end the command, press Esc. To select another linear, ordinate, or angular dimension to use as the basis for the continued dimension, press Enter.
Select continued dimension: Select a linear, ordinate, or angular dimension Select a base dimension, or press Esc to end the command.

Undo Undoes the last continued dimension entered during the command session.

Select Prompts you to select a linear, ordinate, or angular dimension to use as the continued dimension. After you select a continued dimension, the Specify a Second Extension Line Origin prompt or the Specify Feature Location prompt is redisplayed. To end the command, press Esc.

\section*{DIMDIAMETER}

\section*{Quick Reference}

See also:
■ Create Radial Dimensions

Creates a diameter dimension for a circle or an arc.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Diameter
\(\$\) Menu: Dimension \(>\) Diameter
\(\$\) Toolbar: Dimension

\section*{Summary}

Measures the diameter of a selected circle or arc, and displays the dimension text with a diameter symbol in front of it. You can use grips to easily reposition the resulting diameter dimension.


\section*{List of Prompts}

The following prompts are displayed.
Select arc or circle:

Specify dimension line location or ["Mtext"/"Text"/"Angle"]: Specify a point or enter an option
Dimension Line Location Determines the angle of the dimension line and the location of the dimension text. If the dimension is placed off of an arc resulting in the dimension pointing outside the arc, AutoCAD automatically draws an arc extension line.

Mtext Displays the In-Place Text Editor, which you can use to edit the dimension text. Use control codes and Unicode character strings to enter special characters or symbols. See Control Codes and Special Characters on page 1938.
If alternate units are not turned on in the dimension style, you can display them by entering square brackets ( \([\) ). For more information, see "Change Existing Objects".
The current dimension style determines the appearance of the dimension text.
Text Customizes the dimension text at the Command prompt. The generated dimension measurement is displayed within angle brackets.
To include the generated measurement, use angle brackets ( \(\rangle\) ) to represent the generated measurement. If alternate units are not turned on in the dimension style, you can display alternate units by entering square brackets ([]).
Dimension text properties are set on the Text tab of the New, Modify, and Override Dimension Style dialog boxes.

Angle Changes the angle of the dimension text.

\section*{DIMDISASSOCIATE}

\section*{Quick Reference}

\section*{See also:}
- Change Dimension Associativity

Removes associativity from selected dimensions.

\section*{Summary}

DIMDISASSOCIATE filters the selection set to include only associative dimensions that are not on locked layers, and that are not in a different space than the current space (for example, if model space is active, associative
dimensions in paper space are excluded). DIMDISASSOCIATE then disassociates these dimensions and reports the number of dimensions that are filtered out and the number that are disassociated.

\section*{DIMEDIT}

\section*{Quick Reference}

See also:
■ Modify Dimension Text
Edits dimension text and extension lines.

\section*{Access Methods}
\(H\)
Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Oblique
\(\$\) Menu: Dimension \(>\) Oblique
\(\$\) Toolbar: Dimension, Oblique

\section*{Summary}

Rotates, modifies, or restores dimension text. Changes the oblique angle of extension lines. The companion command that moves text and the dimension line is DIMTEDIT.

\section*{List of Prompts}

The following prompts are displayed.
Enter type of dimension editing [Home/New/Rotate/Oblique] <Home>: Enter an option or press Enter
Home Moves rotated dimension text back to its default position.


The selected dimension text is returned to its default position and rotation as specified in its dimension style.

New Changes dimension text using the In-Place Text Editor.

before New

after New

The generated measurement is represented with angle brackets ( \(<\gg\) ). Use control codes and Unicode character strings to enter special characters or symbols. See Control Codes and Special Characters on page 1938.
To edit or replace the generated measurement, delete the angle brackets, enter the new dimension text, and then choose OK. If alternate units are not turned on in the dimension style, you can display them by entering square brackets ([ ]). For more information, see "Change Existing Objects".

Rotate Rotates dimension text. This option is similar to the Angle option of DIMTEDIT.

Entering 0 places the text in its default orientation, which is determined by the vertical and horizontal text settings on the Text tab of the New, Modify, and Override Dimension Style dialog boxes. See DIMSTYLE. The DIMTIH and DIMTOH system variables control this orientation.

rotated text

\section*{Oblique}

The Oblique option is useful when extension lines conflict with other features of the drawing. The oblique angle is measured from the \(X\) axis of the UCS.


\section*{DIMINSPECT}

\section*{Quick Reference}

See also:
- Inspection Dimension

Adds or removes inspection information for a selected dimension.

\section*{Access Methods}


Button

Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Inspect
\(\$\) Menu: Dimension \(>\) Inspection
Toolbar: Dimension

\section*{Summary}

Inspection dimensions specify how frequently manufactured parts should be checked to ensure that the dimension value and tolerances of the parts are within the specified range.


The Inspection Dimension Dialog Box is displayed and allows you to add or remove inspection dimensions from an existing dimension. Inspection dimensions allow you to effectively communicate how frequently manufactured parts should be checked to ensure that the dimension value and tolerances of the parts are within the specified range.
If you enter -diminspect at the Command prompt, options are displayed.

\section*{Inspection Dimension Dialog Box}

\section*{Quick Reference}

See also:
- Inspection Dimension

Allows you to add or remove an inspection dimension from selected dimensions.


\section*{Access Methods}
\(|\longrightarrow|\)
Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Inspect
\(\$\) Menu: Dimension \(>\) Inspection

\title{
Toolbar: Dimension㟇 Command entry: diminspect
}

\section*{Summary}

Use the Shape and Inspection Label/Rate settings to the appearance of the frame of the inspection dimension and the inspection rate value.

\section*{List of Options}

The following options are displayed.

\section*{Select Dimensions}

Specifies the dimensions that an inspection dimension should be added to or removed from.

Remove Inspection
Removes the inspection dimension from the selected dimension.

\section*{Shape}

Controls the shape of the frame that is drawn around the label, dimension value, and inspection rate of the inspection dimension.

\section*{Round}

Creates a frame with semi-circles on the two ends; the fields within the frame are separated by vertical lines.

\section*{Angular}

Creates a frame with lines that form a 90-degree angle on the two ends; the fields within the frame are separated by vertical lines.

\section*{None}

Specifies that no frame is drawn around the values; the fields are not separated by vertical lines.

\section*{Label/Inspection Rate}

Specifies the label text and inspection rate for an inspection dimension.

\section*{Label}

Turns the display of the label field on and off.
Label Value
Specifies the label text.

The label is displayed in the leftmost section of the inspection dimension when the Label check box is selected.

\section*{Inspection Rate}

Turns the display of the rate field on and off.
Inspection Rate Value
Specifies how frequently a part should be inspected.
The value is expressed as a percentage, and the valid range is 0 to 100. The inspection rate is displayed in the rightmost section of the inspection dimension when the Inspection Rate check box is selected.

\section*{-DIMINSPECT}

\section*{Quick Reference}

\section*{See also:}
- Inspection Dimension

\section*{List of Prompts}

The following prompts are displayed.
Add inspection data or [Remove] <Add>: Enter an option or press Enter
Add
Adds an inspection dimension to the selected dimensions.
Round Creates a frame with semi-circles on the two ends; the fields within the frame are separated by vertical lines.

Angular Creates a frame with lines that form a 90-degree angle on the two ends; the fields within the frame are separated by vertical lines.

None Specifies that no frame is drawn around the values; the fields are not separated by vertical lines.

None No label is displayed with the inspection dimension.

\section*{Remove}

Removes the inspection dimension from the selected dimensions.

\section*{DIMJOGGED}

\section*{Quick Reference}

\section*{See also:}

■ Create Radial Dimensions

Creates jogged dimensions for circles and arcs.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(\boldsymbol{>}\) Jogged
\(\$\) Menu: Dimension \(>\) Jogged
\(\$\) Toolbar: Dimension

\section*{Summary}

DIMJOGGED measures the radius of the selected object and displays the dimension text with a radius symbol in front of it. The origin point of the dimension line can be specified at any convenient location.

NOTE Jogged radius dimensions are also called foreshortened radius dimensions.
Creates jogged radius dimensions when the center of an arc or circle is located off the layout and cannot be displayed in its true location. The origin point of the dimension can be specified at a more convenient location called the center location override.

\section*{List of Prompts}

The following prompts are displayed.
Select arc or circle: Select an arc, circle, or polyline arc segment Specify center location override: Specify a point

Accepts a new center point for a jogged radius dimension that takes the place of the true center point of the arc or circle.

Specify dimension line location on page 597 or [Mtext/"Text"/"Angle"]: Specify a point or enter an option
Dimension Line Location Determines the angle of the dimension line and the location of the dimension text. If the dimension is placed off of an arc resulting in the dimension pointing outside the arc, AutoCAD automatically draws an arc extension line.

Mtext Displays the In-Place Text Editor, which you can use to edit the dimension text. Use control codes and Unicode character strings to enter special characters or symbols. See Control Codes and Special Characters on page 1938.
If alternate units are not turned on in the dimension style, you can display them by entering square brackets ([ ]). For more information, see "Change Existing Objects".
The current dimension style determines the appearance of the generated measurements.

Text Customizes the dimension text at the Command prompt. The generated dimension measurement is displayed within angle brackets.
To include the generated measurement, use angle brackets ( \(<\gg\) ) to represent the generated measurement. If alternate units are not turned on in the dimension style, you can display alternate units by entering square brackets ([]).
Dimension text properties are set on the Text tab of the New, Modify, and Override Dimension Style dialog boxes.

Angle Changes the angle of the dimension text.
Also determines the angle of the dimension line and the location of the dimension text.

Specify Jog Location Locates the middle point of the jog. The transverse angle of the jog is determined by the Dimension Style Manager.

\section*{DIMJOGLINE}

\section*{Quick Reference}

\section*{See also:}
- Dimension Jog

Adds or removes a jog line on a linear or aligned dimension.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Dimension, Dimjogline
\(\$\) Menu: Dimension \(>\) Jogged Linear
\(\$\) Toolbar: Dimension

\section*{Summary}

Jog lines in a dimension indicate a break in the objects being dimensioned. The dimension value represents the actual distance, rather than the measured distance in the drawing.

\section*{List of Prompts}

The following prompts are displayed.
Select dimension to add jog or [Remove]: Select a linear or aligned dimension Add Jog Specifies the linear or aligned dimension to which to add a jog. You are prompted for the location of the jog.
Press Enter to place the jog at the midpoint between the dimension text and the first extension line or the midpoint of the dimension line based on the location of the dimension text

Remove Specifies the linear or aligned dimension from which to remove the jog.

\section*{DIMLINEAR}

\section*{Quick Reference}

See also:
■ Create Linear Dimensions

Creates a linear dimension.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(\boldsymbol{>}\) Dimensions panel \(\boldsymbol{>}\) Linear
\% Menu: Dimension \(>\) Linear
\(\$\) Toolbar: Dimension

Summary
Creates a linear dimension with a horizontal, vertical, or rotated dimension line.

\section*{List of Prompts}

The following prompts are displayed.
Specify first "extension line origin" or <"select object">: Specify a point or press Enter to select an object to dimension

After you specify the extension line origin points or the object to dimension, the following prompt is displayed:

Specify "dimension line location" or
["Mtext"/"Text"/"Angle"/"Horizontal"/"Vertical"/"Rotated"]: Specify a point or enter an option

\section*{First Extension Line Origin}

Prompts for the origin point of the second extension line after you specify the origin point of the first.


\section*{Dimension Line Location}

Uses the point you specify to locate the dimension line and determines the direction to draw the extension lines. After you specify the location, the dimension is drawn.

dimension line location
designated

\section*{Mtext}

Displays the In-Place Text Editor, which you can use to edit the dimension text. Use control codes and Unicode character strings to enter special characters or symbols. See Control Codes and Special Characters on page 1938.

If alternate units are not turned on in the dimension style, you can display them by entering square brackets ([]). For more information about formatting dimension text, see "Change Existing Objects" in the User's Guide.

The current dimension style determines the appearance of the generated measurements.

\section*{Text}

Customizes the dimension text at the Command prompt. The generated dimension measurement is displayed within angle brackets.

To include the generated measurement, use angle brackets ( \(<>\) ) to represent the generated measurement. If alternate units are not turned on in the dimension style, you can display alternate units by entering square brackets ([]).

Dimension text properties are set on the Text tab of the New, Modify, and Override Dimension Style dialog boxes.
Angle
Changes the angle of the dimension text.

before Angle

after Angle

\section*{Horizontal}

Creates horizontal linear dimensions.


Dimension Line Location Uses the point you specify to locate the dimension line.
- Mtext on page 600
- Text on page 600

■ Angle on page 601

\section*{Vertical}

Creates vertical linear dimensions.


Dimension Line Location Dimension Line Location on page 600
- Mtext on page 600
- Text on page 600

■ Angle on page 601

\section*{Rotated}

Creates rotated linear dimensions.


\section*{Object Selection}

Automatically determines the origin points of the first and second extension lines after you select an object.

For polylines and other explodable objects, only the individual line and arc segments are dimensioned. You cannot select objects in a non-uniformly scaled block reference.

If you select a line or an arc, the line or arc endpoints are used as the origins of the extension lines. The extension lines are offset from the endpoints by the distance you specify in Offset from Origin in the Lines and Arrows tab of the New, Modify, and Override Dimension Style dialog boxes. See DIMSTYLE. This value is stored in the DIMEXO system variable.


If you select a circle, the diameter endpoints are used as the origins of the extension line. When the point used to select the circle is close to the north or south quadrant point, a horizontal dimension is drawn. When the point used to select the circle is close to the east or west quadrant point, a vertical dimension is drawn.

\section*{DIMORDINATE}

\section*{Quick Reference}

See also:
■ Create Ordinate Dimensions

Creates ordinate dimensions.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Ordinate
\(\$\) Menu: Dimension \(>\) Ordinate
\(\$\) Toolbar: Dimension

\section*{Summary}

Ordinate dimensions measure the horizontal or vertical distance from an origin point called the datum to a feature, such as a hole in a part. These dimensions prevent escalating errors by maintaining accurate offsets of the features from the datum.

\section*{List of Prompts}

The following prompts are displayed.
Specify feature location: Specify a point or snap to an object
Specify leader endpoint or [Xdatum/Ydatum/Mtext/Text/Angle]: Specify a point or enter an option
Leader Endpoint Specification Uses the difference between the feature location and the leader endpoint to determine whether it is an \(X\) or a \(Y\) ordinate dimension. If the difference in the \(Y\) ordinate is greater, the dimension measures the \(X\) ordinate. Otherwise, it measures the \(Y\) ordinate.

Xdatum Measures the \(X\) ordinate and determines the orientation of the leader line and dimension text. The Leader Endpoint prompt is displayed, where you can specify the endpoint.


Ydatum Measures the \(Y\) ordinate and determines the orientation of the leader line and dimension text. The Leader Endpoint prompts are displayed, where you can specify the endpoint.


Mtext Displays the In-Place Text Editor, which you can use to edit the dimension text. Use control codes and Unicode character strings to enter special characters or symbols. See Control Codes and Special Characters on page 1938.
If alternate units are not turned on in the dimension style, you can display them by entering square brackets ([]). For more information about formatting dimension text, see "Change Existing Objects" in the User's Guide.
The current dimension style determines the appearance of the generated measurements.

Text Customizes the dimension text at the Command prompt. The generated dimension measurement is displayed within angle brackets.
To include the generated measurement, use angle brackets ( \(<\gg\) ) to represent the generated measurement. If alternate units are not turned on in the dimension style, you can display alternate units by entering square brackets ([]).
Dimension text properties are set on the Text tab of the New, Modify, and Override Dimension Style dialog boxes.

Angle Changes the angle of the dimension text.

\section*{DIMOVERRIDE}

\section*{Quick Reference}

See also:
■ Override a Dimension Style

Controls overrides of system variables used in selected dimensions.

\section*{Access Methods}

Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Override
\(\$\) Menu: Dimension \(>\) Override

\section*{Summary}

Overrides a specified dimensioning system variable for selected dimensions, or clears the overrides of selected dimension objects, returning them to the settings defined by their dimension style.

\section*{List of Prompts}

The following prompts are displayed.
Enter dimension variable name to override or [Clear overrides]: Enter the name of a dimension variable, or enter c
Dimension Variable Name to Override Overrides the value of the dimensioning system variable you specify.

Clear Overrides Clears any overrides on selected dimensions.
The dimension objects return to the settings defined by their dimension style.

\section*{DIMRADIUS}

\section*{Quick Reference}

\section*{See also:}
- Create Radial Dimensions

Creates a radius dimension for a circle or an arc.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Radius
\(\$\) Menu: Dimension \(>\) Radius
\(\$\) Toolbar: Dimension

\section*{Summary}

Measures the radius of a selected circle or arc and displays the dimension text with a radius symbol in front of it. You can use grips to reposition the resulting radius dimension easily.


\section*{List of Prompts}

The following prompts are displayed.
Select arc or circle:
Specify "dimension line location" or ["Mtext"/"Text"/"Angle"]: Specify a point or enter an option
Dimension Line Location Determines the angle of the dimension line and the location of the dimension text. If the dimension is placed off of an arc resulting in the dimension pointing outside the arc, AutoCAD automatically draws an arc extension line.

Mtext Displays the In-Place Text Editor, which you can use to edit the dimension text. Use control codes and Unicode character strings to enter special characters or symbols. See Control Codes and Special Characters on page 1938.
If alternate units are not turned on in the dimension style, you can display them by entering square brackets ([]). For more information about formatting dimension text, see "Change Existing Objects" in the User's Guide.
The current dimension style determines the appearance of the generated measurements.

Text Customizes the dimension text at the Command prompt. The generated dimension measurement is displayed within angle brackets.
To include the generated measurement, use angle brackets \((<\rangle)\) to represent the generated measurement. If alternate units are not turned on in the dimension style, you can display alternate units by entering square brackets ([]).
Dimension text properties are set on the Text tab of the New, Modify, and Override Dimension Style dialog boxes.

Angle Changes the angle of the dimension text.

\section*{DIMREASSOCIATE}

\section*{Quick Reference}

\section*{See also:}

■ Change Dimension Associativity

Associates or reassociates selected dimensions to objects or points on objects.

\section*{Access Methods}
\(\rightarrow x\)
\(\rightarrow\) -
Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Reassociate
\(\$\) Menu: Dimension \(>\) Reassociate Dimensions

\section*{Summary}

Each selected dimension is highlighted in turn, and prompts for association points appropriate for the selected dimension are displayed.

A marker is displayed for each association point prompt.
- If the definition point of the current dimension is not associated to a geometric object, the marker appears as an X
- if the definition point is associated, the marker appears as an X inside a box.

NOTE The marker disappears if you pan or zoom with a wheel mouse.

\section*{List of Prompts}

The following prompts are displayed.
Select dimensions to reassociate: Select dimension objects
Press Esc to terminate the command without losing the changes that were already specified. Use UNDO to restore the previous state of the changed dimensions.

The prompts for the different types of dimensions are:
Linear Specify first extension line origin or [Select object] <next>: Specify an object snap location, enter s and select a geometric object, or press Enter to skip to the next prompt

Specify second extension line origin <next>: Specify an object snap location, or press Enter to skip to the next dimension object, if any

Aligned Specify first extension line origin or [Select object] <next>: Specify an object snap location, enter s and select a geometric object, or press Enter to skip to the next prompt
Specify second extension line origin <next>: Specify an object snap location, or press Enter to skip to the next dimension object, if any

Angular (Three Point) Specify angle vertex or [Select arc or circle] <next>: Specify an object snap location, enter sand select an arc or a circle, or press Enter to skip to the next prompt
Specify first angle endpoint <next>: Specify an object snap location or press Enter to skip to the next prompt
Specify second angle endpoint <next>: Specify an object snap location or press Enter to skip to the next dimension object, if any

Angular (Two Line) Select first line <next>: Select a line, or press Enter to skip to the next prompt
Select second line <next>: Select another line, or press Enter to skip to the next dimension object, if any

Diameter Select arc or circle <next>: Select an arc or a circle, or press Enter to skip to the next dimension object, if any

Leader Specify leader association point <next>: Specify an object snap location, or press Enter to skip to the next dimension object, if any

Ordinate Specify feature location <next>: Specify an object snap location, or press Enter to skip to the next dimension object, if any

Radius Select arc or circle <next>: Select an arc or a circle, or press Enter to skip to the next dimension object, if any

NOTE DIMREASSOCIATE does not change the setting of DIMLFAC in a dimension. Use DIMOVERRIDE to clear dimension linear factors in legacy drawings.

\section*{DIMREGEN}

\section*{Quick Reference}

\section*{See also:}

■ Associative Dimensions

Updates the locations of all associative dimensions.

\section*{Summary}

The locations of all associative dimensions in the current drawing are updated.
Associative dimensions need to be updated manually with DIMREGEN in the following cases:
- After panning or zooming with a wheel mouse in a layout with model space active; update associative dimensions created in paper space.
- After opening a drawing containing external references that are dimensioned in the current drawing; update associative dimensions if the associated external reference geometry has been modified.

NOTE After opening a drawing that has been modified with a previous version, the association between dimensions and objects or points may need to be updated. You can use the DIMREASSOCIATE on page 607 command to reassociate modified dimensions with the objects or points that they dimension.

\section*{DIMSPACE}

\section*{Quick Reference}

\section*{See also:}
- Adjust Dimension Spacing

Adjusts the spacing between linear dimensions or angular dimensions.

\section*{Access Methods}


\section*{Button}

Ribbon: Annotate tab \(\boldsymbol{>}\) Dimensions panel \(>\) Adjust Space
\(\$\) Menu: Dimension \(>\) Adjust Space
\(\$\) Toolbar: Dimension

\section*{Summary}

The spacing between parallel dimension lines is made equal. You can also make the dimension lines of a series of linear or angular dimensions line up by using a spacing value of 0 .

Spacing is applied only to parallel linear dimensions or to angular dimensions that share a common vertex.

\section*{List of Prompts}

The following prompts are displayed.
Select base dimension: Select a parallel linear or angular dimension

Select dimensions to space: Select a parallel linear or angular dimension to equally space from the base dimension and press Enter
Enter value or [Auto] <Auto>: Specify a spacing distance or press Enter
Enter Spacing Value Applies a spacing value to the selected dimensions from the base dimension. For example, if you enter a value of 0.5000 , all selected dimensions will be separated by a distance of 0.5000 .

You can use a spacing value of 0 (zero) to align the dimension lines of selected linear and angular dimensions end to end.

Auto Calculates the spacing distance automatically based on the text height specified in the dimension style of the selected base dimension. The resulting spacing value is twice the height of the dimension text.

\section*{DIMSTYLE}

\section*{Quick Reference}

See also:
- Use Dimension Styles

Creates and modifies dimension styles.

\section*{Access Methods}


Bution
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\boxtimes>\) Dimension Style
\(\$\) Menu: Format \(>\) Dimension Style
\(\$\) Toolbar: Styles

\section*{Summary}

The Dimension Style Manager is displayed.
A dimension style is a named collection of dimension settings that control the appearance of dimensions. You create dimension styles to specify the format of dimensions quickly, and to ensure that dimensions conform to standards.

If you enter -dimstyle at the Command prompt, options are displayed.

\section*{Dimension Style Manager}

\section*{Quick Reference}

See also:
- Use Dimension Styles

Creates new styles, sets the current style, modifies styles, sets overrides on the current style, and compares styles.


\section*{Access Methods}

\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(\ggg\) Dimension Style
\(\$\) Menu: Format \(>\) Dimension Style
\(\$\) Toolbar: Styles
並 Command entry: dimstyle

\section*{List of Options}

The following options are displayed.

\section*{Current Dimension Style}

Displays the name of the dimension style that is current. The default dimension style is STANDARD. The current style is applied to dimensions you create.

\section*{Styles}

Lists dimension styles in the drawing. The current style is highlighted. Right-click in the list to display a shortcut menu with options to set the current style, rename styles, and delete styles. You cannot delete a style that is current
or in use in the current drawing. A icon before the style name indicates that the style is .

Unless you select Don't List Styles in Xrefs, dimension styles are displayed in externally referenced drawings using the syntax for externally referenced named objects. (See "Overview of Referenced Drawings (Xrefs)" in the User's Guide.) Although you cannot change, rename, or make current externally referenced dimension styles, you can create new styles based on them.
The item selected in List controls the dimension styles displayed. To make a style current, select it and click Set Current.

\section*{List}

Controls the display of styles in the Styles list. Select All Styles if you want to see all dimension styles in a drawing. Select Styles in Use if you want to see only the dimension styles currently used by dimensions in the drawing.

\section*{Don't List Styles in Xrefs}

When selected, suppresses display of dimension styles in externally referenced drawings in the Styles list.

\section*{Preview}

Shows a graphic representation of the style selected in the Styles list.

\section*{Description}

Describes the style selected in the Styles list relative to the current style. If the description is longer than the space provided, you can click in the pane and use arrow keys to scroll down.

\section*{Set Current}

Sets the style selected under Styles to current. The current style is applied to dimensions you create.

New

Displays the Create New Dimension Style dialog box on page 614, in which you can define a new dimension style.

\section*{Modify}

Displays the Modify Dimension Styles dialog box on page 616, in which you can modify dimension styles. Dialog box options are identical to those in the New Dimension Style dialog box.

\section*{Override}

Displays the Override Current Style dialog box on page 616, in which you can set temporary overrides to dimension styles. Dialog box options are identical to those in the New Dimension Style dialog box. Overrides are displayed as unsaved changes under the dimension style in the Styles list.

\section*{Compare}

Displays the Compare Dimension Styles dialog box, in which you can compare two dimension styles or list all the properties of one dimension style.

\section*{Create New Dimension Style Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Use Dimension Styles

Names the new dimension style, sets the style on which to start the new one, and indicates the dimension types to which you want the new style to apply.


\section*{Access Methods}

\(\geqslant\) Ribbon: Annotate tab \(>\) Dimensions panel \(\ggg\) Dimension Style \(\$\) Menu: Format \(>\) Dimension Style
8 Toolbar: Styles
亜 Command entry: dimstyle

\section*{List of Options}

The following options are displayed.

\section*{New Style Name}

Specifies the new dimension style name.

\section*{Start With}

Sets a style to use as a basis for the new one. For the new style, you change only the properties that differ from the properties you start with.

\section*{Annotative}

Specifies that the dimension style is. Click the information icon to learn more about annotative objects.

\section*{Use For}

Creates a dimension substyle that applies only to specific dimension types. For example, you could create a version of the STANDARD dimension style to be used only for diameter dimensions.

\section*{Continue}

Displays the New Dimension Style dialog box, in which you define the new dimension style properties.

\title{
New, Modify, and Override Dimension Style Dialog Boxes
}

\section*{Quick Reference}

See also:
- Use Dimension Styles

Set properties for dimension styles.

\section*{Access Methods}

\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\boxtimes>\) Dimension Style
Menu: Format \(>\) Dimension Style
Toolbar: Styles
Command entry: dimstyle

\section*{Summary}

When you choose Continue in the Create New Dimension Style dialog box, the New Dimension Style dialog box is displayed. You define the properties for the new style in this dialog box. The dialog box initially displays the properties of the dimension style that you selected to start the new style in the Create New Dimension Style dialog box.
Choosing either Modify or Override in the Dimension Style Manager displays the Modify Dimension Style or the Override Dimension Style dialog box. The content of these dialog boxes is identical to the New Dimension Style dialog box, although you are modifying or overriding an existing dimension style rather than creating a new one.
The sample image on each tab displays the effects of each option.

\section*{List of Tabs}

■ Lines on page 617
■ Symbols and Arrows on page 621
■ Text on page 624
- Fit on page 629
- Primary Units on page 633
- Alternate Units on page 637
- Tolerances on page 640

\section*{Lines Tab}

\section*{Quick Reference}

See also:
■ Use Dimension Styles

Sets the format and properties for dimension lines, extension lines, arrowheads, and center marks.


\section*{Summary}

Sets the dimension line properties.

\section*{List of Options}

The following options are displayed.

\section*{Dimension Lines}

\section*{Color}

Displays and sets the color for the dimension line. If you click Select Color (at the bottom of the Color list), the Select Color dialog box is displayed. You can also enter a color name or number. (DIMCLRD system variable)

You can select colors from the 255 AutoCAD Color Index (ACI) colors, true colors, and Color Book colors.

\section*{Linetype}

Sets the linetype of the dimension line. (DIMLTYPE system variable)

\section*{Lineweight}

Sets the lineweight of the dimension line. (DIMLWD system variable)

\section*{Extend Beyond Ticks}

Specifies a distance to extend the dimension line past the extension line when you use oblique, architectural, tick, integral, and no marks for arrowheads. (DIMDLE system variable)


\section*{Baseline Spacing}

Sets the spacing between the dimension lines of a baseline dimension. Enter a distance. For information about baseline dimensions, see DIMBASELINE. (DIMDLI system variable.)


\section*{Suppress}

Suppresses display of dimension lines. Dim Line 1 suppresses the first dimension line; Dim Line 2 suppresses the second dimension line. (DIMSD1 and DIMSD2 system variables)


\section*{Extension Lines}

Controls the appearance of the extension lines.

\section*{Color}

Sets the color for the extension line. If you click Select Color (at the bottom of the Color list), the Select Color dialog box is displayed. You can also enter a color name or number. (DIMCLRE system variable.)

You can select colors from the 255 AutoCAD Color Index (ACI) colors, true colors, and Color Book colors.

\section*{Linetype Ext 1}

Sets the linetype of the first extension line. (DIMLTEX1 system variable)

\section*{Linetype Ext 2}

Sets the linetype of the second extension line. (DIMLTEX2 system variable)

\section*{Lineweight}

Sets the lineweight of the extension line. (DIMLWE system variable)

\section*{Suppress}

Suppresses the display of extension lines. Ext Line 1 suppresses the first extension line; Ext Line 2 suppresses the second extension line. (DIMSE1 and DIMSE2 system variables)


\section*{Extend Beyond Dim Lines}

Specifies a distance to extend the extension lines above the dimension line. (DIMEXE system variable)


\section*{Offset From Origin}

Sets the distance to offset the extension lines from the points on the drawing that define the dimension. (DIMEXO system variable)


\section*{Fixed Length Extension Lines}

Enables fixed length extension lines. (DIMFXLON system variable)

\section*{Length}

Sets the total length of the extension lines starting from the dimension line toward the dimension origin. (DIMFXL system variable)

fixed-length extension lines

\section*{Preview}

Displays sample dimension images that show the effects of changes you make to dimension style settings.

\section*{Symbols and Arrows Tab}

\section*{Quick Reference}

See also:
- Use Dimension Styles

Sets the format and placement for arrowheads, center marks, arc length symbols, and jogged radius dimensions.


\section*{Summary}

Controls the appearance of the dimension arrowheads.

\section*{List of Options}

The following options are displayed.

\section*{Arrowheads}

\section*{First}

Sets the arrowhead for the first dimension line. When you change the first arrowhead type, the second arrowhead automatically changes to match it. (DIMBLK1 system variable)

To specify a user-defined arrowhead block, select User Arrow. The Select Custom Arrow Block dialog box is displayed. Select the name of a user-defined arrowhead block. (The block must be in the drawing.)

\section*{Second}

Sets the arrowhead for the second dimension line. (DIMBLK2 system variable)
To specify a user-defined arrowhead block, select User Arrow. The Select Custom Arrow Block dialog box is displayed. Select the name of a user-defined arrowhead block. (The block must be in the drawing.)

\section*{Leader}

Sets the arrowhead for the leader line. (DIMLDRBLK system variable)
To specify a user-defined arrowhead block, select User Arrow. The Select Custom Arrow Block dialog box is displayed. Select the name of a user-defined arrowhead block. (The block must be in the drawing.)

\section*{Arrow Size}

Displays and sets the size of arrowheads. (DIMASZ system variable)
NOTE blocks cannot be used as custom arrowheads for dimensions or leaders.

\section*{Center Marks}

Controls the appearance of center marks and centerlines for diameter and radial dimensions. The DIMCENTER, DIMDIAMETER, and DIMRADIUS commands use center marks and centerlines. For DIMDIAMETER and DIMRADIUS, the center mark is drawn only if you place the dimension line outside the circle or arc.

\section*{None}

Creates no center mark or centerline. The value is stored as 0 in the DIMCEN system variable.

\section*{Mark}

Creates a center mark. The size of the center mark is stored as a positive value in the DIMCEN system variable.

\section*{Line}

Creates a centerline. The size of the centerline is stored as a negative value in the DIMCEN system variable.

\section*{Size}

Displays and sets the size of the center mark or centerline. (DIMCEN system variable)

\section*{Dimension Break}

Controls the gap width of dimension breaks.
Break Size
Displays and sets the size of the gap used for dimension breaks.

\section*{Arc Length Symbol}

Controls the display of the arc symbol in an arc length dimension. (DIMARCSYM system variable)

\section*{Preceding Dimension Text}

Places arc length symbols before the dimension text. (DIMARCSYM system variable)

\section*{Above Dimension Text}

Places arc length symbols above the dimension text. (DIMARCSYM system variable)

None
Suppresses the display of arc length symbols. (DIMARCSYM system variable)

\section*{Radius Jog Dimensions}

Controls the display of jogged (zigzag) radius dimensions.
Jogged radius dimensions are often created when the center point of a circle or arc is located off the page.


Jog Angle

Determines the angle of the transverse segment of the dimension line in a jogged radius dimension. (DIMJOGANG system variable)

\section*{Linear Jog Dimensions}

Controls the display of the jog for linear dimensions.
Jog lines are often added to linear dimensions when the actual measurement is not accurately represent by the dimension. Typically the actual measurement is smaller than the desired value.


\section*{Jog Height Factor}

Determines the height of the of the jog, which is determined by the distance between the two vertices of the angles that make up the jog.

\section*{Preview}

Displays sample dimension images that show the effects of changes you make to dimension style settings.

\section*{Text Tab}

\section*{Quick Reference}

See also:
■ Use Dimension Styles

Sets the format, placement, and alignment of dimension text.

\section*{List of Options}

The following options are displayed.

\section*{Text Appearance}

Controls the dimension text format and size.

\section*{Text Style}

Lists the available text styles.

\section*{Text Style Button}

Displays the Text Style Dialog Box on page 1854 where you can create or modify text styles. (DIMTXSTY system variable)

\section*{Text Color}

Sets the color for the dimension text. If you click Select Color (at the bottom of the Color list), the Select Color dialog box is displayed. You can also enter color name or number. (DIMCLRT system variable)
You can select colors from the 255 AutoCAD Color Index (ACI) colors, true colors, and Color Book colors.

\section*{Fill Color}

Sets the color for the text background in dimensions. If you click Select Color (at the bottom of the Color list), the Select Color dialog box is displayed. You can also enter color name or number. (DIMTFILL and DIMTFILLCLR system variables)

You can select colors from the 255 AutoCAD Color Index (ACI) colors, true colors, and Color Book colors.

\section*{Text Height}

Sets the height of the current dimension text style. Enter a value in the text box. If a fixed text height is set in the Text Style (that is, the text style height is greater than 0 ), that height overrides the text height set here. If you want to use the height set on the Text tab, make sure the text height in the Text Style is set to 0. (DIMTXT system variable)

\section*{Fraction Height Scale}

Sets the scale of fractions relative to dimension text. This option is available only when Fractional is selected as the Unit Format on the Primary Units tab. The value entered here is multiplied by the text height to determine the height of dimension fractions relative to dimension text. (DIMTFAC system variable)

\section*{Draw Frame Around Text}

When selected, draws a frame around dimension text. Selecting this option changes the value stored in the DIMGAP system variable to a negative value.

\section*{Text Placement}

Controls the placement of dimension text.
Vertical
Controls the vertical placement of dimension text in relation to the dimension line. (DIMTAD system variable)

Vertical position options include the following:
- Centered: Centers the dimension text between the two parts of the dimension line.
- Above: Places the dimension text above the dimension line. The distance from the dimension line to the baseline of the lowest line of text is the current text gap. See the Offset from Dim Line option.
- Outside: Places the dimension text on the side of the dimension line farthest away from the first defining point.
- JIS: Places the dimension text to conform to a Japanese Industrial Standards (JIS) representation.

■ Below: Places the dimension text under the dimension line. The distance from the dimension line to the baseline of the lowest line of text is the current text gap. See the Offset from Dim Line option.


\section*{Horizontal}

Controls the horizontal placement of dimension text along the dimension line, in relation to the extension lines. (DIMJUST system variable)

Horizontal position options include the following:
- Centered: Centers the dimension text along the dimension line between the extension lines.
- At Ext Line 1: Left-justifies the text with the first extension line along the dimension line. The distance between the extension line and the text is twice the arrowhead size plus the text gap value. See Arrowheads and Offset from Dim Line.

■ At Ext Line 2: Right-justifies the text with the second extension line along the dimension line. The distance between the extension line and the text is twice the arrowhead size plus the text gap value. See Arrowheads and Offset from Dim Line.


■ Over Ext Line 1: Positions the text over or along the first extension line.
■ Over Ext Line 2: Positions the text over or along the second extension line.

text over first extension line

text over second
extension line

\section*{View Direction}

Controls the dimension text viewing direction. (DIMTXTDIRECTION system variable)

View Direction includes the following options:
■ Left-to-Right: Places the text to enable reading from left to right.
■ Right-to-Left: Places the text to enable reading from right to left.

\section*{Offset from Dim Line}

Sets the current text gap, which is the distance around the dimension text when the dimension line is broken to accommodate the dimension text.

This value is also used as the minimum length required for dimension line segments.
Text is positioned inside the extension lines only if the resulting segments are at least as long as the text gap. Text above or below the dimension line is
placed inside only if the arrowheads, dimension text, and a margin leave enough room for the text gap. (DIMGAP system variable)


DIMGAP \(=0\)


DIMGAP \(=0.1\)

\section*{Text Alignment}

Controls the orientation (horizontal or aligned) of dimension text whether it is inside or outside the extension lines. (DIMTIH and DIMTOH system variables)

\section*{Horizontal}

Places text in a horizontal position.


Aligned with Dimension Line
Aligns text with the dimension line.

\section*{ISO Standard}

Aligns text with the dimension line when text is inside the extension lines, but aligns it horizontally when text is outside the extension lines.


\section*{Preview}

Displays sample dimension images that show the effects of changes you make to dimension style settings.

\section*{Fit Tab}

\section*{Quick Reference}

\section*{See also:}

■ Use Dimension Styles

Controls the placement of dimension text, arrowheads, leader lines, and the dimension line.


\section*{List of Options}

The following options are displayed.

\section*{Fit Options}

Controls the placement of text and arrowheads based on the space available between the extension lines.


When space is available, text and arrowheads are placed between the extension lines. Otherwise, text and arrowheads are placed according to the Fit options. (DIMATFIT, DIMTIX, and DIMSOXD system variables)

\section*{Either Text or Arrows (Best Fit)}

Moves either the text or the arrowheads outside the extension lines based on the best fit (DIMATFIT system variable).

■ When enough space is available for text and arrowheads, places both between the extension lines. Otherwise, either the text or the arrowheads are moved based on the best fit.

■ When enough space is available for text only, places text between the extension lines and places arrowheads outside the extension lines.

■ When enough space is available for arrowheads only, places them between the extension lines and places text outside the extension lines.
- When space is available for neither text nor arrowheads, places them both outside the extension lines.

\section*{Arrows}

Moves arrowheads outside the extension lines first, then text (DIMATFIT system variable).
- When enough space is available for text and arrowheads, places both between the extension lines.

■ When space is available for arrowheads only, places them between the extension lines and places text outside them.
- When not enough space is available for arrowheads, places both text and arrowheads outside the extension lines.

\section*{Text}

Moves text outside the extension lines first, then arrowheads (DIMATFIT system variable).
- When space is available for text and arrowheads, places both between the extension lines.

■ When space is available for text only, places the text between the extension lines and places arrowheads outside them.
- When not enough space is available for text, places both text and arrowheads outside the extension lines.

\section*{Both Text and Arrows}

When not enough space is available for text and arrowheads, moves both outside the extension lines (DIMATFIT system variable).


\section*{Always Keep Text Between Ext Lines}

Always places text between extension lines. (DIMTIX system variable)


\section*{Suppress Arrows If They Don't Fit Inside Extension Lines}

Suppresses arrowheads if not enough space is available inside the extension lines. (DIMSOXD system variable)

\section*{Text Placement}

Sets the placement of dimension text when it is moved from the default position, that is, the position defined by the dimension style. (DIMTMOVE system variable)


Beside the Dimension Line
If selected, moves the dimension line whenever dimension text is moved. (DIMTMOVE system variable)


\section*{Over the Dimension Line, with Leader}

If selected, dimension lines are not moved when text is moved. If text is moved away from the dimension line, a leader line is created connecting the text to the dimension line. The leader line is omitted when text is too close to the dimension line. (DIMTMOVE system variable)


Over the Dimension Line, Without Leader
If selected, dimension lines are not moved when text is moved. Text that is moved away from the dimension line is not connected to the dimension line with a leader. (DIMTMOVE system variable)


\section*{Preview}

Displays sample dimension images that show the effects of changes you make to dimension style settings.

\section*{Scale for Dimension Features}

Sets the overall dimension scale value or the paper space scaling.

\section*{Annotative}

Specifies that the dimension is. Click the information icon to learn more about annotative objects.

\section*{Scale Dimensions To Layout}

Determines a scale factor based on the scaling between the current model space viewport and paper space. (DIMSCALE system variable)

When you work in paper space, but not in a model space viewport, or when TILEMODE is set to 1 , the default scale factor of 1.0 is used or the DIMSCALE system variable.

\section*{Use Overall Scale Of}

Sets a scale for all dimension style settings that specify size, distance, or spacing, including text and arrowhead sizes. This scale does not change dimension measurement values. (DIMSCALE system variable)

\section*{Fine Tuning}

Provides additional options for placing dimension text.
Place Text Manually
Ignores any horizontal justification settings and places the text at the position you specify at the Dimension Line Location prompt. (DIMUPT system variable)

\section*{Draw Dim Line Between Ext Lines}

Draws dimension lines between the measured points even when the arrowheads are placed outside the measured points. (DIMTOFL system variable)

\section*{Primary Units Tab}

\section*{Quick Reference}

\section*{See also:}

■ Use Dimension Styles

Sets the format and precision of primary dimension units and sets prefixes and suffixes for dimension text.


\section*{List of Options}

The following options are displayed.

\section*{Linear Dimensions}

Sets the format and precision for linear dimensions.

\section*{Unit Format}

Sets the current units format for all dimension types except Angular. (DIMLUNIT system variable)

The relative sizes of numbers in stacked fractions are based on the DIMTFAC system variable (in the same way that tolerance values use this system variable).

\section*{Precision}

Displays and sets the number of decimal places in the dimension text.
(DIMDEC system variable)

\section*{Fraction Format}

Sets the format for fractions. (DIMFRAC system variable)

\section*{Decimal Separator}

Sets the separator for decimal formats. (DIMDSEP system variable)

\section*{Round Off}

Sets rounding rules for dimension measurements for all dimension types except Angular. If you enter a value of \(\mathbf{0 . 2 5}\), all distances are rounded to the nearest 0.25 unit. If you enter a value of \(\mathbf{1 . 0}\), all dimension distances are rounded to the nearest integer. The number of digits displayed after the decimal point depends on the Precision setting. (DIMRND system variable)

\section*{Prefix}

Includes a prefix in the dimension text. You can enter text or use control codes to display special symbols. For example, entering the control code \%\%c displays the diameter symbol. When you enter a prefix, it overrides any default prefixes such as those used in diameter and radius dimensioning. (DIMPOST system variable)


If you specify tolerances, the prefix is added to the tolerances as well as to the main dimension.

For more information, see Control Codes and Special Characters on page 1938.

\section*{Suffix}

Includes a suffix in the dimension text. You can enter text or use control codes to display special symbols. For example, entering the text \(\mathbf{m m}\) results in
dimension text similar to that shown in the illustration. When you enter a suffix, it overrides any default suffixes. (DIMPOST system variable)


If you specify tolerances, the suffix is added to the tolerances as well as to the main dimension.
For more information, see Control Codes and Special Characters on page 1938.

\section*{Measurement Scale}

Defines linear scale options. Applies primarily to legacy drawings.
Scale Factor: Sets a scale factor for linear dimension measurements. It is recommended that you do not change this value from the default value of 1.00 . For example, if you enter \(\mathbf{2}\), the dimension for a 1 -inch line is displayed as two inches. The value does not apply to angular dimensions and is not applied to rounding values or to plus or minus tolerance values. (DIMLFAC system variable)

Apply to Layout Dimensions Only: Applies the measurement scale factor only to dimensions created in layout viewports. Except when using nonassociative dimensions, this setting should remain unchecked. (DIMLFAC system variable)

\section*{Zero Suppression}

Controls the suppression of leading and trailing zeros and of feet and inches that have a value of zero. (DIMZIN system variable)

Zero suppression settings also affect real-to-string conversions performed by the AutoLISP \({ }^{\circledR}\) rtos and angtos functions.

Leading: Suppresses leading zeros in all decimal dimensions. For example, 0.5000 becomes .5000 . Select leading to enable display of dimension distances less than one unit in sub units.

Sub-units factor: Sets the number of sub units to a unit. It is used to calculate the dimension distance in a sub unit when the distance is less than one unit. For example, enter \(\mathbf{1 0 0}\) if the suffix is \(m\) and the sub-unit suffix is to display in cm .

Sub-unit suffix: Includes a suffix to the dimension value sub unit. You can enter text or use control codes to display special symbols. For example, enter cm for .96 m to display as 96 cm .

Trailing: Suppresses trailing zeros in all decimal dimensions. For example, 12.5000 becomes 12.5 , and 30.0000 becomes 30 .

0 Feet: Suppresses the feet portion of a feet-and-inches dimension when the distance is less than one foot. For example, \(0^{\prime}-61 / 2^{\prime \prime}\) becomes \(61 / 2^{\prime \prime}\).

0 Inches: Suppresses the inches portion of a feet-and-inches dimension when the distance is an integral number of feet. For example, \(1^{\prime}-0{ }^{\prime \prime}\) becomes \(1^{\prime}\).

\section*{Angular Dimensions}

Displays and sets the current angle format for angular dimensions.

\section*{Units Format}

Sets the angular units format. (DIMAUNIT system variable)

\section*{Precision}

Sets the number of decimal places for angular dimensions. DIMADEC system variable)

\section*{Zero Suppression}

Controls the suppression of leading and trailing zeros. (DIMAZIN system variable)

\section*{Leading}

Suppresses leading zeros in angular decimal dimensions. For example, 0.5000 becomes . 5000 .

You can also display dimension distances less than one unit in sub units.
Sub-units factor Sets the number of sub units to a unit. It is used to calculate the dimension distance in a sub unit when the distance is less than one unit. For example, enter 100 if the suffix is \(m\) and the sub-unit suffix is to display in cm .

Sub-unit suffix Includes a suffix to the dimension text sub unit. You can enter text or use control codes to display special symbols. For example, enter cm to for .96 m to display as 96 cm .

\section*{Trailing}

Suppresses trailing zeros in angular decimal dimensions. For example, 12.5000 becomes 12.5 , and 30.0000 becomes 30 .

0 Feet
Suppresses the feet portion of a feet-and-inches dimension when the distance is less than 1 foot. For example, \(0^{\prime}-61 / 2^{\prime \prime}\) becomes \(61 / 2^{\prime \prime}\).

0 Inches

Suppresses the inches portion of a feet-and-inches dimension when the distance is an integral number of feet. For example, \(1^{\prime}-0\) " becomes \(1^{\prime}\).

Preview
Displays sample dimension images that show the effects of changes you make to dimension style settings.

\section*{Alternate Units Tab}

\section*{Quick Reference}

\section*{See also:}

■ Use Dimension Styles

Specifies display of alternate units in dimension measurements and sets their format and precision.


\section*{List of Options}

The following options are displayed.

\section*{Display Alternate Units}

Adds alternate measurement units to dimension text. Sets the DIMALT system variable to 1 .

\section*{Alternate Units}

Displays and sets the current alternate units format for all dimension types except Angular.

\section*{Unit Format}

Sets the unit format for alternate units. (DIMALTU system variable)
The relative sizes of numbers in stacked fractions are based on DIMTFAC (in the same way that tolerance values use this system variable).

\section*{Precision}

Sets the number of decimal places for alternate units. (DIMALTD system variable)

\section*{Multiplier for Alternate Units}

Specifies the multiplier used as the conversion factor between primary and alternate units. For example, to convert inches to millimeters, enter 25.4. The value has no effect on angular dimensions, and it is not applied to the rounding value or the plus or minus tolerance values. (DIMALTF system variable)

\section*{Round Distances To}

Sets rounding rules for alternate units for all dimension types except Angular. If you enter a value of \(\mathbf{0 . 2 5}\), all alternate measurements are rounded to the nearest 0.25 unit. If you enter a value of \(\mathbf{1 . 0}\), all dimension measurements are rounded to the nearest integer. The number of digits displayed after the decimal point depends on the Precision setting. (DIMALTRND system variable)

\section*{Prefix}

Includes a prefix in the alternate dimension text. You can enter text or use control codes to display special symbols. For example, entering the control code \%\%c displays the diameter symbol. (DIMAPOST system variable)

For more information, see Control Codes and Special Characters on page 1938.


Suffix

Includes a suffix in the alternate dimension text. You can enter text or use control codes to display special symbols. For example, entering the text \(\mathbf{c m}\) results in dimension text similar to that shown in the illustration. When you enter a suffix, it overrides any default suffixes. (DIMAPOST system variable)

For more information, see Control Codes and Special Characters on page 1938.
\(|-1.00 \mathrm{tt}[\$ 30.48 \mathrm{~cm}]-|\)

\section*{Zero Suppression}

Controls the suppression of leading and trailing zeros and of feet and inches that have a value of zero. (DIMALTZ system variable)

\section*{Leading}

Suppresses leading zeros in all decimal dimensions. For example, 0.5000 becomes .5000 .

\section*{Sub-units factor}

Sets the number of sub units to a unit. It is used to calculate the dimension distance in a sub unit when the distance is less than one unit. For example, enter \(\mathbf{1 0 0}\) if the suffix is \(m\) and the sub-unit suffix is to display in cm .

\section*{Sub-unit suffix}

Includes a suffix to the dimension value sub unit. You can enter text or use control codes to display special symbols. For example, enter \(\mathbf{c m}\) for .96 m to display as 96 cm .

\section*{Trailing}

Suppresses trailing zeros in all decimal dimensions. For example, 12.5000 becomes 12.5, and 30.0000 becomes 30 .

\section*{0 Feet}

Suppresses the feet portion of a feet-and-inches dimension when the distance is less than 1 foot. For example, \(0^{\prime}-61 / 2^{\prime \prime}\) becomes \(61 / 2^{\prime \prime}\).

\section*{0 Inches}

Suppresses the inches portion of a feet-and-inches dimension when the distance is an integral number of feet. For example, \(1^{\prime}-0^{\prime \prime}\) becomes \(1^{\prime}\).

\section*{Placement}

Controls the placement of alternate units in dimension text.

\section*{After Primary Value}

Places alternate units after the primary units in dimension text.

\section*{Below Primary Value}

Places alternate units below the primary units in dimension text.

\section*{Preview}

Displays sample dimension images that show the effects of changes you make to dimension style settings.

\section*{Tolerances Tab}

\section*{Quick Reference}

See also:
■ Use Dimension Styles

Specifies the display and format of dimension text tolerances.


\section*{List of Options}

The following options are displayed.

\section*{Tolerance Format}

Controls the tolerance format.

\section*{Method}

Sets the method for calculating the tolerance. (DIMTOL system variable)
■ None: Does not add a tolerance. The DIMTOL system variable is set to 0 .
■ Symmetrical: Adds a plus/minus expression of tolerance in which a single value of variation is applied to the dimension measurement. A plus-or-minus sign appears after the dimension. Enter the tolerance value in Upper Value. The DIMTOL system variable is set to 1 . The DIMLIM system variable is set to 0 .


■ Deviation: Adds a plus/minus tolerance expression. Different plus and minus values of variation are applied to the dimension measurement. A plus sign (+) precedes the tolerance value entered in Upper Value, and a minus sign (-) precedes the tolerance value entered in Lower Value. The DIMTOL system variable is set to 1 . The DIMLIM system variable is set to 0 .

- Limits: Creates a limit dimension. A maximum and a minimum value are displayed, one over the other. The maximum value is the dimension value plus the value entered in Upper Value. The minimum value is the dimension value minus the value entered in Lower Value. The DIMTOL system variable is set to 0 . The DIMLIM system variable is set to 1 .


■ Basic: Creates a basic dimension, which displays a box around the full extents of the dimension. The distance between the text and the box is stored as a negative value in the DIMGAP system variable.


\section*{Precision}

Sets the number of decimal places. (DIMTDEC system variable)

\section*{Upper Value}

Sets the maximum or upper tolerance value. When you select Symmetrical in Method, this value is used for the tolerance. (DIMTP system variable)

\section*{Lower Value}

Sets the minimum or lower tolerance value. (DIMTM system variable)

\section*{Scaling for Height}

Sets the current height for the tolerance text. The ratio of the tolerance height to the main dimension text height is calculated and stored in the DIMTFAC system variable.

\section*{Vertical Position}

Controls text justification for symmetrical and deviation tolerances.
- Top: Aligns the tolerance text with the top of the main dimension text. When you select this option, the DIMTOLJ system variable is set to 2.

- Middle: Aligns the tolerance text with the middle of the main dimension text. When you select this option, the DIMTOLJ system variable is set to 1.

- Bottom: Aligns the tolerance text with the bottom of the main dimension text. When you select this option, the DIMTOLJ system variable is set to 0 .


\section*{Tolerance Alignment}

Controls the alignment of upper and lower tolerance values when stacked

\section*{Align Decimal Separators}

Values are stacked by their decimal separators.

\section*{Align Operational Symbols}

Values are stacked by their operational symbols.

\section*{Zero Suppression}

Controls the suppression of leading and trailing zeros and of feet and inches that have a value of zero. (DIMTZIN system variable)
Zero suppression settings also affect real-to-string conversions performed by the AutoLISP \({ }^{\circledR}\) rtos and angtos functions.

\section*{Leading}

Suppresses leading zeros in all decimal dimensions. For example, 0.5000 becomes . 5000 .

Trailing
Suppresses trailing zeros in all decimal dimensions. For example, 12.5000 becomes 12.5 , and 30.0000 becomes 30 .

0 Feet
Suppresses the feet portion of a feet-and-inches dimension when the distance is less than 1 foot. For example, \(0^{\prime}-6\) 1/2" becomes \(61 / 2^{\prime \prime}\).

0 Inches
Suppresses the inches portion of a feet-and-inches dimension when the distance is an integral number of feet. For example, \(1^{\prime}-0\) " becomes \(1^{\prime}\).

\section*{Alternate Unit Tolerance}

Formats alternate tolerance units.

\section*{Precision}

Displays and sets the number of decimal places. (DIMALTTD system variable)

\section*{Zero Suppression}

Controls the suppression of leading and trailing zeros and of feet and inches that have a value of zero. (DIMALTTZ system variable)

\section*{Leading}

Suppresses leading zeros in all decimal dimensions. For example, 0.5000 becomes . 5000 .

\section*{Trailing}

Suppresses trailing zeros in all decimal dimensions. For example, 12.5000 becomes 12.5 , and 30.0000 becomes 30 .

0 Feet
Suppresses the feet portion of a feet-and-inches dimension when the distance is less than 1 foot. For example, \(0^{\prime}-6\) 1/2" becomes \(61 / 2^{\prime \prime}\).

\section*{0 Inches}

Suppresses the inches portion of a feet-and-inches dimension when the distance is an integral number of feet. For example, \(1^{\prime}-0\) " becomes \(1^{\prime}\).

\section*{Preview}

Displays sample dimension images that show the effects of changes you make to dimension style settings.

\section*{Compare Dimension Styles Dialog Box}

\section*{Quick Reference}

See also:
■ Use Dimension Styles

Compares the properties of two dimension styles or displays all properties of one style.


Access Methods

\(\%\) Ribbon: Annotate tab \(>\) Dimensions panel \(\ggg\) Dimension Style
\(\$\) Menu: Format \(>\) Dimension Style
\(\$\) Toolbar: Styles
菐 Command entry: dimstyle

\section*{Summary}

You can print the results of the comparison to the Clipboard, and then paste to other MicrosoftWindows applications.

\section*{List of Options}

The following options are displayed.

\section*{Compare}

Specifies the first dimension style for the comparison.

\section*{With}

Specifies the second dimension style for the comparison. If you set the second style to <none> or to the same style as the first, all the properties of the dimension style are displayed.

Comparison results are displayed automatically under the following headings:
- Description of the dimension style property

■ System variable that controls the property
- System variable values of style properties that differ for each dimension style

\section*{Results}

Displays the results of the dimension style comparison. If you compare two different styles, the properties that differ are displayed. If you set the second style to <none> or to the same style as the first, all the properties of the dimension style are displayed.

\section*{Print to Clipboard button}

Copies the results of the comparison to the Clipboard. You can then paste the results to other Windows applications, such as word processors and spreadsheets.

\section*{-DIMSTYLE}

\section*{Quick Reference}

\section*{See also:}

■ Use Dimension Styles

\section*{Summary}

You can save or restore dimensioning system variables to a selected dimension style.

\section*{List of Prompts}

The following prompts are displayed.
Current dimension style: <current> Annotative: <current>
Enter a dimension style option
[ANnotative on page 647/Save on page 647/Restore on page 647/STatus on page 648/Variables on page 648/Apply on page 648/?] <Restore>: Enter an option or press Enter

\section*{Annotative}

Creates an dimension style.

\section*{Save}

Saves the current settings of dimensioning system variables to a dimension style.

Name Saves the current settings of dimensioning system variables to a new dimension style using the name you enter. The new dimension style becomes the current one.
If you enter the name of an existing dimension style, the following prompts are displayed:
That name is already in use, redefine it? <N>: Entery or press Enter
If you enter \(\mathbf{y}\), associative dimensions that use the redefined dimension style are regenerated.
To display the differences between the dimension style name you want to save and the current style, enter a tilde ( \(\sim\) ) followed by the style name at the Enter Name for New Dimension Style prompt. Only settings that differ are displayed, with the current setting in the first column, and the setting of the compared style in the second column.
?-List Dimension Styles Lists the named dimension styles in the current drawing.

\section*{Restore}

Restores dimensioning system variable settings to those of a selected dimension style.
Name Makes the dimension style you enter the current dimension style.
To display the differences between the dimension style name you want to restore and the current style, enter a tilde ( ) followed by the style name at the Enter Dimension Style Name prompt. Only settings that differ are displayed, with the current setting in the first column, and the setting of the compared style in the second column. After the differences are displayed, the previous prompt returns.
?-List Dimension Styles Lists the named dimension styles in the current drawing.

Select Dimension Makes the dimension style of the selected object the current dimension style.

\section*{Status}

Displays the current values of all dimension system variables.

\section*{Variables}

Lists the dimension system variable settings of a dimension style or selected dimensions without modifying the current settings.

Name Lists the settings of dimension system variables for the dimension style name you enter.
To display the differences between a particular dimension style and the current style, enter a tilde ( \(\sim\) ) followed by the style name at the Enter Dimension Style Name prompt. Only settings that differ are displayed, with the current setting in the first column, and the setting of the compared style in the second column.
?-List Dimension Styles Lists the named dimension styles in the current drawing.

Select Dimension Lists the dimension style and any dimension overrides for the dimension object you select.

\section*{Apply}

Applies the current dimensioning system variable settings to selected dimension objects, permanently overriding any existing dimension styles applied to these objects.

The dimension line spacing between existing baseline dimensions is not updated (see the DIMDLI system variable); dimension text variable settings do not update existing leader text.

\section*{DIMTEDIT}

\section*{Quick Reference}

\section*{See also:}

■ Modify Dimension Text

Moves and rotates dimension text and relocates the dimension line.

\section*{Access Methods}

\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Text Angle
\(\$\) Menu: Dimension \(>\) Align Text \(>\) Angle
\(\$\) Toolbar: Dimension \(\xrightarrow{\longrightarrow}\)

\section*{Summary}

The companion command that edits the dimension text and changes the extension line angle is DIMEDIT.

\section*{List of Prompts}

The following prompts are displayed.
Select dimension: Select a dimension object
You are prompted for the new location of the dimension text.
Specify new location for dimension text or [Left/Right/Center/Home/Angle]: Specify a point or enter an option
Location for Dimension Text Updates the location of the dimension text dynamically as you drag it. To determine whether text appears above, below, or in the middle of the dimension line, use the Text tab in the New, Modify, and Override Dimension Style dialog box.

Left Left-justifies the dimension text along the dimension line.
This option works only with linear, radius, and diameter dimensions.


Right Right-justifies the dimension text along the dimension line.
This option works only with linear, radius, and diameter dimensions.


Center Centers the dimension text on the dimension line.
This option works only with linear, radius, and diameter dimensions.


Home Moves the dimension text back to its default position.
For example:


Angle Changes the angle of the dimension text.
The center point of the text does not change. If the text moves or the dimension is regenerated, the orientation set by the text angle is retained. Entering an angle of 0 degrees puts the text in its default orientation.

The text angle is measured from the \(X\) axis of the UCS.


\section*{DIST}

\section*{Quick Reference}

\section*{See also:}
- Obtain Distances, Angles, and Point Locations

Measures the distance and angle between two points.

\section*{Access Method \\ 並 Command entry: 'dist for transparent use}

\section*{Summary}

In general, the DIST command reports 3D distances in model space and 2D distances on a layout in paper space.

In model space, changes in \(\mathrm{X}, \mathrm{Y}\), and Z component distances and angles are measured in 3D relative to the current UCS.

In paper space, distances are normally reported in 2D paper space units. However, when using object snaps on model space objects that are displayed in a single viewport, distances are reported as 2D model space distances projected onto a plane parallel to your screen.

\section*{List of Prompts}

The following prompts are displayed.
Specify first point: Specify a point
Specify second point or <Multiple points>: Specify a second point
The distance is displayed in the current units format.


DIST assumes the current elevation for the first or second point if you omit the \(Z\) coordinate value.

NOTE When using the DIST command for 3D distances, it is recommended that you switch to model space.

Multiple Points If you specify multiple points, a running total of the distance based on the existing line segments and the current rubberband line is displayed in the tooltip. A dynamic dimension is also displayed. The distance is updated as you move the cursor.

\section*{DISTANTLIGHT}

\section*{Quick Reference}

\section*{See also:}

■ Use Distant Lights
Creates a distant light.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Lights panel \(>\) Distant
\(\$\) Menu: View \(>\) Render \(>\) Light \(>\) New Distant Light
Toolbar: Lights

\section*{List of Prompts}

The following prompts are displayed.
Specify light direction FROM \(<0,0,0>\) or [Vector]: Specify a point or enterv Specify light direction TO \(<1,1,1>\) Specify a point
If you enter the Vector option, the following prompt is displayed:
Specify vector direction <0.0000,-0.0100,1.0000>: Enter a vector
After you specify the light direction and if the LIGHTINGUNITS system variable is set to 0 , the following prompt is displayed:

Enter an option to change
["Name"/"Intensity"/"Status"/"shadoW"/"Color"/"eXit"] <eXit>:
If the LIGHTINGUNITS system variable is set to 1 or 2 , the following prompt is displayed:

Enter an option to change ["Name"/"Intensity
factor"/"Status"/"Photometry"/"shadoW"/"filterColor"/"eXit"] <eXit>:
NOTE When the LIGHTINGUNITS system variable is set to 1 or 2 , the Attenuation option has no affect on the creation of the light. It is only maintained for scripting compatibility.

\section*{Name}

Specifies the name of the light. You can use uppercase and lowercase letters, numbers, spaces, hyphens ( - ), and underscores (_) in the name. The maximum length is 256 characters.

\section*{Intensity/Intensity Factor}

Sets the intensity or brightness of the light. The range is 0.00 to the maximum value that is supported by your system.

\section*{Status}

Turns the light on and off. If lighting is not enabled in the drawing, this setting has no effect.

\section*{Photometry}

Photometry is available when the LIGHTINGUNITS system variable is set to 1 or 2. Photometry is the measurement of the luminous intensities of visible light sources.

In photometry, luminous intensity is a measure of the perceived power emitted by a light source in a particular direction. Luminous flux is the perceived power per unit of solid angle. The total luminous flux is the perceived power
emitted in all directions. Luminance is the total luminous flux incident on a surface, per unit area.

Intensity Enter an intensity value in candelas, the perceived power in a luminous flux value, or illuminance value for the total luminous flux incident on a surface.
- Candela (symbol: cd) is the SI unit of luminous intensity (perceived power emitted by a light source in a particular direction). \(\mathrm{Cd} / \mathrm{Sr}\)

■ Lux (symbol: lx) is the SI unit of illuminance. Lm/m^2
■ Foot-candle (symbol: fc) is the American unit of illuminance. Lm/ft^2

Enter \(\mathbf{f}\) to specify the perceived power in a luminous flux value.
If you enter \(\mathbf{i}\), you can specify the intensity of the light based on an illuminance value.
The illuminance value can be specified in either lux or foot-candles. Enter d to specify a distance to use to calculate illuminance.

Color Specify the color of the light based on a color name or a Kelvin temperature. Enter ? to display a list of color names.
Enter a text string using wild card characters to display a partial listing of color names, or an asterick (*) to display all the possible choices.
If you enter \(\mathbf{k}\), you can specify the color of the light based on a Kelvin temperature value.

\section*{Shadow}

Makes the light cast shadows.
Off Turns off display and calculation of shadows for the light. Turning shadows off increases performance.

Sharp Displays shadows with sharp edges. Use this option to increase performance.

Soft Mapped Displays realistic shadows with soft edges.
Specifies the amount of memory that should be used to calculate the shadow map.
Specifies the softness to use to calculate the shadow map.

\section*{Color/Filter Color}

Controls the color of the light.
True Color Specifies a True Color. Enter in the format R,G,B (red, green, blue).
Index Specifies an ACI (AutoCAD Color Index) color.

HSL Specifies an HSL (hue, saturation, luminance) color.
Color Book Specifies a color from a color book.

\section*{DIVIDE}

\section*{Quick Reference}

See also:
■ Divide an Object into Equal Segments

Creates evenly spaced point objects or blocks along the length or perimeter of an object.

\section*{Access Methods}


Button

8 Ribbon: Home tab \(>\) Draw panel \(>\) Divide
\(\$\) Menu: Draw \(>\) Point \(>\) Divide

\section*{List of Prompts}

The following prompts are displayed.
Select object to divide: Use an object selection method
Enter number of segments on page 655 or [Block]: Enter a value from 2 through 32,767 , or enter \(\mathbf{b}\)
Number of Segments
Places point objects at equal intervals along the selected objects.


Use DDPTYPE on page 524 to set the style and size of all point objects in a drawing.


\section*{Block}

Places blocks at equal intervals along the selected object. If the block has variable attributes, these attributes are not included.
Yes Specifies that the \(X\) axes of the inserted blocks be tangent to, or collinear with, the divided object at the dividing points.

No Aligns the blocks according to their normal orientation.
The illustration shows an arc divided into five equal parts using a block consisting of a vertically oriented ellipse.

block not aligned

block aligned

\section*{DONUT}

\section*{Quick Reference}

See also:
- Draw Donuts

Creates a filled circle or a wide ring.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Draw panel \(>\) Donut
\(\$\) Menu: Draw \(>\) Donut

\section*{Summary}

A donut consists of two arc polylines that are joined end-to-end to create a circular shape. The width of the polylines is determined by the specified inside and outside diameters. To create solid-filled circles, specify an inside diameter of zero.
\[
\text { 喈 } k
\]

\section*{List of Prompts}

The following prompts are displayed.
Specify inside diameter of donut <current>: Specify a distance or press Enter
If you specify an inside diameter of 0 , the donut is a filled circle.
Specify outside diameter of donut <current>: Specify a distance or press Enter Specify center of donut or <exit>: Specify a point (1) or press Enter to end the command


The location of the donut is set based on the center point. After you specify the diameters, you are prompted for the locations at which to draw donuts. A donut is drawn at each point specified (2). How the interior of a donut is filled depends on the current setting of the FILL command.

\section*{DRAGMODE}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Controls the way dragged objects are displayed.

\section*{Access Method}


\section*{List of Prompts}

The following prompts are displayed.
Enter new value [ON/OFF/Auto] <current>: Enter an option or press Enter On Permits dragging, but you must enter drag where appropriate in a drawing or editing command to initiate dragging.


Off Ignores all dragging requests, including those embedded in menu items.


Auto Turns on dragging for every command that supports it. Dragging is performed whenever it is possible. Entering drag each time is not necessary.

\section*{DRAWINGRECOVERY}

\section*{Quick Reference}

See also:
- Recover from a System Failure

Displays a list of drawing files that can be recovered after a program or system failure.

\section*{Access Methods}


Button
 Recovery Manager
\(\$\) Menu: File \(>\) Drawing Utilities \(>\) Drawing Recovery
Summary
Opens the Drawing Recovery Manager.

\section*{Drawing Recovery Manager}

\section*{Quick Reference}

\section*{See also:}
- Recover from a System Failure

Displays a list of all drawing files that were open at the time of a program or system failure.

\section*{Access Methods}

Button


\section*{Summary}

You can preview and open each drawing or backup file to choose which one should be saved as the primary DWG file.

\section*{List of Options}

The following options are displayed.

\section*{Backup Files}

Displays the drawings that may need to be recovered after a program or system failure. A top-level drawing node contains a set of files associated with each drawing. If available, up to four files are displayed including
- The recovered drawing file saved at the time of a program failure (DWG, DWS)

■ The automatic save file, also called the "autosave" file (SV\$)
- The drawing backup file (BAK)
- The original drawing file (DWG, DWS)

Once a drawing or backup file is opened and saved, the corresponding top-level drawing node is removed from the Backup Files area.

\section*{Details}

Provides the following information about the currently selected node in the Backup Files area:

■ When a top-level drawing node is selected, information about each available drawing or backup file associated with the original drawing is displayed.
- When an individual drawing or backup file is selected, additional information about that file is displayed.

\section*{Preview}

Displays a thumbnail preview of the currently selected drawing or backup file.

\section*{Shortcut Menu Options}

Right-click a drawing node, drawing or backup file, or a blank area in the Backup Files area to display a shortcut menu with relevant options.
Open All Opens all the drawing and backup files associated with the selected, top-level drawing node.

Remove Removes the selected, top-level drawing node.
Open Opens the selected drawing or backup file for drawing recovery. You can select multiple files using Shift and Ctrl.

Properties Displays the File Properties dialog box from Windows Explorer for the selected drawing or backup file.

Expand All Expands all top-level drawing nodes. Access this option by right-clicking a blank area in the Backup Files area.

Collapse All Collapses all top-level drawing nodes. Access this option by right-clicking a blank area in the Backup Files area.

\section*{DRAWINGRECOVERYHIDE}

\section*{Quick Reference}

\section*{See also:}

■ Recover from a System Failure

Closes the Drawing Recovery Manager.

\section*{Summary}

Closes the Drawing Recovery Manager.

\section*{DRAWORDER}

\section*{Quick Reference}

\section*{See also:}

■ Control How Overlapping Objects Are Displayed

Changes the draw order of images and other objects.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Bring to Front
\(\$\) Menu: Tools \(>\) Draw Order
\(\$\) Toolbar: Draw Order


Shortcut menu: Select an object, right-click, and then click Draw Order.

\section*{Summary}

Use the DRAWORDERCTL system variable to control the default display behavior of overlapping objects. The TEXTTOFRONT command brings all text and dimensions in a drawing in front of other objects.

\section*{List of Prompts}

The following prompts are displayed.
Select objects: Use an object selection method
Enter object ordering option [Above objects/Under objects/Front/Back] <Back>: Enter an option or press Enter
Above Objects Moves the selected object above the specified reference objects.
Under Objects Moves the selected objects below the specified reference objects.
Front Moves the selected objects to the top of the order of objects in the drawing.

Back Moves the selected objects to the bottom of the order of objects in the drawing.
When you change the draw order (display and plotting order) of multiple objects, the relative draw order of the selected objects is maintained.
By default, when you create new objects from existing ones (for example, FILLET or PEDIT), the new objects are assigned the draw order of the original object you selected first. By default, while you edit an object (for example, MOVE or STRETCH), the object is displayed on top of all objects in the drawing. When you are finished editing, your drawing is partially regenerated so that the object is displayed according to its correct draw order. This can result in some edit operations taking slightly longer. You can use DRAWORDERCTL to change the default draw order settings. TEXTTOFRONT changes the draw order of all text and dimensions in the drawing.

\section*{DSETTINGS}

\section*{Quick Reference}

See also:
- Use Precision Tools

Sets grid and snap, polar and object snap tracking, object snap modes, Dynamic Input, and Quick Properties.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Drafting Settings
Shortcut menu: Right-click Snap, Grid, Polar, Osnap, Otrack, Dyn or Quick Properties on the status bar. Click Settings.

\section*{Summary}

The Drafting Settings dialog box is displayed.

\section*{Drafting Settings Dialog Box}

\section*{Quick Reference}

See also:
■ Use Precision Tools

Specifies drafting settings organized for drawing aids.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Drafting Settings
Shortcut menu: Right-click Snap, Grid, Polar, Osnap, Otrack, Dyn or Quick Properties on the status bar and click Settings.

\section*{Summary}

Displays the Drafting tab in the Options dialog box. You cannot access the Options dialog box from the Drafting Settings dialog box if you are running DSETTINGS transparently.

The following categories are available.
- Snap and Grid on page 664

■ Polar Tracking on page 668
- Object Snap on page 669
- 3D Object Snap
- Dynamic Input on page 674
- Quick Properties on page 675

■ Selection Cycling on page 677

\section*{List of Options}

The following options are displayed.
Snap and Grid Tab (Drafting Settings Dialog Box)
Specifies Snap and Grid settings.


\section*{Snap On}

Turns Snap mode on or off. You can also turn Snap mode on or off by clicking Snap on the status bar, by pressing F9, or by using the SNAPMODE system variable.

\section*{Snap Spacing}

Controls an invisible, rectangular grid of snap locations that restricts cursor movement to specified \(X\) and \(Y\) intervals.

\section*{Snap X Spacing}

Specifies the snap spacing in the \(X\) direction. The value must be a positive real number. (SNAPUNIT system variable)

\section*{Snap Y Spacing}

Specifies the snap spacing in the \(Y\) direction. The value must be a positive real number. (SNAPUNIT system variable)

Equal \(X\) and \(Y\) Spacing
Forces the X and Y spacing to the same values for snap spacing and for grid spacing. The snap spacing intervals can be different from the grid spacing intervals.

\section*{Polar Spacing}

Controls the PolarSnap \({ }^{\mathrm{TM}}\) increment distance.

\section*{Polar Distance}

Sets the snap increment distance when PolarSnap is selected under Snap Type \& Style. If this value is 0 , the PolarSnap distance assumes the value for Snap X Spacing. The Polar Distance setting is used in conjunction with polar tracking and/or object snap tracking. If neither tracking feature is enabled, the Polar Distance setting has no effect. (POLARDIST system variable)

\section*{Snap Type}

Sets the snap style and snap type.
Grid Snap
Sets the snap type to Grid. When you specify points, the cursor snaps along vertical or horizontal grid points. (SNAPTYPE system variable)

\section*{Rectangular Snap:}

Sets the snap style to standard Rectangular snap mode. When the snap type is set to Grid snap and Snap mode is on, the cursor snaps to a rectangular snap grid. (SNAPSTYL system variable)

\section*{Isometric Snap}

Sets the snap style to Isometric snap mode. When the snap type is set to Grid snap and Snap mode is on, the cursor snaps to an isometric snap grid. (SNAPSTYL system variable)

\section*{PolarSnap}

Sets the snap type to Polar. When Snap mode is on and you specify points with polar tracking turned on, the cursor snaps along polar alignment angles set on the Polar Tracking tab relative to the starting polar tracking point. (SNAPTYPE system variable)

\section*{Grid On}

Turns the grid on or off. You can also turn grid mode on or off by clicking Grid on the status bar, by pressing F7, or by using the GRIDMODE on page 2334 system variable.

\section*{Grid Style}

Sets the grid style in 2D contexts. You can also set grid style by using the GRIDSTYLE on page 2334 system variable.

\section*{2D Model Space}

Sets the grid style to dotted grid for 2D model space. (GRIDSTYLE on page 2334 system variable)

\section*{Block Editor}

Sets the grid style to dotted grid for the Block Editor. (GRIDSTYLE on page 2334 system variable)

\section*{Sheet/Layout}

Sets the grid style to dotted grid for sheet and layout. (GRIDSTYLE on page 2334 system variable)

\section*{Grid Spacing}

Controls the display of a grid that helps you visualize distances.
NOTE The limits of the grid are controlled by the LIMITS command and the GRIDDISPLAY system variable.

Grid X Spacing
Specifies the grid spacing in the \(X\) direction. If this value is 0 , the grid assumes the value set for Snap X Spacing. (GRIDUNIT system variable)

\section*{Grid Y Spacing}

Specifies the grid spacing in the \(Y\) direction. If this value is 0 , the grid assumes the value set for Snap Y Spacing. (GRIDUNIT system variable)

\section*{Major Line Every}

Specifies the frequency of major grid lines compared to minor grid lines. Grid lines rather than grid dots are displayed when GRIDSTYLE on page 2334 is set to 0 . (GRIDMAJOR system variable)

\section*{Grid Behavior}

Controls the appearance of the grid lines that are displayed when GRIDSTYLE on page 2334 is set to 0 .
Adaptive Grid
Limits the density of the grid when zoomed out. (GRIDDISPLAY system variable)

Allow Subdivision Below Grid Spacing:
Generates additional, more closely spaced grid lines when zoomed in. The frequency of these grid lines is determined by the frequency of the major grid lines. (GRIDDISPLAY and GRIDMAJOR system variables)

\section*{Display Grid Beyond Limits}

Displays the grid beyond the area specified by the LIMITS command. (GRIDDISPLAY system variable)

Follow Dynamic UCS
Changes the grid plane to follow the XY plane of the dynamic UCS. (GRIDDISPLAY system variable)

\section*{Polar Tracking Tab (Drafting Settings Dialog Box)}

Controls the AutoTrack settings.

\section*{Polar Tracking On}

Turns polar tracking on and off. You can also turn polar tracking on or off by pressing F10 or by using the AUTOSNAP system variable.

\section*{Polar Angle Settings}

Sets the alignment angles for polar tracking. (POLARANG system variable)

\section*{Increment Angle}

Sets the polar increment angle used to display polar tracking alignment paths. You can enter any angle, or select a common angle of \(90,45,30,22.5,18,15\), 10, or 5 degrees from the list. (POLARANG system variable)

\section*{Additional Angles}

Makes any additional angles in the list available for polar tracking. The Additional Angles check box is also controlled by the POLARMODE system variable, and the list of additional angles is also controlled by the POLARADDANG system variable.

NOTE Additional angles are absolute, not incremental.

\section*{List of Angles}

If Additional Angles is selected, lists the additional angles that are available. To add new angles, click New. To remove existing angles, click Delete. (POLARADDANG system variable)

\section*{New}

Adds up to 10 additional polar tracking alignment angles.
NOTE Before adding fractional angles, you must set the AUPREC system variable to the appropriate decimal precision to avoid undesired rounding. For example, if the value of AUPREC is 0 (the default value), all fractional angles you enter are rounded to the nearest whole number.

\section*{Delete}

Deletes selected additional angles.

\section*{Object Snap Tracking Settings}

Sets options for object snap tracking.

\section*{Track Orthogonally Only}

Displays only orthogonal (horizontal/vertical) object snap tracking paths for acquired object snap points when object snap tracking is on. (POLARMODE system variable)

\section*{Track Using All Polar Angle Settings}

Applies polar tracking settings to object snap tracking. When you use object snap tracking, the cursor tracks along polar alignment angles from acquired object snap points. (POLARMODE system variable)

NOTE Clicking Polar and Otrack on the status bar also turns polar tracking and object snap tracking on and off.

\section*{Polar Angle Measurement}

Sets the basis by which polar tracking alignment angles are measured.

\section*{Absolute}

Bases polar tracking angles on the current user coordinate system (UCS).

\section*{Relative to Last Segment}

Bases polar tracking angles on the last segment drawn.

\section*{Object Snap Tab (Drafting Settings Dialog Box)}

Controls running object snap settings. With running object snap settings, also called Osnap, you can specify a snap point at an exact location on an object. When more than one option is selected, the selected snap modes are applied to return a point closest to the center of the aperture box. Press TAB to cycle through the options.


\section*{Object Snap On}

Turns running object snaps on and off. The object snaps selected under Object Snap Modes are active while object snap is on. (OSMODE system variable)

\section*{Object Snap Tracking On}

Turns object snap tracking on and off. With object snap tracking, the cursor can track along alignment paths based on other object snap points when specifying points in a command. To use object snap tracking, you must turn on one or more object snaps. (AUTOSNAP system variable)

\section*{Object Snap Modes}

Lists object snaps that you can turn on as running object snaps.

\section*{Endpoint}

Snaps to the closest endpoint of an arc, elliptical arc, line, multiline, polyline segment, spline, region, or ray, or to the closest corner of a trace, solid, or 3D face.


Midpoint

Snaps to the midpoint of an arc, ellipse, elliptical arc, line, multiline, polyline segment, region, solid, spline, or xline.


\section*{Center}

Snaps to the center of an arc, circle, ellipse, or elliptical arc.


\section*{Node}

Snaps to a point object, dimension definition point, or dimension text origin.


\section*{Quadrant}

Snaps to a quadrant point of an arc, circle, ellipse, or elliptical arc.


\section*{Intersection}

Snaps to the intersection of an arc, circle, ellipse, elliptical arc, line, multiline, polyline, ray, region, spline, or xline. Extended Intersection is not available as a running object snap.


NOTE You might get varying results if you have both the Intersection and Apparent Intersection running object snaps turned on at the same time.

Intersection and Extended Intersection do not work with edges or corners of 3D solids

\section*{Extension}

Causes a temporary extension line or arc to be displayed when you pass the cursor over the endpoint of objects, so you can specify points on the extension.

NOTE When working in perspective view, you cannot track along the extension line of an arc or elliptical arc.

\section*{Insertion}

Snaps to the insertion point of an attribute, a block, a shape, or text.

\section*{Perpendicular}

Snaps to a point perpendicular to an arc, circle, ellipse, elliptical arc, line, multiline, polyline, ray, region, solid, spline, or xline.

Deferred Perpendicular snap mode is automatically turned on when the object you are drawing requires that you complete more than one perpendicular snap. You can use a line, arc, circle, polyline, ray, xline, multiline, or 3D solid edge as an object from which to draw a perpendicular line. You can use Deferred Perpendicular to draw perpendicular lines between such objects. When the aperture box passes over a Deferred Perpendicular snap point, an AutoSnap tooltip and marker are displayed.


\section*{Tangent}

Snaps to the tangent of an arc, circle, ellipse, elliptical arc, or spline. Deferred Tangent snap mode is automatically turned on when the object you are drawing requires that you complete more than one tangent snap. You can use Deferred Tangent to draw a line or xline that is tangent to arcs, polyline arcs, or circles. When the aperture box passes over a Deferred Tangent snap point, a marker and an AutoSnap tooltip are displayed.


NOTE When you use the From option in conjunction with the Tangent snap mode to draw objects other than lines from arcs or circles, the first point drawn is tangent to the arc or circle in relation to the last point selected in the drawing area.

\section*{Nearest}

Snaps to the nearest point on an arc, circle, ellipse, elliptical arc, line, multiline, point, polyline, ray, spline, or xline.

\section*{Apparent Intersection}

Snaps to the visual intersection of two objects that are not in the same plane but may appear to intersect in the current view.

Extended Apparent Intersection is not available as a running object snap. Apparent and Extended Apparent Intersection do not work with edges or corners of 3D solids.
NOTE You might get varying results if you have both the Intersection and Apparent Intersection running object snaps turned on at the same time.

\section*{Parallel}

Constrains a line segment, polyline segment, ray or xline to be parallel to another linear object. After you specify the first point of a linear object, specify the parallel object snap. Unlike other object snap modes, you move the cursor and hover over another linear object until the angle is acquired. Then, move the cursor back toward the object that you are creating. When the path of the object is parallel to the previous linear object, an alignment path is displayed, which you can use to create the parallel object.

NOTE Turn off ORTHO mode before using the parallel object snap. Object snap tracking and polar snap are turned off automatically during a parallel object snap operation. You must specify the first point of a linear object before using the parallel object snap.

\section*{Select All}

Turns on all object snap modes.

\section*{Clear All}

Turns off all object snap modes.
Dynamic Input Tab (Drafting Settings Dialog Box)
Controls pointer input, dimension input, dynamic prompting, and the appearance of drafting tooltips.


\section*{Enable Pointer Input}

Turns on pointer input. When pointer input and dimensional input are both turned on, dimensional input supersedes pointer input when it is available. (DYNMODE system variable)

\section*{Pointer Input}

Displays the location of the crosshairs as coordinate values in a tooltip near the cursor. When a command prompts you for a point, you can enter coordinate values in the tooltip instead of in the Command window.

\section*{Preview Area}

Shows an example of pointer input.
Settings
Displays the Pointer Input Settings dialog box.

\section*{Enable Dimension Input}

Turns on dimensional input. Dimensional input is not available for some commands that prompt for a second point. (DYNMODE system variable)

\section*{Dimension Input}

Displays a dimension with tooltips for distance value and angle value when a command prompts you for a second point or a distance. The values in the dimension tooltips change as you move the cursor. You can enter values in the tooltip instead of on the command line.

Preview Area
Shows an example of dimensional input.
Settings
Displays the Dimension Input Settings dialog box.

\section*{Dynamic Prompts}

Displays prompts in a tooltip near the cursor when necessary in order to complete the command. You can enter values in the tooltip instead of on the command line.

Preview Area
Shows an example of dynamic prompts.
Show Command Prompting and Command Input near the Crosshairs
Displays prompts in Dynamic Input tooltips. (DYNPROMPT system variable)

\section*{Drafting Tooltip Appearance}

Displays the Tooltip Appearance dialog box.
Quick Properties Tab (Drafting Settings Dialog Box)
Specifies the settings for displaying the Quick Properties palette.


\section*{Enable Quick Properties Palette}

Depending on the object type, you can enable or disable Quick Properties palette. Quick Properties palette can also be turned on or off by clicking Quick Properties on the status bar or by using the QPMODE on page 2478 system variable.

\section*{Palette Display}

Sets the display settings of the Quick Properties palette. See Quick Properties for more information.

\section*{All Objects}

Sets the Quick Properties palette to display for any selection of objects.

\section*{Only Objects with Specified Properties}

Sets the Quick Properties palette to display only for objects that are defined in the Customize User Interface (CUI) editor to display properties.

\section*{Palette Location}

Sets the display position of the Quick Properties palette.

\section*{Cursor-Dependent}

Sets the Palette Location mode to Cursor-dependent. In cursor-dependent mode, the Quick Properties palette displays in a location relative to where you selected the object. (QPLOCATION on page 2477 system variable)

\section*{Quadrant:}

Specifies the relative location to display the Quick Properties palette. You can select one of the four quadrants top-right, top-left, bottom-right, or bottom-left.

\section*{Distance in Pixels:}

Sets the distance in pixels when Cursor is selected under the Palette Location modes. You can specify values in the range of 0 to 400 (only integer values).

Static
Sets the location mode to Static. (QPLOCATION on page 2477 system variable)

\section*{Palette Behavior}

Sets the behavior of Quick Properties palette.

\section*{Collapse Palette Automatically}

Enables the Quick Properties palette to display only a specified number of properties in the idle state.

\section*{Minimum Number of Rows:}

Sets the minimum number of rows for the Quick Properties palette to display in the collapsed idle state. You can specify values in the range of 1 to 30 (only integer values).

\section*{Selection Cycling Tab (Draft Settings Dialog Box)}

Selection cycling allows you to select objects that are overlapping. You can configure the display settings of the selection cycling list box. To filter the type of subobjects displayed (vertices, edges, or faces) use the SUBOBJSELECTIONMODE on page 2532system variable.


\section*{Allow Selection Cycling}

You can also set this option with the SELECTIONCYCLING on page 2505 system variable.

\section*{Display Selection Cycling List Box}

Displays the Selection Cycling List box.

\section*{Cursor Dependent}

Moves the list box relative to the cursor.
Quadrant
Specifies in which quadrant of the cursor to position the list box.

\section*{Distance in Pixels}

Specifies the distance between the cursor and the list box.

\section*{Static}

The list box does not move with the cursor and remains in the same position.
To change the position of the list box, click and drag.

\section*{Show Title Bar}

To save screen space, turn the title bar off.

\section*{Pointer Input Settings Dialog Box}

\section*{Quick Reference}

See also:
- Use Dynamic Input

Controls the settings of pointer input tooltips.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Drafting Settings
Shortcut menu: Right-click Snap, Grid, Polar, Osnap, Otrack, or Dyn on the status bar and click Settings.

\section*{List of Options}

The following options are displayed.

\section*{Format}

Controls coordinate format in the tooltips that are displayed when pointer input is turned on.
Polar Format
Displays the tooltip for the second or next point in polar coordinate format. Enter a comma (,) to change to Cartesian format. (DYNPIFORMAT system variable)

\section*{Cartesian Format}

Displays the tooltip for the second or next point in Cartesian coordinate format. Enter an angle symbol ( \(<\) ) to change to polar format. (DYNPIFORMAT system variable)

\section*{Relative Coordinates}

Displays the tooltip for the second or next point in relative coordinate format. Enter a pound sign (\#) to change to absolute format. (DYNPICOORDS system variable)

\section*{Absolute Coordinates}

Displays the tooltip for the second or next point in absolute coordinate format. Enter an at sign () to change to relative format. Note that you cannot use the
direct distance method when this option is selected. (DYNPICOORDS system variable)

\section*{Visibility}

Controls when pointer input is displayed. (DYNPIVIS system variable)

\section*{As Soon As I Type Coordinate Data}

When pointer input is turned on, displays tooltips only when you start to enter coordinate data. (DYNPIVIS system variable)

When a Command Asks for a Point
When pointer input is turned on, displays tooltips whenever a command prompts you for a point. (DYNPIVIS system variable)

Always-Even When Not in a Command
Always displays tooltips when pointer input is turned on. (DYNPIVIS system variable)

\section*{Dimension Input Settings Dialog Box}

\section*{Quick Reference}

See also:
■ Use Dynamic Input

Controls the settings of dimension input tooltips.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Drafting Settings
Shortcut menu: Right-click Snap, Grid, Polar, Osnap, Otrack, or Dyn on the status bar and click Settings.

\section*{List of Options}

The following options are displayed.

\section*{Visibility}

Controls which tooltips are displayed during grip stretching when dimensional input is turned on. (DYNDIVIS system variable)

Show Only 1 Dimension Input Field at a Time

Displays only the length change dimensional input tooltip when you are using grip editing to stretch an object. (DYNDIVIS system variable)

Show 2 Dimension Input Fields at a Time
Displays the length change and resulting dimensional input tooltips when you are using grip editing to stretch an object. (DYNDIVIS system variable)

Show the Following Dimension Input Fields Simultaneously
When you are using grip editing to stretch an object, displays the dimensional input tooltips that are selected below. (DYNDIVIS and DYNDIGRIP system variables)

\section*{Resulting Dimension}

Displays a length dimensional tooltip that is updated as you move the grip.

\section*{Length Change}

Displays the change in length as you move the grip.

\section*{Absolute Angle}

Displays an angle dimensional tooltip that is updated as you move the grip.

\section*{Angle Change}

Displays the change in the angle as you move the grip.
Arc Radius
Displays the radius of an arc, which is updated as you move the grip.

\section*{Tooltip Appearance Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Use Dynamic Input

Controls the appearance of tooltips.

\section*{Access Methods}
\$ Menu: Tools \(>\) Drafting Settings

Shortcut menu: Right-click Snap, Grid, Polar, Osnap, Otrack, or Dyn on the status bar and click Settings.

\section*{Summary}

Use the TOOLTIPMERGE system variable to combine drafting tooltips into a single tooltip.

For more information about tooltips, see Set Interface Options.

\section*{List of Options}

The following options are displayed.

\section*{Previews}

Displays an example of the current tooltip appearance settings.

\section*{Colors}

Displays the Drawing Window Colors dialog box, where you can specify a color for drafting tooltips and their backgrounds in a specified context.

\section*{Size}

Specifies a size for tooltips. The default size is 0 . Use the slider to make tooltips larger or smaller.

\section*{Transparency}

Controls the transparency of tooltips. The lower the setting, the less transparent the tooltip. A value of 0 sets the tooltip to opaque.

\section*{Apply To}

Specifies whether the settings apply to all drafting tooltips or only to Dynamic Input tooltips. (DYNTOOLTIPS system variable)

\section*{Override OS Settings for All Drafting Tooltips}

Applies the settings to all tooltips, overriding the settings in the operating system.

\section*{Use Settings Only for Dynamic Input Tooltips}

Applies the settings only to the drafting tooltips used in Dynamic Input.

\section*{DSVIEWER}

\section*{Quick Reference}

See also:
■ Pan and Zoom with the Aerial View Window

Opens the Aerial View window.
Access Methods
\(\$\) Menu: View > Aerial View
Summary
The Aerial View window is displayed.

\section*{Aerial View Window}

\section*{Quick Reference}

\section*{See also:}
- Pan and Zoom with the Aerial View Window

Displays the entire drawing; the current view is marked with a wide outline box.

\section*{Access Methods}
\$ Menu: View \(>\) Aerial View
菐 Command entry: dsviewer

\section*{Summary}

When the entire drawing is displayed in the Aerial View window, the Zoom Out menu option and button are unavailable. When the current view nearly fills the Aerial View window, the Zoom In menu option and button are unavailable. If both of these conditions exist at the same time, such as after using ZOOM Extents, both options are unavailable. All of the menu options
are also available from a shortcut menu you can access by right-clicking in the Aerial View window.


\section*{List of Options}

The following options are displayed.

\section*{View Menu (Aerial View Window)}

Changes the magnification of the Aerial View by zooming in and out of the drawing or by displaying the entire drawing in the Aerial View window.

Zoom In Increases the magnification of the drawing in the Aerial View window by zooming in by a factor of 2 , centered on the current view box.


Zoom Out Decreases the magnification of the drawing in the Aerial View window by zooming out by a factor of 2 , centered on the current view box.


Global Displays the entire drawing and the current view in the Aerial View window.


\section*{Options Menu (Aerial View Window)}

Provides toggles for automatic viewport display and dynamic updating of the drawing. All of the menu options are also available from a shortcut menu you can access by right-clicking in the Aerial View window.

Auto Viewport Displays the model space view of the current viewport automatically when multiple viewports are displayed. When Auto Viewport is off, the Aerial View window is not updated to match the current viewport.

Dynamic Update Updates the Aerial View window while you edit the drawing. When Dynamic Update is off, the Aerial View window is not updated until you click in the Aerial View window.

Realtime Zoom Updates the drawing area in real time when you zoom using the Aerial View window.

\section*{DVIEW}

\section*{Quick Reference}

\section*{See also:}
- Specify 3D Views

Defines parallel projection or perspective views by using a camera and target.

\section*{Access Methods}

\section*{Summary}

NOTE Transparent ZOOM, DSVIEWER, PAN, and scroll bars are not available in DVIEW. When you define a perspective view, ZOOM, PAN, transparent ZOOM and PAN, DSVIEWER, and scroll bars are not available while that view is current.

\section*{List of PromptsObject Selection on page 686}

The following prompts are displayed.
Select objects on page 686 or <use >.DVIEWBLOCK on page 687
Enter option
[CAmera on page 687/TArget on page 688/Distance on page 689/POints on page 690/PAn on page 691/Zoom on page 691/TWist on page 692/CLip on page 692/Hide on page 693/Off on page 693/Undo on page 693]: Specify a point on page 687 with your pointing device, or enter an option

plan view


3D perspective view

\section*{Object Selection}

Specifies objects to use in the preview image as you change views. Selecting too many objects slows image dragging and updating.

\section*{DVIEWBLOCK}

If you press Enter at the Select Objects prompt, DVIEWBLOCK displays a preview image. You can create your own DVIEWBLOCK block in a 1 unit by 1 unit by 1 unit area, with its origin at the lower-left corner. The following illustration shows an example of using the default DVIEWBLOCK to set the view (moving the graphics cursor adjusts the view).


\section*{Point Specification}

Rolls the view under the camera. The point you select with your pointing device is a start point for the dragging operation. Your viewing direction changes about the target point as you move the pointing device.

The angles must be positive. The direction angle indicates the front of the view, and the magnitude angle determines how far the view rolls.

\section*{Camera}

Specifies a new camera position by rotating the camera about the target point. Two angles determine the amount of rotation.

Camera Location Sets the camera's position based on the specified point.
Enter Angle from the XY Plane Sets the camera's position at an angle above or below the \(X Y\) plane. An angle of 90 degrees looks down from above, and an angle of -90 looks up from below. A camera angle of 0 degrees places the camera parallel to the \(X Y\) plane of the user coordinate system (UCS).

Toggle (Angle In) Switches between two angle input modes. Entering an angle at the Command prompt locks the cursor movement so you see only
the positions available for that angle. Toggle unlocks the cursor movement for the angle, and you can use the cursor to rotate the camera.

Enter Angle in XY Plane from X Axis Sets the position at an angle in the \(X Y\) plane relative to the \(X\) axis of the current UCS. This angle measures from -180 to 180 degrees. A rotation angle of 0 degrees looks down the \(X\) axis of the UCS toward the origin.

plan view

camera at A

camera rotated to \(B\)

The illustration shows the camera rotating to the left from its initial position, leaving its angle from the \(X Y\) plane unchanged.

Toggle (Angle From) Switches between two angle input modes. Entering an angle at the Command prompt locks the cursor movement so you see only the positions available for that angle. Toggle unlocks the cursor movement for the angle, and you can use the cursor to rotate the camera.

\section*{Target}

Specifies a new position for the target by rotating it around the camera. The effect is like turning your head to see different parts of the drawing from one vantage point. Two angles determine the amount of rotation.

Enter Angle from the XY Plane Enter Angle from the XY Plane on page 687
Toggle (Angle In) Toggle (Angle In) on page 687
Enter Angle in XY Plane from X Axis Enter Angle in XY Plane from X Axis on page 688The illustration shows the effect of moving the target point from left to right, leaving its angle from the \(X Y\) plane unchanged.


Toggle (Angle From) Toggle (Angle From) on page 688

\section*{Distance}

Moves the camera in or out along the line of sight relative to the target. This option turns on perspective viewing, which causes objects farther from the camera to appear smaller than those closer to the camera. A special perspective icon replaces the coordinate system icon. You are prompted for the new camera-to-target distance.

A slider bar along the top of the drawing area is labeled from \(0 x\) to \(16 x\), with 1 x representing the current distance. Moving the slider bar to the right increases the distance between camera and target. Moving it to the left decreases that distance. To turn off perspective viewing, click the Off option from the main DVIEW prompt.
If the target and camera points are close together, or if you specify a long-focal-length lens, you might see very little of your drawing when you specify a new distance. If you see little or none of your drawing, try the maximum scale value ( 16 x ) or enter a large distance. To magnify the drawing without turning perspective viewing on, use the Zoom option of DVIEW.


The illustration shows the effect of moving the camera along the line of sight relative to the target, where the field of view remains constant.

Points
Locates the camera and target points using \(X, Y, Z\) coordinates. You can use \(X Y Z\) point filters.
To help you define a new line of sight, a rubber-band line is drawn from the current camera position to the crosshairs. You are prompted for a new camera location.

A rubber-band line connects the target point to the crosshairs to help you place the camera relative to the target. The illustration shows the change in view as you swap the camera and target points. Lens and distance settings are the same in each case.


For information about entering direction and magnitude angles, see Point Specification.

\section*{Pan}

Shifts the image without changing the level of magnification.

\section*{Zoom}

If perspective viewing is off, dynamically increases or decreases the apparent size of objects in the current viewport.

A slider bar along the top of the drawing area is labeled from \(0 x\) to \(16 x\), with 1 x representing the current scale. Moving the slider bar to the right increases the scale. Moving it to the left decreases the scale.

If perspective viewing is on, Zoom adjusts the camera lens length, which changes the field of view and causes more or less of the drawing to be visible at a given camera and target distance. The default lens length is 50 mm , simulating what you'd see with a 35 mm camera and a 50 mm lens. Increasing the lens length is similar to switching to a telephoto lens. Decreasing the lens length widens the field of view, as with a wide-angle lens.

A slider bar along the top of the drawing area is labeled from \(0 x\) to \(16 x\), with 1 x representing the current lens length. Moving the slider bar to the right increases the lens length. Moving it to the left decreases the lens length.


\section*{Twist}

Twists or tilts the view around the line of sight. The twist angle is measured counterclockwise, with 0 degrees to the right.

\section*{Clip}

Clips the view, obscuring portions of the drawing that are behind or in front of the front clipping plane. The front and back clipping planes are invisible walls that you can position perpendicular to the line of sight between the camera and target.

Back Obscures objects located behind the back clipping plane.
- Distance from Target. Positions the back clipping plane and turns on back clipping. A positive distance places the clipping plane between the target and the camera. A negative distance places it beyond the target. You can use the slider bar to drag the clipping plane.

■ On. Turns on back clipping at the current clipping distance.
■ Off. Turns off back clipping.

Front Obscures objects located between the camera and the front clipping plane.
- Distance from Target.Positions the front clipping plane and turns on front clipping. A positive distance places the clipping plane between the target and the camera. A negative distance places it beyond the target. You can use the slider bar to drag the clipping plane.
- Eye. Positions the front clipping plane at the camera.
- On. Turns on front clipping. This option is available only when perspective viewing is off.
- Off. Turns off front clipping. This option is available only when perspective viewing is off.


Off Turns off front and back clipping. If perspective viewing is on, front clipping remains on at the camera position.

\section*{Hide}

Suppresses hidden lines on the selected objects to aid in visualization. Circles, solids, traces, regions, wide polyline segments, 3D faces, polygon meshes, and the extruded edges of objects with nonzero thickness are considered to be opaque surfaces that hide objects. This hidden line suppression is quicker than that performed by HIDE, but it can't be plotted.
Off
Turns off perspective viewing. The Distance option turns on perspective viewing.

\section*{Undo}

Reverses the effects of the last DVIEW action. You can undo multiple DVIEW operations.

\section*{DWFADJUST}

\section*{Quick Reference}

\section*{See also:}
- Adjust Underlay Contrast, Fade, Monochrome, and Colors for the Background

Adjust the fade, contrast, and monochrome settings of a DWF or DWFx underlay.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab > Reference panel > Adjust

\section*{Summary}

You can change the default values for Fade, Contrast, and Monochrome for a single or multiple DWF and DWFx underlays. To confirm the settings on a selected DWF or DWFx underlay, use the Properties palette.

NOTE You can also use the ADJUST on page 105 command to change the fade, contrast, and monochrome settings for DWF underlays as well as DWF, DWFx and PDF underlays or the fade, contrast and brightness for images.

To adjust colors in the DWF or DWFx underlay, open the Properties palette for the DWF or DWFx underlay. For more information, see Adjust Underlay Contrast, Fade, Monochrome, and Colors for the Background.

\section*{List of Prompts}

The following prompts are displayed.

\section*{Fade}

Controls the fade effect of the underlay. Values range from 0 through 100.
The greater the value, the lighter the linework in the underlay appears. Works indirectly with the contrast effect; a higher contrast value blends the underlay into the background when fade is set to a higher value.

\section*{Contrast}

Controls the contrast, and indirectly, the fading effect, of the underlay. Values range from 0 through 100. The greater the value, the more each pixel is forced to its primary or secondary color.

\section*{Monochrome}

Controls the color saturation of all linework while maintaining the luminance. When turned on, the linework appears in varying shades of gray starting at black if the background color luminance is 50 percent or more. If the background color luminance is less than 50 percent, then the colors are inverted, with the darkest linework displaying in white, and the lightest linework displaying in black.

\section*{DWFATTACH}

\section*{Quick Reference}

\section*{See also: \\ - Attach Files as Underlays}

Insert a DWF or DWFx file as an underlay into the current drawing.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Attach
\(\$\) Toolbar: Insert
\(\$\) Menu: Insert > DWF Underlay

\section*{Summary}

The Select DWF File dialog box (a standard file selection dialog box) is displayed. Once you select a DWF or DWFx file, the Attach DWF Underlay dialog box is displayed. After the file is attached, you can adjust and clip the underlay through the DWF Underlay Ribbon Contextual Tab on page 699.

When you attach a DWF or DWFx file as an underlay, you link that referenced file to the current drawing. Any changes to the referenced file are displayed in the current drawing when it is opened or reloaded.

NOTE If you plan to access DWF or DWFx files from the Vault client server, the Vault file open dialog box supersedes the Select DWF File dialog box. Access to the Vault client server is only available to Autodesk Subscription customers.

\section*{Attach DWF Underlay Dialog Box}

\section*{Quick Reference}

See also:
- Attach Files as Underlays

Sets options such as rotation and scale when you attach a DWF underlay.

\section*{Access Methods}


Button

Ribbon: Insert tab \(>\) Reference panel \(>\) Attach
\(\$\) Menu: Insert > DWF Underlay
\(\$\) Toolbar: Insert
輋 Command entry: dwfattach

\section*{Summary}

Names, locates, and defines the insertion point, scale, and rotation of attached DWF or DWFx underlays.

\section*{List of Options}

The following options are displayed.

\section*{Name}

Identifies the DWF or DWFx file you have selected to attach.

\section*{Browse}

Opens the Select Reference File dialog (a standard file selection dialog box on page 1295).

\section*{Select one of more sheets from the DWF file}

Displays all of the sheets that are found in the DWF file. If the DWF file only contains a single sheet, that sheet is listed. You can select multiple sheets by holding the Shift key or the Ctrl key while selecting the sheets to attach. If you hover over the preview, the file name displays.

\section*{Path Type}

Select the full (absolute) path, the relative path to the DWF file, or No Path, the name of the DWF file (the DWF file must be located in the same folder as the current drawing file).

NOTE The Path Type group is disabled when you're attaching a DWF or DWFx file that is stored on the Vault client server. This information is automatically entered by the Vault.

\section*{Insertion Point}

Specifies the insertion point for the selected DWF file. Specify On-Screen is the default. The default insertion point is \(0,0,0\).

Specify On-Screen Directs input at the Command prompt or the pointing device. If Specify On-Screen is cleared, enter the insertion point in \(\mathrm{X}, \mathrm{Y}\), and Z.

\section*{Scale}

Specifies the scale factor of the selected DWF underlay.
If INSUNITS is set to "unitless" or if the underlay does not contain resolution information, the scale factor becomes the underlay width in AutoCAD units. If INSUNITS has a value such as millimeters, centimeters, inches, or feet, and the underlay has resolution information, the scale factor is applied after the true width of the underlay in AutoCAD units is determined.
Specify On-screen Allows you to input at the Command prompt or the pointing device. If Specify On-Screen is cleared, enter a value for the scale factor. The default scale factor is 1 .

Scale Factor Field Enter a value for the scale factor. The default scale factor is 1 .

\section*{Rotation}

Specifies the rotation angle of the selected DWF underlay.

Specify on-screen If Specify On-Screen is selected, you may wait until you exit the dialog box to rotate the object with your pointing device or enter a rotation angle value at the Command prompt.

Angle If Specify On-Screen is cleared, enter the rotation angle value in the dialog box. The default rotation angle is 0 .

\section*{Show Details}

Displays the DWF file path.
Found In Displays the path where the DWF file is located.
Saved Path Displays the path that is saved with the drawing when the DWF file is attached. The path is dependent upon the Path Type setting.

\section*{Substitute DWF Name Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Attach Files as Underlays

Allows you to rename a DWF underlay if the name is not unique.


\section*{Access Methods}


Button

Ribbon: Insert tab \(>\) Reference panel \(>\) Attach

Menu：Insert＞DWF Underlay

Toolbar：Insert
幽 Command entry：dwfattach

\section*{Summary}

The names of DWF or DWFx references you attach must be unique．Attempts to attach two DWF or DWFx references that have the same name displays the Substitute DWF Name dialog box．

\section*{New DWF Name}

Enter a unique name for the DWF or DWFx underlay you are attempting to attach．

Once a new name is supplied，you can continue with the attachment process．
NOTE This only changes the name of the DWF or DWFx reference when it is attached．It does not affect the name of the DWF or DWFx file．

\section*{DWF Underlay Ribbon Contextual Tab}

\section*{Quick Reference}

See also：
－Work with Underlays
Change DWF underlay display，clip，layer，and osnap options．

\section*{Access Points}

Ribbon：Insert tab \(>\) Reference panel \(>\) Attach䱂 Command entry：dwfattach

\section*{Summary}

When you select a DWF underlay in a drawing，the DWF Underlay Contextual tab is displayed on the ribbon．


\section*{List of Panels}

\section*{Adjust Panel}

Contrast Controls the contrast and the fading effect of the underlay. The greater the value, the more each pixel is forced to its primary or secondary color.

Fade Controls the appearance of linework. The greater the value, the lighter the linework in the underlay appears.

Display in Monochrome Displays the underlay in black and white.
Clipping Panel
Create Clipping Boundary Deletes the old clipping boundary (if one exists) and creates a new one.

Remove Clipping Deletes the clipping boundary.
Options Panel
Show Underlay Hides or displays the underlay.
Enable Snap Determines whether object snapping is active for geometry in the DWF underlay.

External References Displays the External References palette.
DWF Layers Panel
Edit Layers Controls the display of layers in a DWF Underlay.

\section*{-DWFATTACH}

\section*{Quick Reference}

\section*{See also:}
- Attach Files as Underlays

Attach a DWF underlay from the command line.

\section*{Summary}

When you attach a DWF or DWFx file as an underlay, you link that referenced file to the current drawing. Any changes to the referenced file are displayed in the current drawing when it is opened or reloaded.

NOTE If you plan to access DWF or DWFx files from the Vault client server, the Vault file open dialog box supersedes the Select DWF File dialog box. Access to the Vault client server is only available to Autodesk Subscription customers.

\section*{List of Prompts}

The following prompts are displayed.
TIP You can drag a DWF file onto the drawing window to start the DWFATTACH command.

Path to DWF File to Attach Enters the full path name to the DWF underlay file. The file name can include up to 255 characters and contain letters, digits, spaces, and any special characters not used by Microsoft Windows or this program.
Entering a tilde (~) displays the Select DWF File dialog box (a standard file selection dialog box).
To avoid errors when entering a file name, it is recommended that you specify both the DWF file and path as follows:
path name\filename.dgn
or
"path name\filename.dgn"
If you enter a valid DWF file name without a file extension, the program adds the extension and searches for the file.

Enter Name of Sheet or ? Enter a sheet name. For a list of sheets, enter ?.
Enter Sheet(s) to list <*> Lists the sheets available in the DWF file in a separate text window.

Insertion Point Specifies the insertion point for the selected DWF file.
Scale Factor Specifies the scale factor of the selected DWF underlay and the scale factor units.
If INSUNITS is set to "unitless" or if the underlay does not contain resolution information, the scale factor becomes the underlay width in AutoCAD units. If INSUNITS has a value such as millimeters, centimeters, inches, or feet, and
the underlay has resolution information, the scale factor is applied after the true width of the underlay in AutoCAD units is determined.

Rotation Specifies the rotation angle of the selected DWF underlay by entering an angle value at the Command prompt or by clicking onscreen.

\section*{DWFCLIP}

\section*{Quick Reference}

\section*{See also:}

■ Clip External References and Blocks

Crops the display of a selected DWF or DWFx underlay to a specified boundary.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Clip
Shortcut menu: Select a DWF or DWFx underlay to clip, right-click in the drawing area, and click DWF Clip.

\section*{Summary}

The clipping boundary determines the portion of an image outside the boundary that is hidden. The visibility of the clipping boundary is controlled by the DWFFRAME on page 2289 system variable.

The boundary you specify must be in a plane parallel to the DWF or DWFx underlay.

TIP Use the generic CLIP on page 332 command to clip images, external references, viewports, and underlays.

\section*{List of Prompts}

The following prompts are displayed.

\section*{On}

Turns on clipping and displays the DWF underlay clipped to the previously defined boundary.

\section*{Off}

Turns off clipping and displays the entire DWF or DWFx underlay and frame.
If you reclip the DWF or DWFx underlay while clipping is turned off, clipping is automatically turned back on. You are prompted to delete the old boundary even when clipping is turned off and the clipping boundary is not visible.

\section*{Delete}

Removes a predefined clipping boundary and displays the full original underlay.

\section*{New Boundary}

Defines a rectangular or polygonal clipping boundary, or generates a polygonal clipping boundary from a polyline.

Select Polyline Defines the boundary with the selected polyline. The polyline can be open but must consist of straight line segments and cannot intersect itself.

Polygonal Defines a polygonal clipping boundary with three or more points that you specify for the vertices of a polygon.
Rectangular Defines a rectangular boundary with the points that you specify for opposite corners.

Invert Clip Inverts the mode of the clipping boundary: objects are clipped either outside the boundary or inside the boundary.

NOTE You can only create a new clipping boundary for a selected DWF underlay when the old boundary is deleted.

\section*{DWFFORMAT}

\section*{Quick Reference}

\section*{See also:}
- Publish Drawings

Sets the default format to DFW or DWFx for the PUBLISH, 3DDWF, EXPORT, EXPORTDWF, AND EXPORTDWFX commands.

\section*{Summary}

The default DWF Format is DWFx.

\section*{DWFLAYERS}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Layers in an Underlay

Controls the display of layers in a DWF or DWFx underlay.

\section*{Access Methods}

T
Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Underlay Layers
Shortcut menu: Select a DWF or DWFx underlay, right-click in the drawing area, and choose DWF Layers.

\section*{Summary}

After selecting the DWF underlay, the Underlay Layers dialog box on page 1992 is displayed.

The ULAYERS on page 1992 command allows you to manage the layers of all underlays in the current document: DWF, DWFx, PDF, and DGN.

\section*{DWGPROPS}

\section*{Quick Reference}

See also:
- Add Identifying Information to Drawings

Sets and displays the file properties of the current drawing.

\section*{Access Methods}


Button
\(\$\) Menu: Application menu \(>\) Drawing Utilities \(>\) Drawing Properties
\(\$\) Menu: File \(>\) Drawing Properties

\section*{Summary}

The Drawing Properties dialog box is displayed.
General information, keywords, and custom properties can be created and stored with a drawing file. These file properties are accessible from Windows and can help identify drawing files.

\section*{Drawing Properties Dialog Box}

\section*{Quick Reference}

See also:
- Add Identifying Information to Drawings

Displays read-only statistics or general information about your drawing, assigns summary properties, and assigns names and values to custom properties. These custom properties can help you identify your drawing.

\section*{Access Methods}


Button
Menu: Application menu \(>\) Drawing Utilities \(>\) Drawing Properties
Menu: File Drawing Properties
娄 Command entry: dwgprops

\section*{Summary}

Document properties are displayed in the list of field names in the Field dialog box on page 796.
- General on page 706
- Summary on page 708
- Statistics on page 709
- Custom on page 711

\section*{General Tab (Drawing Properties Dialog Box)}

\section*{Quick Reference}

Displays read-only information about the drawing file. This data is derived from the operating system.
\begin{tabular}{|l|l|l|l|l|}
\hline A. colorwh.dwg Properties \\
\hline Generall & Summary & Statistics & Custom
\end{tabular}

\section*{Access Methods}


Bution

Menu: Application menu \(>\) Drawing Utilities \(>\) Drawing Properties
\(\$\) Menu: File \(>\) Drawing Properties
䱂 Command entry: dwgprops

\section*{List of Options}

The following options are displayed.

\section*{File Name}

Shows the file icon and the file name.
File Type, Location, Size
Shows the file type, the file location, and the size of the file.

\section*{MS-DOS Name, Created, Modified, Accessed}

Shows MS-DOS name, when the file was created, and the date and time it was last modified and last accessed.

\section*{Attributes}

Shows system-level file attributes. These values can be modified in Windows Explorer.

Read-Only
Indicates that the file is read-only; it cannot be changed or deleted accidentally.
Archive
Indicates that this file should be archived. This setting is used to determine which files should be backed up.

Hidden
Indicates that the file is hidden; you cannot see or use it unless you know its name.

\section*{System}

Indicates that the file is a system file. A drawing cannot have the System attribute set.

\section*{Summary Tab (Drawing Properties Dialog Box)}

\section*{Quick Reference}

Displays properties such as author, title, and subject that are predefined. For example, you can add keywords to all your drawing files and then use DesignCenter \({ }^{\text {TM }}\) to search for all drawing files with a particular keyword.


\section*{Access Methods}


Button

\(\$\) Menu: File > Drawing Properties
巠 Command entry: dwgprops

\section*{List of Options}

The following options are displayed.
Title

Specifies the title you want to use when searching for this drawing. The title can be different from the drawing file name.

\section*{Subject}

Specifies the subject of the drawing. You can use the subject name to group drawings that have the same subject.

\section*{Author}

Specifies the author of the drawing. The author name can only be entered or changed by the user. To change the author, delete the existing name and enter a new one.

\section*{Keywords}

Specifies the keywords you want to use to locate the drawing.

\section*{Comments}

Provides a space to add comments to the drawing.

\section*{Hyperlink Base}

Specifies the base address that is used for all relative links inserted within the drawing. You can specify an Internet location, for example, http://www.autodesk.com, or a path to a folder on a network drive.

\section*{Statistics Tab (Drawing Properties Dialog Box)}

\section*{Quick Reference}

Displays data such as the dates the drawing was created and last modified. These file properties are automatically maintained for you and can help you search for drawings created or modified during a specific period.

NOTE If the drawing was last saved using an application other than Autodesk \({ }^{\circledR}\) software, a warning message is displayed. Display of the warning message is controlled by the DWGCHECK system variable.


\section*{Access Methods}


Button


\section*{List of Options}

The following options are displayed.

\section*{Created}

Displays the date and time the drawing was created. This value is stored in the TDCREATE system variable.

\section*{Modified}

Displays the date and time the drawing was last modified. This value is stored in the TDUPDATE system variable.

\section*{Last Saved By}

Displays the name of the last person who modified the file. The Last Saved By name is stored in the LOGINNAME system variable.

\section*{Revision Number}

Displays the revision number. This value is not accessible. To track revisions, create a custom property on the Custom tab.

Total Editing Time
Displays the total amount of editing time in the drawing. This value is stored in the TDINDWG system variable.

\section*{Custom Tab (Drawing Properties Dialog Box)}

\section*{Quick Reference}

Assigns custom properties to the drawing.


\section*{Access Methods}


Button
\(\$\) Menu: Application menu \(>\) Drawing Utilities \(>\) Drawing Properties
\(\$\) Menu: File \(>\) Drawing Properties

\section*{Command entry: dwgprops}

\section*{Summary}

For example, you could create a custom property called Project and assign the actual project name as the value. To assign the same custom properties to a group of drawings, create the custom properties in a drawing template file.

Custom properties are displayed in the list of field names in the Field dialog box. You also have access to the properties data using programming interfaces, such as AutoLISP \({ }^{\circledR}\).

\section*{List of Options}

The following options are displayed.

\section*{Custom Properties}

Lists names and values of custom properties for the current drawing.

\section*{Add}

Displays the Add Custom Property dialog box, where you can enter a name and a value for the new custom property. The name must be unique. The value can be left blank.

\section*{Delete}

Deletes the custom property that is selected in the list.
NOTE If you delete a custom property that is used in a field, the field displays \#\#\#\# the next time it is updated.

\section*{Add Custom Property Dialog Box}

\section*{Quick Reference}

See also:
- Add Identifying Information to Drawings

Adds a custom property to the drawing file.

\section*{Access Methods}


Bution
```

Menu: Application menu > Drawing Utilities> Drawing Properties
Menu: File > Drawing Properties

```


\section*{List of Options}

The following options are displayed.

\section*{Custom Property Name}

Specifies a unique name for the custom property. The name can contain up to 255 characters. The following characters are not permitted: asterisk (*), equal sign (=), less-than and greater-than signs (<>), slash (/), backslash ( \(\backslash\) ), quotation marks ("), reverse quote ( \({ }^{( }\)), pipe sign ( \((\)), colon (:), and semicolon (;).

Value
Specifies a value for the property. The value can be left blank.

\section*{DXBIN}

\section*{Quick Reference}
```

See also:

- Convert DXF and DXB Files to DWG Format
Imports an AutoCAD DXB (drawing interchange binary) file.

```

\section*{Access Methods}

\section*{XBIN}
```

Button
8 Ribbon: Blocks \& References tab $>$ Import panel $>$ DXB File.

```

Menu: Insert > Drawing Exchange Binary

\section*{Summary}

AutoCAD DXB files contain only 2D vectors in binary format with 16-bit integer precision. These vectors are imported as line objects, and they assume the current layer and object properties.
The Select DXB File dialog box (a standard file selection dialog box) is displayed. Enter the name of the file to import.

\section*{E Commands}

\section*{EATTEDIT}

\section*{Quick Reference}

See also:
■ Modify a Block Attribute Definition

Edits attributes in a block reference.

\section*{Access Methods}


Button

8 Ribbon: Home tab \(>\) Block panel \(>\) Edit Single Attribute
\(\$\) Menu: Modify \(>\) Object \(>\) Attribute \(>\) Single
\(\%\) Toolbar: Modify II

\section*{Summary}

Edits the values, text options, and properties of each attribute in a block.

\section*{List of Prompts}

The following prompts are displayed.
Select a block:

After you select a block with attributes, the Enhanced Attribute Editor is displayed.

\section*{Enhanced Attribute Editor}

\section*{Quick Reference}

See also:
■ Modify a Block Attribute Definition

Lists the attributes in a selected block instance and displays the properties of each attribute.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Block panel \(>\) Edit Single Attribute
\(\$\) Menu: Modify \(>\) Object \(>\) Attribute \(>\) Single
\(\$\) Toolbar: Modify II
业 Command entry: eattedit

\section*{Summary}

The Enhanced Attribute Editor contains the following tabs:
- Attribute
- Text Options
- Properties

\section*{List of Options}

The following options are displayed.
Block
Name of the block whose attributes you are editing.

\section*{Tag}

Tag identifying the attribute.

\section*{Select Block}

Temporarily closes the dialog box while you select a block with your pointing device.

\section*{Apply}

Updates the drawing with the attribute changes you have made, and leaves the Enhanced Attribute Editor open.

\section*{Attribute Tab (Enhanced Attribute Editor)}

Displays the tag, prompt, and value assigned to each attribute. You can change only the attribute value.


\section*{List}

Lists the attributes in the selected block instance and displays the tag, prompt, and value for each attribute.

\section*{Value}

Assigns a new value to the selected attribute.
Multiple-line attributes include a button with an ellipsis. Click to open the In-Place Text Editor with the Text Formatting toolbar and the ruler. Depending on the setting of the ATTIPE system variable, the Text Formatting toolbar displayed is either the abbreviated version, or the full version
To use a field as the value, right-click and click Insert Field on the shortcut menu to display the Field dialog box.

\section*{Text Options Tab (Enhanced Attribute Editor)}

Sets the properties that define the way an attribute's text is displayed in the drawing. Change the color of attribute text on the Properties tab.

\section*{Text Style}

Specifies the text style for the attribute text. Default values for this text style are assigned to the text properties displayed in this dialog box.

\section*{Justification}

Specifies how the attribute text is justified (left-, center-, or right-justified).

\section*{Height}

Specifies the height of the attribute text.

\section*{Rotation}

Specifies the rotation angle of the attribute text.

\section*{Annotative}

Specifies that the attribute is . Click the information icon to learn more about annotative objects.

\section*{Backwards}

Specifies whether or not the attribute text is displayed backwards. Not available for multiple-line attributes.

\section*{Upside down}

Specifies whether or not the attribute text is displayed upside down. Not available for multiple-line attributes.

Width Factor

Sets the character spacing for the attribute text. Entering a value less than \(\mathbf{1 . 0}\) condenses the text. Entering a value greater than 1.0 expands it.

\section*{Oblique Angle}

Specifies the angle that the attribute text is slanted away from its vertical axis. Not available for multiple-line attributes.

\section*{Boundary Width}

Specifies the maximum length of the lines of text in a multiple-line attribute before wrapping to the next line. A value of 0.000 means that there is no restriction on the length of a line of text. Not available for single-line attributes.

Properties Tab (Enhanced Attribute Editor)
Defines the layer that the attribute is on and the lineweight, linetype, and color for the attribute text. If the drawing uses plot styles, you can assign a plot style to the attribute using the Properties tab.


\section*{Layer}

Specifies the layer that the attribute is on.

\section*{Linetype}

Specifies the linetype of the attribute.

\section*{Color}

Specifies the color of the attribute.

\section*{Plot Style}

Specifies the plot style of the attribute.

If the current drawing uses color-dependent plot styles, the Plot Style list is not available.

\section*{Lineweight}

Specifies the lineweight of the attribute.
Changes you make to this option are not displayed if the LWDISPLAY system variable is off.

\section*{EATTEXT}

\section*{Quick Reference}

See also:
- Extract Data Using the Data Extraction Wizard

Exports block attribute information to a table or to an external file.

\section*{Access Methods}


Button
\(\$\) Menu: Tools \(>\) Data Extraction
\(\$\) Toolbar: Modify II

\section*{Summary}

This command no longer displays the Attribute Extraction wizard and has been replaced by the Data Extraction wizard.
If you enter -eattext at the Command prompt, options are displayed.

\section*{-EATTEXT}

\section*{Quick Reference}

See also:
- Extract Data Using the Data Extraction Wizard

Extracts data as specified in an existing attribute extraction template (BLK) file created with the Attribute Extraction wizard in AutoCAD 2006 or data extraction (DXE) file created in AutoCAD 2007.

\section*{List of Prompts}

The following prompts are displayed.
Enter the template file path for the extraction: type: Specify the path and file name for the attribute extraction template (BLK) or data extraction (DXE) file that describes how to extract the information

Subsequent prompts depend on the information set up in the template file. If the template specifies extracting data to an external file, the following prompts are displayed:

Enter the output filetype [Csv/Txt/Xls/Mdb] <Csv>: Enter c for comma-separated (CSV), \(\mathbf{t}\) for tab-separated (TXT), \(\mathbf{x}\) for Microsoft Excel (XLS), or \(\mathbf{m}\) for Microsoft Access (MDB)
Enter output filepath: Specify the names of the path and file where the data will be extracted

NOTE The maximum number of columns that can be exported to an XLS and MDB file is 255 .

If the template specifies a table, the following prompt is displayed:
Specify insertion point:

\section*{EDGE}

\section*{Quick Reference}

\section*{See also:}
- Modify 3D Subobjects

Changes the visibility of 3D face edges.

\section*{Summary}

This command only affects objects created using the 3DFACE command.

\section*{List of Prompts}

The following prompts are displayed.
Specify edge of 3D face to toggle visibility or [Display]:
Edge of 3D face to toggle visibility
Controls the visibility of the edges you select.


If the edges of one or more 3D faces are collinear, the program alters the visibility of each collinear edge.

\section*{Display}

Selects invisible edges of 3D faces so that you can redisplay them.


All Selects the hidden edges of all 3D faces in the drawing and displays them. If you want to make the edges of the 3D faces visible once again, use the Edge option. You must select each edge with your pointing device to display it. AutoSnap \({ }^{\mathrm{TM}}\) markers and Snaptips are automatically displayed, indicating the apparent snap locations on each invisible edge.

Select Selects hidden edges of a partially visible 3D face and displays them.


If you want to make the edges of the 3D faces visible once again, use the Edge option. You must select each edge with your pointing device to display it. AutoSnap markers and Snaptips are automatically displayed, indicating the apparent snap locations on each invisible edge.

\section*{EDGESURF}

\section*{Quick Reference}

\section*{See also:}
- Construct Meshes from Other Objects

Creates a mesh between four contiguous edges or curves.

\section*{Access Methods}
\(\sqrt{0}\)

Button
\(\$\) Ribbon: Mesh Modeling tab \(>\) Primitives panel \(>\) Modeling, Meshes, Edge Surface
\(\$\) Menu: Draw \(>\) Modeling \(>\) Meshes \(>\) Edge Mesh

\section*{Summary}

Select four adjoining edges that define the mesh. The edges can be lines, arcs, splines, or open polylines. The edges must touch at their endpoints to form a single, closed loop.


You can select the four edges in any order. The first edge (SURFTAB1) determines the \(M\) direction of the generated mesh, which extends from the endpoint closest to the selection point to the other end. The two edges that touch the first edge form the \(N\) edges (SURFTAB2) of the mesh.


The MESHTYPE system variable sets which type of mesh is created. Mesh objects are created by default. Set the variable to 0 to create legacy polyface or polygon mesh.

\section*{List of Prompts}

The following prompts are displayed.
Object 1 for surface edge Specifies the first edge to be used as a boundary.
Object 2 for surface edge Specifies the second edge to be used as a boundary.
Object 3 for surface edge Specifies the third edge to be used as a boundary.
Object 4 for surface edge Specifies the final edge to be used as a boundary.

\section*{Edit PGP}

\section*{Quick Reference}

\section*{See also:}
- Enter Commands on the Command Line

Opens the Program Parameters (PGP) text file that defines command abbreviations

\section*{Access Methods}
\(\$\) Ribbon: Tools tab \(>\) Customization panel \(>\) Edit PGP.

\section*{Summary}

Commands can have abbreviated names called command aliases that you can enter at the Command prompt. Command aliases are defined in the PGP file.

If you edit the PGP file while the program is running, enter REINIT to use the revised file. You can also restart program to reload the file automatically.

\section*{EDITSHOT}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Shots and Shot Sequences

Edits a saved named view with or without motion.

\section*{Summary}

Displays the New View / Shot Properties Dialog Box on page 2028 with the Shot Properties tab on page 2033 active.

\section*{ELEV}

\section*{Quick Reference}

\section*{See also:}

■ Control the User Coordinate System in 3D

See also:
Sets elevation and extrusion thickness of new objects.

\section*{Access Methods}

Command entry: 'elev for transparent use

\section*{Summary}

ELEV controls only new objects; it does not affect existing objects. The elevation is reset to 0.0 whenever you change the coordinate system to the world coordinate system (WCS).

\section*{List of Prompts}

The following prompts are displayed.
Specify New Default Elevation The current elevation is the default \(Z\) value for new objects when you specify only \(X\) and \(Y\) values for a 3D point.
The elevation setting is the same for all viewports regardless of their user coordinate systems (UCSs). New objects are created at the specified \(Z\) value relative to the current UCS in the viewport.

Specify New Default Thickness The thickness sets the distance to which a 2D object is extruded above or below its elevation. A positive value is extruded along the positive \(Z\) axis; a negative value is extruded along the negative \(Z\) axis.

with elevation

with thickness

\section*{ELLIPSE}

\section*{Quick Reference}

See also:
- Draw Ellipses

Creates an ellipse or an elliptical arc.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Draw panel \(>\) Center
\(\$\) Menu: Draw \(>\) Ellipse \(>\) Center
\(\$\) Toolbar: Draw

\section*{Summary}

The first two points of the ellipse determine the location and length of the first axis. The third point determines the distance between the center of the ellipse and the end point of the second axis.


\section*{List of Prompts}

The following prompts are displayed.
Specify "axis endpoint" of ellipse or ["Arc"/"Center"/"Isocircle"]: Specify a point or enter an option

\section*{Axis Endpoint}

Defines the first axis by its two endpoints. The angle of the first axis determines the angle of the ellipse. The first axis can define either the major or the minor axis of the ellipse.

Distance to Other Axis Defines the second axis using the distance from the midpoint of the first axis to the endpoint of the second axis (3).

ellipse by axis endpoint

Rotation Creates the ellipse by appearing to rotate a circle about the first axis.
Move the crosshairs around the center of the ellipse and click. If you enter a value, the higher the value, the greater the eccentricity of the ellipse. Entering 0 defines a circular ellipse.


Arc
Creates an elliptical arc.
The angle of the first axis determines the angle of the elliptical arc. The first axis can define either the major or the minor axis depending on its size.

The first two points of the elliptical arc determine the location and length of the first axis. The third point determines the distance between the center of the elliptical arc and the endpoint of the second axis. The fourth and fifth points are the start and end angles.


Axis Endpoint Defines the start point of the first axis.
Rotation Defines the major to minor axis ratio of the ellipse by rotating a circle about the first axis. The higher the value from 0 through 89.4 degrees, the greater the ratio of minor to major axis. Values between 89.4 degrees and
90.6 degrees are invalid because the ellipse would otherwise appear as a straight line. Multiples of these angle values result in a mirrored effect every 90 degrees.

Start Angle Defines the first endpoint of the elliptical arc. The Start Angle option toggles from Parameter mode to Angle mode. The mode controls how the ellipse is calculated.


Parameter Requires the same input as Start Angle, but creates the elliptical arc using the following parametric vector equation:
\(\mathrm{p}(\mathrm{u})=\mathrm{c}+\mathrm{a}\) * \(\cos (\mathrm{u})+\mathrm{b} * \sin (\mathrm{u})\)
where \(c\) is the center of the ellipse and \(a\) and \(b\) are its major and minor axes, respectively.
- End Parameter: Defines the end angle of the elliptical arc by using a parametric vector equation. The Start Parameter option toggles from Angle mode to Parameter mode. The mode controls how the ellipse is calculated.
- Angle: Defines the end angle of the elliptical arc. The Angle option toggles from Parameter mode to Angle mode. The mode controls how the ellipse is calculated.

■ Included Angle: Defines an included angle beginning at the start angle.

\section*{Center}

Creates an ellipse using a center point, the endpoint of the first axis, and the length of the second axis. You can specify the distances by clicking a location at the desired distance or by entering a value for the length.


Distance to Other Axis Defines the second axis as the distance from the center of the ellipse, or midpoint of the first axis, to the point you specify.

Rotation Creates the ellipse by appearing to rotate a circle about the first axis.
Move the crosshairs around the center of the ellipse and click. If you enter a value, the higher the value, the greater the eccentricity of the ellipse. Entering 0 defines a circle.

Isocircle
Creates an isometric circle in the current isometric drawing plane.
NOTE The Isocircle option is available only when you set the Style option of SNAP to Isometric.


Radius Creates a circle using a radius you specify.
Diameter Creates a circle using a diameter you specify.
Specify diameter of isocircle: Specify a distance

\section*{ERASE}

\section*{Quick Reference}

See also:
- Erase Objects

Removes objects from a drawing.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Erase
\(\$\) Menu: Modify \(>\) Erase
\(\$\) Toolbar: Modify
Shortcut menu: Select the objects to erase, right-click in the drawing area, and click Erase.

\section*{Summary}

You can erase selected objects from the drawing. This method does not move objects to the Clipboard, where they can then be pasted to another location.

If you are working with 3D objects, you can also erase subobjects such as faces, meshes, and vertices.

Instead of selecting objects to erase, you can enter an option, such as \(\mathbf{L}\) to erase the last object drawn, \(\mathbf{p}\) to erase the previous selection set, or ALL to erase all objects. You can also enter ? to get a list of all options.


\section*{ETRANSMIT}

\section*{Quick Reference}

\section*{See also:}
- Package a Set of Files for Internet Transmission

Packages a set of files for Internet transmission.

\section*{Access Methods}


Button


\section*{Summary}

The Create Transmittal dialog box is displayed.
If you enter -etransmit at the Command prompt, options are displayed.
When you select a set of drawing files in a transmittal package, it automatically includes all related dependent files such as xrefs and font files.

\section*{Create Transmittal Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Package a Set of Files for Internet Transmission

Packages a set of files for Internet transmission.

\section*{Access Methods}


Button
\(\$\) Menu: File \(>\) eTransmit
锉 Command entry: etransmit

\section*{Summary}

All files to be included in the transmittal package are indicated by a check mark next to the file name. Right-click in the file display area to display a shortcut menu with several options.

\section*{List of Options}

The following options are displayed.

\section*{Sheets Tab}

Lists the sheets to be included in the transmittal package in a hierarchy based on sheet subsets. On this tab, you can create a transmittal package from a sheet set, sheet subset, or sheet. A sheet set must be open in the Sheet Set Manager, and eTransmit must be selected from the shortcut menu that is displayed when a sheet set, sheet subset, or sheet node is right-clicked.


NOTE If a sheet in the list is unavailable, the sheet is referenced (as an xref) by another sheet in the transmittal package, and the unavailable sheet is automatically included in the transmittal package.

\section*{Files Tree Tab}

Lists the files to be included in the transmittal package in a hierarchical tree format. By default, all files associated with the current drawing (such as related xrefs, plot styles, and fonts) are listed. You can add files to the transmittal package or remove existing files. Related files that are referenced by URLs are not included in the transmittal package.

The drawings to be transmitted are listed under the following categories:
■ Sheet Drawings. Lists the drawing files associated with the sheet set.
- Sheet Set Files. Lists the support files associated with the sheet set.
- Current Drawing. Lists the files associated with the current drawing.

■ User Added Files. Lists the files that have been added manually with the Add File option.


\section*{Files Table Tab}

Displays the files to be included in the transmittal package in a table format. By default, all files associated with the current drawing (such as related xrefs, plot styles, and fonts) are listed. You can add files to the transmittal package or remove existing files. Related files that are referenced by URLs are not included in the transmittal package.


\section*{Add File}

Opens a standard file selection dialog box, in which you can select an additional file to include in the transmittal package. This button is available on both the Files Tree tab and the Files Table tab.

\section*{Enter Notes to Be Included with This Transmittal Package}

Provides a space where you can enter notes related to a transmittal package. The notes are included in the transmittal report. You can specify a template of default notes to be included with all your transmittal packages by creating an ASCII text file called etransmit.txt. This file must be saved to a location specified by the Support File Search Path option on the Files tab in the Options dialog box.

\section*{Select a Transmittal Setup}

Lists previously saved transmittal setups. The default transmittal setup is named STANDARD. To create a new transmittal setup or to modify an existing one in the list, click Transmittal Setups.

\section*{Transmittal Setups}

Displays the Transmittal Setups dialog box, in which you can create, modify, and delete transmittal setups.

\section*{View Report}

Displays report information that is included with the transmittal package. Includes any transmittal notes that you entered and distribution notes automatically generated that detail what steps must be taken for the transmittal package to work properly. For example, if SHX fonts are detected in one of the transmittal drawings, you are instructed where to copy these files so that they can be detected on the system where the transmittal package is being installed. If you have created a text file of default notes, the notes are also included in the report.

Save As Opens a File Save dialog box, in which you can specify a location in which to save a report file. Note that a report file is automatically included with all transmittal packages that you generate; by choosing Save As, you can save an additional copy of a report file for archival purposes.

\section*{Transmittal Setups Dialog Box}

\section*{Quick Reference}

See also:
- Package a Set of Files for Internet Transmission

Creates, modifies, and deletes transmittal setups.


\section*{Access Methods}


Button

Menu: File \(>\) eTransmit
Command entry: etransmit

\section*{List of Options}

The following options are displayed.
Transmittal Setups
Lists transmittal setups.
New
Creates a new transmittal setup.

\section*{New Transmittal Setup Name}

Enter the name of the new transmittal setup.

\section*{Based On}

Select an existing transmittal setup from which the new one will be created.

\section*{Rename}

Renames the currently highlighted transmittal setup.
Modify

Displays the Modify Transmittal Setup dialog box, in which you can specify options for the transmittal package.

\section*{Delete}

Removes the currently highlighted transmittal setup.

\section*{Import}

In a sheet set context, opens standard file selection dialog box, in which you can navigate to a sheet set data (DST) file. Then displays the Import Transmittal Setups dialog box, in which you can specify the transmittal setups that you want to import.

\section*{Import Transmittal Setups Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Package a Set of Files for Internet Transmission

Imports selected transmittal setups from a specified sheet set data file.


\section*{Access Methods}


Button
\(\$\) Menu: File \(>\) eTransmit
座 Command entry: etransmit

\section*{List of Options}

The following options are displayed.

\section*{List of Transmittal Setups}

Displays a list of transmittal setups. Check the ones that you want to import into the current sheet set.

Description
Displays the optional description that is stored with the selected transmittal setup.

\section*{Current Sheet Set Storage Location}

Displays the storage location for the current sheet set.

\section*{Overwrite with Current Storage Location}

When checked, replaces the imported sheet set storage locations with the storage location of the current sheet set.

Import Checked Imports the transmittal setups on the list that display check marks.

\section*{Modify Transmittal Setup Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Package a Set of Files for Internet Transmission


\section*{Access Methods}


Button
\(\$\) Menu: File \(>\) eTransmit㟇 Command entry: etransmit

\section*{List of Options}

The following options are displayed.

\section*{Transmittal Type and Location}

Specifies the type and path to the transmittal package created.

\section*{Transmittal Package Type}

Specifies the type of transmittal package created.
\begin{tabular}{ll}
\hline Transmittal Package Type & Description \\
\hline Folder & \begin{tabular}{l} 
Creates a transmittal package of uncom- \\
pressed files in a new or existing folder.
\end{tabular} \\
\hline Self-Extracting Executable & \begin{tabular}{l} 
Creates a transmittal package of files as a \\
compressed, self-extracting executable file. \\
Double-clicking the resulting EXE file de- \\
compresses the transmittal package and \\
restores the files to the folder location that \\
you specify.
\end{tabular} \\
\hline Zip & \begin{tabular}{l} 
Creates a transmittal package of files as a \\
compressed ZIP file. To restore the files to \\
the folder location that you specify, you \\
need a decompression utility such as the \\
shareware application PKZIP or WinZip.
\end{tabular} \\
\hline
\end{tabular}

\section*{File Format}

Specifies the file format to which all drawings included in a transmittal package will be converted. You can select a drawing file format from the dropdown list.

\section*{Maintain Visual Fidelity for Annotative Objects}

Specifies whether or not drawings are saved with visual fidelity for objects.
Click the information icon to learn more about saving drawings with visual fidelity.

Annotative objects may have multiple . Annotative objects are decomposed and scale representations are saved to separate layers, which are named based on their original layer and appended with a number.

\section*{Transmittal File Folder}

Specifies the location in which the transmittal package is created. Lists the last nine locations in which transmittal packages were created. To specify a new location, click Browse and navigate to the location you want.

If this field is left unchanged, the transmittal file is created in the folder containing the first specified drawing file. In a sheet set context, the transmittal file is created in the folder containing the sheet set data (DST) file.

\section*{Transmittal File Name}

Specifies the method for naming the transmittal package. Displays the default file name for the transmittal package. This option is not available if the transmittal package type is set to Folder.
\begin{tabular}{ll}
\hline Transmittal File Type Property & Description \\
\hline Prompt for a File Name & \begin{tabular}{l} 
Displays a standard file selection dialog box \\
where you can enter the name of the \\
transmittal package.
\end{tabular} \\
\hline Overwrite if Necessary & \begin{tabular}{l} 
Uses a logical default file name. If the file \\
name already exists, the existing file is \\
automatically overwritten.
\end{tabular} \\
\hline Increment File Name if Necessary & \begin{tabular}{l} 
Uses a logical default file name. If the file \\
name already exists, a number is added to \\
the end. This number is incremented each \\
time a new transmittal package is saved.
\end{tabular} \\
\hline
\end{tabular}

\section*{Path Options}

Provides options for organizing the files and folders that are included in the transmittal package.
Use Organized Folder Structure
Duplicates the folder structure for the files being transmitted. The root folder is the top-level folder within a hierarchical folder tree.

The following considerations apply:
- Relative paths remain unchanged. Relative paths outside the source root folder retain up to one level of the folder path above them, and are placed in the root folder.

■ Full (absolute) paths within the root folder tree are converted to relative paths. Full paths outside the source root folder retain up to one level of the folder path above them, and are placed in the root folder.
- Full paths outside the root folder tree are converted to No Path and are moved to the root folder or to a folder within the root folder tree.
- A Fonts folder is created, if necessary.
- A PlotCfgs folder is created, if necessary.
- A SheetSets folder is created to hold all support files for sheet sets, if necessary. The sheet set data (DST) file, however, is placed in the root folder.

This option is not available if you're saving a transmittal package to an Internet location.

\section*{Source Root Folder}

Defines the source root folder for relative paths of drawing-dependent files, such as xrefs.

The source root folder also contains the sheet set data (DST) file when a sheet set is transmitted.

Place All Files in One Folder
All files are installed to a single, specified target folder when the transmittal package is installed.

\section*{Keep Files and Folders As Is}

Preserves the folder structure of all files in the transmittal package, facilitating ease of installation on another system. This option is not available if you're saving a transmittal package to an Internet location.

\section*{Actions}

Provides options for organizing the actions that can be associated with the transmittal package.

\section*{Send E-mail with Transmittal}

Launches the default system email application when the transmittal package is created so that you can send an email that includes the transmittal package as an attachment.

\section*{Set Default Plotter to 'None'}

Changes the printer/plotter setting in the transmittal package to None. Your local printer/plotter settings are usually not relevant to the recipient.

\section*{Bind External References}

Binds all AutoCAD drawing file (DWG) external references to the files to which they were attached.

\section*{Bind}

Binds the selected DWG external reference to the current drawing.

\section*{Insert}

Binds the DWG external reference to the current drawing in a way similar to detaching and inserting the reference drawing.

\section*{Prompt for Password}

Opens the Transmittal - Set Password dialog box, where you can specify a password for your transmittal package.

Purge Drawings
Does a complete purge of all the drawings in the transmittal package.
NOTE As the purge is done in silent mode, you will not receive any notifications when purged items in the drawings have been removed.

\section*{Include Options}

Provides a means for including additional options with the transmittal package.

\section*{Include Fonts}

Includes any associated font files (TTF and SHX) with the transmittal package.
NOTE Because TrueType fonts are proprietary, you should make sure that the recipient of the transmittal package also owns the TrueType fonts. If you are not sure whether the recipient owns the TrueType fonts, clear this option. If any required TrueType fonts are not available to the recipient, the font specified by the FONTALT system variable is substituted.

\section*{Include Textures from Materials}

Includes textures from materials that are attached to objects or faces.

\section*{Include Files from Data Links}

Adds external files referenced by a data link to the transmittal package.

\section*{Include Photometric Web Files}

Includes photometric web files that are associated with web lights in the drawing.

\section*{Include Unloaded File References}

Includes all unloaded external references, images, and underlays. The unloaded file references are listed in the Files Tree and Files Table and report under their appropriate category.

\section*{Transmittal Setup Description}

Enter a description for the transmittal setup. This description is displayed in the Create Transmittal dialog box below the list of transmittal file setups. You can select any transmittal setup in the list to display its description.

\section*{Transmittal - Set Password Dialog Box}

\section*{Quick Reference}

See also:
■ Package a Set of Files for Internet Transmission


\section*{Access Methods}


Button
\(\$\) Menu: File \(>\) eTransmit
座 Command entry: etransmit

\section*{List of Options}

The following options are displayed.
Password for Compressed Transmittal Provides a space for an optional password for the transmittal package. When others attempt to open the transmittal package, they must provide this password to access the files. Password protection cannot be applied to folder transmittal packages.

Password Confirmation Provides a space to confirm the password that you entered in the Password field.

\section*{-ETRANSMIT}

\section*{Quick Reference}

\section*{See also:}
- Package a Set of Files for Internet Transmission

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [Create transmittal package/Report only/CUrrent setup/CHoose setup/Sheet set> <Report only>: Enter an option
Create Transmittal Package Packages a set of files according to the transmittal setups on page 735 for Internet transmission. Drawing files in the transmittal package automatically include all related dependent files such as xrefs and font files.

Report Only Creates a report (TXT) file without creating a transmittal package. This report file is based on the current transmittal setup.

\section*{Current Setup}

Displays the name of the current transmittal setup.
Choose Setup Specifies the transmittal setup to use for the transmittal package.
Sheet Set Specifies a sheet set and transmittal setup to use for the transmittal package. This option is available only when a sheet set is open.

\section*{EXPLODE}

\section*{Quick Reference}

See also:
- Disassociate Compound Objects (Explode)

Breaks a compound object into its component objects.

\section*{Access Methods}


Button

Ribbon: Home tab \(>\) Modify panel \(>\) Explode
Menu: Modify > Explode
Toolbar: Modify

\section*{Summary}

Explodes a compound object when you want to modify its components separately. Objects that can be exploded include blocks, polylines, and regions, among others.

The color, linetype, and lineweight of any exploded object might change. Other results differ depending on the type of compound object you're exploding. See the following list of objects that can be exploded and the results for each.

To explode objects and change their properties at the same time, use XPLODE.
NOTE If you're using a script or an ObjectARX \({ }^{\circledR}\) function, you can explode only one object at a time.

2D and Lightweight Polyline Discards any associated width or tangent information. For wide polylines, the resulting lines and arcs are placed along the center of the polyline.

3D Polyline Explodes into line segments. Any linetype assigned to the 3D polyline is applied to each resulting line segment.

3D Solid Explodes planar faces into regions. Nonplanar faces explode into surfaces.

Annotative Objects Explodes the current scale representation into its constituent parts which are no longer. Other scale representations are removed.

Arc If within a nonuniformly scaled block, explodes into elliptical arcs.

Block Removes one grouping level at a time. If a block contains a polyline or a nested block, exploding the block exposes the polyline or nested block object, which must then be exploded to expose its individual objects.
Blocks with equal \(X, Y\), and \(Z\) scales explode into their component objects. Blocks with unequal \(X, Y\), and \(Z\) scales (nonuniformly scaled blocks) might explode into unexpected objects.
When nonuniformly scaled blocks contain objects that cannot be exploded, they are collected into an anonymous block (named with a "*E" prefix) and referenced with the nonuniform scaling. If all the objects in such a block cannot be exploded, the selected block reference will not be exploded. Body, 3D Solid, and Region entities in a nonuniformly scaled block cannot be exploded.
Exploding a block that contains attributes deletes the attribute values and redisplays the attribute definitions.
Blocks inserted with MINSERT and external references (xrefs) and their dependent blocks cannot be exploded.

Body Explodes into a single-surface body (nonplanar surfaces), regions, or curves.

Circle If within a nonuniformly scaled block, explodes into ellipses.
Leaders Explodes into lines, splines, solids (arrow heads), block inserts (arrow heads, annotation blocks), multiline text, or tolerance objects, depending on the leader.

Mesh Objects Explodes each face into a separate 3D face object. Color and materials assignments are retained.

Multiline Text Explodes into text objects.
Multiline Explodes into lines and arcs.
Polyface Mesh Explodes one-vertex meshes into a point object. Two-vertex meshes explode into a line. Three-vertex meshes explode into 3D faces.

Region Explodes into lines, arcs, or splines.

\section*{EXPORT}

\section*{Quick Reference}

See also:
- Export Drawings to Other File Formats

Saves the objects in a drawing to a different file format.

\section*{Access Methods}


Button
\(\$\) Menu: File \(>\) Export

\section*{Summary}

The Export Data dialog box (a standard file selection dialog box) is displayed. If you do not see the file format that you need in the Files of Type drop-down list, also check the PLOT command for several other file types, including PDF.

NOTE The Export Data dialog box records the last used file format selection and stores it for use during the current drawing session and between drawing sessions.

The following output types are available:
■ 3D DWF (*.dwf) 3D DWFx (*.dwfx): Autodesk Design Web Format (see 3DDWF)
- Metafile (*.wmf): Microsoft Windows \({ }^{\circledR}\) Metafile (see WMFOUT)

■ ACIS (*.sat): ACIS solid object file (see ACISOUT)
■ Lithography (*.stl): Solid object stereolithography file (see STLOUT)
■ Encapsulated PS (*.eps): Encapsulated PostScript file
- DXX Extract ( \({ }^{*} . d x x\) ): Attribute extract DXF \(^{\text {TM }}\) file (see ATTEXT)

■ Bitmap (*.bmp): Device-independent bitmap file (see BMPOUT)
■ Block (*.dwg): Drawing file (see WBLOCK)
- V7 DGN (*.dgn): MicroStation DGN file (see DGNEXPORT)
- V8 DGN (*.dgn): MicroStation DGN file (see DGNEXPORT)

■ FBX files (*.fbx): Autodesk \({ }^{\circledR}\) FBX files (see FBXEXPORT on page 787)

\section*{-EXPORT}

\section*{Quick Reference}

See also:
- Export DWF and DWFx Files
- Export FBX Files

Creates a DWF, DWFx, or PDF file from the command line.

\section*{Summary}

The command prompt version of EXPORTDWF, EXPORTDWFX, and EXPORTPDF provides an interface for publishing drawing sheets that can be controlled by a script.

\section*{List of Prompts}

The following prompts are displayed.

\section*{File Format}

Select DWF, DWFx, or PDF as the output file type.

\section*{Plot Area}

Specify the area of the drawing to export:
Display Exports the view in the current viewport in Model space.
Extents Exports the portion of the current space of the drawing that contains objects in Model space. All geometry in the current space is exported.

Window Exports any portion of the drawing you specify in Model space. Click the Window button to use the mouse to specify opposite corners of the area to be exported, or enter coordinate values.

Current Layout/All Layouts If you are exporting from paper space, specify to export the current layout or all layouts.

\section*{Detailed Plot Configuration?}

Specifies detailed page settings for the Model tab or layout tab you are plotting.
NOTE If you enter No, the Save As dialog appears if FILEDIA is set to 1 . If FILEDIA is set to 0 , you are prompted to enter a file name at the command prompt.

Paper Size Enter the paper size or enter ? to view a list of paper sizes defined for the default plotter driver.

Paper Units Specify Inches or Millimeters as the paper size unit.
NOTE This prompt does not display if you are exporting a raster image, such as a BMP or TIFF file, because the size of the plot defaults to pixels.

Drawing Orientation Specify if the output displays in portrait or landscape.
Plot Scale Specify how to scale the drawing in the DWF, DWFx, or PDF file.
- Plotted Inches=Drawing Units: Calculates the plot scale based on the inches or millimeters to drawing units that you specify. You can also enter a real number as a fraction (for example, you can enter \(\mathbf{1 = 2}\) or.5).
- Fit: Automatically calculates the scale to fit the area on the paper size specified earlier.

Plot with Plot Styles? Specify whether to export using the plot styles applied to objects and defined in the plot style table.
■ Yes: If you enter Yes (plot with plot styles), enter the plot style table name, press Enter for none or enter? to list to view plot style tables.

■ No: If you select No, enter . at the next prompt to select none.

Plot Style Table Name All style definitions with different property characteristics are stored in the current plot style table and can be attached to the geometry.

Plot with Lineweights Specifies whether or not to use the lineweight (measured in pixels) specified in the PC3 driver.

\section*{EXPORTDWF}

\section*{Quick Reference}

See also:
■ Export DWF and DWFx Files

Creates a DWF file and allows you to set individual page setup overrides on a sheet by sheet basis.

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Export to DWF/PDF panel \(>\) Export drop-down DWF

Menu: Application Menu \(>\) Export \(>\) DWF

\section*{Summary}

When you create DWF files with the EXPORTDWF command, you can quickly override the device driver's page setup options, add a plot stamp, and change file options. You can change these settings in the Save as DWF dialog box.

To include layer information, change file location, add password-protection, and other file options, use the Export to DWF/PDF Options palette.

\section*{Save as DWF Dialog Box}

\section*{Quick Reference}

See also:
- Export DWF and DWFx Files

Sets file options such as file name and location when you create a DWFx file.

\section*{Access Methods}

Button
\(\$\) Ribbon: Output tab \(>\) Export to DWF/PDF panel \(>\) Export \(>\) DWF
\(\$\) Menu: Export > DWF
善 Command entry: exportdwf

\section*{Summary}

When you export your drawing to a DWF file, the Save As DWF dialog box appears. This dialog box allows you to specify the file name and location, but also allows you to change export, page setup, and plot stamp settings.

\section*{List of Options}

The following options are displayed.

\section*{Options}

Opens the Export to DWF/PDF Options palette where you can change DWF file settings such as file location, password-protection, and layer information.

\section*{Output Controls}

Open in Viewer When Done Opens the DWF file in the default viewer after export.

Include Plot Stamp Adds user-defined information such as drawing name, date and time, or plot scale in the DWF file. To edit the plot stamp, click the Plot Stamp button to open the Plot Stamp dialog box.

\section*{Export}

Selects which part of the drawing to export. If you are in paper space, you can select the current layout or all layouts. If you are in model space, you can select the objects currently displayed, the drawing extents, or a selected area.

\section*{Window Selection button}

Selects a window area to export from model space.

\section*{Page Setup}

Exports the DWF file using the settings in the Page Setup Manager or choose to override these settings.

\section*{Page Setup Override}

Overrides the page settings. Click the Page Setup Override button to display the Page Setup Override dialog box on page 754.

\section*{Export to DWF/PDF Options Palette}

\section*{Quick Reference}

See also:
- Export DWF and DWFx Files

Specifies the general export options for the DWF, DWFx, or PDF file, such as file location, password protection, and whether or not to include layer information.

\section*{Access Methods}


Butlon
\(\$\) Ribbon: Output tab \(>\) Export to DWF/PDF panel \(>\) Export \(>\) DWF挫 Command entry: exportsettings

\section*{List of Options}

The following options are displayed.

\section*{General DWF/PDF options}

Changes general settings for DWF, DWFx, and PDF files.
Location Specifies where the DWF, DWFx, or PDF files are saved when you export drawings.

Type Specifies whether to export single sheets or multiple sheets from the drawing.

Override Precision Selects a precision preset that offers the best file resolution for your field or creates a new precision preset by selecting Manage Precision Presets. This dpi setting overrides the dpi settings in the DWF, DWFx, or PDF driver.

Naming Names multi-sheet files, prompts for name during export, or specifies the name before export.

Layer Information Includes layer information in the DWF, DWFx, or PDF file.

Merge control Specifies whether overlapping lines merge (the colors of the lines blend together into a third color) or overwrite (the last plotted line obscures the line beneath it).

\section*{DWF Data Options}

Changes settings that are only available for DWF and DWFx files.
Password protection Provides password protection for the DWF, DWFx, or PDF file. You decide whether or not to prompt for the new password during export or to specify the password in this dialog box.

Password Enters the password for the DWF, DWFx, or PDF file.
Block Information Specifies block property and attribute information in the DWF, DWFx, or PDF file

Block Template File Provides options for creating a new block template (DXE) file, editing an existing block template file, or using the settings of a previously created block template file.

\section*{Page Setup Override Dialog Box}

\section*{Quick Reference}

See also:
- Export DWF and DWFx Files

Allows you to override individual settings when you export a file.

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Export to DWF/PDF \(>\) Page Setup.

\section*{Summary}

You can override the regular page settings applied to the layout through the Page Setup dialog box. The override settings remain until you exit the application. So, you do not have to reset the overrides every time you export to a DWF, DWFx, or PDF file.

\section*{List of Options}

The following options are displayed.

\section*{Paper Size}

Select the paper size from the drop-down list of paper sizes defined for the default plotter driver.

\section*{Plot Style Table (Pen Assignments)}

Plot Style Name Select a plot style table from the drop-down list to apply to all layouts.

Plot Style Table Editor Click to open the Plot Style Table Editor.

\section*{Drawing Orientation}

Specify if the output displays in portrait or landscape.

\section*{Plot Scale}

Fit to Paper Select to automatically scale the selection to fit the area on the paper size specified earlier.

Scale Specify a scaling ratio for the drawing. This ratio varies depending on whether you select inches or millimeters as the measurement units.

Scale Lineweights Scales lineweights in proportion to the plot scale. Lineweights normally specify the linewidth of plotted objects and are plotted with the linewidth size regardless of the plot scale.

\section*{Precision Presets Manager}

\section*{Quick Reference}

\section*{See also:}
- Export DWF and DWFx Files

Allows you to override dpi settings on a sheet-by-sheet basis when you export and publish digital files.

\section*{Access Methods}

Button

\section*{Access Methods}
\(\$\) Ribbon: Output tab \(>\) Export to DWF/PDF panel \(>\) Export to DWF/PDF Options.

In the Export to DWF/PDF Options window, under General DWF/PDF Options, select Override Precision. Then, from Override Precision drop-down, click Manage Precision Presets.

\section*{Summary}

With the Precision Presets Manage you can override the PC3 file's dpi setting and automatically adjusts the dpi on a sheet-by-sheet basis during export and publish. The override calculation uses both the desired precision and the sheet scale to optimize the DWF, DWFx, and PDF file resolution. There are predefined settings for Manufacturing, Architecture, and Civil Engineering, or you can create your own.

\section*{List of Options}

The following options are displayed.

\section*{Current Preset}

Lists the preset currently in use.

\section*{Name}

The name of the selected preset.

\section*{Description}

You can add a description to track presets.

\section*{Scale Dependent Properties}

Unit Sets the format for units of measure: Imperial or Metric.
Desired Precision Sets the number of decimal places or fractional size displayed for linear measurments.

\section*{Non-Scale Dependent Properties}

Gradient Resolution Sets the resolution for gradients in the DWF, DWFx, or PDF file. The default setting is 200 dpi . This setting cannot exceed the current vector resolution setting.

Color and Grayscale Resolutions Sets the resolution for color and grayscale raster images in the DWF, DWFx, or PDF file. The default is 200 dpi . This setting cannot exceed the current vector resolution setting.

Black and White Resolution Sets the resolution for black and white raster images in the DWF, DWFx, and PDF file. The default setting is 200 dpi. This setting cannot exceed the current vector resolution setting.

\section*{New Precision Preset Dialog Box}

\section*{Quick Reference}

See also:
- Export DWF and DWFx Files

Allows you to name and describe a custom precision preset.

\section*{Access Methods}

From the Export to DWF/PDF Options Palette, select Manage Precision Presets in Override Precision and click New.

\section*{List of Options}

The following options are displayed.
Name Assign a name for the custom precision preset.
Description (Optional) Enter a description for what this preset applies to.

\section*{Import Precision Preset Dialog Box}

\section*{Quick Reference}

See also:
■ Export DWF and DWFx Files

Imports precision presets from an existing sheet set

\section*{Summary}

You can import precision presets from an existing sheet set (DSD file). The Select List of Sheets dialog opens (a standard file selection dialog box).

To open the Import Precision Preset dialog box, click Import in the Precision Presets Manager.

\section*{Export to DWF/PDF Ribbon Panel}

\section*{Quick Reference}

\section*{See also:}

■ Export DWF and DWFx Files

Creates a DWFx file where you can set individual page setup overrides on a sheet-by-sheet basis.

\section*{Access Methods}
\(\$\) Ribbon: Output tab \(>\) Export to DWF/PDF panel

\section*{Summary}

With the Export DWF/PDF panel, you can quickly create DWF, DWFx, and PDF files and override page setup options without changing the default PC3 driver or resetting page setup options.

\section*{List of Options}

The following options are displayed.

\section*{Export}

Selects which part of the drawing to export to the DWF, DWFx, or PDF file.
Display Exports objects in the current display. This option is available only in model space.

Extents Exports the objects in the drawing extents. This option is available only in model space.

Window Exports the objects in the window. This option is available only in model space.

Window Selection Button Selects a window area to export from model space.

Current Layout Exports only the current layout. This option is available only in paper space.

All Layouts Exports all layouts. This option is available only in paper space.
Page Setup
Exports the objects to a DWF, DWFx, or PDF file using the drawings page setup options or overrides the current options.

Page Setup Override Button Allows you to override the page settings on page 754.

\section*{Preview}

Displays the objects in a Preview window before you export.
Options
Opens the Export to DWF/PDF Options palette where you can change DWF, DWFx, and PDF file settings such as file location, password-protection, and layer information.

\section*{EXPORTDWFX}

\section*{Quick Reference}

\section*{See also:}
- Export DWF and DWFx Files

Creates a DWFx file where you can set individual page setup overrides on a sheet-by-sheet basis.

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Export to DWF/PDF panel \(>\) Export \(>\) DWFx \(\$\) Menu: Application Menu \(>\) Export \(>\) DWFx

\section*{Summary}

When you create DWFx files with the EXPORTDWFX command, you can quickly override the device driver's page setup options, add a plot stamp, and change file options. You can change these settings in the Save as DWFx dialog box.

To include layer information, change file location, add password-protection, and other file options, use the Export to DWF/PDF Options palette.

\section*{Save as DWFx Dialog Box}

\section*{Quick Reference}

See also:
■ Export DWF and DWFx Files

Sets file options such as file name and location when you create a DWFx file.

\section*{Access Methods}

Button
\(\$\) Ribbon: Output tab \(>\) Export to DWF/PDF panel \(>\) Export \(>\) DWFx \(\%\) Menu: Export > DWFx

\section*{}

\section*{Summary}

When you export your drawing to a DWFx file, the Save As DWFx dialog box appears. This dialog box allows you to specify the file name and location, but also allows you to change export, page setup, and plot stamp settings.

\section*{List of Options}

The following options are displayed.

\section*{Options}

Opens the Export to DWF/PDF Options palette where you can change DWFx file settings such as file location, password-protection, and layer information.

\section*{Output Controls}

Open in Viewer when Done The DWFx file will open in the default viewer after the export completes when this option is selected.

Include Plot Stamp Select to include user-defined information such as drawing name, date and time, or plot scale in the DWFx file. To edit the plot stamp, click the Plot Stamp button to open the Plot Stamp dialog box.

\section*{Export}

Selects which part of the drawing to export. If you are in paper space, you can select the current layout or all layouts. If you are in model space, you can select the objects currently displayed, the drawing extents, or a selected area.

\section*{Window Selection button}

Select a window area to export from model space.

\section*{Page Setup}

Export the DWFx file using the settings in the Page Setup Manager or choose to override these settings.

Page Setup Override
Allows you to override the page settings.

\section*{EXPORTPDF}

\section*{Quick Reference}

\author{
See also: \\ - Export PDF Files
}

Creates a PDF filewhere you can set individual page setup overrides on a sheet-by-sheet basis.

\section*{Access Methods}

PDF
Button
\(\$\) Ribbon: Output tab \(>\) Export to DWF/PDF panel \(>\) Export drop-down - PDF


\section*{Summary}

When you create PDF files with the EXPORTPDF command, you can quickly override the device driver's page setup options, add a plot stamp, and change file options. You can change these settings in the Save as PDF dialog box.

To include layer information, change file location, add password-protection, and other file options, use the Export to DWF/PDF Options palette.

\section*{Save as PDF Dialog Box}

\section*{Quick Reference}

See also:
- Export DWF and DWFx Files

Sets file options such as file name and location when you create a PDF file.

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Export to DWF/PDF panel \(>\) Export \(>\) PDF \$ Menu: Application Menu \(>\) Export \(>\) PDF
座 Command entry: exportpdf

\section*{Summary}

When you export your drawing to a PDF file, the Save As PDF dialog box is displayed. This dialog box allows you to specify the file name and location, but also allows you to change export, page setup, and plot stamp settings.

\section*{List of Options}

The following options are displayed.

\section*{Options}

Opens the Export to DWF/PDF Options palette where you can change PDF file settings such as file location, password-protection, and layer information.

\section*{Output Controls}

Open in Viewer when Done The PDF file will open in the default viewer after the export completes when this option is selected.

Include Plot Stamp Select to include user-defined information such as drawing name, date and time, or plot scale in the PDF file. To edit the plot stamp, click the Plot Stamp button to open the Plot Stamp dialog box.

\section*{Export}

Selects which part of the drawing to export. If you are in paper space, you can select the current layout or all layouts. If you are in model space, you can select the objects currently displayed, the drawing extents, or a selected area.

\section*{Window Selection button}

Select a window area to export from model space by selecting the area with the mouse or entering the \(\mathrm{X}, \mathrm{Y}\) coordinates.

\section*{Page Setup}

Export the PDF file using the settings in the Page Setup Manager or choose to override these settings.

\section*{Page Setup Override}

Allows you to override the page settings.

\section*{EXPORTLAYOUT}

\section*{Quick Reference}

\section*{See also:}
- Export a Layout to Model Space

Creates a visual representation of the current layout in the model space of a new drawing.

\section*{Access Methods}


Button

Menu: Application menu

\(>\) Save As \(>\) Save Layout as a Drawing

\section*{Summary}

Exported objects are duplicated visually in the new drawing and, as a result, they might be trimmed, scaled, copied, or exploded.

The Export Layout to Model Space Drawing dialog box is displayed.
Select the location and file name for the new exported drawing. All drawings are exported as Drawing (*.dwg).

NOTE The EXPORTLAYOUT command is only available in a layout. The command is not available from the Model tab, while in the block editor, during reference editing, or while using a maximized viewport.

\section*{Export Layout to Model Space Drawing Dialog Box}

\section*{Quick Reference}

See also:
- Export a Layout to Model Space

Saves all visible objects from the current layout to the model space of a new drawing. Also exports objects that are outside the boundaries of the "paper" in the layout.

\section*{Access Methods}



\section*{Summary}

The Export Layout to Model Space Drawing dialog box is displayed. You can specify a file name and location. The default location is the location of the current drawing. The default file name is the concatenation of the name of the current drawing and the current layout name.
The Export Layout to Model Space Drawing dialog box is a standard file selection dialog box. However, on the Tools drop-down list, Options is not displayed.

\section*{EXPORTSETTINGS}

\section*{Quick Reference}

\section*{See also:}
- Export DWF and DWFx Files

Adjusts the page setup and drawing selection when exporting to a DWF, DWFx, or PDF file.

\section*{List of Prompts}

The following prompts are displayed.
Preview Opens the area you want to export in a preview window.
Options Opens the Export to DWF/PDF Options palette.
Page Setup Opens the Page Setup Override dialog box.
Window Select Allows you to select a rectangular area to export by selecting with the mouse or entering the \(X\) and \(Y\) coordinates.

Export Window Export the entire window area. You can change export options such as file location and export options in the Save As dialog. The default file format (DWF, DWFx, or PDF) set in EXPORTEPLOTFORMAT, determines which dialog box appears: the Save as DWF dialog, the Save as DWFx dialog box, or the Save as PDF dialog box.

\section*{EXPORTTOAUTOCAD}

\section*{Quick Reference}

\section*{See also:}

■ Work with Custom and Proxy Objects

Creates a new DWG file with all AEC objects exploded.

\section*{Access Methods}

Command entry: -exporttoautocad or aectoacad

\section*{Summary}

You can create a new version of a drawing file with all proxy AEC objects exploded into basic AutoCAD objects. The new version of the drawing loses the intelligence of the custom AEC objects, but the resulting basic objects can be displayed and accessed in earlier versions of AutoCAD when object enablers are not available for those versions.

NOTE Any subsequent changes you make to this new drawing file do not affect the original drawing file.

\section*{List of Prompts}

The following prompts are displayed.
Export options [Format/Bind/bind Type/Maintain/Prefix/Suffix/?] <Enter for filename>: Enter an option or press Enter to specify a file name

\section*{Enter for Filename}

Creates a new drawing file with the specified name.
NOTE You can use the Prefix option to create a unique file name for this drawing and to prevent overwriting the existing drawing file.

\section*{Format}

Determines the drawing file format for the resulting drawing file.

\section*{Bind}

Determines how xrefs are treated when creating the new drawing.
Yes Binds all xrefs to the drawing. Layers and other xref-dependent named objects are merged into the new drawing.

No Maintains the xrefs as links to other drawings.

\section*{Bind Type}

Determines how xref-dependent objects are treated when the Bind option is turned on.

Bind Maintains the names of layers and other xref-dependent objects when binding xrefs.

Insert Merges the names of xref-dependent objects into the new drawing without including the original file name.

\section*{Maintain}

Determines how blocks within custom AEC objects are treated.
Yes Explodes all block instances within custom AEC objects into basic AutoCAD objects. The resulting basic objects revert to their original properties rather than the properties of the block definitions.

No Does not explode any block instances within custom AEC objects. The properties of the block instances are determined in the usual way, depending on how the objects in the blocks were created and the property settings of the layers on which the blocks are inserted.

\section*{Prefix}

Specifies the prefix to be added to the current drawing file name.

\section*{Suffix}

Specifies the suffix to be added to the current drawing file name.

\section*{? List Settings}

Lists the current settings for the command.

\section*{EXTEND}

\section*{Quick Reference}

See also:
- Trim or Extend Objects

Extends objects to meet the edges of other objects.

\section*{Access Methods}
---/
Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Extend
\(\$\) Menu: Modify \(>\) Extend
Toolbar: Modify

\section*{Summary}

To extend objects, first select the boundaries. Then press Enter and select the objects that you want to extend. To use all objects as boundaries, press Enter at the first Select Objects prompt.


\section*{List of Prompts}

The following prompts are displayed.
Current settings: Projection = current, Edge = current
Select boundary edges...
Select objects or <select all>: Select one or more objects and press Enter, or press Enter to select all displayed objects
Select object to extend or shift-select to trim or
[Fence/Crossing/Project/Edge/Undo]: Select objects to extend, or hold down SHIFT and select an object to trim, or enter an option

\section*{Boundary Object Selection}

Uses the selected objects to define the boundary edges to which you want to extend an object.

\section*{Object to Extend}

Specifies the objects to extend. Press Enter to end the command.

\section*{Shift-Select to Trim}

Trims the selected objects to the nearest boundary rather than extending them. This is an easy method to switch between trimming and extending.

\section*{Fence}

Selects all objects that cross the selection fence. The selection fence is a series of temporary line segments that you specify with two or more fence points. The selection fence does not form a closed loop.

\section*{Crossing}

Selects objects within and crossing a rectangular area defined by two points.
NOTE Some crossing selections of objects to be extended are ambiguous. EXTEND resolves the selection by following along the rectangular crossing window in a clockwise direction from the first point to the first object encountered.

\section*{Project}

Specifies the projection method used when extending objects.


None Specifies no projection. Only objects that intersect with the boundary edge in 3D space are extended.


UCS Specifies projection onto the \(X Y\) plane of the current user coordinate system (UCS). Objects that do not intersect with the boundary objects in 3D space are extended.


View Specifies projection along the current view direction.


\section*{Edge}

Extends the object to another object's implied edge, or only to an object that actually intersects it in 3D space.


Extend Extends the boundary object along its natural path to intersect another object or its implied edge in 3D space.


No Extend Specifies that the object is to extend only to a boundary object that actually intersects it in 3D space.

\section*{Undo}

Reverses the most recent changes made by EXTEND.

\section*{EXTERNALREFERENCES}

\section*{Quick Reference}

\section*{See also: \\ ■ Attach and Detach Referenced Drawings}

Opens the External References palette.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(\ggg\) External References
\(\$\) Menu: Insert \(>\) External References
\(\$\) Toolbar: Reference

\section*{Summary}

The EXTERNALREFERENCES command opens the External References palette if the palette is inactive. If the External References palette is active but hidden, executing EXTERNALREFERENCES will open the palette. If you click anywhere outside of the External References palette, the palette returns to its auto-hidden state.

NOTE The FILEDIA system variable is ignored when attaching files from the External References palette.

\section*{External References Palette}

\section*{Quick Reference}

\section*{See also:}

■ Attach and Detach Referenced Drawings


\section*{Access Methods}


Button

\title{
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(\ggg\) External References \\ \(\$\) Menu: Insert \(>\) External References \\ \(\$\) Toolbar: Reference \\ 锉 Command entry: externalreferences
}

\section*{Summary}

The External References palette organizes, displays, and manages referenced files, such as DWG files (xrefs), DWF, DWFx, PDF, or DGN underlays, and raster images.

Only DWG, DWF, DWFx, PDF, and raster image files can be opened directly from the External References palette.

The External References palette contains several buttons, and is split into two panes. The upper pane, called the File References Pane, can display file references in a list or in a tree structure. Shortcut menus and function keys provide options for working with the files. The lower pane, called the Details / Preview Pane, can display properties for the selected file references or it can display a thumbnail preview of the selected file reference.

NOTE When using the External References palette, it is recommended that you turn on the Auto-hide feature or anchor the palette. The palette will then hide automatically when you move the cursor away from the palette.

\section*{External References Palette Buttons}

\section*{Quick Reference}

\section*{See also:}

■ Attach and Detach Referenced Drawings

Use the buttons at the top of the External References palette to choose the types of files to attach to the drawing and to refresh the status of file references that you already have attached.

\section*{List of Options}

The following options are displayed.

\section*{Attach (file type) Button}

The Attach button displays a list of file types that you can attach. The following options are displayed:
- Attach DWG. Starts the XATTACH command.

■ Attach Image. Starts the IMAGEATTACH command.
■ Attach DWF. Starts the DWFATTACH command.
■ Attach DGN. Starts the DGNATTACH command
■ Attach PDF. Starts the PDFATTACH command
■ Attach from Vault. Provides access to content stored in the Vault client.

NOTE Attach from Vault is only shown when the Vault client is installed. You must be an Autodesk Subscription customer to have access to the Vault client.

\section*{Refresh/Reload All References Button}

The following options are available:
Refresh Synchronizes the status data of referenced drawing files with the data in memory. Refresh interacts primarily with Autodesk Vault.

Reload All References Updates all file references to ensure that the most current version is used. Updating also occurs when you first open a drawing that contains file references.

\section*{File References List View / Tree View Pane}

\section*{Quick Reference}

See also:
- Attach and Detach Referenced Drawings

The upper File References pane displays a list of all file references in the current drawing. You can display these file references in a list or in a tree structure.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{File References} & \\
\hline & Reference ... & Status & Size & Type \\
\hline \% & Drawing2 & Opened & 69.9 KB & Current \\
\hline Fim & conference_n... & Loaded & 38.7 KB & DWF \\
\hline 5um & Formarkup_n... & Loaded & 58.3 KB & DWFX \\
\hline D & working & Loaded & 95.2 KB & JPG \\
\hline & xref_elec_illu & Loaded & 91.7 KB & Attach \\
\hline & +I' & & & \\
\hline
\end{tabular}

\section*{List of Options}

The following options are displayed.

\section*{List View}

The listed information includes the reference name, status, file size, file type, creation date and saved path.

Reference Name The reference name column always displays the current drawing as the first entry, followed by additional attached files that are listed in the order they were attached.

Status The status of the referenced file:
- Loaded - The referenced file is currently attached to the drawing.
- Unloaded - The referenced file is marked to be unloaded from the drawing.
- Not Found - The referenced file is no longer exists in the valid search paths.
- Unresolved - The referenced file cannot be read.
- Orphaned - The referenced file is attached to another file that has an Unresolved status.

■ Unreferenced - The referenced file is removed by either the delete or erase tool instead of detach.

Size The size of the attached file reference.
Type The file type of the referenced file. Drawing (Xref) files display as attachments or overlays, raster images show their file format; and DWF, DWFx, DGN, and PDF underlays are listed as their respective file types.

Date The date when the referenced file was created or last saved.
Saved Path Displays the path that is saved with the drawing when the referenced file is attached.

\section*{Tree View \\ B}

The top level of the tree view always shows the current drawing. Referenced files appear at the next level. Referenced files that contain their own nested file references can be opened to show deeper levels. When making selections in tree view, only one file reference can be selected at a time.

\section*{File References Pane Shortcut Menus and Function Keys}

\section*{Quick Reference}

\section*{See also:}
- Attach and Detach Referenced Drawings

When working in the File References pane, there are several shortcut menus that can be displayed when you right-click on file references or empty areas of the pane. The following tables show the shortcut menu items that you are presented under certain conditions.

\section*{No Reference Selected}

When no file references are selected, the shortcut menu presents the following functions:
\begin{tabular}{ll}
\hline Menu Item & Description \\
\hline Reload All References & \begin{tabular}{l} 
Reloads all referenced files. (Unavailable if no file references \\
are attached)
\end{tabular} \\
\hline Select All & \begin{tabular}{l} 
Selects all file references, excluding the current drawing. \\
This item is not displayed in tree view.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Menu Item & Description \\
\hline Attach DWG & Starts the XATTACH command. \\
\hline Attach Image & Starts the IMAGEATTACH command. \\
\hline Attach DWF & Starts the DWFATTACH command. \\
\hline Attach DGN & Starts the DGNATTACH command. \\
\hline Attach PDF & \begin{tabular}{l} 
Starts the PDFATTACH command. \\
item in the list view of the palette.
\end{tabular} \\
\hline Tooltip Style & Turns the display of the Preview/Details pane off and on. \\
\hline Preview/Details Pane & Closes the External References palette. \\
\hline Close &
\end{tabular}

\section*{Reference Selected}

When you select a file reference, the shortcut menu presents the following functions:
\begin{tabular}{lll}
\hline Menu Item & Description & Reference Status \\
\hline Open & \begin{tabular}{l} 
Opens the selected reference file in \\
the original application in which it was \\
created (specified by the operating \\
system).
\end{tabular} & \begin{tabular}{l} 
Available only for file refer- \\
ences with a Loaded status \\
- Unavailable when Un- \\
loaded, Not Found or Unre- \\
solved.
\end{tabular} \\
\hline Attach & \begin{tabular}{l} 
Allows you to change settings such as \\
scale, insertion point, and path type. \\
You can also attach a different page \\
from the attached PDF file, a different \\
sheet from an attached DWF file, or a \\
different model name from an at- \\
tached DGN file.
\end{tabular} & \begin{tabular}{l} 
Always available - status has \\
no affect on this function.
\end{tabular} \\
\hline Unload & \begin{tabular}{l} 
Unloads the selected file references.
\end{tabular} & \begin{tabular}{l} 
Always available - status has \\
no affect on this function.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Menu Item & Description & Reference Status \\
\hline Reload & Reloads the selected file references. & \begin{tabular}{l} 
Always available - status has \\
no affect on this function.
\end{tabular} \\
\hline Detach & Detaches the selected file references. & \begin{tabular}{l} 
Available for all file refer- \\
ences except data link.
\end{tabular} \\
\hline Bind & \begin{tabular}{l} 
Displays the Bind Xrefs dialog box. \\
Only available for referenced DWG \\
files. This is not available for images \\
and underlays.
\end{tabular} & \begin{tabular}{l} 
Available only for file refer- \\
ences with a Loaded status \\
- Unavailable when Un- \\
loaded, Not Found or Unre- \\
solved.
\end{tabular} \\
\hline
\end{tabular}

\section*{Function Key Access}

Some tasks in the File References pane can be accessed with function keys.
- F2 - Accesses the Rename function when a single file reference is selected.
- F3 - List View toggle.
- F4 - Tree View toggle.

\section*{Details / Preview Pane}

\section*{Quick Reference}

See also:
■ Attach and Detach Referenced Drawings

The lower data pane of the External References palette can be set to display file reference properties or a preview image of the selected file reference.


\section*{List of Options}

The following options are displayed.

\section*{Details Pane}

When displaying the Details mode, properties for the selected file reference are reported. Each file reference has a core set of properties and some file references, like referenced images, display properties specific to the file type. The core set of details include the reference name, status, file size, file type, creation date, saved path, found at path and file version, if the Vault client is installed. Some of the properties can be edited.

Reference Name Displays the file reference name. This property can be edited only if single file references are selected. The reference name shows *Varies* if multiple file references are selected. This property is editable for all the file references.

Status Shows whether the file reference is loaded, unloaded or not found. This property cannot be edited.

Size Shows the file size of the selected file reference. The size is not displayed for file references that are unloaded or not found. This property cannot be edited.

Type Indicates whether the file reference is an attachment or overlay, the type of image file, a DWF/DWFx underlay, DGN underlay, or PDF underlay. This property cannot be edited.
However, if the file reference is a DWG xref, the Attach or Overlay property can be toggled.

Date Displays the last date the file reference was modified. This date is not displayed if the file reference is unloaded or not found. This property cannot be edited.

Saved Path Shows the saved path of the selected file reference (this is not necessarily where the file reference is found). This property cannot be edited.

Found At Displays the full path of the currently selected file reference. This is where the referenced file is actually found and is not necessarily the same as the saved path. Clicking the [...] button displays the Select Image File dialog box where you can select a different path or file name. You can also type directly into the path field. These changes are stored to the Saved Path property if the new path is valid.

File Version File Version property defined by the Vault client. This property is only displayed when you are logged into the Vault.

\section*{Specific Image Properties}

If you select a referenced image, additional properties are displayed. None of the added image properties can be edited.

Color System Displays the color system.
Color Depth The amount of information that is stored in each pixel of a raster image. Higher color depth values produce smoother degrees of shading.

Pixel Width The width of the raster image measured in pixels.
Pixel Height The height of the raster image measured in pixels.
Resolution The width and height resolution in dots per inch (dpi).
Default Size (in AutoCAD units) The width and height of the raster image measured in AutoCAD units.


\section*{Preview Pane}

The preview image is displayed only when a single file reference is selected from the File References pane. There are no other controls for this data pane. When no reference file is selected, the preview pane displays a solid grey field.

If there is no preview available, the text "Preview not available" is displayed in the center of the pane.

\section*{Messaging Field}

Below the Details / Preview pane is a messaging field that supplies information about certain selected file references. When you select one or more nested references, information is displayed regarding the file references. Messages also appear if you decide the change the name of a file reference.

\section*{EXTERNALREFERENCESCLOSE}

\section*{Quick Reference}

See also:
■ Attach and Detach Referenced Drawings
Closes the External References palette.

\section*{Summary}

The EXTERNALREFERENCESCLOSE command closes the External References palette. If the External References palette is currently displayed, either in an auto-hidden state or open state, it is closed.

\section*{EXTRUDE}

\section*{Quick Reference}

See also:
■ Create a Solid or Surface by Extruding

Creates a 3D solid or surface by extending the dimensions of an object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab > Modeling \(>\) Extrude
\(\$\) Menu: Draw \(>\) Modeling \(>\) Extrude
\(\$\) Toolbar: Modeling

\section*{Summary}

You can extrude either an open or closed object to create a 3D surface or solid. If you extrude a surface, you will create a regular surface or a NURBS surface depending on how the SURFACEMODELINGMODE system variable is set. To extrude meshes, use the MESHEXTRUDE on page 1137 command.


The DELOBJ system variable controls whether the object(s) and path (if selected) are automatically deleted when the solid or surface is created or whether you are prompted to delete the object(s) and path.

You can use the following objects and subobjects with EXTRUDE:

\section*{Objects That Can Be Extruded or Used as Paths}
\begin{tabular}{llll}
\hline Object type & \begin{tabular}{l} 
Can be ex- \\
truded?
\end{tabular} & \begin{tabular}{l} 
Can be extru- \\
sion path?
\end{tabular} & Comments \\
\hline 3D faces & X & \\
\hline Arcs & X & X \\
\hline Circles & X & X
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Object type & Can be extruded? & Can be extrusion path? & Comments \\
\hline Ellipses & X & X & \\
\hline Elliptical arcs & X & X & \\
\hline Helixes & & X & \\
\hline Lines & X & X & \\
\hline Meshes: faces & x & & \\
\hline Meshes: edges & x & X & \\
\hline 2D Polylines & \(x\) & \(x\) & \begin{tabular}{l}
2D polylines with crossing segments cannot be extruded. \\
Thickness and width are ignored. \\
The extrusion extends from the center line.
\end{tabular} \\
\hline 3D Polylines & X & X & \\
\hline Regions & x & & \\
\hline 2D Solids & X & & \\
\hline 3D Solids: edges & x & x & \\
\hline 3D Solids: faces & \(x\) & & \\
\hline Splines: 2D and 3D & \(x\) & x & \\
\hline Surfaces: edges & \(x\) & \(x\) & \\
\hline Surfaces: planar and non-planar & X & X & \\
\hline Traces & X & & \\
\hline
\end{tabular}

\section*{List of Prompts}

The following prompts are displayed.
Objects to Extrude Specifies the objects to extrude.


NOTE Select face and edge subobjects by pressing Ctrl while you select them.
Mode Controls whether the extruded object is a solid or a surface. Surfaces are extruded as either NURBS surfaces or procedural surfaces, depending on the SURFACEMODELINGMODE system variable.

Height of extrusion Extrudes objects along the positive \(Z\) axis of the object's coordinate system if you enter a positive value. If you enter a negative value, the objects are extruded along the negative \(Z\) axis. Objects do not have to be parallel to the same plane. If all objects are on a common plane, the objects are extruded in the direction of the normal of the plane.
By default, planar objects are extruded in the direction of the object's normal.


Direction Specifies the length and direction of the extrusion with two specified points. (The direction cannot be parallel to the plane of the sweep curve created by the extrusion.)
- Start point of direction. Specifies the first point in the direction vector.
- End point of direction. Specifies the second point in the direction vector.

Path Specifies the extrusion path based on a selected object. The path is moved to the centroid of the profile. Then the profile of the selected object is extruded along the chosen path to create solids or surfaces.


NOTE Select face and edge subobjects by pressing Ctrl while you select them.
The path should not lie on the same plane as the object, nor should the path have areas of high curvature.
The extrusion starts from the plane of the object and maintains its orientation relative to the path.
If the path contains segments that are not tangent, the program extrudes the object along each segment and then miters the joint along the plane bisecting the angle formed by the segments. If the path is closed, the object should lie on the miter plane. This allows the start and end sections of the solid to match up. If the object is not on the miter plane, the object is rotated until it is on the miter plane.
Objects with multiple loops are extruded so that all of the loops appear on the same plane at the end section of the extruded solid.

Taper angle Specifies the taper angler for the extrusion.


Positive angles taper in from the base object. Negative angles taper out. The default angle, 0 , extrudes a 2D object perpendicular to its 2D plane. All selected objects and loops are tapered to the same value.
Specifying a large taper angle or a long extrusion height can cause the object or portions of the object to taper to a point before reaching the extrusion height.

Individual loops of a region are always extruded to the same height.

When an arc is part of a tapered extrusion, the angle of the arc remains constant, and the radius of the arc changes.
- Angle of taper. Specifies the taper between -90 and +90 degrees.
- Specify two points. Specifies the taper angle based on two specified points. The taper angle is the distance between the two specified points.

Drag the cursor horizontally to specify and preview the taper angle. You can also drag the cursor to adjust and preview the height of the extrusion. The dynamic input origin should be placed on the extruded shape, on the projection of the point to the shape.
When you select the extruded object, the position of the taper grip is the correspondent point of the dynamic input origin on the top face of the extrusion.

Expression Enter a formula or equation to specify the extrusion height. See Constrain a Design with Formulas and Equations.

\section*{F Commands}

\section*{7}

\section*{FBXEXPORT}

\section*{Quick Reference}

See also:
■ Export FBX Files

Creates an Autodesk \({ }^{\circledR}\) FBX file containing selected objects in the current drawing.

\section*{Access Methods}


Bution


\section*{Summary}

The FBX Export dialog box (a standard file selection dialog box on page 1295) is displayed. Once you select an FBX file, the FBX Export Options on page 788 dialog box is displayed.

If you enter -fbxexport at the command prompt, options are displayed. on page 789

\section*{FBX Export Options Dialog Box}

\section*{Quick Reference}

Specifies the export settings for the FBX file.


\section*{Access Methods}
\(\underset{\text { EBX }}{\Rightarrow}\)
Button


\section*{Summary}

Specifies what to export to the FBX file and how to export textures.

\section*{List of Options}

The following options are displayed.
Export Specifies whether to export the entities that are selected in the drawing or the entities that are visible in the current viewport. Only the entities that are specified under Export by Type are eligible to be exported.

\section*{Export by Type}

Specifies which entities are eligible to be exported.

Objects Exports selected or visible 3D objects (and 2D objects with thickness), depending on whether the Export option is set to Selected Entities or Visible Entities.

Lights Exports selected or visible lights (including Point, Spot, Distant, Photometric, Sun, and Sky lights), depending on whether the Export option is set to Selected Entities or Visible Entities.

Cameras Exports selected or visible cameras and camera views, depending on whether the Export option is set to Selected Entities or Visible Entities. The current camera is exported as Camera0.

Materials Exports materials that are applied to the selected or visible objects, depending on whether the Export option is set to Selected Entities or Visible Entities.

\section*{Textures}

Specifies how to export a material's texture.
Embed Embeds textures in the exported FBX file.
Reference References textures from the current location and does not embed them.

Copy Textures to a Single Location All textures are copied to the location provided.

Location Specifies the location for the copied textures.
Browse Displays the Browse for Folder dialog box, in which you can navigate to a location for the copied textures.

\section*{-FBXEXPORT}

\section*{Related procedures:}
- Export FBX Files

Uses command prompts to create an Autodesk FBX file containing all selected objects in the current drawing.

\section*{List of Prompts}

The following prompts are displayed.
Enter what should be exported? [Selected/Visible] <Visible>

\section*{Selected}

Prompts you to select the 3D objects, 2D objects with thickness, lights, cameras, and materials to be exported.

Select objects
Select the objects in the drawing to export to FBX and press Enter. You can select 3D objects, lights, cameras, and materials to export. As you select, the list of selected items displays.

A list of all exportable items in the drawing is displayed.
Specify types to export [Settings, All types] <Current Settings>:
Settings Prompts you to individually confirm or deny exporting the selected items. You can remove any of the selected items from being exported using this option.
Export objects? [Yes/No] <Yes>:
You are prompted to confirm the export of the selected items to an FBX file, the first time you are exporting the file.

All Types All selected items are chosen for export. A list of items selected for export is displayed.

Enter path and name of file to export:
Enter the path and the file name to save the FBX file.

\section*{Visible}

Exports the entities that are visible in the current viewport.
Specify types to export [Settings, All types] <Current Settings>:
Settings Prompts you to individually confirm or deny exporting the selected items. You can remove any of the selected items from being exported using this option.
When an AutoCAD exported FBX file is opened in 3ds MAX, everything is rotated by 90 degrees on the Z axis.
Export objects? [Yes/No] <Yes>:
You are prompted to confirm the export of the selected items to an FBX file, the first time you are exporting the file.

All Types All selected items are chosen for export. A list of items selected for export is displayed.

Enter path and name of file to export:
Enter the path and the file name to save the FBX file.

\section*{FBXIMPORT}

\section*{Quick Reference}

See also:
- Import FBX Files

Imports an Autodesk \({ }^{\circledR}\) FBX file, which can contain objects, lights, cameras and materials.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Import panel \(>\) Import

\section*{Summary}

The FBX Import Options dialog box (a standard file selection dialog box on page 1295) is displayed. Once you select an FBX file, the FBX Import Options on page 791 dialog box is displayed.

If you enter at -fbximport the command prompt, options are displayed on page 793.

\section*{FBX Import Options}

\section*{Quick Reference}

Specifies the import settings for the FBX file.


\section*{Access Methods}


Bution

Ribbon: Insert tab \(>\) Import panel \(>\) Import㟇 Command entry: fbximport

\section*{Summary}

Specifies what to import, how to assign layers for the imported objects, the conversion units, and whether to import the FBX file as a block.

\section*{List of Options}

The following options are displayed.

\section*{Import}

Specifies what to import.
Objects Imports all objects. The number of objects in the FBX file is indicated in parentheses.

Lights Imports all Point, Spot, Distant, Photometric, Sun, and Sky lights. The number of lights in the FBX file is indicated in parentheses.
The Plot Glyph, Glyph Display, Targeted (Geometry), and Render Shadow Details properties for lights are determined by the AutoCAD settings.

Cameras Imports all cameras. The number of cameras in the FBX file is indicated in parentheses. The plot property for the imported cameras is determined by the AutoCAD settings.

Create target cameras in Autodesk \({ }^{\circledR}\) 3ds Max to accurately import cameras into AutoCAD.

Materials Imports materials. The number of materials in the FBX file is indicated in parentheses.

\section*{Assign Objects To Layers}

Specifies how to assign layers for the imported objects.
New Layer Assigns the imported objects to a new layer. The name displayed in parentheses is both the file name and the new layer name.

Current Layer Assigns the imported objects to the current layer.
By Material New layers are created based on the number of materials imported and objects are placed on the new layers. The layer names correspond to the material names.

\section*{Unit Conversion}

Displays the units of measurement for the current drawing and imported file and sets the conversion.

FBX File Units Displays the unit of measurement for the imported FBX file.
Current Drawing Units Displays the unit of measurement for the current drawing. Accept the default values to convert the imported objects to the current drawing units.

\section*{Block}

Imports the contents of the FBX file as a block.
Insert File As Block Inserts the contents of the imported FBX file as a block to the block definition table. You can move, scale, rotate, and make other modifications to the block.

Name Specifies the block name. The FBX file name is used as the default.

\section*{-FBXIMPORT}

\section*{Related procedures:}
- Import FBX Files

Imports an Autodesk \({ }^{\circledR}\) FBX file containing objects, lights, camera and materials.

\section*{List of Prompts}

The following prompts are displayed.
Enter path and name of file to import:
Enter the path to and the file name of the FBX file to import to AutoCAD.
A list of items that can be imported is displayed.
Specify types to import [Settings, All types] <Current Settings>:

\section*{Settings}

Prompts you to select what should be imported and how.
Select your choice in the following prompts to import objects, lights, cameras, and materials from the FBX file.

Import objects? [Yes/No] <Yes>:
All objects are imported.
Import lights? [Yes/No] <Yes>:
Point, Spot, Distant, Photometric, Sun, and Sky lights are imported. AutoCAD settings are applied for Plot Glyph, Glyph Display, Targeted (Geometry), and Render Shadow Details properties of the imported lights.

Import cameras? [Yes/No] <Yes>:
All cameras are imported and the AutoCAD setting is used for the plot property of the camera. Create target cameras in Autodesk \({ }^{\circledR}\) 3ds MAX to accurately import them in AutoCAD.

Import materials? [Yes/No] <Yes>:
Materials in the imported file are selected.
Enter layer assignment to [New layer/Current layer/by Material] <New layer>:
Specify the layer the contents of the FBX file are imported to.
Enter unit conversion (FBX file: Inches, Current Drawing: Inches)
<1.000:1.000>:
Specify the conversion unit. Enter a conversion factor to import the objects in the same unit as the current drawing file.

Insert file as block? [Yes/No] <Yes>:
Inserts the contents of the imported FBX file as a block. Importing the objects in the FBX file as a block allows you to move, scale, rotate, and make other modifications to it.

Selecting no, imports the chosen contents of the FBX file to be imported into the current file, either in the current layer, or a new layer as specified by you.
Name the block:
Specify a name for the block and press Enter. The contents of the FBX file is saved as a block to the temp folder.

\section*{FIELD}

\section*{Quick Reference}

\section*{See also:}
- Use Fields in Text

Creates a multiline text object with a field that can be updated automatically as the field value changes.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Data panel \(>\) Field
\(\$\) Menu: Insert \(>\) Field
Shortcut menu: Right-click while any text command is active, and click Insert Field.

\section*{Summary}

Fields can be inserted in any kind of text except tolerances. The FIELDEVAL system variable and the UPDATEFIELD command determine how fields are updated.
The Field dialog box is displayed.

\section*{Field Dialog Box}

\section*{Quick Reference}

See also:
■ Use Fields in Text

Inserts a field in the drawing.


\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Data panel \(>\) Field
\(\$\) Menu: Insert \(>\) Field
Shortcut menu: Right-click while any text command is active, and click Insert Field.
业 Command entry: field

\section*{Summary}

The options available in the Field dialog box change with the field category and field name.

\section*{List of Options}

The following options are displayed.
Field Category Sets the types of fields to be listed under Field Names (for example, Date \& Time, Document, and Objects).

Field Names Lists the fields that are available in a category. Select a field name to display the options available for that field.

Field Value Displays the current value of the field, or displays an empty string (----) if the field value is invalid.
The label for this item changes with the field name. For example, when Filename is selected in the Field Names list, the label is Filename and the value is the name of the current drawing file. The label is Property for object fields. Exception: when a date field is selected, the selected date format is displayed; for example, M/d/yyyy.

Format List Lists options for display of the value of the field. For example, date fields can display the name of the day or not, and text strings can be uppercase, lowercase, first capital, or title case. The value displayed in the Fields dialog box reflects the format that you select.

Field Expression Displays the expression that underlies the field. The field expression cannot be edited, but you can learn how fields are constructed by reading this area.

\section*{Options for Sheet Set and Sheet View Fields}

Sheet Set Specifies the name of the sheet set.
Sheet Navigation Tree Displays a tree view of sheets or sheet views from the Sheet Set Manager, from which you can select an item for the field.

Property Displays the properties available as fields for the item selected in the tree.

Associate Hyperlink Adds a hyperlink to the field when it is created. You can use Ctrl + click to jump to the sheet or view. This option is not available for the ViewportScale field.

NOTE If you recreate the field, because the sheet is already in a sheet set, you should use a sheet set property field, not a placeholder field.

Sheet set fields (fields that were selected from the sheet set category) behave differently than other types of fields. By default, other types of fields update automatically when you save the drawing or when you use REGEN. In contrast, sheet set fields store the last values that were used, and they display these stored values if the information referenced by the sheet set field is not accessible. To update the value in a sheet set field, use UPDATEFIELD command.

NOTE If the information referenced by sheet set field is not accessible, the value for the field will be displayed as "\#\#\#\#."

\section*{Options for BlockPlaceholder Fields}

BlockPlaceholder fields are only available for insertion in the Attribute Definition dialog box when the Block Editor is open.

Block Name Displays the name of the current block definition.
Temporary Value Displays the value for the placeholder field in the selected format.

Block Reference Properties Displays a list of block reference properties for the current block definition.

\section*{Options for SheetSetPlaceholder Fields}

Placeholder Type Displays a list of available placeholder fields.
Temporary Value Displays the value for the placeholder field in the selected format.
For example, with SheetSet Placeholder selected in the Field Names list, SheetTitle selected in the Placeholder Type list, and Uppercase selected in the Format list, Temporary Value displays SHEETTITLE. When the drawing is placed in a sheet set, this field displays the title of the sheet.

\section*{Options for Fields in the Objects Field Category}

Named Object Type/Object Type When NamedObject is selected in Field Names, lists the types of named objects in the drawing. When Object is selected, displays the type of object selected. Use the Select Object button to temporarily close the dialog box and select an object in the drawing.

Property/Name When NamedObject is selected in Field Names, lists the names of all the objects in the drawing of the selected type. When Object is selected in Field Names, lists the properties of the selected object that are available as fields. When a block with attributes is selected, the attribute names are displayed in the list of properties.

Formula When Formula is selected in Field Names, provides a place for creating a formula to insert in text or in a table cell.

Average/Sum/Count When Formula is selected in Field Names, closes the Field dialog box temporarily while you specify table cells. The result is appended to the formula.

Cell When Formula is selected in Field Names, closes the Field dialog box temporarily while you specify a table cell. The cell address is appended to the formula.

Precision Specifies precision for fields based on the selected format. Select Current Precision to use the current setting of the LUPREC on page 2403 system variable.

Additional Format Displays the Additional Format dialog box.
Evaluate Updates the value in Preview when you have manually changed the text in Formula.

Display Value for Block Reference Specifies that the object property fields in a block reference evaluate the properties of nested objects relative to the block reference's size and orientation within the drawing, not within the block definition.

\section*{FILL}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Polylines, Hatches, Gradient Fills, Lineweights, and Text

Controls the filling of objects such as hatches, 2D solids, and wide polylines.

\section*{Access Methods}

座 Command entry: 'fill for transparent use

\section*{List of Prompts}

The following prompts are displayed.
Enter mode [ON/OFF] <current>: Enter on or off, or press Enter
On Turns on Fill mode. For the filling of a 3D object to be visible, its extrusion direction must be parallel to the current viewing direction, and hidden lines must not be suppressed.


Fill mode on
Off Turns off Fill mode. Only the outlines of objects are displayed and plotted. Changing Fill mode affects existing objects after the drawing is regenerated. The display of lineweights is not affected by the Fill mode setting.


Fill mode off

\section*{FILLET}

\section*{Quick Reference}

\section*{See also:}
- Create Fillets

Rounds and fillets the edges of objects.

\section*{Access Methods}


Ribbon: Home tab \(>\) Modify panel \(>\) Fillet.
Menu: Modify > Fillet
Toolbar: Modify

\section*{Summary}

In the example, an arc is created that is tangent to both of the selected lines. The lines are trimmed to the ends of the arc. To create a sharp corner instead, enter a radius of zero.

You can fillet arcs, circles, ellipses, elliptical arcs, lines, polylines, rays, splines, and xlines.

You can also fillet 3D solids and surfaces. If you select a mesh object for filleting, you can choose to convert the mesh to a solid or surface and continue the operation.

\section*{List of Prompts}

The following prompts are displayed.
Current settings: Mode = current, Radius = current
Select first objector [Undo/Polyline/Radius/Trim/Multiple]: Use an object selection method or enter an option

\section*{First Object}

Selects the first of two objects required to define a 2 D fillet or selects the edge of a 3D solid to round or fillet the edge.


Select second object or shift-select to apply corner: Use an object selection method or hold down Shift and select an object to create a sharp corner

If you select lines, arcs, or polylines, their lengths adjust to accommodate the fillet arc. You can hold down Shift while selecting the objects to override the current fillet radius with a value of 0 .

If the selected objects are straight line segments of a 2 D polyline, they can be adjacent or separated by one other segment. If they are separated by another polyline segment, FILLET deletes the segment that separates them and replaces it with the fillet.

More than one fillet can exist between arcs and circles. Select the objects close to where you want the endpoints of the fillet.


FILLET does not trim circles; the fillet arc meets the circle smoothly.


If you select a 3D solid, you can select multiple edges, but you must select the edges individually.

Enter fillet radius <current>: Specify a distance or press Enter
Select an edge or [Chain/Radius]: Select edge(s), enter c, or enter \(\mathbf{r}\)

\section*{Edge}

Selects a single edge. You can continue to select single edges until you press Enter.


If you select three or more edges that converge at a vertex to form the corner of a box, FILLET computes a vertex blend that is part of a sphere if the three incident fillets have the same radii.

\section*{Chain}

Changes from selection of single edges to selection of sequential tangent edges, called a chain selection.

Edge Chain Selects a tangential sequence of edges when you select a single edge. For example, if you select an edge on the top of a 3D solid box, FILLET also selects the other tangential edges on the top.


Edge Switches to a single-edge selection mode.

\section*{Radius}

Defines the radius of the rounded edge.

\section*{Undo}

Reverses the previous action in the command.

\section*{Polyline}

Inserts fillet arcs at each vertex of a 2D polyline where two line segments meet.
Select 2D polyline:
If one arc segment separates two line segments that converge as they approach the arc segment, FILLET removes the arc segment and replaces it with a fillet arc.

before

after

\section*{Radius}

Defines the radius of the fillet arc.
The value you enter becomes the current radius for subsequent FILLET commands. Changing this value does not affect existing fillet arcs.

\section*{Trim}

Controls whether FILLET trims the selected edges to the fillet arc endpoints.
Multiple
Rounds the edges of more than one set of objects.

\section*{FILLETEDGE}

\section*{Quick Reference}

See also:
- Create Fillets

Rounds and fillets the edges of solid objects.

\section*{Access Methods}

Ribbon: Solid tab \(>\) Solid Editing panel \(>\) Fillet Edge
\(\$\) Menu: Modify \(>\) Solid Editing \(>\) Fillet Edge
Toolbar: Solid Editing

\section*{Summary}

You can select more than one edge. Enter a value for the fillet radius or click and drag the fillet grip.


\section*{List of Prompts}

The following prompts are displayed.
Select an Edge Specifies an edge to fillet. After pressing Enter, you can drag the fillet grip to specify a radius, or use the Radius option.

Radius Specifies a radius value.
Chain Specifies more than one edge.

FILTER

\section*{Quick Reference}

\section*{See also:}
- Select Objects by Properties

Creates a list of requirements that an object must meet to be included in a selection set.

\section*{Access Methods}

锉 Command entry: 'filter for transparent use

\section*{Summary}

The Object Selection Filters dialog box is displayed.

\section*{Object Selection Filters Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Select Objects by Properties


Selects, edits, and names filters for object selection.

\section*{Access Methods}

並 Command entry: filter (or 'filter for transparent use)

\section*{List of Options}

The following options are displayed.

\section*{Filter Property List}

Displays a list of the filter properties that compose the current filter. The current filter is the filter that you select in Current in the Named Filters area.

\section*{Select Filter}

Adds filter properties to the current filter.

Object Types and Logical Operators Lists object types that you can filter and logical operators (AND, OR, XOR, and NOT) for grouping the filter expressions.
If you use logical operators, make sure that you pair and balance them correctly in the filter list. The number of operands you can enclose depends on the operation.
\begin{tabular}{lll}
\hline Logical operators & & \\
\hline Starting operator & Encloses & Ending operator \\
\hline Begin AND & One or more operands & End AND \\
\hline Begin OR & One or more operands & End OR \\
\hline Begin XOR & Two operands & End XOR \\
\hline Begin NOT & One operand & End NOT \\
\hline
\end{tabular}

For example, the following filter selects all circles except the ones with a radius greater than or equal to 1.0 :
Object =Circle
**Begin NOT
Circle Radius >= 1.00
**End NOT
X, Y, Z Parameters Define additional filter parameters depending on the object. For example, if you select Line Start, you can enter the \(X, Y\), and \(Z\) coordinate values that you want to filter.
In the filter parameters, you can use relative operators such as \(<\) (less than) or \(>\) (greater than). For example, the following filter selects all circles with center points greater than or equal to \(1,1,0\) and radii greater than or equal to 1 :
Object \(=\) Circle
Circle Center \(\mathrm{X}>=1.0000 \mathrm{Y}>=1.0000 \mathrm{Z}>=0.0000\)
Circle Radius >=1.0000
Select Displays a dialog box listing all items of the specified type in the drawing. Select the items to filter. For example, if you select the object type Color, Select displays a list of colors to choose for the filter.

Add to List Adds the current Select Filter property to the filter list. Filter properties that you add to the unnamed filter remain available during the current work session unless you manually delete them.

Substitute Replaces the filter property selected in the filter property list with the one displayed in Select Filter.

Add Selected Object Adds one selected object in the drawing to the filter list.

\section*{Edit Item}

Moves the selected filter property into the Select Filter area for editing. The edited filter replaces the selected filter property.

\section*{Delete}

Deletes a selected filter property from the current filter.

\section*{Clear List}

Deletes all the listed properties from the current filter.

\section*{Named Filters}

Displays, saves, and deletes filters.
Current Displays saved filters. Select a filter list to make it current. The named filter and its list of properties are loaded from the default file, filter.nfl.

Save As Saves a filter and its list of properties. The filter is saved in the filter.nfl file. Names can contain up to 18 characters.

Delete Current Filter List Deletes a filter and all its properties from the default filter file.

\section*{Apply}

Exits the dialog box and displays the Select Objects prompt, where you create a selection set. The current filter is used on the objects you select.

\section*{FIND}

\section*{Quick Reference}

\section*{See also:}
- Find and Replace Text

Finds the text that you specify, and can optionally replace it with other text.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Text panel \(>\) Find Text
\(\$\) Menu: Edit > Find
\(\$\) Toolbar: Text Formatting
Summary
The Find and Replace dialog box is displayed.

\section*{Find and Replace Dialog Box - FIND}

\section*{Quick Reference}

\author{
See also: \\ - Find and Replace Text
}

Specifies the text you want to find, replace, or select and controls the scope and results of the search.


\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Text panel \(>\) Find Text
\(\$\) Menu: Edit > Find
\(\$\) Toolbar: Text
Shortcut menu: End any active commands, right-click in the drawing area, and choose Find.
菐 Command entry: find

\section*{List of Options}

The following options are displayed.

\section*{Find What}

Specifies the text string you want to find. Enter a text string, including any wild-card characters, or choose one of the six most recently used strings from the list.

For more information on wild-card searches, see Find and Replace Text in the User's Guide.

\section*{Replace With}

Specifies the text string you want to use to replace the found text. Enter a string, or choose one of the most recently used strings from the list.

\section*{Find Where}

Specifies whether to search the entire drawing, the current layout, or the currently-selected object. If an object is already selected, then Selected Objects is the default value. If no object is selected, then Entire Drawing is the default value. You can use the Select Objects button to temporarily close the dialog box and create or modify the selection set.

\section*{Select Objects Button}

Closes the dialog box temporarily so that you can select objects in your drawing. Press Enter to return to the dialog box. When you select objects, Find Where displays Selected Objects by default.

\section*{List Results}

Lists results in a table displaying the location (model or paper space), object type, and text. The resulting table can be sorted by column.

\section*{Expand Find Options Button}

Displays options to define the type of objects and words that you want to find.

\section*{Replace}

Replaces found text with the text that you enter in Replace With.

\section*{Replace All}

Finds all instances of the text that you enter in Find What and replaces it with the text in Replace With. The Find Where setting controls whether to find and replace text in the entire drawing or text in the currently selected object or objects.

\section*{Zoom to Highlighted Result}

Zooms to the selected object in the list. You can also zoom to a result when you double-click the selected object.

Create Selection Set (Highlighted)

Creates a selection set from the objects that contain the text highlighted on the list of results. The selected objects must all be located either in model space or in a single layout.

\section*{Create Selection Set (All)}

Creates a selection set from all the objects that contain the text on the list of results. The objects must all be located either in model space or in a single layout.

\section*{Find/Find Next}

Finds the text that you enter in Find What. If you have not entered text in Find What, this option is not available. Found text is zoomed to or displayed in the List Results table. Once you find the first instance of the text, the Find option becomes Find Next, which you can use to find the next instance.

\section*{Search Options}

Defines the type of objects and words to be found.

\section*{Match Case}

Includes the case of the text in Find What as part of the search criteria.

\section*{Find Whole Words Only}

Finds only whole words that match the text in Find What. For example, if you select Find Whole Words Only and search for "Front Door," FIND does not locate the text string "Front Doormat."

\section*{Use Wild cards}

Allows the use of wild-card characters in searches.
For more information on wild-card searches, see Find and Replace Text in the User's Guide.

\section*{Search XRefs}

Includes text in externally referenced files in search results.

\section*{Search Blocks}

Includes text in blocks in search results.

\section*{Ignore Hidden Items}

Ignores hidden items in search results. Hidden items include text on layers that are frozen or turned off, text in block attributes created in invisible mode, and text in visibility states within dynamic blocks.

\section*{Match Diacritics}

Matches diacritical marks, or accents, in search results.

\section*{Match Half or Full Width Forms}

Matches half- and full-width characters in search results.

\section*{Text Types}

Specifies the type of text objects you want to include in the search. By default, all options are selected.
Block Attribute Value
Includes block attribute text values in search results.
Dimension or Leader Text
Includes dimension and leader object text in search results.
Single-Line or Multiline Text
Includes text objects such as single-line and multiline text in search results.
Table Text
Includes text found in AutoCAD table cells in search results.

\section*{Hyperlink Description}

Includes text found in hyperlink descriptions in search results.
Hyperlink
Includes hyperlink URLs in search results.

\section*{FLATSHOT}

\section*{Quick Reference}

\section*{See also:}

■ Create a Flattened View

Creates a 2D representation of all 3D objects based on the current view.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Section panel \(>\) Flatshot

\section*{Summary}

The Flatshot dialog box is displayed.
The edges of all 3D solids, surfaces, and meshes are projected line-of-sight onto a plane parallel to the viewing plane. The 2D representations of these edges are inserted as a block on the \(X Y\) plane of the UCS. This block can be exploded for additional changes.


\section*{Flatshot Dialog Box}

\section*{Quick Reference}

See also:
■ Create a Flattened View

Creates a 2D representation of all 3D objects based on the current view.


\section*{Access Methods}

Ribbon: Home tab \(>\) Solid Editing panel \(>\) Flatshot
菐 Command entry: flatshot

\section*{Summary}

The edges of all 3D solids and surfaces are projected line-of-sight onto a plane parallel to the viewing plane. The 2D representations of these edges are inserted as a block on the \(X Y\) plane of the UCS. This block can be exploded for additional changes. The result can also be saved as a separate drawing file.

\section*{List of Options}

The following options are displayed.

\section*{Destination}

Controls where the flattened representation is created.

\section*{Insert As New Block}

Specifies to insert the flattened representation as a block in the current drawing.

\section*{Replace Existing Block}

Replaces an existing block in the drawing with the newly created block.

\section*{Select Block}

Closes the dialog box temporarily while you select the block you are replacing in the drawing. When you finish selecting the block, press Enter to re-display the Flatshot dialog box.

\section*{Block Selected / No Block Selected}

Indicates whether a block has been selected.

\section*{Export to a File}

Saves the block to an external file.

\section*{Foreground Lines}

Contains controls for setting the color and linetype of lines that are not obscured in the flattened view.

\section*{Color}

Sets the color of lines that are not obscured in the flattened view.

\section*{Linetype}

Sets the linetype of lines that are not obscured in the flattened view.

\section*{Obscured Lines}

Controls whether lines that are obscured in the drawing are displayed in the flattened view, and sets the color and linetype of these obscured lines.

\section*{Show}

Controls whether obscured lines are shown in the flattened representation. When selected, the 2D flattened representation displays lines hidden by other objects.

\section*{Color}

Sets the color of lines that lie behind geometry in the flattened view.

\section*{Linetype}

Sets the linetype of lines that lie behind geometry in the flattened view.

\section*{Include Tangential Lines}

Creates silhouette edges for curved surfaces.

\section*{Create}

Creates the flattened view.

\section*{FREESPOT}

\section*{Quick Reference}

\section*{See also:}

■ Use Spotlights

Creates free spotlight which is similar to a spotlight without a specified target.

\section*{List of Options}

The following options are displayed.
Specify source location \(\langle 0,0,0\rangle\) : Enter coordinate values or use the pointing device
If the LIGHTINGUNITS system variable is set to 0 , the following prompt is displayed:

Enter an option to change
[Name/Intensity/Status/Hotspot/Falloff/shadoW/Attenuation/Color/eXit] <eXit>:

If the LIGHTINGUNITS system variable is set to 1 or 2 , the following prompt is displayed:

Enter an option to change [Name/Intensity
factor/Photometry/Status/Hotspot/Falloff/shadoW/filterColor/eXit] <eXit>:
NOTE When the LIGHTINGUNITS system variable is set to 1 or 2 , the Attenuation option has no affect on the creation of the light. It is only maintained for scripting compatibility.

\section*{Name}

Specifies the name of the light. You can use uppercase and lowercase letters, numbers, spaces, hyphens (-), and underscores (_) in the name. The maximum length is 256 characters.

\section*{Intensity/Intensity Factor}

Sets the intensity or brightness of the light. The range is 0.00 to the maximum value that is supported by your system.

\section*{Hotspot}

Specifies the angle that defines the brightest cone of light, which is known to lighting designers as the beam angle. This value can range from 0 to 160 degrees or the equivalent values based on AUNITS and AUNITS.

\section*{Falloff}

Specifies the angle that defines the full cone of light, which is also known as the field angle. This value can range from 0 to 160 degrees. The default is 50 degrees or the equivalent values based on AUNITS and AUNITS. The falloff angle must be greater than or equal to the hotspot angle.

\section*{Status}

Turns the light on and off. If lighting is not enabled in the drawing, this setting has no effect.

\section*{Photometry}

Photometry is available when the LIGHTINGUNITS system variable is set to 1 or 2 . Photometry is the measurement of the luminous intensities of visible light sources.

In photometry, luminous intensity is a measure of the perceived power emitted by a light source in a particular direction. Luminous flux is the perceived power per unit of solid angle. The total luminous flux for a lamp is the perceived power emitted in all directions. Luminance is the total luminous flux incident on a surface, per unit area.

Intensity Enter an intensity value in candelas, the perceived power in a luminous flux value, or illuminance value for the total luminous flux incident on a surface.
- Candela (symbol: cd) is the SI unit of luminous intensity (perceived power emitted by a light source in a particular direction). \(\mathrm{Cd} / \mathrm{Sr}\)

■ Lux (symbol: lx) is the SI unit of illuminance. Lm/m^2
■ Foot-candle (symbol: fc) is the American unit of illuminance. Lm/ft^2
Enter \(\mathbf{f}\) to specify the perceived power in a luminous flux value.
If you enter \(\mathbf{i}\), you can specify the intensity of the light based on an illuminance value.
The illuminance value can be specified in either lux or foot-candles. Enter d to specify a distance to use to calculate illuminance.

Color Specify the color of the light based on a color name or a Kelvin temperature. Enter? to display a list of color names.
Enter a text string using wild card characters to display a partial listing of color names, or an asterisk (*) to display all the possible choices.
If you enter \(\mathbf{k}\), you can specify the color of the light based on a Kelvin temperature value.

\section*{Shadow}

Makes the light cast shadows.
Off Turns off display and calculation of shadows for the light. Turning shadows off increases performance.

Sharp Displays shadows with sharp edges. Use this option to increase performance.
Soft Mapped Displays realistic shadows with soft edges.
Map Size Specifies the amount of memory that should be used to calculate the shadow map.

Softness Specifies the softness that should be used to calculate the shadow map.

Soft Sampled Displays realistic shadows with softer shadows (penumbra) based on extended light sources.
Specify the shape of the shadow by entering \(s\) and then the dimensions of the shape. (For example, the radius of the sphere or the length and width of a rectangle.)
Specify the sample size by entering a.
Specify the visibility of the shape by for the shadow by entering \(\mathbf{v}\).

\section*{Attenuation}

Enter an option to change [attenuation Type/Use limits/attenuation start Limit/attenuation End limit/eXit]<eXit>:

Attenuation Type Controls how light diminishes over distance. The farther away an object is from a spotlight, the darker the object appears. Attenuation is also known as decay.
- None. Sets no attenuation. Objects far from the spotlight are as bright as objects close to the light.
- Inverse Linear. Sets attenuation to be the inverse of the linear distance from the light. For example, at a distance of 2 units, light is half as strong as at the spotlight; at a distance of 4 units, light is one quarter as strong. The default value for inverse linear is half the maximum intensity.
- Inverse Squared. Sets attenuation to be the inverse of the square of the distance from the light. For example, at a distance of 2 units, light is one quarter as strong as at the spotlight; at a distance of 4 units, light is one sixteenth as strong.

Use Limits Specifies whether to use limits or not.
Attenuation Start Limit Specifies the point where light starts as an offset from the center of the light. The default is 0 .
Attenuation End Limit Specifies the point where light ends as an offset from the center of the light. No light is cast beyond this point. Setting an end limit increases performance where the effect of lighting is so minimal that the calculations are wasted processing time.

\section*{Color/Filter Color}

Controls the color of the light.
True Color Specifies a True Color. Enter in the format R,G,B (red, green, blue).
Index Specifies an ACI (AutoCAD Color Index) color.
HSL Specifies an HSL (hue, saturation, luminance) color.
Color Book Specifies a color from a color book.

\section*{FREEWEB}

\section*{Quick Reference}

See also:
- Overview of Weblights

Creates a free web light which is similar to a web light without a specified target.

\section*{List of Prompts}

The following prompts are displayed.
Specify source location \(\langle 0,0,0\rangle\) : Enter coordinate values or use the pointing device Enter an option to change [Name/Intensity
factor/Status/Photometry/weB/shadoW/filterColor/eXit] <eXit>:

NOTE The LIGHTINGUNITS system variable must be set to a value other than 0 to create and use freeweb lights.

\section*{Name}

Specifies the name of the light. You can use uppercase and lowercase letters, numbers, spaces, hyphens (-), and underscores (_) in the name. The maximum length is 256 characters.

\section*{Intensity Factor}

Sets the intensity or brightness of the light. The range is 0.00 to the maximum value that is supported by your system.

\section*{Status}

Turns the light on and off. If lighting is not enabled in the drawing, this setting has no effect.

\section*{Photometry}

Photometry is available when the LIGHTINGUNITS system variable is set to 1 or 2 . Photometry is the measurement of the luminous intensities of visible light sources.
In photometry, luminous intensity is a measure of the perceived power emitted by a light source in a particular direction. Luminous flux is the perceived power per unit of solid angle. The total luminous flux for a lamp is the perceived power emitted in all directions. Luminance is the total luminous flux incident on a surface, per unit area.

Intensity Enter an intensity value in candelas, the perceived power in a luminous flux value, or illuminance value for the total luminous flux incident on a surface.
- Candela (symbol: cd) is the SI unit of luminous intensity (perceived power emitted by a light source in a particular direction). \(\mathrm{Cd} / \mathrm{Sr}\)
- Lux (symbol: lx) is the SI unit of illuminance. Lm/m^2
- Foot-candle (symbol: fc) is the American unit of illuminance. \(\mathrm{Lm} / \mathrm{ft}^{\wedge} 2\)

Enter \(\mathbf{f}\) to specify the perceived power in a luminous flux value.
If you enter \(\mathbf{i}\), you can specify the intensity of the light based on an illuminance value.
The illuminance value can be specified in either lux or foot-candles. Enter d to specify a distance to use to calculate illuminance.

Color Specify the color of the light based on a color name or a Kelvin temperature. Enter ? to display a list of color names.

Enter a text string using wild card characters to display a partial listing of color names, or an asterisk (*) to display all the possible choices.
If you enter \(\mathbf{k}\), you can specify the color of the light based on a Kelvin temperature value.

\section*{Web}

Specifies the intensity for a light at points on a spherical grid.
File Specifies which web file to use to define the properties of the web. Web files have the file extension .ies.

X Specifies the X rotation for the web.
Y Specifies the Y rotation for the web.
\(Z\) Specifies the \(Z\) rotation for the web.

\section*{Shadow}

Makes the light cast shadows.
Off Turns off display and calculation of shadows for the light. Turning shadows off increases performance.

Sharp Displays shadows with sharp edges. Use this option to increase performance.

Soft Mapped Displays realistic shadows with soft edges.
Specifies the amount of memory to use to calculate the shadow map.
Softness Specifies the softness that should be used to calculate the shadow map.

Soft Sampled Displays realistic shadows with softer shadows (penumbra) based on extended light sources.
Specify the shape of the shadow by entering \(s\) and then the dimensions of the shape. (For example, the radius of the sphere or the length and width of a rectangle.)
Specify the sample size by entering a.
Specify the visibility of the shape by for the shadow by entering \(\mathbf{v}\).

\section*{Filter Color}

Controls the color of the light.
True Color Specifies a True Color. Enter in the format R,G,B (red, green, blue).
Index Specifies an ACI (AutoCAD Color Index) color.
HSL Specifies an HSL (hue, saturation, luminance) color.

Color Book Specifies a color from a color book.

\section*{G Commands}

\section*{GCCOINCIDENT}

\section*{Quick Reference}

See also:
- Apply or Remove Geometric Constraints

Constrains two points together or a point to a curve (or an extension of a curve).

\section*{Access Methods}
\(\stackrel{\square}{\square}\)
Bution
\(\$\) Ribbon: Parametric tab \(>\) Geometric panel \(>\) Coincident
\(\$\) Menu: Parametric \(>\) Geometric Constraints \(>\) Coincident
\(\$\) Toolbar: Geometric Constraint

\section*{Summary}

This command is equivalent to the Coincident option in GEOMCONSTRAINT on page 848.
A constraint point on an object can be made coincident with an object or a constraint point on another object.

Following are the valid constraint objects and points:
■ Line
■ Polyline segment
- Circle
- Arc
- Polyline arc
- Ellipse
- Spline
- Two valid constraint points

\section*{List of Prompts}

The following prompts are displayed.
Select first point on page 826 or [Object on page 826/Autoconstrain on page 826] <Object>: Select a constraint point, or an object, or enter a to apply constraints to selected objects

\section*{Point}

Specifies a point to be constrained.
First Point Specifies the first point of the object to be constrained.
Second Point Specifies the second point of the object to be constrained.

\section*{Object}

Selects an object to be constrained.
Point Point on page 826
Multiple Picks successive points to coincide with the first object. The Multiple option is displayed when you use the Object option to select the first object.

\section*{Autoconstrain}

Selects multiple objects. Coincident constraints are applied to selected objects with unconstrained points that are coincident to each other.

The number of constraints applied is displayed at the Command prompt.
When a coincident constraint is applied between a point and an arc or line, the point can lie on the line or arc or the extension of the line or arc.

\section*{GCCOLLINEAR}

\section*{Quick Reference}

See also:
■ Apply or Remove Geometric Constraints

Causes two or more line segments to lie along the same line.

\section*{Access Methods}


Bution
\(\$\) Ribbon: Parametric tab \(>\) Geometric panel \(>\) Collinear
\(\$\) Menu: Parametric \(>\) Geometric Constraints \(>\) Collinear
\(\$\) Toolbar: Geometric Constraint

\section*{Summary}

This command is equivalent to the Collinear option in GEOMCONSTRAINT on page 848.

Following are the valid constraint objects and points:
■ Line
- Polyline segment
- Ellipse

■ Multiline text

\section*{List of Prompts}

The following prompts are displayed.
Select first object on page 827 or [Multiple on page 828]: Select an object or enter
m to select multiple points or objects
Object
Selects an object to be constrained.
First object Selects the first object to be constrained.

Second object Selects the second object to be constrained.

\section*{Multiple}

Picks successive points or objects to be made collinear with the first object.

\section*{GCCONCENTRIC}

\section*{Quick Reference}

See also:
- Apply or Remove Geometric Constraints

Constrains two arcs, circles, or ellipses to the same center point.

\section*{Access Methods}


Button

Ribbon: Parametric tab \(>\) Geometric panel \(>\) Concentric
\(\$\) Menu: Parametric \(>\) Geometric Constraints \(>\) Concentric
Toolbar: Geometric Constraint

\section*{Summary}

This command is equivalent to the Concentric option in GEOMCONSTRAINT on page 848 .

Following are the valid constraint objects and points:
- Circle
- Arc
- Polyline arc

■ Ellipse

\section*{List of Prompts}

The following prompts are displayed.

Select first object on page 829: Select a circle, arc, or ellipse Object
Selects an object to be constrained.
First object Selects the first circle, arc, or ellipse to be constrained.
Second object Selects the second circle, arc, or ellipse to be constrained.

\section*{GCEQUAL}

\section*{Quick Reference}

\section*{See also:}
- Apply or Remove Geometric Constraints

Resizes selected arcs and circles to the same radius, or selected lines to the same length.

\section*{Access Methods}

\section*{\(=\)}

Butlon
\(\$\) Ribbon: Parametric tab \(>\) Geometric panel \(>\) Equal
\(\$\) Menu: Parametric \(>\) Geometric Constraints \(>\) Equal
\(\$\) Toolbar: Geometric Constraint

\section*{Summary}

This command is equivalent to the Equal option in GEOMCONSTRAINT on page 848.

Following are the valid constraint objects and points:
■ Line
- Polyline segment
- Circle
- Arc
- Polyline arc

\section*{List of Prompts}

The following prompts are displayed.
Select first object on page 830 or [Multiple on page 830]: Select an object or enter m to select multiple objects
Object
Selects an object to be constrained.
First object Selects the first object to be constrained.
Second object Selects the second object to be made equal with the first object.
Multiple
Picks successive objects to be made equal with the first object.

\section*{GCFIX}

\section*{Quick Reference}

See also:
■ Apply or Remove Geometric Constraints

Locks points and curves in position.

\section*{Access Methods}

Bulton
\(\$\) Ribbon: Parametric tab \(>\) Geometric panel \(>\) Fix
\(\$\) Menu: Parametric \(>\) Geometric Constraints \(>\) Fix
\(\$\) Toolbar: Geometric Constraint

\section*{Summary}

This command is equivalent to the Fix option in GEOMCONSTRAINT on page 848.

When you apply the Fix constraint to a point on an object, you lock the node in place. You can move the object around the locked node.

When you apply the Fix constraint to an object, the object is locked and cannot be moved.

Following are the valid constraint objects and points:
■ Line
- Polyline segment
- Circle
- Arc
- Polyline arc
- Ellipse
- Spline

\section*{GCHORIZONTAL}

\section*{Quick Reference}

\section*{See also:}

■ Apply or Remove Geometric Constraints

Causes lines or pairs of points to lie parallel to the X axis of the current coordinate system.

\section*{Access Methods}
\(\overline{7 \pi}\)
Butlon

8 Ribbon: Parametric tab \(>\) Geometric panel \(>\) Horizontal
\(\$\) Menu: Parametric \(>\) Geometric Constraints \(>\) Horizontal
\(\$\) Toolbar: Geometric Constraint

\section*{Summary}

This command is equivalent to the Horizontal option in GEOMCONSTRAINT on page 848.

You can select different constraint points on the same object or different objects.

The following are the valid constraint objects and points:
■ Line
- Polyline segment
- Ellipse

■ Multiline text
■ Two valid constraint points

\section*{List of Prompts}

The following prompts are displayed.
Select an object or [2Points on page 832] <2Points>: Select an object or two constraint points

\section*{2Points}

Selects two constraint points instead of an object.
The second selected point on an object is made horizontal to the first selected point.


\section*{GCPARALLEL}

\section*{Quick Reference}

See also:
■ Apply or Remove Geometric Constraints
Causes selected lines to lie parallel to each other.

\section*{Access Methods}
/l
Button
\(\$\) Ribbon: Parametric tab \(>\) Geometric panel \(>\) Parallel
\(\$\) Menu: Parametric \(>\) Geometric Constraints \(>\) Parallel
\(\$\) Toolbar: Geometric Constraint

\section*{Summary}

This command is equivalent to the Parallel option in GEOMCONSTRAINT on page 848.

Following are the valid constraint objects and points:
- Line
- Polyline segment

■ Ellipse
■ Multiline text

\section*{GCPERPENDICULAR}

\section*{Quick Reference}

See also:
■ Apply or Remove Geometric Constraints

Causes selected lines to lie 90 degrees to one another.

\section*{Access Methods}


Button
\(\$\) Ribbon: Parametric tab \(>\) Geometric panel \(>\) Perpendicular
\(\$\) Menu: Parametric \(>\) Geometric Constraints \(>\) Perpendicular
\(\$\) Toolbar: Geometric Constraint

\section*{Summary}

This command is equivalent to the Perpendicular option in GEOMCONSTRAINT on page 848.

Lines do not have to intersect to be perpendicular.
Following are the valid constraint objects and points:
■ Line
- Polyline segment
- Ellipse
- Multiline text

\section*{GCSMOOTH}

\section*{Quick Reference}

See also:
- Apply or Remove Geometric Constraints

Constrains a spline to be contiguous and maintain G2 continuity with another spline, line, arc, or polyline.

\section*{Access Methods}


Button
\(\$\) Ribbon: Parametric tab \(>\) Geometric panel \(>\) Smooth
\(\$\) Menu: Parametric \(>\) Geometric Constraints \(>\) Smooth
Toolbar: Geometric Constraint

\section*{Summary}

This command is equivalent to the Smooth option in GEOMCONSTRAINT on page 848 .
Following are the valid constraint objects and points:
- Spline, line
- Polyline segment
- Arc
- Polyline arc

The splines are updated to be contiguous with one another.

NOTE Endpoints of the curves to which you apply the smooth constraints are made coincident.

\section*{List of Prompts}

The following prompts are displayed.
Select first spline curve on page 836: Select a spline object

\section*{Curve}

Selects an endpoint of a curve.
First Spline Curve Selects the first spline curve to be constrained.
Second Curve Selects the second curve to be made continuous with the first spline curve.

\section*{GCSYMMETRIC}

\section*{Quick Reference}

See also:
■ Apply or Remove Geometric Constraints

Causes selected objects to become symmetrically constrained about a selected line.

Access Methods


Button
\(\$\) Ribbon: Parametric tab \(>\) Geometric panel \(>\) Symmetric
\(\$\) Menu: Parametric \(>\) Geometric Constraints \(>\) Symmetric
Toolbar: Geometric Constraint

\section*{Summary}

This command is equivalent to the Symmetric option in GEOMCONSTRAINT on page 848 .

For lines, the line's angle is made symmetric (and not the endpoints). For arcs and circles, the center and radius are made symmetric (not the endpoints of the arc).

Following are the valid constraint objects and points:
■ Line
- Polyline segment
- Circle
- Arc
- Polyline arc

■ Ellipse

NOTE You must have an axis around which you will constrain the objects or points to be symmetrical. This is referred to as the symmetry line.

\section*{List of Prompts}

The following prompts are displayed.
Select first object on page 837 or [2Points on page 837] <2Points>: Select an object or two constrained points

\section*{Object}

Selects an object to be constrained.
First Object Selects the first object to be made symmetrical.
Second Object Selects the second object to be made symmetrical.
Symmetric Line Specifies the axis in which the objects and points are made to be symmetrical.

\section*{2Points}

Selects two points and a symmetry line.
First Point Selects the first point to be made symmetrical.
Second Point Selects the second point to be made symmetrical.
Select Symmetric Line Symmetric Line on page 837

\section*{GCTANGENT}

\section*{Quick Reference}

\section*{See also: \\ - Apply or Remove Geometric Constraints}

Constrains two curves to maintain a point of tangency to each other or their extensions.

\section*{Access Methods}


Butlon

Ribbon: Parametric tab \(>\) Geometric panel \(>\) Tangent
Menu: Parametric \(>\) Geometric Constraints \(>\) Tangent
Toolbar: Geometric Constraint

\section*{Summary}

This command is equivalent to the Tangent option in GEOMCONSTRAINT on page 848 .

Following are the valid constraint objects and points:
■ Line
- Polyline segment
- Circle, arc, Polyline arc, ellipse
- Combination of circles, arcs, or ellipses

A circle can be tangent to a line even if the circle does not touch the line. A curve can be tangent to another even if they do not physically share a point.

\section*{GCVERTICAL}

\section*{Quick Reference}

\section*{See also:}

■ Apply or Remove Geometric Constraints

Causes lines or pairs of points to lie parallel to the Y axis of the current coordinate system.

\section*{Access Methods}


Butlon

Ribbon: Parametric tab \(>\) Geometric panel \(>\) Vertical
\(\$\) Menu: Parametric \(>\) Geometric Constraints \(>\) Vertical
Toolbar: Geometric Constraint

\section*{Summary}

This command is equivalent to the Vertical option in GEOMCONSTRAINT on page 848 .

Following are the valid constraint objects and points:
■ Line
- Polyline segment
- Ellipse
- Multiline text
- Two valid constraint points

You can select different constraint points on the same object or two separate objects.

\section*{List of Prompts}

The following prompts are displayed.

Select an object or [2Points on page 840] <2Points>: Select an object or two constraint points
2Points
Selects two constraint points instead of an object.

\section*{GEOGRAPHICLOCATION}

\section*{Quick Reference}

See also:
- Specify the Geographic Location of a Drawing

Specifies the geographic location information for a drawing file.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Sun \& Location panel \(>\) Set Location
\(\%\) Menu: Tools \(>\) Geographic Location
\(\$\) Toolbar: Lights

\section*{Summary}

This command displays either of the following dialog boxes:
\begin{tabular}{ll}
\begin{tabular}{l} 
Define Geographic Location Dialog Box on \\
page 841
\end{tabular} & \begin{tabular}{l} 
Appears only if a geographic location does \\
not exist, and the drawing does not con- \\
tain a foreign coordinate system.
\end{tabular} \\
\hline \begin{tabular}{l} 
Location Already Exists Dialog Box on page \\
842
\end{tabular} & \begin{tabular}{l} 
Appears if a geographic location exists, and \\
the drawing does not contain a foreign \\
coordinate system.
\end{tabular} \\
Coordinate System Already Defined Dialog & \begin{tabular}{l} 
Appears if an alternate coordinate system \\
is found.
\end{tabular} \\
Box on page 842 &
\end{tabular}

\section*{Define Geographic Location Dialog Box}

\section*{Quick Reference}

See also:
- Specify the Geographic Location of a Drawing

Defines a geographic location.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Sun \& Location panel \(>\) Set Location
\(\$\) Menu: Tools \(>\) Geographic Location
\(\$\) Toolbar: Lights

\section*{List of Options}

The following options are displayed.
Import a .kml or a .kmz File Displays the Import a .kml or .kmz file dialog box.

Import the Current Location from Google Earth Retrieves location information from a specific location in Google Earth.

NOTE Google Earth should be installed and open with the location selected.
Enter the Location Values Displays the Geographic Location Dialog Box, where you can enter the location information manually.

See also:
■ Geographic Location Dialog Box

\section*{Location Already Exists Dialog Box}

\section*{Quick Reference}

See also:
- Specify the Geographic Location of a Drawing

Enables you to edit, redefine, or remove an existing location.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Sun \& Location panel \(>\) Set Location
\& Menu: Tools \(>\) Geographic Location
\(\$\) Toolbar: Lights

\section*{List of Options}

The following options are displayed.
Edit Current Geographic Location Displays the Geographic Location Dialog Box on page 843, where you can edit the existing location information.

Redefine Geographic Location Displays the Define Geographic Location Dialog Box on page 841, where you can redefine the geographic location.

Remove Geographic Location Displays a confirmation dialog box before removing the geographic location.

\section*{Coordinate System Already Defined Dialog Box}

\section*{Quick Reference}

See also:
- Specify the Geographic Location of a Drawing

Provides an option to convert the alternate coordinate system to the LL84 coordinate system used by AutoCAD.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Sun \& Location panel \(>\) Set Location
\(\$\) Menu: Tools \(>\) Geographic Location
\(\$\) Toolbar: Lights

\section*{List of Options}

The following options are displayed.
Leave existing coordinate system Does not convert the alternate coordinate system to the LL84 coordinate system.

Convert to AutoCAD's coordinate system Converts the alternate coordinate system to AutoCAD's LL84 coordinate system.

\section*{Geographic Location Dialog Box}

\section*{Quick Reference}

See also:
- Specify the Geographic Location of a Drawing

Sets the latitude, longitude, and north direction of a geographic location in a drawing.


\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Sun \& Location panel \(>\) Set Location
\(\$\) Menu: Tools \(>\) Geographic Location
8 Toolbar: Lights

\section*{List of Options}

The following options are displayed.

\section*{Latitude and Longitude}

Displays or sets latitude, longitude, and direction in decimal values.

\section*{Decimal Lat / Long}

Sets the format of the latitude and longitude representation in the drawing.

Use Map Displays the Location Picker Dialog Box on page 847.
Specifies a location by using the pointing device.
The latitude and longitude values are updated when you select a location. If you enter latitude and longitude values, then the map displays the updated location.

\section*{Latitude}

Sets the latitude of the current location. You can enter a value or select a location on the map.
The valid range is -90 and +90 as a floating point number.
(LATITUDE on page 2379 system variable).

\section*{North/South}

Controls whether a positive value is north of the equator or a positive value is south of the equator.

\section*{Longitude}

Displays the longitude of the current location. You can enter a value or select a location on the map.

The valid range is -180 to +180 as a floating point number. (LONGITUDE on page 2401 system variable).

\section*{East/West}

Controls whether a positive value is west of the Prime Meridian or a positive value is east of the Prime Meridian.

Time Zone
Specifies the time zone. Time zones are estimated by reference to the location.
You can set the time zone directly.
TIMEZONE on page 2554 (system variable).

\section*{Coordinates and Elevation}

Sets the values for the World Coordinate System (WCS), X,Y,Z, and the elevation.

\section*{X}

Sets the X component of the world coordinate system for the geographic location.

\section*{Y}

Sets the Y component of the world coordinate system for the geographic location.

\section*{Z}

Sets the Z component of the world coordinate system for the geographic location.

\section*{Pick Point}

Specifies the X , Y , and Z values of the Geographic Location marker based on the World Coordinate System (WCS).

\section*{Elevation}

Sets the relative height along the specified up-direction defined for a geographic location.

\section*{North Direction}

By default, north is the positive Y direction in the World Coordinate System (WCS).

Angle
Specifies the angle from 0 for the north direction

\section*{Pick Point}

Specifies the north angle based on the direction vector specified. A rubber band line appears denoting the north direction.

\section*{Interactive North Direction Preview}

Specifies the north angle. The range is 0-359.9.

\section*{Up Direction}

By default, the up direction is the positive \(Z\)-axis \((0,0,+1)\). The Up direction and the north direction are always constrained such that they are perpendicular to each other.

\section*{Up Direction}

Sets the up direction.

\section*{Pick Point}

Specifies the up direction (from the current WCS coordinate) based on the direction vector specified.

Enabled only if the up direction is set to Custom.

\section*{Location Picker Dialog Box}

\section*{Quick Reference}

See also:
- Specify the Geographic Location of a Drawing

Sets the latitude and longitude of the selected location.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Sun \& Location panel \(>\) Set Location
\(\$\) Menu: Tools \(>\) Geographic Location
\(\$\) Toolbar: Lights

\section*{List of Options}

The following options are displayed.
Map
Specifies a location on the map.
Region
Specifies a region of the world.

\section*{Nearest City}

Specifies a city in the selected region.

\section*{Time Zone}

Time zones are estimated by reference to the location. You can set the time zone directly (TIMEZONE on page 2554 system variable).

Nearest Big City
Uses the latitude and longitude values for the nearest big city that you select.

\section*{See also:}

■ Geographic Location Dialog Box on page 843

\section*{GEOMCONSTRAINT}

\section*{Quick Reference}

\section*{See also:}
- Apply or Remove Geometric Constraints

Applies or persists geometric relationships between objects or points on objects.

\section*{Summary}

When you apply a geometric constraint to a pair of objects, the order in which the objects are selected and the point on which each object is selected can affect how the objects are positioned relative to each other.
The following table outlines the valid constraint points for an object.
\begin{tabular}{ll}
\hline Objects & Valid Constraint Points \\
\hline Line & Endpoints, midpoint \\
\hline Arc & Center, endpoints, midpoint \\
\hline Spline & Endpoints \\
\hline Circle & Center \\
\hline Ellipse & Center, major and minor axes \\
\hline Polyline & Endpoints, midpoints of line and arc sub- \\
objects, center of arc subobjects \\
\hline Xref, attribute, table & Insertion point \\
\hline Block & Insertion point, nested entities \\
\hline Text, multiline text & Insertion point, alignment point \\
\hline
\end{tabular}

The following commands are equivalent to each GEOMCONSTRAINT option:
Horizontal (GCHORIZONTAL on page 831) Causes lines or pairs of points to lie parallel to the X axis of the current coordinate system.

Vertical (GCVERTICAL on page 839) Causes lines or pairs of points to lie parallel to the Y axis of the current coordinate system.

Perpendicular (GCPERPENDICULAR on page 834) Causes selected lines to lie 90 degrees to one another.

Parallel (GCPARALLEL on page 833) Causes selected lines to lie parallel to each other.

Tangent (GCTANGENT on page 838) Constrains two curves to maintain a point of tangency to each other or their extensions.

Smooth (GCSMOOTH on page 835) Constrains a spline to be contiguous and maintain G2 continuity with another spline, line, arc, or polyline.

Coincident (GCCOINCIDENT on page 825) Constrains two points together or a point to a curve (or an extension of a curve).

Concentric (GCCONCENTRIC on page 828) Constrains two arcs, circles, or ellipses to the same center point.

Collinear (GCCOLLINEAR on page 827) Causes two or more line segments to lie along the same line.

Symmetric (GCSYMMETRIC on page 836) Causes selected objects to become symmetrically constrained about a selected line.

Equal (GCEQUAL on page 829) Resizes selected arcs and circles to the same radius, or selected lines to the same length.

Fix (GCFIX on page 830) Locks points and curves in position.

\section*{GOTOURL}

\section*{Quick Reference}

\section*{See also:}

■ Use a Hyperlink to Access a File or a Web Page
Opens the file or web page associated with the hyperlink attached to an object.

\section*{Summary}

Select an object that has an attached hyperlink. The file or web page (URL) that is associated with the hyperlink opens.

\section*{GRADIENT}

\section*{Quick Reference}

See also:
- Choose a Hatch Pattern or Fill

Fills an enclosed area or selected objects with a gradient fill.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Draw panel \(>\) Gradient
\(\$\) Menu: Draw \(>\) Gradient
\(\$\) Toolbar: Draw

\section*{Summary}

When the ribbon is active, the Hatch Creation contextual tab on page 882 is displayed. When the ribbon is off, the Hatch and Gradient dialog box on page 870 is displayed.

A gradient fill creates a smooth transition between one or two colors.
GRAPHICSCONFIG
Quick Reference
See also:■ Use a Visual Style to Display Your ModelSets options for 3D display performance.
Summary
The Manual Performance Tuning dialog box on page 851 is displayed.
Manual Performance Tuning Dialog Box
Quick Reference
See also:
- Control Performance
Sets options that affect 3D display performance.


\section*{Access Methods}


Button
\(\$\) Menu: Tools > Options (Options dialog box, System tab)
Shortcut menu: On the application status bar, click Display Performance button and select Hardware Acceleration.

\section*{Summary}

These options are set automatically by the performance tuner. You can set them manually in this dialog box.

\section*{List of Options}

The following options are displayed.
Sets a driver for the graphics card and sets options for hardware acceleration.

\section*{Enable Hardware Acceleration}

Uses hardware acceleration. When this check box is cleared, hardware acceleration is not used, and all the items in this dialog box are unavailable. For information on why hardware acceleration might not be available, see Hardware Acceleration Troubleshooting in the Driver and Peripheral Guide.

■ Green check mark indicates a graphics card that is certified and can run all features.
- Yellow warning indicates a graphics card that is certified and cannot run all features. If the graphics card is unknown, the performance tuner displays the yellow warning, and you can use hardware acceleration at your own risk.

■ Red alert indicates a graphics card that is not certified. The check box is cleared, and Enable Hardware Acceleration is unavailable.

\section*{Driver Name}

Sets a driver for the graphics card. (Autodesk or other custom drivers that might be installed). If no drivers are certified for the graphics card, "no certified drivers" is displayed. Changes to the driver might affect the Hardware Effects List.

\section*{Current Effect Status and Value}

Lists features available for the current driver and indicates their status. A green check mark indicates a feature that is supported; you can turn it on or off. A yellow warning indicates that the feature is not recommended; you can turn it on or off. A red alert indicates that the feature is not supported and cannot be turned on.
- Enhanced 3D Performance (formerly known as Geometry Acceleration). Enables a more efficient use of the graphic card when working with 3D objects.
NOTE If you experience problems with precision, turn this option off.
- Smooth display. Controls the status of the full screen anti-aliasing effect. This option removes the jagged effect on the display of diagonal line and curved edges.

■ Advanced material effects. Controls the status of the advanced materials effect on screen.
- Gooch hardware shader. Enables the use of Gooch shading. With this option on the details of a 3D object are shown by softening the contrast between lighted areas and shadowed areas by using warm and cool colors as a substitute to light and dark colors.
- Per-pixel lighting. Enables the computation of colors for individual pixels. With this option on the 3D objects and lighting effects appear smoother in the viewport.

■ Full shadow display. Enables shadows to be displayed in the viewport. NOTE Enhanced 3D performance effect must be turned on.
- Texture compression. Enables the use of texture compression to reduce the amount of video memory required to open and display a drawing that contains materials with images or has attached images.
NOTE With this option turned on, the time it takes to load the images might increase the first time that they are accessed, and there is a reduction in the quality of the images when they are displayed in the viewport or plotted.

■ Enhanced 2D precision. Enables the Enhanced 2D precision effect. With this option turned on, the precision artifacts that can be seen at extreme zoom levels are removed.
NOTE This option is only available if you are working on a Windows Vista platform. Turn on this option only if you experience problems with precision because it will decrease the graphics card performance.

\section*{Emulate Unsupported Hardware Effects in Software When Plotting}

Controls whether software emulation is used for unsupported hardware effects when plotting shaded viewports with shadows and other effects that are not supported by your graphics card.

WARNING It is recommended that you not use any type of remote access application, such as NetMeeting, Remote Desktop, or any windows emulating software in conjunction with hardware acceleration. Most remote access applications do not support hardware acceleration, and as a result, can cause general display failure and instability. Prior to using a remote access application
with AutoCAD, check with the software vendor to see if it supports hardware acceleration and if not, disable hardware acceleration prior to starting the remote access software or use the /NOHARDWARE command line switch to start AutoCAD in Software mode.

\section*{General Settings}

Sets performance-related options that are not hardware dependent.

\section*{Discard Back Faces}

When selected, the back faces of objects are not drawn.

\section*{Smooth Faces by Default}

When selected, the facets in a polyface mesh object are made smooth when displayed in the viewport and in a rendering. This is useful when using objects that were imported through 3DSIN or when using PFACE objects. Note that when you select this option, all objects in the drawing are made smooth. If you don't want all objects to be smooth, recreate the model using a different object type.

\section*{Transparency Quality}

Adjusts the transparency quality used when viewing or rendering a model. The transparency quality used is dependent on if software or hardware acceleration are used, or if a model is being rendered. The default quality is Medium.

\section*{Software acceleration}
- Low quality produces a screen-door effect to achieve transparency without sacrificing speed.
- Medium quality uses a combination of the screen-door effect and alpha blending.

■ High quality uses simple alpha blending, which can cause graphical artifacts to appear based on the current draw order.

\section*{Hardware acceleration}
- Low quality uses simple alpha blending, which can cause graphical artifacts to appear based on the current draw order.
- Medium quality uses a two-pass algorithm to draw all opaque objects, followed by all transparent objects. The transparent objects are drawn using simple alpha blending, which can cause graphical artifacts to appear
based on the current draw order. The graphical artifacts are less noticeable due to the opaque objects being drawn prior to the transparent objects.
- High quality improves on medium quality by sorting transparent objects to decrease the appearance of graphical artifacts. However, the sorting does not completely eliminate all graphical artifacts.

\section*{Rendering}

■ Low quality disables the use of transparency for all materials, and the materials are rendered as opaque instead.
- Medium quality enables transparency for materials, but the actual material opacity used is the square root of the specified material opacity.
- High quality enables transparency and the opacity assigned to a material is mapped directly to Mental Ray rendering engine.

\section*{Drawing Settings}

Sets performance values on a drawing level.

\section*{Dynamic Tessellation}

Sets the options that determine the smoothness of the objects in a drawing. Objects are drawn using many short lines (or triangles when drawing spheres). These lines are called tessellation lines. Objects in your drawing appear smoother when you use more tessellation lines.

\section*{Surfaces}

Determines the amount of detail for surfaces in your drawing. The low end of the slider provides fewer tessellation lines and uses less memory.

\section*{Curves}

Determines the amount of detail for curves in your drawing. The low end of the slider provides fewer tessellation lines and uses less memory.

\section*{Number of Tessellations to Cache}

Configures your system according to memory and performance requirements. The 3D cache always stores at least one tessellation. When this option is set to 1 , the tessellation for all viewports is the same; some objects in the drawing may be regenerated as you zoom in and out. Setting this option to 2 or more is useful when you have more than one viewport with different views. Increasing the number requires more memory.

\section*{Reset to Recommended Values}

Resets the values to the defaults based on the performance tuner's evaluation of the graphics card.

\section*{-GRAPHICSCONFIG}

\section*{Quick Reference}

\section*{See also:}

■ Use a Visual Style to Display Your Model
Sets options for 3D display performance in the command line.

\section*{List of Prompts}

The following prompts are displayed.
Enter option [General Options/acceLeration] <General options>:
General Options
Sets performance-related options that are not hardware dependent.
Discard Backfaces Discards back faces when drawing objects. You cannot see the effect of discarding back faces on some objects, such as spheres, because you cannot see the back face even when it is present. The effect of discarding back faces is visible on objects such as those that don't have a top. Discarding back faces enhances performance.

\section*{Smooth Faces}

Transparency Quality Adjusts the transparency quality. At the Low setting, a screen-door effect achieves transparency without sacrificing speed. At the Medium setting, the default in software mode, blending improves image quality. The High setting, the default in hardware mode, produces an image free of visual artifacts at the cost of drawing speed.
Materials must also be turned on for transparency to be visible.
Exit Ends the command.
Acceleration
Specifies whether to use software or hardware acceleration in 3D.
Hardware Specifies hardware acceleration. The hardware graphics card performs most of the drawing tasks in 3D to increase performance.

The available drivers are AcadDM10.hdi and direct3d10.hdi.
When you select Hardware, the default driver is set to the AcadDM10.hdi driver that is included with the program.
- Driver Name. You can select a driver from a list of available hardware-accelerated drivers found in the Drv directory. If you want to use a hardware driver from another vendor, it must be supported by the Heidi \({ }^{\circledR}\) Graphics System.
For more information, see Hardware Acceleration Troubleshooting in the Driver and Peripheral Guide.
- Enhanced 3D Performance.

■ Gooch Hardware Shader.
- Global Smooth Display.
- Advanced Material Effects.
- Per-pixel Lighting. Enables the computation of colors for individual pixels. With this option on the 3D objects and lighting effects appear smoother in the viewport.
- Full Shadow Display. Enables the display of full shadows.
- Texture Compression. Enables the use of texture compression to reduce the amount of video memory required to open and display a drawing that contains materials with images or has attached images.
NOTE With this option on, the time it takes to load the images may increase the first time that they are accessed and there is a reduction in the quality of the images when they are displayed in the viewport or plotted.
- Enhanced 2D Performance.

Software Specifies software acceleration. The software graphics system performs all of the drawing tasks in 3D.

Exit Ends the command.

\section*{GRAPHSCR}

\section*{Quick Reference}

See also:
■ Navigate and Edit Within the Command Window

Switches from the text window to the drawing area.

\section*{Access Methods}

㟇 Command entry: 'graphscr for transparent use

\section*{Summary}

GRAPHSCR closes the text window. You can also press F2 to open or close the text window. This command is ignored on dual-screen systems.

\section*{GRID}

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap

Displays a grid pattern in the current viewport.

\section*{Access Methods}

\(\$\) Toolbar: Status bar \(>\) Grid菐 Command entry: 'grid for transparent use

\section*{List of Prompts}

The following prompts are displayed.
Specify grid spacing \((\mathrm{X})\) or [ON/OFF/Snap/Major/aDaptive/Limits/Follow/Aspect] <current>: Specify a value or enter an option

Grid Spacing (X) Sets the grid to the specified value. Entering \(\mathbf{x}\) after the value sets the grid spacing to the specified value multiplied by the snap interval.

On Turns on the grid using the current spacing.


GRID turned on

Off Turns off the grid.


GRID turned off

Snap Sets the grid spacing to the snap interval specified by the SNAP command.

Major Specifies the frequency of major grid lines compared to minor grid lines. Grid lines rather than grid dots are displayed in any visual style except 2D Wireframe. (GRIDMAJOR system variable)

Adaptive Controls the density of grid lines when zoomed in or out.
■ Adaptive Behavior. Limits the density of grid lines or dots when zoomed out. This setting is also controlled by theGRIDDISPLAY system variable.
- Allow Subdivision Below Grid Spacing. If turned on, generates additional, more closely spaced grid lines or dots when zoomed in. The frequency of these grid lines is determined by the frequency of the major grid lines.

Limits Displays the grid beyond the area specified by the LIMITS command.
Follow Changes the grid plane to follow the XY plane of the dynamic UCS. This setting is also controlled by theGRIDDISPLAY system variable.

Aspect Changes the grid spacing in the \(X\) and \(Y\) directions.
Entering \(\mathbf{x}\) following either value defines it as a multiple of the snap interval rather than the drawing units.
The Aspect option is not available when the current snap style is Isometric.


GRID set to Aspect

\section*{GROUP}

\section*{Quick Reference}

See also:
- Group Objects

Creates and manages saved sets of objects called groups.
Access Methods

\section*{Summary}

The Object Grouping dialog box is displayed.
If you enter -group at the Command prompt, options are displayed.

\section*{Object Grouping Dialog Box}

\section*{Quick Reference}

See also:
- Group Objects

Displays, identifies, names, and changes object groups.


\section*{Access Methods}

\section*{並 Command entry: group}

\section*{List of Options}

The following options are displayed.

\section*{Group Name}

Displays the names of existing groups.

\section*{Selectable}

Specifies whether a group is selectable. When a group is selectable, selecting one object in the group selects the whole group. Objects on locked or frozen layers are not selected. When the PICKSTYLE system variable is set to 0 , no groups are selectable.

\section*{Group Identification}

Displays the name and description (if any) of the group selected in the Group Name list.

Group Name Specifies the group name. Group names can be up to 31 characters long and can include letters, numbers, and the special characters dollar sign (\$), hyphen (-), and underscore (_) but not spaces. The name is converted to uppercase characters.

Description Displays the description of the selected group, if there is one.

Find Name Lists the groups to which an object belongs.
The Group Member List dialog box is displayed, showing the groups to which the object belongs.

Highlight Shows the members of the selected group in the drawing area.
Include Unnamed Specifies whether unnamed groups are listed. When this option is cleared, only named groups are displayed.

\section*{Create Group}

Specifies properties of new groups.
New Creates a new group from the selected objects, using the name and description under Group Name and Description.

desk, computer, and telephone selected

Selectable Specifies that a new group is selectable.
Unnamed Indicates that a new group is unnamed. A default name, *An, is assigned to unnamed groups. The \(n\) represents a number that increases with each new group.

\section*{Change Group}

Modifies existing groups.
Remove Removes objects from the selected group. To use this option, clear the Selectable option.


If you remove all the group's objects, the group remains defined. You can remove the group definition from the drawing by using the Explode option.

NOTE When you remove objects from a group and then later add them back during the same drawing session, they are returned to their previous position in the numerical order of the group.

Add Adds objects to the selected group.


NOTE Group names are displayed in alphabetical order.
Rename Renames the selected group to the name entered in Group Name under Group Identification.

Re-Order Displays the Order Group dialog box, in which you can change the numerical order of objects within the selected group. Objects are numbered in the order in which you select them for inclusion in the group. Reordering is useful when creating tool paths. For example, you can change the cut order for the horizontal and vertical lines of a tool path pattern.
You can either change the numerical position of individual group members or ranges of group members or reverse the order of all members. The first object in a group is number 0 , not number 1 .

Description Updates the selected group's description to the name that you enter in Description. You can use up to 64 characters for a description name.

Explode Deletes the definition of the selected group. The group's objects remain in the drawing.

Selectable Specifies whether the group is selectable.

\section*{Order Group Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Group Objects

Reorders objects in groups.


\section*{Access Methods}

並 Command entry: group

\section*{List of Options}

The following options are displayed.
Group Name Displays the names of all groups.
Description Displays the description of the selected group.
Remove from Position (0-n) Specifies the current position of the object to reorder.

Enter New Position Number for the Object (0-n) Specifies the position to which the object moves.

Number of Objects (1-n) Specifies the object number or range of numbers to reorder.

Re-Order Changes the numerical order of objects as specified.
Highlight Displays the members of the selected group in the drawing area, one by one, in the current group order.

Reverse Order Reverses the order of all group members.

\section*{Quick Reference}

\section*{See also:}
- Group Objects

\section*{List of Prompts}

The following prompts are displayed.
Enter a group option
[?/Order/Add/Remove/Explode/REName/Selectable/Create] <Create>: Enter an option or press ENTER
?-List Groups
Lists names and descriptions of groups defined in the drawing.

\section*{Order}

Changes the numerical order of objects within a group. Reordering is useful when creating tool paths. For example, you can change the cut order for the horizontal and vertical lines of a tool path pattern.

Position Number Specifies the position number of the object to reorder. To reorder a range of objects, specify the first object's position number.

Reverse Order Reverses the order of all members in a group.

\section*{Add}

Adds objects to a group.

\section*{Remove}

Removes objects from a group.
If you remove all the group's objects, the group remains defined. You can remove the group definition from the drawing by using the Explode option.

\section*{Explode}

Deletes a group definition by exploding the group into its component objects.

\section*{Ungroup}

Removes the group name and the association of objects in the group.

\section*{Rename}

Assigns a new name to an existing group.

\section*{Selectable}

Specifies whether a group is selectable. When a group is selectable, selecting one object in the group selects the whole group. Objects on locked or frozen layers are not selected.

\section*{Create}

Creates a group.
Group names can be up to 31 characters long and can include letters, numbers, and special characters dollar sign (\$), hyphen (-), and underscore (_) but not spaces. The name is converted to uppercase characters.

\section*{H Commands}

\section*{HATCH}

\section*{Quick Reference}

See also:
- Overview of Hatch Patterns and Fills

Fills an enclosed area or selected objects with a hatch pattern, solid fill, or gradient fill.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(\boldsymbol{>}\) Draw panel \(>\) Hatch
\(\%\) Menu: Draw \(>\) Hatch
\(\$\) Toolbar: Draw

\section*{Summary}

When the ribbon is active, the Hatch Creation contextual tab on page 882 is displayed. When the ribbon is off, the Hatch and Gradient dialog box on page 870 is displayed.

If you enter -hatch at the Command prompt, options are displayed on page 889.

NOTE To prevent the creation of an enormous number of hatch lines, the maximum number of hatch lines created in a single hatch operation is limited. This limit prevents memory and performance problems. However, you can change the maximum number of hatch lines with the HPMAXLINES on page 2356 system variable.

Choose from several methods to specify the boundaries of a hatch.
- Specify a point in an area that is enclosed by objects.
- Select objects that enclose an area.
- Specify boundary points using the -HATCH Draw option.

■ Drag a hatch pattern into an enclosed area from a tool palette or DesignCenter.


\section*{Hatch and Gradient Dialog Box}

\section*{Quick Reference}

See also:
- Overview of Hatch Patterns and Fills

Defines the boundaries, pattern, or fill properties, and other parameters for hatches and fills.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Draw panel \(>\) Hatch
\(\%\) Menu: Draw \(>\) Hatch
\(\$\) Toolbar: Draw
曼 Command entry: hatch

\section*{List of Options}

■ Hatch tab on page 875
- Gradient tab on page 877
- More Options section on page 879
- Add: Pick Points on page 871
- Add: Select Objects on page 872

■ Remove Boundaries on page 872
- Recreate Boundary on page 873

■ View Selections on page 873
■ Select Boundary Objects on page 873
■ Options on page 873
- Inherit Properties on page 874

■ Preview on page 874

\section*{Add: Pick Points}

Determines a boundary from existing objects that form an enclosed area around the specified point.

Pick Internal Point While specifying internal points, you can right-click in the drawing area at any time to display a shortcut menu that contains several options.

internal point selected

hatch boundary

result

If you turn on Island Detection, objects that enclose areas within the outermost boundary are detected as islands. How HATCH detects objects using this option depends on which island detection method is specified.
NOTE Red circles are displayed at unconnected endpoints of boundary objects to identify gaps in the hatch boundary. These circles are temporary and can be removed with REDRAW or REGEN.

\section*{Add: Select Objects}

Determines a boundary from selected objects that form an enclosed area.
Select Objects Interior objects are not automatically detected. You must select the objects within the selected boundary to hatch or fill those objects according to the current island detection style.


Each time you click Select Objects, HATCH clears the previous selection set.


While selecting objects, you can right-click at any time in the drawing area to display a shortcut menu. You can undo the last selection or all selections, change the selection method, change the island detection style, or preview the hatch or fill.

\section*{Remove Boundaries}

Removes from the boundary definition any of the objects that were added previously.

Select Objects Removes objects from the boundary definition.

internal point selected

object removed

result

Add Boundaries Adds objects to the boundary definition.

\section*{Recreate Boundary}

Creates a polyline or region around the selected hatch or fill, and optionally associates the hatch object with it.

\section*{View Selections}

Displays the currently defined boundaries with the current hatch or fill settings. This option is available only when a boundary has been defined.

\section*{Select Boundary Objects}

Selects the objects that form the boundaries of the selected associative hatch object. Use the displayed grips to modify the hatch boundaries.

NOTE This option is available only in the Hatch Edit dialog box on page 897and replaces the View Selections option.

When you select an associative hatch, a single, circular grip called the control grip is displayed. No boundary grips are displayed because the boundaries of an associative hatch can be modified only by changing its associated boundary objects. Use the Select Boundary Objects option to select and grip-edit the boundary objects.

To modify the boundaries of a nonassociative hach, you modify the boundaries of the hatch object itself. Thus, when you select a nonassociative hatch, both the control grip and the boundary grips are displayed.

\section*{Options}

Controls several commonly used hatch or fill options.
Annotative

Specifies that the hatch is. This property automates the process of scaling annotations so that they plot or display at the correct size on the paper.
(HPANNOTATIVE on page 2348 system variable)

\section*{Associative}

Specifies that the hatch or fill is associative. A hatch or fill that is associative is updated when you modify its boundary objects. (HPASSOC system variable)

\section*{Create Separate Hatches}

Controls whether a single hatch object or multiple hatch objects are created when several separate closed boundaries are specified. (HPSEPARATE system variable)

\section*{Draw Order}

Assigns a draw order to a hatch or fill. You can place a hatch or fill behind all other objects, in front of all other objects, behind the hatch boundary, or in front of the hatch boundary. (HPDRAWORDER system variable)

\section*{Layer}

Assigns new hatch objects to the specified layer, overriding the current layer. Select Use Current to use the current layer. (HPLAYER on page 2356 system variable)

\section*{Transparency}

Sets the transparency leve for new hatch or fills, overriding the current object transparency. Select Use Current to use the current object transparency setting. (HPTRANSPARENCY on page 2360 system variable)

\section*{Inherit Properties}

Hatches or fills specified boundaries using the hatch or fill properties of a selected hatch object.
After selecting the hatch object whose properties you want the hatch to inherit, right-click in the drawing area and use the options on the shortcut menu to switch between the Select Objects and Pick Internal Point options.

The HPINHERIT system variable controls whether the hatch origin of the resulting hatch is determined by HPORIGIN or by the source object.

\section*{Preview}

Displays the currently defined boundaries with the current hatch or fill settings. Click in the drawing area or press Esc to return to the dialog box. Right-click or press Enter to accept the hatch or fill.

\section*{More Options}

Expands the Hatch and Gradient dialog box to display more options on page 879.

\section*{Hatch Tab (Hatch and Gradient Dialog Box)}

\section*{Quick Reference}

\section*{See also:}
- Overview of Hatch Patterns and Fills

Defines the appearance of the hatch pattern to be applied.

\section*{List of Options}

The following options are displayed.

\section*{Type and Pattern}

Specifies the hatch's type, pattern, color, and background color.
Type
Specifies whether to create a predefined, user-defined, or custom hatch pattern.
Predefined patterns are stored in the acad.pat or acadiso.pat files supplied with the program.
User-defined patterns are based on the current linetype in your drawing. A custom pattern is a pattern that is defined in any custom PAT files that you have added to the search path.

\section*{Pattern}

Displays a selection of ANSI, ISO, and other industry-standard hatch patterns. Select SOLID to create solid fill. The Pattern option is available only when Type is set to Predefined. (HPNAME system variable)

\section*{[...] Button}

Displays the Hatch Pattern Palette dialog box on page 887, in which you can preview images for all predefined patterns.

\section*{Color}

Overrides the current color with a specified color for hatch patterns and solid fills. (HPCOLOR on page 2351 system variable)

\section*{Background Color}

Specifies the background color for new hatch objects. Choose None to turn off the background color. (HPBACKGROUNDCOLOR on page 2349 system variable)

\section*{Swatch}

Displays a preview of the selected pattern. Click the swatch to display the Hatch Pattern Palette dialog box on page 887.

\section*{Custom Pattern}

Lists the available custom patterns. The most recently used custom patterns appear at the top of the list. The Custom Pattern option is available only when Type is set to Custom. (HPNAME system variable)

\section*{[...] Button}

Displays the Hatch Pattern Palette dialog box on page 887, in which you can preview images for all custom patterns.

\section*{Angle and Scale}

Specifies an angle and scale for the selected hatch pattern.

\section*{Angle}

Specifies an angle for the hatch pattern relative to the \(X\) axis of the current UCS. (HPANG system variable)

\section*{Scale}

Expands or contracts a predefined or custom pattern. This option is available only when Type is set to Predefined or Custom. (HPSCALE system variable)

\section*{Double}

For user-defined patterns, draws a second set of lines at 90 degrees to the original lines, creating a crosshatch. This option is available only when Type is set to User Defined. (HPDOUBLE system variable)

\section*{Relative to Paper Space}

Scales the hatch pattern relative to paper space units. This allows you to display hatch patterns at a scale that is appropriate for your layout. This option is available only from a layout.

\section*{Spacing}

Specifies the spacing of lines in a user-defined pattern. This option is available only when Type is set to User Defined. (HPSPACE system variable)

\section*{ISO Pen Width}

Scales an ISO predefined pattern based on the selected pen width. This option is available only when Type is set to Predefined and Pattern is set to one of the available ISO patterns.

\section*{Hatch Origin}

Controls the starting location of hatch pattern generation. Some hatches, such as brick patterns, are meant to be aligned with a point on the hatch boundary. By default, all hatch origins correspond to the current UCS origin.

\section*{Use Current Origin}

Uses the hatch origin point stored in the HPORIGIN on page 2357 system variable.

\section*{Specified Origin}

Assigns a new hatch origin using the following options.

\section*{Click to Set New Origin}

Specifies the new hatch origin point directly.

\section*{Default to Boundary Extents}

Calculates a new origin based on the rectangular extents of the boundary for the hatch object. Choices include each of the four corners of the extents and its center. (HPORIGINMODE system variable)

\section*{Store as Default Origin}

Stores the value of the new hatch origin in the HPORIGIN system variable.

\section*{Gradient Tab (Hatch and Gradient Dialog Box)}

\section*{Quick Reference}

\section*{See also:}
- Overview of Hatch Patterns and Fills

Defines the appearance of the gradient fill to be applied.

\section*{List of Options}

The following options are displayed.

\section*{Color}

Specifies whether to fill the hatch boundary with a monochormatic or two-color blend.

\section*{One Color}

Specifies a fill that uses a smooth transition between a color and a specified tint (the color mixed with white) or between a color and a specified shade (the color mixed with black). (GFCLRSTATE on page 2330 system variable)

\section*{Two Color}

Specifies a fill that uses a smooth transition between two colors. (GFCLRSTATE on page 2330 system variable)

\section*{Color Swatches}

Specifies the colors for the gradient fill (either one color or two colors). Click the Browse button [...] to display the Select Color dialog box, where you can select an AutoCAD Color Index (ACI) color, true color, or color book color. (GFCLR1 on page 2329 and GFCLR2 on page 2329system variables)

\section*{Shade and Tint Slider}

Specifies the tint (the selected color mixed with white) or shade (the selected color mixed with black) of a color to be used for a gradient fill of one color. (GFCLRLUM on page 2330 system variable)

\section*{Gradient Patterns}

Displays fixed patterns for gradient fills. These patterns include linear sweep, spherical, and parabolic.

\section*{Orientation}

Specifies the angle of the gradient and whether it is symmetrical.

\section*{Centered}

Specifies a symmetrical gradient configuration. If this option is not selected, the gradient fill is shifted up and to the left, creating the illusion of a light source to the left of the object. (GFSHIFT on page 2331 system variable)

\section*{Angle}

Specifies the angle of the gradient fill. The specified angle is relative to the current UCS. This option is independent of the angle specified for hatch patterns. (GFANG on page 2328 system variable)

\title{
More Options (Hatch and Gradient Dialog Box)
}

\section*{Quick Reference}

See also:
- Overview of Hatch Patterns and Fills

Controls the operation of islands and boundaries.

\section*{List of Options}

The following options are displayed.
Islands
Specifies the method used to hatch or fill boundaries within the outermost boundary.

\section*{Island Detection}

Controls whether internal closed boundaries, called islands, are detected. (HPISLANDDETECTIONMODE on page 2355 system variable)

\section*{Normal}

Hatches or fills inward from the outer boundary. If an internal island is encountered, hatching or filling is turned off until another island within the island is encountered. (HPISLANDDETECTION on page 2355 system variable)


\section*{Outer (Recommended)}

Hatches or fills inward from the outer boundary. This option hatches or fills only the specified area and leaves the internal islands unaffected. (HPISLANDDETECTION on page 2355 system variable)


Ignore
Ignores all internal objects and hatches or fills through them. (HPISLANDDETECTION on page 2355 system variable)


The Normal, Outer, and Ignore options are also available from a shortcut menu by right-clicking in the drawing area while you specify points or select objects to define your boundaries.

\section*{Boundary Retention}

Specifies whether to create an object that encloses the hatch.

\section*{Retain Boundaries}

Creates an object that encloses each hatch object. (HPBOUNDRETAIN on page 2350 system variable)

\section*{Object Type}

Controls the type of the new boundary object. The resulting boundary object can be either a polyline or a region object. This option is available only when Retain Boundaries is selected. (HPBOUND on page 2350 system variable)

For more information about regions, see "Create and Combine Areas (Regions)".

\section*{Boundary Set}

Defines the set of objects analyzed when defining a boundary from a specified point. The selected boundary set has no effect when you use Select Objects to define a boundary.
By default, when you use the Add: Pick Point option to define a boundary, HATCH analyzes all objects in the current viewport extents. By redefining the boundary set, you can disregard certain objects when defining boundaries without having to hide or remove those objects. For large drawings, redefining the boundary set can also produce the boundary faster because HATCH examines fewer objects.
Current Viewport Defines the boundary set from all objects within the extents of the current viewport.

Existing Set Defines the boundary set from the objects selected with the New option.

New
Specifies a limited set of objects for evaluation by the pick point when creating the hatch.

\section*{Gap Tolerance}

Sets the maximum size of gaps that can be ignored when objects are used as a hatch boundary. The default value, 0 , specifies that the objects must enclose the area with no gaps.

Enter a value, in drawing units, from 0 to 5000 to set the maximum size of gaps that can be ignored when the objects serve as a hatch boundary. Any gaps equal to or smaller than the value you specify are ignored, and the boundary is treated as closed. (HPGAPTOL system variable)

\section*{Inherit Options}

Controls whether to inherit the hatch origin when you create a hatch with the Inherit Properties option. (HPINHERIT on page 2354 system variable)

Use Current Origin Uses the current hatch origin setting.
Use Source Hatch Origin Uses the hatch origin of the source hatch.

\section*{Hatch Creation Ribbon Contextual Tab}

\section*{Quick Reference}

See also:
■ Overview of Hatch Patterns and Fills

Defines the boundaries, pattern or fill properties, and other parameters for hatch and fills.

\section*{Access Methods}


\section*{Button}
\(\$\) Ribbon: Home tab \(>\) Draw panel \(>\) Hatch
\(\$\) Menu: Draw \(>\) Hatch
\(\$\) Toolbar: Draw
桽 Command entry: hatch

\section*{List of Options}

The following options are displayed.

\section*{Boundaries Panel}

Pick Points Determines a boundary from existing objects that form an enclosed area around the specified point.

While specifying internal points, you can right-click in the drawing area at any time to display a shortcut menu that contains several options.

internal point selected

hatch boundary

result

Select Determines a boundary from selected objects that form an enclosed area.
When you use the Select Objects option, HATCH does not automatically detect interior objects. You must select the objects within the selected boundary to hatch or fill those objects according to the current island detection style.

object selected

hatch boundary

result

Each time you click Select Objects, HATCH clears the previous selection set.


While selecting objects, you can right-click at any time in the drawing area to display a shortcut menu. You can undo the last selection or all selections, change the selection method, change the island detection style, or preview the hatch or fill.

Remove Removes from the boundary definition any of the objects that were previously added.

Recreate Creates a polyline or region around the selected hatch or fill, and optionally associates the hatch object with it.

Display Boundary Objects Selects the objects that form the boundaries of the selected associative hatch object. Use the displayed grips to modify the hatch boundaries.
NOTE This option is available only when editing a hatch.

When you select an associative hatch, a single, circular grip called the control grip is displayed. No boundary grips are displayed because the boundaries of an associative hatch can be modified only by changing its associated boundary objects. Use the Select Boundary Objects option to select and grip-edit the boundary objects.
To modify the boundaries of a nonassociative hach, you modify the boundaries of the hatch object itself. Thus, when you select a nonassociative hatch, both the control grip and the boundary grips are displayed.

\section*{Retain Boundary Objects}

Specifies whether to create an object that encloses the hatch.
Don't Retain Boundaries Does not create a separate object that encloses the hatch object. (HPBOUNDRETAIN on page 2350 system variable)

Retain Boundaries - Polyline Creates a polyline that encloses the hatch object. (HPBOUND on page 2350 system variable)

Retain Boundaries - Region Creates a region object that encloses the hatch object. (HPBOUND on page 2350 system variable)
For more information about regions, see "Create and Combine Areas (Regions)".

Select New Boundary Set Specifies a limited set of objects, called a boundary set, for evaluation by the pick point when creating the hatch.

\section*{Specify Boundary Set}

Defines the set of objects analyzed when defining a boundary.
Use Current Viewport Defines the boundary set from all objects within the extents of the current viewport.

Use Boundary Set Defines the boundary set from the objects that you selected with Select New Boundary Set.

\section*{Pattern Panel}

Displays preview images for all predefined and custom patterns.

\section*{Properties Panel}

Hatch Type Specifies whether to create a solid fill, a gradient fill, a predefined hatch pattern, or a user-defined hatch pattern.
Predefined patterns are stored in the acad.pat or acadiso.pat files supplied with the program.
User-defined patterns are based on the current linetype in your drawing. A custom pattern is a pattern that is defined in any custom PAT files that you have added to the search path.

Hatch Color or Gradient Color 1 Overrides the current color for solid fills and hatch patterns, or specifies the first of two gradient colors. (HPCOLOR on page 2351 or GFCLR1 on page 2329 system variables)

Background Color or Gradient Color 2 Specifies the color for hatch pattern backgrounds, or the second gradient color. When Hatch Type is set to Solid, Gradient Color 2 is not available. (HPBACKGROUNDCOLOR on page 2349 or GFCLR2 on page 2329 system variables)

Transparency Sets the transparency level for new hatches or fills, overriding the current object transparency. Select Use Current to use the current object transparency setting. (HPTRANSPARENCY on page 2360 system variable)

Angle Specifies an angle for the hatch or fill relative to the \(X\) axis of the current UCS. Valid values are from 0 to 359. (HPANG system variable)

Scale Expands or contracts a predefined or custom hatch pattern. This option is available only when Hatch Type is set to Pattern. (HPSCALE system variable)

Spacing Specifies the spacing of lines in a user-defined pattern. This option is available only when Hatch Type is set to User Defined. (HPSPACE system variable)

Tint Slider Specifies the tint (the selected color mixed with white) or shade (the seledted color mixed with black) of a color to be used for a gradient fill of one color. This option is available only when Hatch Type is set to Gradient. (GFCLRLUM on page 2330 system variable)

Layer Name Assigns new hatch objects to the specified layer, overriding the current layer. Select Use Current to use the current layer. (HPLAYER on page 2356 system variable)

Relative to Paper Space Scales the hatch pattern relative to paper space units. This allows you to display hatch patterns at a scale that is appropriate for your layout. This option is available only from a layout.

Double For user-defined patterns, draws a second set of lines at 90 degrees to the original lines, creating a crosshatch. This option is available only when Hatch Type is set to User Defined. (HPDOUBLE on page 2352 system variable)

ISO Pen Width Scales an ISO predefined pattern based on the selected pen width. This option is available only when an ISO pattern has been specified.

\section*{Origin}

Controls the starting location of hatch pattern generation. Some hatches, such as brick patterns, are meant to be aligned with a point on the hatch boundary. By default, all hatch origins correspond to the current UCS origin.

Set Origin Specifies the new hatch origin point directly.
Bottom Left Sets the hatch origin at the bottom-left corner of the rectangular extents of the hatch boundary.

Bottom Right Sets the hatch origin at the bottom-right corner of the rectangular extents of the hatch boundary.

Top Left Sets the hatch origin at the top-left corner of the rectangular extents of the hatch boundary.

Top Right Sets the hatch origin at the top-right corner of the rectangular extents of the hatch boundary.

Center Sets the hatch origin at the center of the rectangular extents of the hatch boundary.

Use Current Origin Sets the hatch origin to the defaoult location stored in the HPORIGIN on page 2357 system variable.

Store as Default Origin Stores the value of the new hatch origin in the HPORIGIN system variable.

\section*{Options}

Controls several commonly used hatch or fill options.

\section*{Associative}

Annotative Specifies that the hatch is. This property automates the process of scaling annotations so that they plot or display at the correct size on the paper. (HPANNOTATIVE on page 2348 system variable)

\section*{Match Properties}

Use Current Origin Sets the properties of a hatch with a selected hatch object, except the hatch origin.

Use Source Hatch Origin Sets the properties of a hatch with a selected hatch object, including the hatch origin.

Gap Tolerance Sets the maximum size of gaps that can be ignored when objects are used as a hatch boundary. The default value, 0 , specifies that the objects must enclose the area with no gaps.
Move the slicer or enter a value, in drawing units, from 0 to 5000 to set the maximum size of gaps that can be ignored when the objects serve as a hatch boundary. Any gaps equal to or smaller than the value you specify are ignored, and the boundary is treated as closed. (HPGAPTOL system variable)

Create Separate Hatches Controls whether a single hatch object or multiple hatch objects are created when several separate closed boundaries are specified. (HPSEPARATE system variable)

\section*{Islands}

Normal Island Detection Hatches or fills inward from the outer boundary. If an internal island is encountered, hatching or filling is turned off until another island within the island is encountered. (HPISLANDDETECTION on page 2355 system variable)

Outer Island Detection Hatches or fills inward from the outer boundary. This option hatches or fills only the specified area and leaves the internal islands unaffected. (HPISLANDDETECTION on page 2355 system variable)

Ignore Island Detection Ignores all internal objects and hatches or fills through them. (HPISLANDDETECTION on page 2355 system variable)

No Island Detection Turns off island detection.
Draw Order Assigns a draw order to a hatch or fill. You can place a hatch or fill behind all other objects, in front of all other objects, behind the hatch boundary, or in front of the hatch boundary. (HPDRAWORDER system variable)

\section*{Close Panel}

Close Hatch Creation Exits HATCH and closes the contextual tab.
You can also press Enter or Esc to exit HATCH.

\section*{Hatch Pattern Palette Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Hatch Patterns and Fills

Displays preview images for all predefined and custom patterns.


\section*{Access Methods}


Button

Ribbon: Home tab \(\boldsymbol{>}\) Draw panel \(\boldsymbol{>}\) Hatch
Menu: Draw > Hatch
Toolbar: Draw
Command entry: hatch

\section*{Summary}

Organizes patterns on four tabs, with images arranged alphabetically on each tab. Click an image to select a pattern and click OK.

\section*{List of Options}

The following options are displayed.
ANSI Displays all ANSI patterns shipped with the program.
ISO Displays all ISO patterns shipped with the program.

Other Predefined Displays all patterns other than ANSI and ISO shipped with the program.

Custom Displays a list of custom PAT files that you have added to the search path, which is set in the Options dialog box, Files tab.

Preview
Displays a preview image of the selected custom pattern.

\section*{-HATCH}

\section*{Quick Reference}

\section*{See also:}
- Overview of Hatch Patterns and Fills

Uses command prompts to fill an enclosed area or selected objects with a hatch pattern or solid fill.

\section*{List of Prompts}

The following prompts are displayed.
Specify internal pointor [Properties/Select objects/draW boundary/remove Boundaries/Advanced/DRaw order/Origin/ANnotative/hatch COlor on page 895/LAyer on page 896/Transparency on page 896]: Specify a point or enter an option

\section*{Internal Point}

Determines a boundary from existing objects that form an enclosed area around the specified point.

Pick Internal Point While specifying internal points, you can right-click in the drawing area at any time to display a shortcut menu that contains several options.


If you turn on Island Detection, objects that enclose areas within the outermost boundary are detected as islands. How HATCH detects objects using this option depends on which island detection method is specified.

NOTE Red circles are displayed at unconnected endpoints of boundary objects to identify gaps in the hatch boundary. These circles are temporary and can be removed with REDRAW or REGEN.

\section*{Properties}

Specifies new hatch pattern properties to apply.
Pattern Name-Predefined or Custom Specifies a predefined pattern in the acad.pat or acadiso.pat file or a custom pattern in its own PAT file.
Enter the pattern name followed by an optional hatch style code. Precede the pattern name with an asterisk \(\left(^{*}\right)\) to fill the area with individual lines instead of a hatch object.
?-List Pattern Names Lists and describes the hatch patterns defined in the acad.pat file.

Solid Specifies a solid fill and redisplays the first HATCH prompt, where you can define a boundary.

User Defined Specifies a user-defined pattern. Enter u, followed by an optional hatch style code. Precede the u with an asterisk (*) to fill the area with individual lines instead of a hatch object.

Double Hatch Area Specifies a second set of lines to be drawn at 90 degrees to the original lines.

\section*{Select Objects}

Determines a boundary from selected objects that form an enclosed area.
Select Objects Interior objects are not automatically detected. You must select the objects within the selected boundary to hatch or fill those objects according to the current island detection style.


Each time you click Select Objects, HATCH clears the previous selection set.

object selected

text selected

result

While selecting objects, you can right-click at any time in the drawing area to display a shortcut menu. You can undo the last selection or all selections, change the selection method, change the island detection style, or preview the hatch or fill.

\section*{Draw Boundary}

Uses specified points to define the boundary of a hatch or fill.
The options that are available as you specify points are also available in PLINE. When you complete the polyline boundary, press Enter. You can then create additional polyline boundaries, or press Enter to twice to apply the hatch.

\section*{Remove Boundaries}

Removes from the boundary definition any of the objects that were previously added.

Select Objects Removes objects from the boundary definition.
Add Boundaries Adds objects to the boundary definition.

\section*{Advanced}

Sets the method used to create the hatch boundary.

\section*{Boundary Set}

Specifies a limited set of objects, called a boundary set, for evaluation by the pick point of the hatch

New Creates a boundary set from the selected objects.
Everything Creates a boundary set from everything visible in the current viewport. Selecting this option discards any current boundary set and uses everything visible in the drawing or in the current viewport.

\section*{Retain Boundary}

Creates an object that encloses each hatch object.
Island Detection
Specifies whether to use objects within the outermost boundary as boundary objects.

Specifying no island detection prompts for the ray casting method.
Nearest Runs a line from the point you specify to the nearest object and then traces the boundary in a counterclockwise direction.
\(+X\) Runs a line in the positive \(X\) direction from the point you specify to the first object encountered and then traces the boundary in a counterclockwise direction.

-X Runs a line in the negative \(X\) direction from the point you specify to the first object encountered and then traces the boundary in a counterclockwise direction.

+Y Runs a line in the positive \(Y\) direction from the point you specify to the first object encountered and then traces the boundary in a counterclockwise direction.

ray casting
direction (+Y)
-Y Runs a line in the negative \(Y\) direction from the point you specify to the first object encountered and then traces the boundary in a counterclockwise direction.

ray casting
direction (-Y)

Angle Runs a line at the specified angle from the point you specify to the first object encountered and then traces the boundary in a counterclockwise direction.

\section*{Style}

Specifies the method used to hatch or fill objects within the outermost hatch boundary. If you have selected no internal objects, a hatching style has no
effect. Because you can define a precise set of boundaries, it's often best to use the Normal style.

Ignore Ignores all internal objects and hatches or fills through them.


Outer (Recommended) Hatches or fills inward from the outer boundary. HATCH turns hatching or filling off if it encounters an internal island. This option hatches or fills only the outermost level of the structure and leaves the internal structure blank.


Normal Hatches or fills inward from the outer boundary. If HATCH encounters an internal island, it turns off hatching or filling until it encounters another island within the island.


\section*{Associativity}

Specifies that the new hatch pattern is updated when its boundaries are modified.

A new hatch pattern's associativity is set by the HPASSOC system variable. Changing the associativity setting here also changes the setting in the HPASSOC system variable.

\section*{Gap Tolerance}

Sets the maximum size of gaps that can be ignored when objects are used as a hatch boundary. The default value, 0 , specifies that the objects must enclose the area with no gaps.
Any gaps equal to or smaller than the value you specify in the gap tolerance are ignored, and the boundary is treated as closed.

\section*{Separate Hatches}

Controls whether the command creates a single hatch object or multiple hatch objects when several separate closed boundaries are specified.

\section*{Draw Order}

Assigns the draw order to a hatch or fill. You can place a hatch or fill behind all other objects, in front of all other objects, behind the hatch boundary, or in front of the hatch boundary.

Origin
Controls the starting location of hatch pattern generation. Some hatches, such as brick patterns, are meant to be aligned with a point on the hatch boundary. By default, all hatch origins correspond to the current UCS origin.

Use Current Origin Sets the value of the HPORIGINMODE system variable. The last 5 options listed below correspond to the values 1-5.

Set New Origin Specifies the new hatch origin point directly.
Default to Boundary Extents Calculates a new origin based on the rectangular extents of the hatch. Choices include each of the four corners of the extents and its center. You can also store the value of the new hatch origin in the HPORIGIN system variable.

\section*{Annotative}

Specifies that the hatch is. This property automates the process of scaling annotations so that they plot or display at the correct size on the paper.

Hatch Color
Overrides the current color with a specified color for hatch patterns and solid fills. The color value is stored in the HPCOLOR on page 2351 system variable. When Hatch Type is set to Pattern, you can also specify a new background color. The background color value is stored in the HPBACKGROUNDCOLOR on page 2349 system variable.

To set the hatch color back to the current color for objects, enter "." or Use Current. To turn off the background color, enter "." or none.

Default Object Color Enter the color number (1 through 255) or the color name (the names for the first seven colors). For example, you can specify the
color red by entering the ACI (AutoCAD Color Index) number 1 or the ACI name red. You can also set the hatch color to ByLayer or ByBlock.

Truecolor Specify an RGB color expressed as values from 0 to 255 , such as 210,155,95.

Colorbook Specify a custom color from a color book installed on your system.

\section*{Layer}

Assigns new hatch objects to the specified layer, overriding the current layer. Enter Use Current or "." to use the current layer. (HPLAYER on page 2356 system variable)

\section*{Transparency}

Sets the transparency level for new hatches or fills, overriding the current object transparency. Enter Use Current or "." to use the current object transparency setting. (HPTRANSPARENCY on page 2360 system variable)

\section*{HATCHEDIT}

\section*{Quick Reference}

\section*{See also:}
- Modify Hatches and Fills

Modifies an existing hatch or fill.

\section*{Access Methods}


Button

Ribbon: Home tab \(>\) Modify panel \(>\) Edit Hatch
Menu: Modify \(>\) Object \(>\) Hatch
Toolbar: Modify II
Shortcut menu: Right-click a selected hatch object and click Hatch Edit.

\section*{Summary}

Modifies hatch-specific properties, such as pattern, scale, and angle for an existing hatch or fill.

\section*{List of Options}

The following options are displayed.
Select hatch object: Use an object selection method
When the ribbon is active, the Hatch Editor contextual tab on page 898 is displayed. when the ribbon is off, the Hatch Edit dialog box is displayed.

If you enter -hatchedit at the Command prompt, the associated options are displayed in the command line.

\section*{Hatch Edit Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Modify Hatches and Fills

Modifies hatch-specific properties, such as pattern, scale and angle for an existing hatch or fill.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Edit Hatch
Menu: Modify \(>\) Object \(>\) Hatch
8 Toolbar: Modify II
Shortcut menu: Right-click a selected hatch object and click Hatch Edit.
並 Command entry: hatchedit

\section*{Summary}

The options in the Hatch Edit dialog box are the same as the options for the Hatch and Gradient dialog box on page 870. Certain options are available only when creating hatches.

\section*{Hatch Editor Ribbon Contextual Tab}

\section*{Quick Reference}

See also:
- Overview of Hatch Patterns and Fills

Modifies hatch-specific properties, such as pattern, scale and angle for an existing hatch or fill.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Edit Hatch
\(\$\) Menu: Modify \(>\) Object \(>\) Hatch
\(\$\) Toolbar: Modify II
座 Command entry: hatchedit

\section*{List of Options}

The following options are displayed.

\section*{Boundaries Panel}

Pick Points Determines a boundary from existing objects that form an enclosed area around the specified point.
While picking internal points, you can right-click in the drawing area at any time to display a shortcut menu that contains several options.

internal point selected

hatch boundary

result

Select Determines a boundary from selected objects that form an enclosed area.
When you use the Select Objects option, interior objects are not detected automatically. You must select the objects within the selected boundary to hatch or fill those objects according to the current island detection style.


result

Each time you click Select Objects, HATCH clears the previous selection set.

object selected

text selected

result

While selecting objects, you can right-click at any time in the drawing area to display a shortcut menu. You can undo the last selection or all selections, change the selection method, change the island detection style, or preview the hatch or gradient fill.

Remove Removes from the boundary definition any of the objects that were added previously.

Recreate Creates a polyline or region around the selected hatch or fill, and optionally associates the hatch object with it.

\section*{Display Boundary Objects}

Displays the boundary grip controls for the selected hatch that you can use to grip-edit both the boundary and the hatch object.

When you select or use the Display Boundary Objects option to select a non-associative hatch, the hatch boundary grips are displayed.
When you select an associative hatch, it displays only a single grip point of the hatch. To display the boundary grip controls of the objects associated to the hatch, use the Display Boundary Objects option. You can only edit an associative hatch by grip-editing the associated boundary objects.

Don't Retain Boundaries Do not create a separate object that encloses the hatch object. This option is available only during hatch creation.

Retain Boundaries - Polyline Creates a polyline that encloses the hatch object. This option is available only during hatch creation.

Retain Boundaries - Region Creates a region object that encloses the hatch object. This option is available only during hatch creation.
For more information about regions, see "Create and Combine Areas (Regions)" in the User's Guide.

Select New Boundary Set Specifies a limited set of objects, called a boundary set, for evaluation by the pick point when creating the hatch.

Use Current Viewport Defines the boundary set from all objects within the extents of the current viewport. This option is available only during hatch creation.

Use Boundary Set Defines the boundary set from the objects that you selected with Define Boundary Set. This option is available only during hatch creation.

\section*{Pattern Panel}

Displays preview images for all predefined and custom patterns.

\section*{Properties Panel}

Hatch Type Specifies whether to create a solid fill, a gradient fill, a predefined hatch pattern, or a user-defined hatch pattern.
Predefined patterns are stored in the acad.pat or acadiso.pat files supplied with the product.

User-defined patterns are based on the current linetype in your drawing. A custom pattern is a pattern that is defined in any custom PAT files that you have added to the search path.

Hatch Color or Gradient Color 1 Specifies the color for solid fills, hatch patterns, or as the first of two gradient colors.

Background Color or Gradient Color 2 Specifies the color for hatch pattern backgrounds or as a second gradient color. When Hatch Type is set to Solid, Gradient Color 2 is not available.

Transparency Sets the level of transparency for new hatch objects, overriding the default object transparency.

Angle Specifies an angle for Gradient and Pattern hatch objects relative to the \(X\) axis of the current UCS. Set a hatch angle between 0 to 359 degrees using the slider.

Scale Expands or contracts a predefined or custom hatch pattern.
Spacing When Hatch Type is set to User Defined, this option specifies the spacing of lines in a user-defined pattern.

Tint Slider When Hatch Type is set to Gradient, this option specifies the tint (the selected color mixed with white) of a color to be used for a gradient fill of one color.

Layer Name Specifies the layer to which hatch objects are added.
Relative to Paper Space Scales the hatch pattern relative to paper space units. Using this option, you can easily display hatch patterns at a scale that is appropriate for your layout. This option is available only from a layout.

Double For user-defined patterns, draws a second set of lines at 90 degrees to the original lines, creating a crosshatch. This option is available only when Hatch Type is set to User Defined.

ISO Pen Width Scales an ISO predefined pattern based on the selected pen width. This option is available only when an ISO pattern has been specified.

\section*{Origin}

Controls the starting location of hatch pattern generation. Some hatches, such as brick patterns, are meant to be aligned with a point on the hatch boundary. By default, all hatch origins correspond to the current UCS origin.
Set Origin Specifies the new hatch origin point directly.
Bottom Left Sets the hatch origin at the bottom-left corner of the rectangular extents of the hatch boundary.

Bottom Right Sets the hatch origin at the bottom-right corner of the rectangular extents of the hatch boundary.

Top Left Sets the hatch origin at the top-left corner of the rectangular extents of the hatch boundary.

Top Right Sets the hatch origin at the top-right corner of the rectangular extents of the hatch boundary.

Center Sets the hatch origin at the center of the rectangular extents of the hatch boundary.

Use Current Origin Sets the hatch origin to the defaoult location stored in the HPORIGIN on page 2357 system variable.

Store as Default Origin Stores the value of the new hatch origin in the HPORIGIN system variable.

\section*{Options}

Controls several commonly used hatch or fill options.
Associative Specifies that the hatch or fill is associative. A hatch or fill that is associative is updated when you modify its boundary objects. (HPASSOC system variable)

Annotative Specifies that the hatch is. This property automates the process of scaling annotations so that they plot or display at the correct size on the paper. (HPANNOTATIVE system variable)

\section*{Match Properties}

Use Current Origin Sets the properties of a hatch with a selected hatch object, except the hatch origin.

Use Source Hatch Origin Sets the properties of a hatch with a selected hatch object, including the hatch origin.

Gap Tolerance Sets the maximum size of gaps that can be ignored when objects are used as a hatch boundary. The default value, 0 , specifies that the objects must enclose the area with no gaps.
Move the slicer or enter a value, in drawing units, from 0 to 5000 to set the maximum size of gaps that can be ignored when the objects serve as a hatch boundary. Any gaps equal to or smaller than the value you specify are ignored, and the boundary is treated as closed. (HPGAPTOL system variable)

Create Separate Hatches Controls whether a single hatch object or multiple hatch objects are created when several separate closed boundaries are specified. (HPSEPARATE system variable)

\section*{Islands}

Normal Island Detection Hatches or fills inward from the outer boundary. If an internal island is encountered, hatching or filling is turned off until another island within the island is encountered. (HPISLANDDETECTION system variable)

Outer Island Detection Hatches or fills inward from the outer boundary. This option hatches or fills only the specified area and leaves the internal islands unaffected. (HPISLANDDETECTION system variable)

Ignore Island Detection Ignores all internal objects and hatches or fills through them. (HPISLANDDETECTION system variable)

No Island Detection Turns off island detection.
Draw Order Assigns a draw order to a hatch or fill. You can place a hatch or fill behind all other objects, in front of all other objects, behind the hatch boundary, or in front of the hatch boundary. (HPDRAWORDER system variable)

\section*{Close Panel}

Close Hatch Editor Exits the Hatch Editor and closes the contextual tab.
The ENTER and ESC keys can also be used to exit the Hatch Editor.

\section*{-HATCHEDIT}

\section*{Quick Reference}

\section*{See also:}
- Modify Hatches and Fills

Uses command prompts to modify hatch-specific properties, such as pattern, scale, and angle for an existing hatch or fill.

\section*{List of Prompts}

The following prompts are displayed.
Select hatch object:
Enter hatch option [DIsassociate/Style/Properties/DRaw order/ADd boundaries/Remove boundaries/recreate Boundary/ASsociate/separate Hatches/Origin on page 905/ANnotative/hatch COlor/LAyer/Transparency]
<Properties>: Enter an option or press Enter

\section*{Disassociate}

Removes the associative quality from an associative hatch or fill.

\section*{Style}

Specifies the method used to hatch or fill boundaries within the outermost boundary.

Ignore Ignores all internal objects and hatches or fills through them.
Outer (Recommended) Hatches or fills inward from the outer boundary. HATCH turns hatching or filling off if it encounters an internal island. This option hatches or fills only the outermost level of the structure and leaves the internal structure blank.

Normal Hatches or fills inward from the outer boundary. If HATCH encounters an internal island, it turns off hatching or filling until it encounters another island within the island.

\section*{Properties}

Specifies new hatch properties for the selected hatch. For an explanation of setting pattern and fill properties at the Command prompt, see -HATCH on page 889.

\section*{Draw Order}

Assigns a draw order to a hatch or fill. You can place a hatch or fill behind all other objects, in front of all other objects, behind the hatch boundary, or in front of the hatch boundary. (HPDRAWORDER system variable)

\section*{Add Boundaries}

Modifies the boundaries of a hatch or fill by adding boundaries.
For more information, see Add: Pick Points or Add: Select Objects.

\section*{Remove Boundaries}

Modifies the boundaries of a hatch or fill by removing boundaries.
For more information, see Remove Boundaries.

\section*{Recreate Boundary}

Creates a polyline or region around the selected hatch or fill, and optionally associates the hatch object with it.
For more information, see Recreate Boundary.

\section*{Associate}

Specifies that the hatch or fill is associative. A hatch or fill that is associative is updated when you modify its boundary objects.

Specify Internal Point Determines a boundary from existing objects that form an enclosed area around the specified point, and associates the selected hatch with the boundary objects.

Select Objects Determines a boundary from selected objects that form an enclosed area, and associates the selected hatch with the boundary objects.

\section*{Separate Hatches}

Controls whether a single hatch object or multiple hatch objects are created when several separate closed boundaries are specified.

\section*{Origin}

Controls the starting location of hatch pattern generation. Some hatches, such as brick patterns, are meant to be aligned with a point on the hatch boundary. By default, all hatch origins correspond to the current UCS origin.
Use Current Origin Sets the value of the HPORIGINMODE system variable. The last 5 options listed below correspond to the values 1-5.

Set New Origin Specifies the new hatch origin point directly.
Default to Boundary Extents Calculates a new origin based on the rectangular extents of the hatch. Choices include each of the four corners of the extents and its center. You can also store the value of the new hatch origin in the HPORIGIN system variable.

\section*{Annotative}

Specifies that the hatch is. This property automates the process of scaling annotations so that they plot or display at the correct size on the paper.

\section*{Hatch Color}

Overrides the current color with a specified color for hatch patterns and solid fills. The color value is stored in the HPCOLOR on page 2351 system variable. When Hatch Type is set to Pattern, you can also specify a new background color. The background color value is stored in the HPBACKGROUNDCOLOR on page 2349 system variable.

To set the hatch color back to the current color for objects, enter "." or Use Current. To turn off the background color, enter "." or none.

Default object color Enter the color number (1 through 255) or the color name (the names for the first seven colors). For example, you can specify the color red by entering the ACI (AutoCAD Color Index) number 1 or the ACI name red. You can also set the hatch color to ByLayer or ByBlock.

Truecolor Specify an RGB color expressed as values from 0 to 255 , such as 210,155,95.

Colorbook Specify a custom color from a color book installed on your system.

\section*{Layer}

Assigns new hatch objects to the specified layer, overriding the current layer. Enter Use Current or "." to use the current layer.

\section*{Transparency}

Sets the transparency level for new hatches or fills, overriding the current object transparency. Enter Use Current or "." to use the current object transparency setting.

\section*{HATCHGENERATEBOUNDARY}

\section*{Quick Reference}

See also:
- Set Property Overrides for Hatches and Fills

■ Control How Overlapping Objects Are Displayed
Creates a non-associated polyline around a selected hatch.

\section*{Summary}

Creates a new non-associative polyline boundary around the selected hatch.

\section*{List of Prompts}

The following prompts are displayed.
Select hatch objects: Use an object selection method and press ENTER.

\section*{HATCHSETBOUNDARY}

\section*{Quick Reference}

See also:
- Set Property Overrides for Hatches and Fills
- Control How Overlapping Objects Are Displayed

Redefines a selected hatch or fill to conform to a different closed boundary.

\section*{Summary}

Trims a selected hatch to within a selected boundary or geometry.

\section*{List of Prompts}

The following prompts are displayed.
Select hatch object: Select hatch object to be trimmed.
Select objects to be used for the new boundary: Select the new boundary or geometry and press ENTER.

\section*{HATCHSETORIGIN}

\section*{Quick Reference}

\section*{See also:}
- Set Property Overrides for Hatches and Fills
- Control How Overlapping Objects Are Displayed

Controls the starting location of hatch pattern generation for a selected hatch.

\section*{Summary}

Controls the hatch origin location point for solid and gradient hatches. You can select and change multiple hatch objects and change their hatch origin for multiple hatches at the same time.

\section*{List of Prompts}

The following prompts are displayed.
Select hatch object: Select the hatch object.
Select new hatch origin: Click inside the hatch to change the origin point.

\section*{НАТСНТОВАСК}

\section*{Quick Reference}

See also:
■ Set Property Overrides for Hatches and Fills
■ Control How Overlapping Objects Are Displayed

Sets the draw order for all hatches in the drawing to be behind all other objects.

\section*{Access Methods}
\(\$\) Ribbon: Home tab > Modify panel \(>\) Draw Order \(>\) Send Hatches to Back

\section*{Summary}

Selects all hatches in the drawing, including hatch patterns, solid fills, and gradient fills, and sets their draw order to be behind all other objects. Hatch objects on locked layers are also modified.

\section*{HELIX}

\section*{Quick Reference}

\section*{See also:}
- Draw Helixes

Creates a 2D spiral or 3D spring.

\section*{Access Methods}


Button

8 Ribbon: Home tab > Draw panel \(>\) Helix
\(\$\) Menu: Draw \(>\) Helix

Toolbar: Modeling

\section*{Summary}

Use a helix as a sweep path for the SWEEP command to create springs, threads, and circular stairways.

Initially, the default base radius is set to 1 . During a drawing session, the default value for the base radius is always the previously entered base radius value for any solid primitive or helix.

The default value for the top radius is always the value of the base radius.
The base radius and top radius cannot both be set to 0 .

\section*{List of Prompts}

The following prompts are displayed.
Number of turns = 3 (default)
Twist = CCW (default)
Specify center point of base: Specify a point
Specify base radius or [Diameter] <1.0000>: Specify a base radius, enter \(\mathbf{d}\) to specify the diameter, or press ENTER to specify the default base radius value
Specify top radius or [Diameter] <1.0000>: Specify a top radius, enter \(\mathbf{d}\) to specify the diameter, or press ENTER to specify the default top radius value
Specify helix height or [Axis endpoint/Turns/turn Height/tWist] <1.0000>:
Specify a helix height, or enter an option

\section*{Diameter (Base)}

Specifies the diameter of the base of the helix.
Specify diameter \(<2.0000>\) : Specify a diameter or press ENTER to specify the default value

Initially, the default base diameter is set to 2 . During a drawing session, the default value for the base diameter is always the previously entered base diameter value.

\section*{Diameter (Top)}

Specifies the diameter of the top of the helix.
Specify diameter \(<2.0000>\) : Specify a diameter or press ENTER to specify the default value

The default value for the top diameter is always the value of the base diameter.

\section*{Axis Endpoint}

Specifies the endpoint location for the helix axis. The axis endpoint can be located anywhere in 3D space. The axis endpoint defines the length and orientation of the helix.

Specify axis endpoint: Specify a point

\section*{Turns}

Specifies the number of turns (revolutions) for the helix. The number of turns for a helix cannot exceed 500 .

Initially, the default value for the number of turns is three. During a drawing session, the default value for the number of turns is always the previously entered number of turns value.

Enter number of turns: Enter a number

\section*{Turn Height}

Specifies the height of one complete turn within the helix.
The number of turns in the helix will automatically update accordingly when a turn height value is specified. If the number of turns for the helix has been specified, you cannot enter a value for the turn height.

Specify distance between turns <default>: Enter a number to specify the height for each turn in the helix

\section*{Twist}

Specifies whether the helix is drawn in the clockwise (CW) or the counterclockwise (CCW) direction. The default value for the helix twist is CCW.

Enter twist direction of helix [CW/CCW] <CCW>: Specify a twist direction for the helix

\section*{HELP}

\section*{Quick Reference}

Displays Help.

Access Methods


Button
\(\$\) Menu: Help > Help
\(\$\) Toolbar: Standard
㛗 Command entry: ? (or 'help for transparent use)

Summary
Pressing F1 while a tooltip or command is active displays Help for that command. Choosing the Help button in a dialog box displays Help for that dialog box.

\section*{HIDE}

\section*{Quick Reference}

See also:
■ Use a Visual Style to Display Your Model

Regenerates a 3D wireframe model with hidden lines suppressed.

\section*{Access Methods}


Button
\(\$\) Menu: View > Hide
\(\$\) Toolbar: Render

\section*{Summary}

When you use VPOINT, DVIEW, or VIEW to create a 3D view of your 2D drawing, a wireframe is displayed in the current viewport. All lines are present, including those hidden by other objects. HIDE eliminates the hidden lines from the screen.

In a 3D drawing, HIDE starts VSCURRENT and sets the visual style to 3D Hidden in the current viewport. You can view all the settings for 3D Hidden in the Visual Styles Manager on page 2051.

HIDE considers the following to be opaque surfaces that hide objects: circles, solids, traces, text, regions, wide polyline segments, 3D faces, polygon meshes, and the extruded edges of objects with nonzero thickness.

If they are extruded, circles, solids, traces, and wide polyline segments are treated as solid objects with top and bottom faces. You cannot use HIDE on objects whose layers have been frozen; however, you can use HIDE on objects whose layers have been turned off.
To hide text created with MTEXT or TEXT, the HIDETEXT system variable must be set to 1 or the text must be assigned a thickness value.


When using the HIDE command, if the INTERSECTIONDISPLAY system variable is on, face-to-face intersections of 3D surfaces are displayed as polylines.
The 3D Hidden visual style does not honor the setting of INTERSECTIONDISPLAY.

If the DISPSILH system variable is on, HIDE displays 3D solid objects with silhouette edges only. It won't show the internal edges produced by objects that have facets.

If the HIDETEXT system variable is off, HIDE ignores text objects when producing the hidden view. Text objects are always displayed regardless of whether they are obscured by other objects, and objects obscured by text objects are unaffected.

\section*{HIDEOBJECTS}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Objects

Hides selected objects.

\section*{Access Methods}

Shortcut menu: Right-click in drawing area and click Isolate \(\boldsymbol{>}\) Hide Objects.

\section*{Summary}

Temporarily hides selected objects in the current view. All other objects are visible.

\section*{List of Prompts}

The following prompt is displayed.
Select objects: Use an object selection method

\section*{HIDEPALETTES}

\section*{Quick Reference}

\section*{See also:}

■ Specify the Behavior of Dockable Windows

Hides all currently displayed palettes, including the command window.

\section*{Summary}

Hides all currently displayed palettes such as the Command Line, DesignCenter, and Properties. You can also use CTRL + SHIFT + H to hide the palettes.

\section*{HLSETTINGS}

\section*{Quick Reference}

See also:
■ Shade a Model and Use Edge Effects

Controls the display properties of 3D models.

\section*{Summary}

The Visual Styles Manager on page 2051 is displayed.

\section*{HYPERLINK}

\section*{Quick Reference}

\section*{See also:}
- Add Hyperlinks to a Drawing

Attaches a hyperlink to an object or modifies an existing hyperlink.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Data panel \(>\) Hyperlink
\(\$\) Menu: Insert \(>\) Hyperlink
Shortcut menu: To edit a hyperlink, select an object that contains a hyperlink, right-click in the drawing area, and choose Hyperlink > Edit Hyperlink.

\section*{Summary}

Hyperlinks in a drawing provide jumps to associated files. For example, a hyperlink can launch a word processing program and open a specified file, another hyperlink can launch a web browser and display a specified web page.

\section*{List of Prompts}

The following prompts are displayed.
Select objects: Use an object selection method
One of the following dialog boxes is displayed:
■ Insert Hyperlink dialog box (for graphical objects that do not already contain hyperlinks) on page 915
- Edit Hyperlink dialog box (for graphical objects that already contain hyperlinks) on page 918

After you insert a hyperlink, the hyperlink icon is displayed when you move the cursor over the attached object. To open the hyperlink, right-click the selected object and choose Hyperlink. The PICKFIRST system variable must be set to 1 to open files associated with hyperlinks.

If you enter -hyperlink at the Command prompt, options are displayed, including an option to define an area to associate with a hyperlink.

\section*{Insert Hyperlink Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Add Hyperlinks to a Drawing

\section*{Access Methods}


Button
\(\oint\) Ribbon: Insert tab \(>\) Data panel \(>\) Hyperlink
\(\$\) Menu: Insert \(>\) Hyperlink
Shortcut menu: To edit a hyperlink, select an object that contains a hyperlink, right-click in the drawing area, and choose Hyperlink > Edit Hyperlink.

\section*{锉 Command entry: hyperlink}

\section*{Summary}

Attaches hyperlinks to graphical objects.

\section*{List of Options}

The following options are displayed.

\section*{Text to Display}

Specifies a description for the hyperlink. This is useful when the file name or URL is not helpful in identifying the contents of the linked file.
Existing File or Web Page Tab (Insert Hyperlink Dialog Box)
Creates a hyperlink to an existing file or web page.


\section*{Type the File or Web Page Name}

Specifies the file or web page to associate with the hyperlink. The file can be stored locally, on a network drive, or on an Internet or intranet location.

\section*{Recent Files}

Displays a list of recently linked files, from which you can select one to link to.

Browsed Pages Displays a list of recently browsed web pages, from which you can select one to link to.

Inserted Links Displays a list of recently inserted hyperlinks, from which you can select one to link to.

\section*{File}

Opens the Browse the Web - Select Hyperlink dialog box (a standard file selection dialog box), in which you can navigate to the file that you want to associate with the hyperlink.

\section*{Web Page}

Opens the browser, in which you can navigate to a web page that you want to associate with the hyperlink.

\section*{Target}

Opens the Select Place in Document dialog box, in which you can select a named location in a drawing to link to.

\section*{Path}

Displays the path to the file associated with the hyperlink. If Use Relative Path for Hyperlink is selected, only the file name is listed. If Use Relative Path for Hyperlink is cleared, the full path and the file name are listed.

\section*{Use Relative Path for Hyperlink}

Sets a relative path for hyperlinks. If you select this option, the full path to the linked file is not stored with the hyperlink. The relative path is set to the value specified by the HYPERLINKBASE system variable or, if no value is specified for HYPERLINKBASE, to the current drawing path. If this option is cleared, the full path to the associated file is stored with the hyperlink.

\section*{Convert DWG Hyperlinks to DWF}

Specifies that the DWG hyperlink will convert to a DWF file hyperlink when you publish or plot the drawing to a DWF file.

View of This Drawing Tab (Insert Hyperlink Dialog Box)
Specifies a named view in the current drawing to link to.


\section*{Select a View of This}

Displays an expandable tree view of the named views within the current drawing, from which you can select one to link to.

\section*{E-mail Address Tab (Insert Hyperlink Dialog Box)}

Specifies an email address to link to. When the hyperlink is executed, a new email is created using the default system email program.


\section*{E-mail Address}

Specifies an email address.
Subject
Specifies a subject for the email.
Recently Used E-mail Addresses
Lists recently used email addresses, from which you can select one to use for the hyperlink.

\section*{Edit Hyperlink Dialog Box}

\section*{Quick Reference}

See also:
- Add Hyperlinks to a Drawing

Edits hyperlinks.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Data panel \(\boldsymbol{>}\) Hyperlink
Menu: Insert \(>\) Hyperlink
Shortcut menu: To edit a hyperlink, select an object that contains a hyperlink, right-click in the drawing area, and choose Hyperlink > Edit Hyperlink.
㟇 Command entry: hyperlink

\section*{Summary}

The Edit Hyperlink dialog box is a modified version of the Insert Hyperlink dialog box, with one additional option.

\section*{List of Options}

The following options are displayed.
Remove Link
Deletes the hyperlink from the selected objects.

\section*{Select Place in Document Dialog Box}

\section*{Quick Reference}

See also:
- Add Hyperlinks to a Drawing

Navigates to a view or layout within a drawing.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Data panel \(\boldsymbol{>}\) Hyperlink
\(\$\) Menu: Insert > Hyperlink
Shortcut menu: To edit a hyperlink, select an object that contains a hyperlink, right-click in the drawing area, and choose Hyperlink > Edit Hyperlink.


\section*{Summmary}

The named location that you select is the initial view that is restored when the hyperlink is executed.

\section*{List of Options}

The following options are displayed.

\section*{Select an Existing Place in the Document}

Provides an expandable tree view of the named locations within the linked drawing, from which you can select a named location to link to.

\section*{-HYPERLINK}

\section*{Quick Reference}

\section*{See also:}

■ Add Hyperlinks to a Drawing

The Command prompt version of HYPERLINK inserts hyperlinks to areas or to selected objects and also removes hyperlinks.

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [Remove/Insert] <Insert>: Enter an option or pressENTER

\section*{Remove}

Removes the hyperlink from the selected objects. If a selection set does not exist, you are prompted to create one.

Select objects: Select graphical objects in the drawing
If the selection set contains more than one hyperlink, the hyperlinks that were found are listed at the Command prompt.

Enter number, hyperlink, or * for all: Enter the number or name of the hyperlink, or enter*to remove all hyperlinks in the selection set

The number of removed hyperlinks is displayed at the Command prompt.
Insert
Attaches a hyperlink to an object or an area.

Enter hyperlink insert option [Area/Object] <Object>: Select a method for attaching a hyperlink

Area Defines a bounding rectangle and places it on a layer called URLLAYER. If this layer doesn't exist in the current drawing, it is created.
NOTE To turn off the display of hyperlink bounding rectangles in the drawing area or in your drawing plots, you must freeze the URLLAYER layer. See "Use Layers to Manage Complexity" in the User's Guide.

First corner: Specify the start point of the rectangle
Other corner: Specify the end point of the rectangle
Enter the path to the file you want associated with the hyperlink.
Enter hyperlink <current drawing>: Enter the full path to a local file or the complete URL to an Internet file, or press ENTER to create a hyperlink to a named view in the current drawing
Enter a named location for the hyperlink, such as a view in a drawing or a bookmark in a word processing file.
Enter named location <none>: Enter the named location, or press ENTER to create the hyperlink without one
Enter description <none>: Enter a description, or press ENTER to create the hyperlink without one

Object Specifies graphical objects to attach the hyperlink to.
Select objects: Select graphical objects in the drawing
Enter the path to the file you want associated with the hyperlink.
Enter hyperlink <current drawing>: Enter the full path to a local file or the complete URL to an Internet file, or press ENTER to create a hyperlink to a named view in the current drawing
Enter a named location for the hyperlink, such as a view in a drawing or a bookmark in a word processing file.
Enter named location <none>: Enter the named location, or press ENTER to create the hyperlink without one
Enter description <none>: Enter a descriptive name for the hyperlink, or press ENTER to create the hyperlink without one

\section*{HYPERLINKOPTIONS}

\section*{Quick Reference}

See also:
■ Use a Hyperlink to Access a File or a Web Page

Controls the display of the hyperlink cursor, tooltips, and shortcut menu.

\section*{Summary}

Controls the display of hyperlink cursor, tooltip, and shortcut menu.

\section*{List of Prompts}

The following prompts are displayed.
Display hyperlink cursor, tooltip, and shortcut menu? [Yes/No] <Yes>:

\section*{I Commands}

\section*{10}

\section*{ID}

\section*{Quick Reference}

See also:
- Obtain Distances, Angles, and Point Locations

Displays the UCS coordinate values of a specified location.

\section*{Access Methods}
\(\stackrel{\text { @ }}{ }\)
Button

Menu: Tools > Inquiry > ID Point
Toolbar: Inquiry
座 Command entry: 'id for transparent use

\section*{Summary}

ID lists the \(X, Y\), and \(Z\) values of the specified point and stores the coordinate of the specified point as the last point. You can reference the last point by entering @ at the next prompt that requests a point.

\section*{List of Prompts}

The following prompts are displayed.

Specify Point: Use the pointing device to specify a point
The UCS coordinate values of the location are displayed at the Command prompt.

If you snap to an object in 3D space, the \(Z\) coordinate value is the same as that of the selected feature of the object.

\section*{IMAGE}

\section*{Quick Reference}

See also:
- Attach Raster Images

Displays the External References palette.

\section*{Access Methods}


Button
\$ Menu: Insert > External References
\(\$\) Toolbar: Reference
Shortcut menu: Select an image, right-click in the drawing area, and choose Image > External References.

\section*{Summary}

The External References palette is displayed.
If you enter -image at the Command prompt, options are displayed.

\section*{Quick Reference}

See also:
- Attach Raster Images

\section*{List of Prompts}

The following prompts are displayed.
Enter image option [?/Detach/Path/Reload/Unload/Attach] <Attach>: Enter an option or press Enter

\section*{?-List Images}

Lists the images by name in alphabetical order, the number of times each is attached to the drawing, and the path where the image is stored. Images are listed in alphabetical order, regardless of the setting of the MAXSORT system variable.

\section*{Detach}

Detaches the named image from the drawing, marks it for deletion, and erases all occurrences of the image.

\section*{Path}

Updates the path name (including file name) associated with a particular image. This option is useful if you change the location of an image file, rename the file, or replace an old image file with a new file; for instance, you can update image01.pcx and save it as image02.pcx.

If you enter an asterisk (*), the following prompt is displayed:
Old path: Lists the current path name for each image
Enter New path: Enter the new path name for the specified image

\section*{Reload}

Reloads the selected images, making that information available for display and plotting.

\section*{Unload}

Removes image data from working memory so that the images are not displayed, thus improving performance. All information associated with the image remains stored with the drawing. The image frame of each attached image remains visible.

\section*{Attach}

Attaches a new image or a copy of an attached image to the current drawing. The Select Image File dialog box (a standard file selection dialog box) is displayed.

The file name without the extension is assigned as the image name. Image names can include up to 255 characters and contain letters, digits, spaces, and any special characters not used by Microsoft Windows or this program. If the file name is not a valid name for a nongraphical object, the Substitute Image Name dialog box is displayed. A valid image name is generated from the file name and an underscore and number are appended to the name.

If a definition with the same name and path exists in the drawing, the following prompts are displayed and the image is inserted as a copy:

Image file name has already been loaded.
Use IMAGE Reload to update its definition.
Specify insertion point \(<0,0>\) : Specify an insertion point
Base image size: Width: current width, Height: current height, current unit
Specify scale factor: Enter a value or press Enter
Specify rotation angle \(<0>\) : Enter a value or press Enter
If the FILEDIA system variable is set to 0 , the following prompt is displayed instead of the dialog box:

Enter image file name to attach <last>: Enter an image name
The last image name attached to the drawing during the current session is the default. To avoid errors when entering an image name, it is recommended that you specify both the image name and the file name as follows:
imagename=path name\/ong file name.bmp
or
imagename="path name\/ong file name.bmp"
If you enter a valid image name without a file extension, the program searches for the file in this order: first, an existing image definition in the drawing, and second, an image file in the folders in order of the search path. The program searches for all the image files with the specified name, regardless of extension, and uses the first name found. If no image name or image file is found, the message "Image Not Found" is displayed and the prompt is repeated.

To specify a long file name that does not conform to this program's naming rules, enter the name as follows:
"imagename=filename"
You can use a dialog box to search for image files but still enter the imagename=filename convention at the Command prompt. Enter a tilde (~) at the Enter Image File Name to Attach prompt. If you press Esc after the dialog box opens, the Enter Image Name prompt is displayed.

\section*{IMAGEADJUST}

\section*{Quick Reference}

\section*{See also:}

■ Change Raster Image Brightness, Contrast, and Fade

Controls the image display of the brightness, contrast, and fade values of images.

\section*{Access Methods}


Bution
\(\$\) Menu: Modify \(>\) Object \(>\) Image \(>\) Adjust
\$ Toolbar: Reference
Shortcut menu: Select an image to adjust, right-click in the drawing area, and choose Image > Adjust.

\section*{Summary}

You can change the default values for Brightness, Contrast, and Fade for attached images. To confirm the settings of a selected image, open the Properties palette.

NOTE You can also use the ADJUST command to change an image's brightness, contrast, and fade settings.

The Image Adjust dialog box is displayed when you enter the IMAGEADJUST command.

If you enter -imageadjust at the Command prompt, options are displayed.

\section*{Image Adjust Dialog Box}

\section*{Quick Reference}

See also:
■ Change Raster Image Brightness, Contrast, and Fade

Controls how the image is displayed by adjusting the brightness, contrast, and fade settings of the selected image.


\section*{Access Methods}


Button
\(\$\) Menu: Modify \(>\) Object \(>\) Image \(>\) Adjust
\(\$\) Toolbar: Reference
Shortcut menu: Select an image to adjust, right-click in the drawing area, and choose Image > Adjust.
幽 Command entry: imageadjust

\section*{Summary}

Adjusting these values changes the display of the image but does not change the image file itself.

\section*{List of Options}

The following options are displayed.

\section*{Brightness}

Controls the brightness, and indirectly the contrast, of the image. The greater the value, the brighter the image and the more pixels that become white when you increase contrast.

\section*{Contrast}

Controls the contrast, and indirectlyd the fading effect of the image. The greater the value, the more each pixel is forced to its primary or secondary color.

\section*{Fade}

Controls the fading effect of the image. The greater the value, the more the image blends with the current background color. A value of 100 blends the image completely into the background. Changing the screen background color causes the image to fade to the new color. In plotting, the background color for fade is white.

\section*{Image Preview}

Displays a preview of the selected image. The preview image updates dynamically to reflect changes to the brightness, contrast, and fade settings.

\section*{Reset}

Resets values for brightness, contrast, and fade to default settings ( 50,50 , and 0 , respectively).

\section*{-IMAGEADJUST}

\section*{Quick Reference}

\section*{See also:}

■ Change Raster Image Brightness, Contrast, and Fade

\section*{Summary}

With the Command prompt version of IMAGEADJUST, you can select more than one image to adjust.

\section*{List of Prompts}

The following prompts are displayed.

If you select a single image, the default values for Brightness, Contrast, and Fade are the current property settings of the image. If you select multiple images, the default values for Brightness, Contrast, and Fade are 50, 50, and 0 , respectively.

Contrast Controls the contrast, and indirectly, the fading effect of the image. The greater the value, the more each pixel is forced to its primary or secondary color.

Brightness Controls the brightness, and indirectly the contrast, of the image. The greater the value, the brighter the image and the more pixels that become white when you increase contrast.

Fade Controls the fading effect of the image. The greater the value, the more the image blends with the current background color. A value of 100 blends the image completely into the background. Changing the screen background color causes the image to fade to the new color. In plotting, the background color for fade is white.

\section*{IMAGEATTACH}

\section*{Quick Reference}

See also:
- Attach Raster Images

Inserts a reference to an image file.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Attach
\(\$\) Menu: Insert > Raster Image Reference
Toolbar: Reference

\section*{Summary}

When you attach an image file, you link that referenced file to the current drawing. Any changes to the referenced file are displayed in the current drawing when it is opened or reloaded.
The Select Reference File dialog box (a standard file selection dialog box) is displayed. Once you select an image file, the Attach Image Dialog Box on page 931 is displayed. After the file is attached, you can adjust and clip the underlay through the Image Ribbon Contextual tab.

TIP Use the generic CLIP command to clip images, external references, viewports, and underlays.

NOTE When Texture Compression is turned on, the amount of video memory required to open a drawing that contains attached images is decreased. Texture compression can reduce the amount of video memory necessary to display the drawing, but it can increase the time it takes to load the images the first time that they are accessed; it can reduce the quality of the images when they are displayed in the viewport or plotted. To determine whether Texture Compression is turned on, enter 3dconfig, and click Manual Tune. Look at the Hardware Effects List in the Manual Performance Tuning dialog box.

\section*{Attach Image Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Attach Raster Images

Locates, inserts, names, and defines the parameters and details of attached images.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Attach
\(\$\) Toolbar: Reference
\(\$\) Menu: Insert > Raster Image Reference

\section*{List of Options}

The following options are displayed.

\section*{Name}

Identifies the image you have selected to attach.

\section*{Browse}

Opens the Select Reference File dialog (a standard file selection dialog box on page 1295).

\section*{Preview}

Displays the image that you have selected to attach.

\section*{Path Type}

Select the full (absolute) path, the relative path to the image file, or No Path, the name of the image file (the image file must be located in the same folder as the current drawing file).

\section*{Insertion Point}

Specifies the insertion point for the selected image file. Specify On-Screen is the default. The default insertion point is \(0,0,0\).

\section*{Specify On-Screen}

Directs input at the Command prompt or the pointing device. If Specify On-Screen is cleared, enter the insertion point in \(\mathrm{X}, \mathrm{Y}\), and Z .

\section*{X}

Sets the \(X\) coordinate value.
Y
Sets the \(Y\) coordinate value.

\section*{Z}

Sets the \(Z\) coordinate value.

\section*{Scale}

Specifies the scale factor of the selected image.
If INSUNITS is set to "unitless" or if the image does not contain resolution information, the scale factor becomes the image width in AutoCAD units. If INSUNITS has a value such as millimeters, centimeters, inches, or feet, and
the image has resolution information, the scale factor is applied after the true width of the image in AutoCAD units is determined.

Specify On-screen
Allows you to input at the Command prompt or the pointing device. If Specify On-Screen is cleared, enter a value for the scale factor. The default scale factor is 1 .

\section*{Scale Factor Field}

Enter a value for the scale factor. The default scale factor is 1 .

\section*{Rotation}

Specifies the rotation angle of the selected image.
Specify on-screen
If Specify On-Screen is selected, you may wait until you exit the dialog box to rotate the object with your pointing device or enter a rotation angle value at the Command prompt.

\section*{Angle}

If Specify On-Screen is cleared, enter the rotation angle value in the dialog box. The default rotation angle is 0 .

\section*{Show Details}

Displays the image and DWG file paths.
Found In Displays the path where the image file is located.
Saved Path Displays the path that is saved with the drawing when the image file is attached. The path is dependent upon the Path Type setting.

\section*{Image Ribbon Contextual tab}

\section*{Quick Reference}

\section*{See also:}

■ Modify Raster Images and Image Boundaries

\section*{Access Methods}

Button

\title{
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Attach \\ Toolbar: Reference \\ Menu: Insert > Raster Image Reference \\ 塐 Command entry: imageattach
}

\section*{Summary}

When you select a raster image that is attached to a drawing, the Image Contextual tab appears on the ribbon.

\section*{List of Options}

The following options are diaplayed.

\section*{Adjust Panel}
Brightness \begin{tabular}{l} 
Controls the brightness and the contrast of the image. The greater \\
the value, the brighter the image. \\
Contrast \\
Controls the contrast and the fading effect of the image. The \\
greater the value, the more the image fades. \\
Fade
\end{tabular} \begin{tabular}{l} 
Controls the fading of an image. The greater the value, the more \\
the image blends with the current background color.
\end{tabular}

\section*{Clipping Panel}
\begin{tabular}{ll}
\begin{tabular}{l} 
Create Clipping \\
Boundary
\end{tabular} & \begin{tabular}{l} 
Deletes the old clipping boundary (if one exists) and creates a new \\
one.
\end{tabular} \\
Remove Clipping & Deletes the clipping boundary.
\end{tabular}

\section*{Options Panel}
\begin{tabular}{ll} 
Show Image & Hides or displays the image. \\
Transparency & Turns transparency on so that objects beneath the image are visible.
\end{tabular}

\section*{IMAGECLIP}

\section*{Quick Reference}

\section*{See also:}

■ Clip Raster Images

Crops the display of a selected image to a specified boundary.

\section*{Access Methods}


Button
\(\$\) Ribbon: Image contextual tab \(>\) Clipping panel \(>\) Create Clipping Boundary.
\(\$\) Menu: Modify \(>\) Clip \(>\) Image
\(\$\) Toolbar: Reference
Shortcut menu: Select an image to clip, right-click in the drawing area, and click Image > Clip.

\section*{Summary}

The clipping boundary determines the portion of a raster image that is hidden, either outside or inside the boundary. The visibility of the clipping boundary is controlled by the IMAGEFRAME system variable.

The boundary you specify must be in a plane parallel to the image object. When you select an image, the ribbon Image contextual tab on page 933 displays options for creating and deleting clipping boundaries.

TIP Use the CLIP command to clip any type of referenced file: images, external references, viewports, and DWF, DWFx, PDF, and DGN underlays.

\section*{List of Prompts}

The following prompts are displayed.

\section*{On}

Turns on clipping and displays the image clipped to the previously defined boundary.

\section*{Off}

Turns off clipping and displays the entire image and frame.
If you reclip the image while clipping is turned off, clipping is automatically turned back on. You are prompted to delete the old boundary even when clipping is turned off and the clipping boundary is not visible.

\section*{Delete}

Removes a predefined clipping boundary and redisplays the full original image.

\section*{New Boundary}

Defines a rectangular or polygonal clipping boundary, or generates a polygonal clipping boundary from a polyline.

NOTE You can only create a new clipping boundary for a selected IMAGE underlay after the old boundary is deleted.

Select Polyline Defines the boundary with the selected polyline. The polyline can be open but must consist of straight line segments and cannot intersect itself.

Polygonal Defines a polygonal clipping boundary with three or more points that you specify for the vertices of a polygon.

Rectangular Defines a rectangular boundary with the points that you specify for opposite corners.

Invert Clip Inverts the mode of the clipping boundary: objects are clipped either outside the boundary or inside the boundary.

\section*{IMAGEQUALITY}

\section*{Quick Reference}

\section*{See also:}
- Improve the Display Speed of Raster Images

Controls the display quality of images.

\section*{Access Methods}

Button

Menu: Modify \(>\) Object \(>\) Image \(>\) Quality
Toolbar: Reference

\section*{Summary}

The quality setting affects display performance; high-quality images take longer to display. Changing the setting updates the display immediately without causing a regeneration of the drawing.

NOTE Images are always plotted using a high-quality setting.

\section*{List of Prompts}

The following prompts are displayed.
High Produces a high-quality display of the image.
Draft Produces a lower-quality display of the image.

\section*{IMPORT}

\section*{Quick Reference}

See also:
- Import Other File Formats

Imports files of different formats into the current drawing.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Import panel \(>\) Import
\(\$\) Toolbar: Insert

\section*{Summary}

You can import data files, other than DWG files, that were created with other applications into the current drawing. The import process translates data into the corresponding DWG file data.

The Import File dialog box (a standard file selection dialog box) is displayed. In Files of Type, select the file format to import. In File Name, select the file name to import. The file is imported into the drawing. The following formats are available for import:

■ Metafile (*.wmf): Microsoft Windows \({ }^{\circledR}\) Metafile (see WMFIN on page 2097)
- ACIS (*.sat): ACIS solid object file (see ACISIN on page 82)

■ 3D Studio (*.3ds): 3D Studio file (see 3DSIN on page 68)
■ MicroStation DGN (*.dgn): MicroStation DGN file (see DGNIMPORT on page 548)

■ All DGN files (*.*): DGN files with user-specified file extensions such as .sed for seed files (see DGNIMPORT on page 548)

■ FBX files ( \({ }^{*} . f b x\) ): Autodesk \({ }^{\circledR}\) FBX files (see FBXIMPORT)

For the WMF file type, selecting Options on the Tools menu in this dialog box displays the WMF In Options dialog box. You can display this dialog box directly by using WMFOPTS.

If FILEDIA \(=0\), the following prompt is displayed:
Enter import file name: Enter path and file name

\section*{IMPRINT}

\section*{Quick Reference}

\section*{See also:}
- Add Edges and Faces to Solids

Imprints 2D geometry on a 3D solid or surface, creating additional edges on planar faces.

\section*{Access Methods}


Bution
\(\$\) Ribbon: Solid Modeling tab \(>\) Solid Editing panel \(>\) Imprint
\(\$\) Menu: Modify \(>\) Solid Editing \(>\) Imprint Edges
Summary
2D geometry located on a face or the intersection of a 3D solid with a face can be combined with that face to create additional edges. These edges can provide a visual effect, and can be pressed and pulled to create indentations and extrusions.


The object to be imprinted must intersect one or more faces on the selected solid in order for imprinting to be successful. Imprinting is limited to the following objects: arcs, circles, lines, 2D and 3D polylines, ellipses, splines, regions, bodies, and 3D solids.

\section*{List of Prompts}

The following prompts are displayed.

Select a 3D solid or surface Specifies a 3D solid or surface object to be imprinted.

Select an object to imprint Specifies an object that intersects the 3D object you selected.

Delete the source object Specifies whether to remove the object whose shape served as the imprint outline.

\section*{INSERT}

\section*{Quick Reference}

\section*{See also:}
- Insert Blocks

Inserts a block or drawing into the current drawing.

\section*{Access Methods}


\section*{Button}

Ribbon: Insert tab \(>\) Block panel \(>\) Insert
\(\$\) Menu: Insert \(>\) Block
\(\$\) Toolbar: Insert

\section*{Summary}

The Insert dialog box is displayed.
If you enter -insert at the Command prompt, options are displayed.
A good practice is to insert a block from a block library. A block library can be a drawing file that stores related block definitions or it can be a folder that contains related drawing files, each of which can be inserted as a block. With either method, blocks are standardized and accessible to multiple users. You can insert your own blocks or use the blocks provided in the DesignCenter or tool palettes.

\section*{Insert Dialog Box}

\section*{Quick Reference}

See also:
- Insert Blocks

Specifies the name and position of the block or drawing to insert.


\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Block panel \(>\) Insert
\(\$\) Menu: Insert \(>\) Block
Toolbar: Insert
业 Command entry: insert

\section*{Summary}

The position of the inserted block depends on the orientation of the UCS.

\section*{Name}

Specifies the name of a block to insert, or the name of a file to insert as a block.

\section*{Browse}

Opens the Select Drawing File dialog box (a standard file selection dialog box) where you can select a block or drawing file to insert.

Path
Specifies the path to the block.

\section*{Locate Using Geographic Data}

Inserts drawing using geographic data as the reference.
Specifies if the current and attached drawing contain geographic data. This option is available only if both drawings have geographic data.

\section*{Preview}

Displays a preview of the specified block to insert. A lightning bolt icon in the lower-right corner of the preview indicates that the block is dynamic. A
 icon indicates that the block is .

\section*{Insertion Point}

Specifies the insertion point for the block.

\section*{Specify On-Screen}

Specifies the insertion point of the block using the pointing device.

\section*{X}

Sets the \(X\) coordinate value
Y
Sets the \(Y\) coordinate value.

\section*{Z}

Sets the \(Z\) coordinate value.

\section*{Scale}

Specifies the scale for the inserted block. Specifying negative values for the \(X\), \(Y\), and \(Z\) scale factors inserts a mirror image of a block.

\section*{Specify On-Screen}

Specifies the scale of the block using the pointing device.

Sets the \(X\) scale factor.

\section*{Y}

Sets the \(Y\) scale factor.

Z
Sets the \(Z\) scale factor.
Uniform Scale
Specifies a single scale value for \(X, Y\), and \(Z\) coordinates.

\section*{Rotation}

Specifies the rotation angle for the inserted block in the current UCS.

\section*{Specify On-Screen}

Specifies the rotation of the block using the pointing device.
Angle
Sets a rotation angle for the inserted block.

\section*{Block Unit}

Displays information about the block units.

\section*{Unit}

Specifies the INSUNITS value for the inserted block.

\section*{Factor}

Displays the unit scale factor, which is calculated based on the INSUNITS value of the block and the drawing units.

\section*{Explode}

Explodes the block and inserts the individual parts of the block. When Explode is selected, you can specify a uniform scale factor only.
Component objects of a block drawn on layer 0 remain on that layer. Objects having color BYBLOCK are white. Objects with linetype BYBLOCK have the CONTINUOUS linetype.

\section*{-INSERT}

\section*{Quick Reference}

See also:
- Insert Blocks

\section*{List of Prompts}

The following prompts are displayed.
Enter block name or [?] <last>: Enter a name, enter ?, enter ~, or press Enter Units: <INSUNITS specified for inserted block> Conversion: <conversion scale> Specify insertion pointor [Basepoint/Scale/X/Y/Z/Rotate/Geographic]: Specify a point or enter an option

\section*{Block Name}

Grouped objects in an inserted drawing are inserted as unnamed groups. You can list unnamed groups by selecting Unnamed Groups in the Object Grouping dialog box.
Entering a tilde (~) displays the Select Drawing File dialog box (a standard file selection dialog box).

You can control block insertion behavior in response to the Enter Block Name prompt by following the listed examples.
- Inserting Exploded Blocks: Preceding the name of the block with an asterisk \({ }^{(*)}\) ) explodes the block and inserts the individual parts of it. The block definition is not added to the drawing.

■ Updating a Block Path: If you enter a block name without a path name, INSERT searches the current drawing data for an existing block definition by that name. You can replace an existing block definition with an external file by entering the following at the Enter Block Name prompt:
block name=file name
■ Updating a Block Definition: If you make changes to a block file that is inserted in your drawing and you want to change the existing block definition without creating a new block insertion, enter the following at the Specify Insertion Point prompt (following the Enter Block Name prompt): block name=
If you enter = after the block name, the following prompt is displayed:

Block "current" already exists. Redefine it? [Yes/No] <No>: Enter y, enter n, or press Enter
If you choose to redefine the block, the existing block definition is replaced with the new block definition. The drawing is regenerated, and the new definition is applied to all existing insertions of the block definition. Press Esc when prompted for the insertion point if you do not want to insert a new block into the drawing.

\section*{?-List Block Names}

Lists the blocks currently defined in the drawing.

\section*{Insertion Point}

Specifies a location for the block or drawing.
Scale Factor All \(X\) and \(Y\) dimensions of the block or drawing are multiplied by the \(X\) and \(Y\) scale factors. The block or drawing is rotated by the specified angle, using the insertion point as the center of rotation.

Corner Defines the \(X\) and \(Y\) scale factors at the same time, using the insertion point and another point as the corners of a box. The \(X\) and \(Y\) dimensions of the box become the \(X\) and \(Y\) scale factors. The insertion point is the first corner.
XYZ Sets \(X, Y\), and \(Z\) scale factors.
- \(X\) Scale Factor: Defines \(X, Y\), and \(Z\) scale factors for the block or drawing.
- Corner: Defines the \(X\) and \(Y\) scales at the same time, using the insertion point and another point as the corners of a box, and then defines the \(Z\) scale.

\section*{Basepoint}

Temporarily drops the block in the drawing where it is currently positioned and allows you to specify a new base point for the block reference as it is dragged into position. This does not affect the actual base point defined for the block reference.

\section*{Scale}

Sets the scale factor for the \(X, Y\), and \(Z\) axes. The scale for the \(Z\) axis is the absolute value of the specified scale factor.

\section*{X}

Sets the \(X\) scale factor.
Y
Sets the \(Y\) scale factor.

Sets the \(Z\) scale factor.

\section*{Rotate}

Sets the angle of insertion for the block.

\section*{Geographic}

Sets the geographic location of the attached file as reference.

\section*{INSERTOBJ}

\section*{Quick Reference}

See also:
- Import OLE Objects

Inserts a linked or embedded object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Data panel \(>\) OLE Object
\(\$\) Menu: Insert > OLE Object
\(\$\) Toolbar: Insert

\section*{Summary}

The Insert Object dialog box is displayed.
- Linked information from another document can be updated when it changes in the source document.
- Embedded information from another document is not updated when it changes in the source document.

\section*{Insert Object Dialog Box}

\section*{Quick Reference}

See also:
- Import OLE Objects

Inserts a linked or embedded object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Data panel \(>\) OLE Object
\(\$\) Menu: Insert \(>\) OLE Object
8 Toolbar: Insert
㽗 Command entry: insertobj

\section*{List of Options}

The following options are displayed.

\section*{Create New}

Opens the application that's highlighted in the Object Type list so that you can create a new object to insert.

Object Type Lists available applications that support linking and embedding. To create an object to embed, double-click an application to open it.
On the application's File menu, the Save option is replaced with a new Update option. Choosing Update inserts the object into the drawing or updates it.

Display as Icon Displays the source application's icon in the drawing. Double-clicking the icon displays the embedded information.

\section*{Create from File}

Specifies a file to link or embed.
File Specifies the path and name of the file to be embedded or linked.
Browse Displays the Browse dialog box (a standard file selection dialog box), in which you select a file to link or embed.

Link Creates a link to the selected file rather than embedding it.
Display as Icon Displays the source application's icon in the drawing. Double-clicking the icon displays the linked or embedded information.

\section*{INTERFERE}

\section*{Quick Reference}

\section*{See also:}
- Check 3D Models for Interferences

Creates a temporary 3D solid from the interferences between two sets of selected 3D solids.

\section*{Access Methods}

Button
\(\$\) Ribbon: Home tab \(>\) Solid Editing panel \(>\) Interfere
\(\$\) Menu: Modify \(>\) 3D Operations \(>\) Interference Checking

\section*{Summary}

Interferences are highlighted with a temporary 3D solid that represents the intersecting volume. You can also choose to retain the overlapping volumes.


If you define a single selection set, INTERFERE checks all the solids in the set against one another. If you define two selection sets, INTERFERE checks the solids in the first selection set against those in the second selection set. If you include the same 3D solid in both selection sets, INTERFERE considers the 3D solid part of the first selection set and ignores it in the second selection set.
Pressing Enter starts the interference testing of pairs of 3D solids and displays the Interference Checking dialog box.

If you enter -interfere at the Command prompt, options are displayed.

\section*{List of Prompts}

The following prompts are displayed.

First set of objects Specifies a set of objects to be checked. If you do not select a second set of objects, all objects in this selection set are checked against each other.
- Second set of objects

■ Nested selection
- Settings

Second set of objects Specifies an additional set of objects to be compared against the first set of objects. If you select the same object twice, the object is handled as part of the first selection set.
- Second set of objects
- Nested selection

■ Check first set. Initiates interference checking for only the first selection set and displays the Interference Checking dialog box.
- Check. Initiates interference checking for both sets of objects and displays the Interference Checking dialog box.

Nested selection Provides access to individual solid objects that are nested in blocks and xrefs.
- Select nested objects. Specifies which nested objects to include in the selection set.

■ Exit. Restores normal object selection (not nested).

Settings Displays the Interference Settings dialog box.

\section*{Interference Settings Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Check 3D Models for Interferences

Controls the display of interference objects

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Solid Editing panel \(>\) Interfere
\(\$\) Menu: Modify \(>\) 3D Operations \(>\) Interference Checking
㟇 Command entry: interfere

\section*{List of Options}

The following options are displayed.

\section*{Interference Objects}

Specifies the visual style and color for interference objects.
Visual Style
Specifies the visual style for interference objects (INTERFEREOBJVS).
Color
Specifies the color for interference objects (INTERFERECOLOR).

\section*{Highlight Interfering Pair}

Highlights the interfering pair of solids.
Highlight Interference
Highlights the interference objects created from the interfering pair.

\section*{Viewport}

Specifies the viewport display while checking for interferences.
Visual Style
Specifies the visual style for the viewport while checking for interferences (INTERFEREVPVS).

\section*{Interference Checking Dialog Box}

\section*{Quick Reference}

See also:
- Check 3D Models for Interferences

Cycles through, zooms, and deletes or retains interference objects.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{A Interference Checking} & - \\
\hline \multicolumn{4}{|l|}{Comparing 2 objects with each other.} \\
\hline \multicolumn{2}{|l|}{Interfering objects} & Highlight & \\
\hline First set: & 2 & Previous & \\
\hline Second set: & 0 & Next & d \\
\hline Interfering pairs found: & 1 & \(\checkmark\) Zoom to pair & 8 \\
\hline \multicolumn{4}{|l|}{\(\checkmark\) Delete interference objects created on Close} \\
\hline & & Close & \\
\hline
\end{tabular}

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Solid Editing panel \(>\) Interfere
\(\$\) Menu: Modify \(>\) 3D Operations \(>\) Interference Checking
亜 Command entry: interfere

\section*{List of Options}

The following options are displayed.

\section*{Interfering Objects}

Displays the number of interferences found between each set during the INTERFERE command.

\section*{First Set}

Displays the number of objects selected in the first set.

\section*{Second Set}

Displays the number of objects selected in the second set.
Interfering Pairs Found
Displays the number of interferences found among the selected objects.

\section*{Highlight}

Highlights interference objects while using Previous and Next to cycle through the objects.

Previous
Highlights the previous interference object.
Next
Highlights the next interference object.
Zoom to Pair
Zooms to interference objects while using Previous and Next.

\section*{Zoom}

Closes the dialog box and starts the ZOOM command.

\section*{Pan}

Closes the dialog box and starts the PAN command.

\section*{3D Orbit}

Closes the dialog box and starts the 3DORBIT command.

\section*{Delete Interference Objects Created on Close}

Deletes the interference objects when the dialog box is closed.

\section*{Close}

Closes the dialog box and deletes the interference objects if that option is selected.

\section*{-INTERFERE}

\section*{Quick Reference}

\section*{See also:}
- Check 3D Models for Interferences

\section*{Summary}

INTERFERE highlights all interfering 3D solids and displays the number of objects selected and the number of interfering pairs.

If you define a single selection set, INTERFERE checks all the solids in the set against one another. If you define two selection sets, INTERFERE checks the solids in the first selection set against those in the second selection set. If you include the same 3D solids in both selection sets, INTERFERE considers the 3D solid part of the first selection set and ignores it in the second selection set.

\section*{List of Prompts}

The following prompts are displayed.
Check for interferences between 2 sets of objects or within 1 set of objects... Select first set of objects or [Nested selection]: Use an object selection method or enter an option
Select second set of objects or [Nested selection/checK current] <checK>: Use an object selection method, enter \(\mathbf{n}\), or press Enter to check for interferences Create Interference Objects Creates and highlights new 3D solids on the current layer that are the intersections of the interfering pairs of 3D solids. If there are more than two interfering 3D solids, it may not be clear which pairs are interfering if all the interfering 3D objects are highlighted at once.

■ Zoom to pairs of interfering objects

Next Pair Cycles through the interfering pairs of 3D solids.

\section*{Nested Selection}

Allows you to select individual solid objects that are nested in blocks and xrefs.

\section*{INTERSECT}

\section*{Quick Reference}

See also:
See also:
■ Create Composite Objects

Creates a 3D solid, surface, or 2D region from overlapping solids, surfaces, or regions.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Solid Editing panel \(>\) Intersect
\(\$\) Menu: Modify \(>\) Solid Editing \(>\) Intersect
8 Toolbar: Modeling

\section*{Summary}

With INTERSECT, you can create a 3D solid from the common volume of two or more existing 3D solids, surfaces, or regions. If you select a mesh, you can convert it to a solid or surface before completing the operation.

You can extrude 2D profiles and then intersect them to create a complex model efficiently.

The selection set can contain regions, solids, and surfaces that lie in any number of arbitrary planes. INTERSECT divides the selection set into subsets and tests for intersections within each subset. The first subset contains all the solids and surfaces in the selection set. The second subset contains the first selected region and all subsequent coplanar regions. The third subset contains the next region that is not coplanar with the first region and all subsequent coplanar regions, and so on until all regions belong to a subset.

regions before INTERSECT

region after \(\operatorname{INTERSECT}\)

\section*{ISOLATEOBJECTS}

\section*{Quick Reference}

\section*{See also:}

■ Control the Display of Objects
Displays selected objects across layers; unselected objects are hidden.

\section*{Access Methods}

Shortcut menu: Right-click in the drawing area and click Isolate \(\boldsymbol{>}\) Isolate Objects.

\section*{Summary}

Displays selected objects in the current view. All other objects are temporarily hidden.

\section*{List of Prompts}

The following prompt is displayed.
Select objects: Use an object selection method

\section*{ISOPLANE}

\section*{Quick Reference}

See also:
- Set Isometric Grid and Snap

Specifies the current isometric plane.

\section*{Access Methods}

锉 Command entry: 'isoplane for transparent use

\section*{Summary}


The isometric plane affects the cursor movement keys only when Snap mode is on and the snap style is Isometric. If the snap style is Isometric, Ortho mode uses the appropriate axis pair even if Snap mode is off. The current isometric plane also determines the orientation of isometric circles drawn by ELLIPSE. You can cycle through the isometric planes by pressing Ctrl+E or F5.

\section*{List of Prompts}

The following prompts are displayed.
Enter isometric plane setting [Left/Top/Right] <Top>: Enter an option or press Enter
Left


Selects the left-hand plane, defined by the 90-degree and 150-degree axis pair.

\section*{Top}


Selects the top face of the cube, called the top plane, defined by the 30-degree and 150-degree axis pair.

Right


Selects the right-hand plane, defined by the 90-degree and 30-degree axis pair.

\section*{J Commands}

\section*{JOIN}

\section*{Quick Reference}

See also:
- Break and Join Objects

Joins similar objects to form a single, unbroken object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Surface Modeling tab \(>\) Curves panel \(\boldsymbol{>}\) Join
\(\%\) Menu: Modify \(>\) Join
\(\$\) Toolbar: Modify

\section*{Summary}

Most objects to be joined must be located in the same plane. You can join objects in different planes if the source object is a spline or a 3D polyline. Each type of object has additional restrictions.


\section*{List of Prompts}

The following prompts are displayed.
Select source object: Select a line, polyline, 3D polyline, arc, elliptical arc, spline, or helix

Depending on the source object selected, one of the following prompts is displayed:

Line The line objects must be collinear (lying on the same infinite line), but can have gaps between them.

Polyline The objects can be lines, polylines, or arcs. The objects cannot have gaps between them, and must lie on the same plane parallel to the UCS XY plane.

3D Polyline The 3D polyline and other objects must be contiguous (lying end-to-end), but they can be lying in different planes. The resulting object is a single 3D polyline.

Arc The arc objects must lie on the same imaginary circle, but can have gaps between them. The Close option converts the source arc into a circle.

NOTE When joining two or more arcs, the arcs are joined counterclockwise beginning from the source object.

Elliptical Arc The elliptical arcs must lie on the same ellipse, but can have gaps between them. The Close option closes the source elliptical arc into a complete ellipse.

NOTE When joining two or more elliptical arcs, the elliptical arcs are joined counterclockwise beginning from the source object.

Spline The spline and other objects must be contiguous (lying end-to-end), but they can be lying in different planes. The resulting object is a single spline.

Helix The helix objects must be contiguous (lying end-to-end). The resulting object is a single spline.

\section*{JPGOUT}

\section*{Quick Reference}

\section*{See also:}
- Export Raster Files

Saves selected objects to a file in JPEG file format.

\section*{Summary}

The Create Raster File dialog box (a standard file selection dialog box) is displayed. Enter the file name in the dialog box.

\section*{List of Prompts}

The following prompts are displayed.
Select objects or <all objects and viewports>: Press ENTER to select all objects and viewports or use an object selection method and press ENTER

A JPEG file is created that contains the objects you select. Shade Plot options are preserved in the file when you use this command. Light glyphs that are displayed in the drawing appear in the new file, even if the Plot Glyph property of the lights is set to No.

NOTE When the FILEDIA system variable is set to 0 (Off), command prompts are displayed.

\section*{JUSTIFYTEXT}

\section*{Quick Reference}

See also:
■ Change Text Scale and Justification

Changes the justification point of selected text objects without changing their locations.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Text panel \(>\) Justify
\(\$\) Menu: Modify \(>\) Object \(>\) Text \(>\) Justify
\(\$\) Toolbar: Text

\section*{Summary}

The justification point options shown above are described in the TEXT command. The justification point options for single line text are similar to those for multiline text except that the Align, Fit, and Left text options are equivalent to the bottom left (BL) multiline text attachment point.

\section*{List of Prompts}

The following prompts are displayed.
Select objects: Use an object selection method and press ENTER when you finish
You can choose single line text objects, multiline text objects, leader text objects, and attribute objects.

Enter a justification option
[Left/Align/Fit/Center/Middle/Right/TL/TC/TR/ML/MC/MR/BL/BC/BR]<Existing>: Specify a location to serve as the new justification point

\section*{L Commands}


\section*{LAYCUR}

\section*{Quick Reference}

See also:
- Use Layers to Manage Complexity

Changes the layer property of selected objects to the current layer.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Change to Current Layer
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Change to Current Layer
\(\%\) Toolbar: Layers II

\section*{Summary}

If you find objects that were created on the wrong layer, you can quickly change them to be on the current layer.

\section*{List of Prompts}

The following prompts are displayed.

Select objects to be changed to the current layer: Use an object selection method and press Enter when you are finished N object(s) changed to layer X (the current layer).

\section*{LAYDEL}

\section*{Quick Reference}

\section*{See also:}
- Use Layers to Manage Complexity

Deletes all objects on a layer and purges the layer.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Delete
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Layer Delete

\section*{Summary}

This command also changes block definitions that use the layer to be deleted. Objects on that layer are also deleted from all block definitions and the affected blocks are redefined.

\section*{List of Prompts}

The following prompts are displayed.
Select object on layer to delete or [Name]: Select an object or enter \(\mathbf{n}\) to display the Delete Layers dialog box

If you enter -laydel at the Command prompt, options are displayed on page 965.

Select Object on Layer to Delete Select an object on the layer you want to delete.

Name Displays the Delete Layers dialog box on page 965.

\section*{Delete Layers Dialog Box}

\section*{Quick Reference}

See also:
- Use Layers to Manage Complexity

Displays layers available for deletion.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Delete
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Layer Delete
亜 Command entry: laydel

\section*{List of Options}

The following options are displayed.
Layers to Delete Displays a list of layers that you can delete. Press Shift or Ctrl to select more than one layer. Layers that cannot be deleted include the current layer, layer 0 , locked layers, and xref-dependent layers.

\section*{-LAYDEL}

\section*{Quick Reference}

\section*{See also: \\ - Use Layers to Manage Complexity}

\section*{List of Prompts}

The following prompts are displayed.
Select object on layer to delete or [Name]: Select an object or enter \(\mathbf{n}\).

Select object on layer to delete or [Name/Undo]: Select an object, enter \(\mathbf{n}\), or enter u
Select Object on Layer to Delete Select an object on the layer you want to delete.

Name Select a layer to delete.

\section*{LAYER}

\section*{Quick Reference}
```

See also:
■ Use Layers to Manage Complexity
■ CLASSICLAYER on page 330
■ LAYERPALETTE on page 994
Manages layers and layer properties.

```

\section*{Access Methods}

```

Button
8 Ribbon: Home tab $>$ Layers panel $>$ Layer Properties Manager
Menu: Format $>$ Layer
Toolbar: Layer
菐 Command entry: 'layer for transparent use

```

\section*{Summary}

The Layer Properties Manager is displayed.
If you enter -layer at the Command prompt, options are displayed.


Use layers to control the visibility of objects and to assign properties such as color and linetype. Objects on a layer normally assume the properties of that layer. However, you can override any layer property of an object. For example, if an object's color property is set to BYLAYER, the object displays the color of that layer. If the object's color is set to Red, the object displays as red, regardless of the color assigned to that layer.

\section*{Layer Properties Manager}

\section*{Quick Reference}

\section*{See also:}
- Work with Layers
- CLASSICLAYER on page 330

Displays a list of the layers in the drawing and their properties.


\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Layer Properties Manager Menu: Format \(>\) Layer
Toolbar: Layer
Command entry: layer (or 'layer for transparent use)

\section*{Summary}

You can add, delete, and rename layers, change their properties, set property overrides for layout viewports, or add layer descriptions and apply changes in realtime. You do not need to click Ok or Apply to view property changes. Layer filters control which layers are displayed in the list and can also be used to make changes to more than one layer at a time.
When switching space (model space to layout space or layout to viewport), the Layer Properties Manager is updated and displays the current state of the layer properties and filter selection in the current space.

\section*{List of Options}

The following options are displayed.
New Property Filter

Displays the Layer Filter Properties dialog box, where you can create a layer filter based on one or more properties of the layers.

\section*{New Group Filter}

Creates a layer filter that contains layers that you select and add to the filter.

\section*{Layer States Manager}

Displays the Layer States Manager on page 996, in which you can save the current property settings for layers in a named layer state and then restore those settings later.

\section*{New Layer}

Creates a new layer. The list displays a layer named LAYER1. The name is selected so that you can enter a new layer name immediately. The new layer inherits the properties of the currently selected layer in the layer list (color, on or off state, and so on).

The new layer is created below the last currently selected layer.

\section*{New Layer Frozen VP In All Viewports}

Creates a new layer and freezes it in all existing layout viewports. This button is accessible from the Model tab or layout tabs.

\section*{Delete Layer}

Deletes selected layers. You can delete only unreferenced layers. Referenced layers include layers 0 and DEFPOINTS, layers containing objects (including objects in block definitions), the current layer, and xref-dependent layers.

Layers in a partially opened drawing are also considered referenced and cannot be deleted.

NOTE Be careful about deleting layers if you are working on a drawing in a shared project or one based on a set of layering standards.

\section*{Set Current}

Sets the selected layer as the current layer. Objects that you create are drawn on the current layer. (CLAYER system variable)

\section*{Current Layer}

Displays the name of the current layer.

\section*{Search for Layer}

Filters the layer list by name quickly as you enter characters. This filter is not saved when you close the Layer Properties Manager.

\section*{Status Line}

Shows the name of the current filter, the number of layers displayed in the list view, and the number of layers in the drawing.

\section*{Invert Filter}

Displays all layers that do not meet the criteria in the selected layer property filter.

\section*{Indicate Layers in Use}

Displays icons in the list view to indicate whether layers are in use. In a drawing with many layers, clear this option to improve performance. (SHOWLAYERUSAGE system variable)

\section*{Refresh}

Refreshes the layer usage information by scanning all the entities in the drawing.

\section*{Settings}

Displays the Layer Settings dialog box on page 985, in which you can set new layer notification settings, if layer filter changes are applied to the Layer toolbar, and change the background color for layer property overrides.

Apply Applies changes that have been made to layers and filters but does not close the dialog box.

The Layer Properties Manager has the following two panes:
■ Tree view
■ List view

\section*{Tree View}

Displays a hierarchical list of layers and filters in the drawing. The top node, All, displays all layers in the drawing. Filters are displayed in alphabetical order. The All Used Layers filter is read-only.

Expand a node to see nested filters. Double-click a property filter to open the Layer Filter Properties dialog box and view the definition of the filter.
The Hide/Show Layer Filters button controls the display of the Layer Filters pane of the Layer Properties Manager. When the Layer Filter pane is collapsed,
the Layer Filter button is displayed adjacent to Layer Filter status text. The Layer Filter button gives you access to the filters when the full Layer Filter pane is closed.

If there are xrefs attached to the drawing, an xref node displays the names of all the xrefs in the drawing and the layers in each xref. Layer filters defined in xref files are not displayed.

If there are layers that contain property overrides, a Viewport Overrides node is automatically created and displays those layers and the properties that contain overrides. The Viewport Overrides filter displays only when the Layer Properties Manager is accessed from a layout tab.

If there are new layers that have been added to the drawing since the layer list was last evaluated (depending on how the LAYERNOTIFY system variable is set), an Unreconciled New Layers filter is automatically created and displays new layers that need to be reconciled.

\section*{Tree View Shortcut Menu}

Provides commands for items selected in the tree view.
Visibility Changes the visibility state of all the layers in the selected filter (or All or All Used Layers, if selected).
■ On: Objects on the layer are displayed, plotted, and regenerated and hide other objects when you use HIDE.

■ Off: Objects on the layer are not displayed and not plotted but do hide other objects when you use HIDE. The drawing is not regenerated when you turn the layer on.

■ Thawed: Objects on the layer are displayed and plotted, and hide other objects when you use HIDE.
- Frozen: Objects on the layer are not displayed and not plotted but do hide other objects when you use HIDE. The drawing is regenerated when you thaw the layer.

Lock Controls whether the objects on the layers in the selected filter can be modified.
- Lock: None of the objects on the layer can be modified. You can still apply object snaps to objects on a locked layer and perform other operations that do not modify those objects.

■ Unlock: Objects on the layer can be modified.

Viewport In the current layout viewport, controls the VP Freeze setting of the layers in the selected layer filter. This option is not available for model space viewports.
■ Freeze: Sets VP Freeze for layers in the filter. In the current viewport, objects on the layer are not displayed and not plotted but do hide other objects when you use HIDE. The drawing is regenerated when you thaw the layer.

■ Thaw: Clears VP Freeze for layers in the filter. In the current viewport, objects on the layer are displayed and plotted and hide other objects when you use HIDE. This option does not thaw layers that are set to Off or Frozen in the drawing.

Isolate Group Turns off all layers not in the selected filter. The layers that are visible are the layers in the filter.
■ All Viewports: In all viewports in a layout, sets VP Freeze for all layers that are not in the selected filter. In model space, turns off all layers that are not in the selected filter.
- Active Viewport Only: In the current layout viewport, sets VP Freeze for all layers that are not in the selected filter. In model space, turns off all layers that are not in the selected filter.

New Properties Filter Displays the Layer Filter Properties dialog box, where you can create a new layer filter based on layer names and settings; for example, on or off, color, or linetype.
New Group Filter Creates a new layer group filter named GROUP FILTER1 and adds it to the tree view. Enter a new name. Select the All filter or any other layer filter in the tree view to display layers in the list view, and then drag layers from the list view into the new layer group filter in the tree view.

Convert to Group Filter Converts the selected layer property filter to a layer group filter. Changing the properties of the layers in a layer group filter has no effect on the filter.

Rename Renames the selected filter. Enter a new name.
Delete Deletes the selected layer filter. You cannot delete the All, All Used Layers, or Xref filters. This option deletes the layer filter but not the layers in the filter.

Properties Displays the Layer Filter Properties dialog box, where you can modify the definition of the selected layer property filter. This option is available only when a layer property filter is selected.

Select Layers Temporarily closes the Layer Filter Properties dialog box so that you can select objects in the drawing. This option is available only when a layer group filter is selected.
- Add: Adds the layers of the selected objects to the layer group filter that is selected in the tree view.
- Replace: Replaces the layers of the selected layer group filter with the layers of the objects that are selected in the drawing.

\section*{List View}

Displays layers and layer filters and their properties and descriptions.
If a layer filter is selected in the tree view, the list view displays only the layers in that layer filter. The All filter in the tree view displays all layers and layer filters in the drawing. When a layer property filter is selected and there are no layers that fit its definition, the list view is empty. To modify a property of a selected layer or of all layers in a selected filter, click the icon for that property. When a mixed icon or "Varies" is displayed for a layer filter, the property is not the same for all layers in the filter.
Status Indicates the type of item: layer filter, layer in use, empty layer, or current layer.

Name Displays the name of the layer or filter. Press F2 to enter a new name.
On Turns the selected layers on and off. When a layer is on, it is visible and available for plotting. When a layer is off, it is invisible and not plotted, even if Plot is on.

Freeze Freezes the selected layers in all viewports, including the Model tab. You can freeze layers to speed up ZOOM, PAN, and many other operations; improve object selection performance; and reduce regeneration time for complex drawings.
Objects on frozen layers are not displayed, plotted, hidden, rendered, or regenerated.
Freeze the layers you want to be invisible for long periods. If you plan to switch visibility settings frequently, use the On/Off setting to avoid regenerating the drawing. You can freeze a layer in all viewports, in the current layout viewport, or in new layout viewports as they are created.

Lock Locks and unlocks the selected layers. Objects on a locked layer cannot be modified.

Color Changes the color associated with the selected layers. Clicking the color name displays the Select Color dialog box.

Linetype Changes the linetype associated with the selected layers. Clicking the linetype name displays the Select Linetype dialog box.

Lineweight Changes the lineweight associated with the selected layers. Clicking the lineweight name displays the Lineweight dialog box.

Transparency Controls the visibility of all objects on the selected layer. When transparency is applied to individual objects, the objects' transparency property overrides the transparency setting of the layer. Clicking the Trasparency value displays the Layer Transparency dialog box on page 984.

Plot Style Changes the plot style associated with the selected layers. If you are working with color-dependent plot styles (thePSTYLEPOLICY system variable is set to 1 ), you cannot change the plot style associated with a layer. Clicking the plot style displays the Select Plot Style dialog box.

Plot Controls whether the selected layers are plotted. If you turn off plotting for a layer, the objects on that layer are still displayed. Layers that are off or frozen are not plotted, regardless of the Plot setting.

VP Freeze (available only from a layout tab) Freezes selected layers in the current layout viewport. You can freeze or thaw layers in the current viewport without affecting layer visibility in other viewports.
VP Freeze is an override to the Thaw setting in the drawing. That is, you can freeze a layer in the current viewport if it's thawed in the drawing, but you can't thaw a layer in the current viewport if it's frozen or off in the drawing. A layer is not visible when it is set to Off or Frozen in the drawing.

New VP Freeze Freezes selected layers in new layout viewports. For example, freezing the DIMENSIONS layer in all new viewports restricts the display of dimensions on that layer in any newly created layout viewports but does not affect the DIMENSIONS layer in existing viewports. If you later create a viewport that requires dimensions, you can override the default setting by changing the current viewport setting.

VP Color (available only from a layout tab) Sets an override for the color associated with the selected layer for the active layout viewport.

VP Linetype (available only from a layout tab) Sets an override for the linetype associated with the selected layer for the active layout viewport.

VP Lineweight (available only from a layout tab) Sets an override for the lineweight associated with the selected layer for the active layout viewport.

VP Transparency (available only from a layout tab) Sets an override for transparency associated with the selected layer for the active layout viewport.

VP Plot Style (available only from a layout tab) Sets an override for the plot style associated with the selected layer for the active layout viewport. Override settings are not visible in the viewport or plotted when the visual style in the drawing is set to Conceptual or Realistic. If you are working with color-dependent plot styles (the PSTYLEPOLICY system variable is set to 1), you cannot set a plot style override.

Description (Optional) Describes the layer or the layer filter.

\section*{List View Shortcut Menu}

Provides options for modifying the list and modifying selected layers and layer filters.

\section*{Column Label Shortcut Menu}

Column Names Lists all columns by name. Columns that are checked indicate they are displayed. Hidden column names are not checked. VP Freeze, VP Color, VP Linetype, VP Lineweight, and VP Plot Style are available only when a layout viewport is active.

Customize Displays the Customize Layer Columns dialog box on page 988, where you can specify which columns are hidden or displayed.

Maximize All Columns Maximizes all columns to the width of the column headers and the data content. This option is available on the shortcut menu that is displayed when you right-click a column heading.

Maximize Column Changes the width of the column to maximize display of the column content. This option is available on the shortcut menu that is displayed when you right-click a column heading.

Optimize all columns Changes the width of all columns to maximize display of the column content. This option is available on the shortcut menu that is displayed when you right-click a column heading.

Optimize column Changes the width of a column to maximize display of the column content. This option is available on the shortcut menu that is displayed when you right-click a column heading.

Freeze column (or Unfreeze column) Freezes (or unfreezes) the column and any columns to the left. This option is available on the shortcut menu when you right-click a column heading.

Restore All Columns to Defaults Restores all columns to their default display and width settings. This option is available on the shortcut menu when you right-click a column heading.

\section*{Layer Shortcut Menu}

Show Filter Tree Displays the tree view. Clear this option to hide the tree view.

Show Filters in Layer List Displays filters at the top of the list view. The filters are listed in alphabetical order. Clear the check mark to display only layers in the list view.

Set Current Sets the selected layer as the current layer. (CLAYER system variable)

New Layer Creates a new layer. The list displays a layer named LAYER1. You can edit this layer name immediately. The new layer inherits the properties of the currently selected layer in the layer list (color, on or off state, and so on).

Rename Layer Renames the layer.
Delete Layer Deletes selected layers from the drawing file definition. You can delete only unreferenced layers. Referenced layers include layers 0 and DEFPOINTS, layers containing objects (including objects in block definitions), the current layer, and xref-dependent layers.
NOTE Be careful about deleting layers if you are working on a drawing in a shared project or one based on a set of layering standards.

Change Description Adds a description or changes the text in the description for the selected layer or filter. The description for a filter is added to the filter and to all layers in the filter.

Remove from Group Filter Removes the selected layers from the group layer filter that is selected in the tree view.

Reconcile Layer Removes new layers from the Unreconciled New Layers filter. Available only when one or more unreconciled layers is selected.

Remove Viewport Overrides For Removes a single override property or all property overrides on selected layers (or all layers) for the current viewport or all viewports. Different options display in a flyout menu depending on where the cursor is located when the shortcut menu is accessed. To remove a single property override, right-click the property override. This option is only available on the layout tab.

New Layer Frozen in All Viewports Creates a new layer and freezes it in all existing layout viewports and new viewports.

VP Freeze Layer in All Viewports Freezes the selected layer in all existing layout viewports and new viewports.

VP Thaw Layer in All Viewports Thaws the selected layer in all existing layout viewports and new viewports.

Select All Selects everything displayed in the list view.
Clear All Removes selection from all items in the list view except the most recently selected layer or filter.

Select All but Current Selects everything displayed in the list view except the current layer.

Invert Selection Selects everything displayed in the list view except the items that are currently selected.

Invert Layer Filter Displays all layers that do not meet the criteria in the selected layer property filter.

Layer Filters Displays a list of layer filters, including All and All Used Layers. Click a filter to apply it to the list view.

Save Layer States Displays the dialog box on page 999, in which you save the layer state and layer property settings of all layers in a drawing.

Restore Layer State Displays the Layer States Manager on page 996, in which you can select a named layer state to restore settings of all layers in the drawing. Restores only those layer state and property settings that were selected when the named layer state was saved.

\section*{Layer Filter Properties Dialog Box}

\section*{Quick Reference}

See also:
- Work with Layers

Filters layers based on criteria you select.

\section*{Access Methods}


Button
```

$\$$ Ribbon: Home tab $>$ Layers panel $>$ Layer Properties Manager
Menu: Format > Layer
Toolbar: Layer
Command entry: layer (or 'layer for transparent use)

```

\section*{Summary}

When a layer filter is selected in the tree view of the Layer Properties Manager, layers that match the filter criteria are displayed in the list view.

\section*{List of Options}

The following options are displayed.

\section*{Filter Name}

Provides a space to enter a name for the layer properties filter.

\section*{Show Example}

Displays the examples of layer property filter definitions in "Layer Filter Examples".

\section*{Filter Definition}

Displays the properties of layers. You can use one or more properties to define the filter. For example, you can define a filter that displays all layers that are either red or blue and in use. To include more than one color, linetype, or lineweight, duplicate the filter on the next line and select a different setting.

Status Click the In Use icon or the Not In Use icon.
Name Use wild-card characters to filter layer names. For example, enter *mech* to include all layers with the letters mech in the name.

All the wild-card characters are listed in the table in Filter and Sort the List of Layers in the User's Guide.

On Click the On or the Off icon.
Freeze Click the Freeze or the Thaw icon.
Lock Click the Lock or the Unlock icon.
Color Click the [...] button to display the Select Color dialog box.
Linetype Click the [...] button to display the Select Linetype dialog box.
Lineweight Click the [...] button to display the Lineweight dialog box.
Transparency Click the field to display the Layer Transparency dialog box.

Plot Style Click the [...] button to display the Select Plot Style dialog box.
Plot Click the Plot icon or the Do Not Plot icon.
VP Freeze Click the Freeze icon or the Thaw icon.
New VP Freeze Click the Freeze icon or the Thaw icon.
VP Color Click the [...] button to display the Select Color dialog box.
VP Linetype Click the [...] button to display the Select Linetype dialog box.
VP Lineweight Click the [...] button to display the Lineweight dialog box.
VP Transparency Click the field to display the Layer Transparency dialog box.

VP Plot Style Click the [...] button to display the Select Plot Style dialog box.

\section*{Filter Preview}

Displays the results of the filter as you define it. The filter preview shows which layers will be displayed in the layer list in the Layer Properties Manager when you select this filter.

\section*{Layer Filter Examples}

\section*{Quick Reference}

See also:
- Work with Layers

Each example shows a layer filter definition that is set up in the Layer Filter Properties dialog box.

\section*{Example 1}

The filter named "[ANNO]" displays layers that meet all of the following criteria:
- Are in use
- Have a name that contains the letters anno
- Are on


\section*{Example 2}

The filter named "RYW" displays layers that meet all of the following criteria:
- Are on
- Are frozen
- Are red or yellow or white


\section*{Select Linetype Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Work with Layers

Displays linetypes available in the current drawing.


\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Layer Properties Manager
\(\$\) Menu: Format \(>\) Layer
\(\%\) Toolbar: Layer
幽 Command entry: layer (or 'layer for transparent use)

\section*{List of Options}

The following options are displayed.
Loaded Linetypes
Displays the list of linetypes loaded in the current drawing.

\section*{Load}

Displays the Load or Reload Linetypes dialog box, in which you can load selected linetypes into the drawing and add them to the list of linetypes.

\section*{Lineweight Dialog Box}

\section*{Quick Reference}

See also:
- Work with Layers

Displays the lineweight values available.


\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Layer Properties Manager
\(\$\) Menu: Format \(>\) Layer
\(\%\) Toolbar: Layer
並 Command entry: layer (or 'layer for transparent use)

\section*{Summary}

You can customize your lineweights to plot at other values by using the Plot Style Table Editor. See "Control Plotted Lineweight and Linetype" in the User's Guide.

\section*{List of Options}

The following options are displayed.

\section*{Lineweights}

Displays the available lineweights to be applied. Available lineweights consist of fixed values that are most commonly used in drawings. Select a lineweight to apply it.

\section*{Original}

Displays the previous lineweight. The default lineweight assigned when a layer is created is DEFAULT (which plots to a default value of 0.01 inches or 0.25 mm ). (LWDEFAULT system variable)

New
Displays the new lineweight assigned to the layer.

\section*{Layer Transparency Dialog Box}

\section*{Quick Reference}

See also:
- Work with Layers

Sets the transparency level for the selected layer(s) in the current drawing.

\section*{Access Methods}


Button

Ribbon: Home tab \(>\) Layers panel \(>\) Layer Properties Manager
\(\$\) Menu: Format > Layer
Toolbar: Layer
Command entry: layer (or 'layer for transparent use)

\section*{Summary}

Select or enter a transparency level to apply to selected layers in the current drawing.

\section*{Layer Settings Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Use New Layer Notification

Displays new layer notification, isolate layer, and dialog settings.


\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Layer Properties Manager
\(\$\) Menu: Format > Layer
\(\%\) Toolbar: Layer
㓙 Command entry: layer (or 'layer for transparent use)

\section*{Summary}

Click on the Layer Properties Manager on page 967.
Controls when notification occurs for new layers and if layer filters are applied to the Layers toolbar; also controls the background color of viewport overrides in the Layer Properties Manager.

\section*{List of Options}

The following options are displayed.

\section*{New Layer Notification}

Controls the evaluation and notification of new layers based on the LAYEREVAL settings in the DWG file.

NOTE There should be no filter (Unreconciled Layer filter) displayed when LAYEREVALCTL \(=0\). If one is currently displayed, it will be turned off. You can set the unreconciled new layers filter active and select the layers in that filter. With the unreconciled layer selected, you can right-click and click Reconcile Layer.

\section*{Evaluate New Layers Added to Drawing}

Checks for new layers that have been added to the drawing. \((\) LAYEREVAL \(=\) \(0)\)

\section*{Evaluate New Xref Layers Only}

Checks for new layers that have been added to attached xrefs. (LAYEREVAL
= 1)

\section*{Evaluate All New Layers}

Checks for new layers that have been added to the drawing, including new layers added to attached xrefs. (LAYEREVAL \(=2\) )

\section*{Notify when New Layers Are Present}

Turns on new layer notification. (LAYERNOTIFY \(=0\) )

\section*{Open}

Displays new layer notification when new layers are present when you use the OPEN command. (LAYERNOTIFY = 2)

\section*{Attach/Reload Xrefs}

Displays new layer notification when new layers are present when you are attaching or reloading xrefs. (LAYERNOTIFY \(=4\) )

Restore Layer State
Displays new layer notification when you are restoring layer states.
(LAYERNOTIFY = 8)

\section*{Save}

Displays new layer notification when new layers are present when you use the SAVE command. (LAYERNOTIFY \(=16\) )

Insert
Displays new layer notification when new layers are present when you use the INSERT command. (LAYERNOTIFY = 32)

\section*{Display Alert for Plot When New Layers are Present}

Displays new layer notification when new layers are present when you use the PLOT command. (LAYERNOTIFY = 1)

\section*{Isolate Layer Settings}

Setting for layers not isolated:
Lock and Fade
Selects Lock and Fade as isolation method.
Off
Sets non-selected layers to Off.
Off
Sets non-selected layers to Off (in paper space).
VP Freeze
Sets non-selected layers to Viewport Freeze (in paper space).

\section*{Dialog Settings}

Apply Layer Filter to Layer Toolbar
Controls the display of layers in the list of layers on the Layers toolbar and Layers panel on the ribbon by applying the current layer filter.

\section*{Indicate Layers in Use}

Displays icons in the list view to indicate whether layers are in use. In a drawing with many layers, clear this option to improve performance.

Viewport Override Background Color Displays a list of colors and the Select Color dialog box where you can select a background color for viewport overrides.

\section*{Customize Layer Columns Dialog Box}

\section*{Quick Reference}

See also:
- Work with Layers

Controls the display and order of columns in the Layer Properties Manager.


\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Layer Properties Manager
\(\%\) Menu: Format \(>\) Layer
\(\$\) Toolbar: Layer
座 Command entry: layer (or 'layer for transparent use)

\section*{List of Options}

The following options are displayed.
Check the Columns you want to Display
Lists all columns that display depending on whether the Layer Properties Manager was accessed from Model space or a layout tab. Checked columns are displayed in the Layer Properties Manager.

Move Up
Moves the checked layer to the left in the Layer Properties Manager.

\section*{Move Down}

Moves the checked layer to the right in the Layer Properties Manager.
Select All
Checks all columns in the list.
Clear All
Unchecks all columns in the list.

\section*{Quick Reference}

See also:
■ Use Layers to Manage Complexity

Manages layers and layer properties.

\section*{List of Prompts}

The following prompts are displayed.
Current layer: <"current">
Enter an option
[?/Make/Set/New/Rename/ON/OFF/Color/Ltype/LWeight/TRansparency on page
991/MATerial/Plot/PStyle/Freeze/Thaw/LOck/Unlock/stAte/Description/rEconcile]:
NOTE The Pstyle option is available only when you are using named plot styles.

\section*{?-List Layers}

Displays a list of the currently defined layers, showing their names, states, color numbers, linetypes, lineweights, and whether they are externally dependent layers.

\section*{Make}

Creates a layer and makes it current. New objects are drawn on the current layer.

If no layer exists for the name you enter, a new layer with that name is created. The new layer is on and assumes the following properties by default: color number 7, the CONTINUOUS linetype, and a lineweight of DEFAULT.

If the layer exists but is turned off, it is turned on.

\section*{Set}

Specifies a new current layer but does not create the layer if it does not already exist. If the layer exists but is turned off, it is turned on and made current. A frozen layer cannot be made current.

\section*{New}

Creates layers. You can create two or more layers by entering names separated by commas.

\section*{Rename}

Renames an existing layer.
On
Makes selected layers visible and available for plotting.

\section*{Off}

Makes selected layers invisible and excludes them from plotting.

\section*{Color}

Changes the color associated with a layer. Enter a color name or a number from 1 through 255.

True Color Specifies a true color to be used for the selected object. Enter three integer values from 0 to 255 separated by commas to specify a true color.

Color Book Specifies a color from a loaded color book to used for the selected object. Enter the name of a color book that has been installed, such as PANTONE \({ }^{\circledR}\).

The color is assigned to the layer or layers, and the layers are turned on. To assign a color but turn off the layer, precede the color with a minus sign (-).

\section*{Ltype}

Changes the linetype associated with a layer.

\section*{Lweight}

Changes the lineweight associated with a layer.
If you enter a valid lineweight, the current lineweight is set to the new value. If you enter a lineweight that is not valid, the current lineweight is set to the nearest fixed lineweight value. If you would like to plot an object with a custom width not found in the list of fixed lineweight values, you can use the Plot Style Table Editor to customize plotted lineweights.

\section*{Transparency}

Changes the transparency level associated with a layer. Enter a value from 0 to 90 .

After specifying a transparency value, the following prompt is displayed:
Enter name list of layer(s) for transparency specified value\% <0>: Enter the names of the layers to which to apply this transparency level, or press Enter to apply it to the current layer only

\section*{Material}

Attaches a material to a layer. The material must be available in the drawing before it can be assigned to a layer.

\section*{Plot}

Controls whether visible layers are plotted. If a layer is set to plot but is currently frozen or turned off, the layer is not plotted.

\section*{Pstyle}

Sets the plot style assigned to a layer. This option is not available if you are using color-dependent plot styles in the current drawing (the PSTYLEPOLICY system variable is set to 1). See "Use Plot Styles to Control Plotted Objects" in the User's Guide.

If you select a plot style other than NORMAL, the following prompt is displayed:

Enter name list of layer(s) for plot style current <current>: Enter the names of the layers to use this plot style, or press Enter to apply the style to the current layer only

\section*{Freeze}

Freezes layers, making them invisible and excluding them from regeneration and plotting.

\section*{Thaw}

Thaws frozen layers, making them visible and available for regeneration and plotting.

\section*{Lock}

Locks layers, preventing editing of objects on those layers.

\section*{Unlock}

Unlocks selected locked layers, permitting editing of objects on those layers.

\section*{State}

Saves and restores the state and property settings of the layers in a drawing.
?-List Named Layer States Lists the named layer state (LAS) files in the support path for the drawing.

Save Saves the state and properties settings of the layers in a drawing under a specified layer state name. When saving a layer state, you specify which layer settings are affected when the layer state is later restored.

Restore Restores the state and property settings of all layers to previously saved settings. Restores only those layer state and property settings that were selected when the layer state was saved.

Edit Changes the saved layer settings for a specified layer state. When the layer state is restored, the specified settings are used.

Name Changes the name of a saved layer state.
Delete Removes a saved layer state.
Import Loads a previously exported layer state (LAS) file, or layers states from a file (DWG, DWS, DWT) into the current drawing. Additional layers may be created as a result of importing a layer state file.

Export Saves a selected named layer state to a layer state (LAS) file.

\section*{Description}

Sets the description property value of the existing layer.

A warning prompt is displayed when you enter a description to a layer with an existing description.

\section*{Reconcile}

Sets the unreconciled property of an unreconciled layer.
? - Name List of Layers Displays a list of all unreconciled layers.

\section*{LAYERCLOSE}

\section*{Quick Reference}

See also:
- Work with Layers

Closes the Layer Properties Manager.

\section*{Summary}

Closes the Layer Properties Manager if it is open.

\section*{LAYERP}

\section*{Quick Reference}

\section*{See also:}
- Change Layer Settings and Layer Properties

Undoes the last change or set of changes made to layer settings.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Previous
\(\$\) Menu: Format \(>\) Layer tools \(>\) Previous

Toolbar: Layers

\section*{Summary}

Undoes changes you have made to layer settings such as color or linetype. If settings are restored, a message is displayed: "Restored previous layer states."

When you use Layer Previous, it undoes the most recent change using either the Layer control or the Layer Properties Manager. Every change you make to layer settings is tracked and can be undone by Layer Previous.

LAYERP (Layer Previous) does not undo the following changes:
- Renamed layers: If you rename a layer and change its properties, Layer Previous restores the original properties but not the original name.
- Deleted layers: If you delete or purge a layer, using Layer Previous does not restore it.
- Added layers: If you add a new layer to a drawing, using Layer Previous does not remove it.

\section*{LAYERPALETTE}

\section*{Quick Reference}

\section*{See also:}

■ Change Layer Settings and Layer Properties

Opens the modeless Layer Properties Manager.

\section*{Summary}

The modeless Layer Properties Manager palette is displayed.

\section*{LAYERPMODE}

\section*{Quick Reference}

See also:
- Change Layer Settings and Layer Properties

Turns on and off the tracking of changes made to layer settings.
Summary
When Layer Previous mode is on, changes made to layers are tracked. When Layer Previous mode is off, changes made to layers are no longer tracked.

\section*{LAYERSTATE}

\section*{Quick Reference}

See also:
- Work with Layer States

Saves, restores, and manages named layer states.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Layer State drop-down \(>\) Manage Layer States.
\(\$\) Menu: Format > Layer States Manager
\(\$\) Toolbar: Layers

\section*{Summary}

The Layer States Manager on page 996 is displayed.

Saves the layer settings in a drawing as a named layer state. Named layer states can then be restored, edited, imported, and exported for use in other drawings.

\section*{Layer States Manager}

\section*{Quick Reference}

\section*{See also:}

■ Work with Layer States

Create or edit layer states.


\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Layer State drop-down \(>\) Manage Layer States.

\section*{8 Menu: Format \(>\) Layer States Manager \\ \(\$\) Toolbar: Layers \\ 㛗 Command entry: layerstate}

\section*{Summary}

Displays a list of saved layer states in the drawing. You can create, rename, edit, and delete layer states.

\section*{List of Options}

The following options are displayed.

\section*{Layer States}

Lists the named layer states that have been saved in the drawing, the space in which they were saved (model space, layout, or xref), whether the layer list is the same as in the drawing, and an optional description.

\section*{Don't List Layer States in Xrefs}

Controls whether layer states in xrefs are displayed.

\section*{New}

Displays the New Layer State to Save dialog box on page 999, where you can provide a name and a description for the new named layer state.

Save
Saves the selected named layer state.

\section*{Edit}

Displays the Edit Layer State dialog box on page 1000, where you can modify a selected named layer state.

\section*{Rename}

Allows in-place editing of the layer state name.

\section*{Delete}

Removes the selected named layer state.

\section*{Import}

Displays a standard file selection dialog box, where you can load a previously exported layer state (LAS) file into the current drawing. Layer states in files (DWG, DWS, or DWT) can be imported. Additional layers may be created as a result of importing a layer state file. When a DWG, DWS, or DWT file is
selected, the Select Layer States dialog box on page 1002 is displayed where you can select layer states to import.

\section*{Export}

Displays a standard file selection dialog box, where you can save the selected named layer state to a layer state (LAS) file.

\section*{Restore}

Restores state and property settings of all layers in a drawing to their previously saved settings. Restores only those layer state and property settings that you specify with the check boxes.

\section*{Close}

Closes the Layer States Manager and saves changes.

\section*{Restore Options}

Turn Off Layers Not Found in Layer State
When a layer state is restored, turns off new layers for which settings were not saved so that the drawing looks the same way it did when the named layer state was saved.

\section*{Apply Properties as Viewport Overrides}

Applies layer property overrides to the current viewport. This option is available when the Layer States Manager is accessed when a layout viewport is active.

\section*{More Options}

Controls the display of additional options in the Layer States Manager dialog box.

\section*{Layer Properties to Restore}

Restores the selected layer settings and properties to their previously saved state.

The Visibility in Current Viewport option is available only for layout viewports, while the On/Off and Frozen/Thawed options are available only for Model space viewports.

\section*{Select All}

Selects all the settings.

\section*{Clear All}

Removes selection from all the settings.

See also:
■ Layer Properties Manager on page 967

\section*{New Layer State to Save Dialog Box}

\section*{Quick Reference}

See also:
■ Work with Layer States

Specifies a name and a description for the layer state defined in the Layer States Manager.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Layer State drop-down \(>\) Manage Layer States.
\(\$\) Menu: Format > Layer States Manager
\(\$\) Toolbar: Layers
锉 Command entry: layerstate

\section*{List of Options}

The following options are displayed.

\section*{New Layer State Name}

Specifies a name for the new layer state to be saved.
Description
(Optional) Provides a description of the layer state that is displayed in the Layer States Manager.

\section*{Edit Layer State Dialog Box}

\section*{Quick Reference}

See also：
■ Save，Restore，and Edit Layer States
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{A Edit Layer State：ACET－LAVISO} & － \\
\hline Name & O．F．．L．． & C．Linetype & Linewei．．． & T．Plot Style & P．．N． & ， \\
\hline \(\checkmark\) & 8 － & CONTIN．．． & －Default & 0 Color＿7 & 显路 & \\
\hline \(\square \mathrm{A} 01\) & 8 \％ & \(\square\) Contin．．． & －0．20．．． & 0 Color＿4 & 成 & \\
\hline \(\square \mathrm{A} 02\) & 8 － & \(\square\) contin．．． & －0．25 ．．． & 0 Color＿3 & 回 & \\
\hline \(\square\) A03 & 8 骨 & Contin．．． & －0．09 ．．． & 0 Color＿6 & 尼吅 & \\
\hline \(\square \mathrm{A}_{11}\) & 8 \％ & \(\square 1\) 1TS06 & －0．09 ．．． & 0 Color＿2 & 昌号 & \\
\hline \(\square\) A12 & 8 － & \(\square 1\) 1TS05 & －0．09 ．．． & 0 Color＿2 & 且 & \\
\hline \(\square \mathrm{A} 21\) & 8 \％ & \(\square \mathrm{CONTIN} .\). & －0．20．．． & 0 Color＿4 & 昌品 & \\
\hline \(\checkmark\) A23 & 8 \％ & －contin．．． & －0．09 ．．． & 0 Color＿5 & 显 & \\
\hline \(\square \mathrm{A} 24\) & 8 \％ & CONTIN．．． & －0．09 ．．． & 0 Color＿6 & 且 & \\
\hline \(\square \mathrm{A} 25\) & 8 \％ & \(\square\) TN02 & －0．20．．． & 0 Color＿4 & 亘 & \\
\hline \(\square \mathrm{A} 31\) & 8 \％ & －Contin．．． & －0．30 ．．． & 0 Color＿7 & 家 & \\
\hline \(\square\) A32 & 8 \％ & ］HAOS & －0．20．．． & 0 Color＿8 & 宫品 & \\
\hline \(\square \mathrm{A} 33\) & 8 \％ & \(\square\) contin．．． & －0．25．．． & 0 Color＿9 & 宫 & \\
\hline \(\square\) A41 & 8 \％ & \(\square \mathrm{CONTIN} .\). & －0．20．．． & 0 Color＿4 & 宫 & \\
\hline \(\square \mathrm{A} 51\) & 8 \％ & Contin．．． & －0．20．．． & 0 Color＿1 & 成 & \\
\hline \(\square\) A52 & \[
8 \text { 8 }
\] & CONTIN．．． & -0.20 ... & 0 Color＿1 & 点吕 & － \\
\hline \(\square \square\) & & & OK & Cancel & Help & \\
\hline
\end{tabular}

\section*{Access Methods}


Button
\(\$\) Ribbon：Home tab \(>\) Layers panel \(>\) Layer State drop－down \(>\) Manage Layer States．
\(\$\) Menu：Format＞Layer States Manager
\(\$\) Toolbar：Layers
㓙 Command entry：layerstate

\section*{Summary}

Modifies the selected layer state. Displays all the layers and their properties that are saved in the selected layer state except for viewport override properties.

\section*{List of Options}

The following options are displayed.
Layer List Displays a list of layers in the selected layer state and their properties.

Delete Removes the selected layers from the layer state.

\section*{Add}

Displays the Select Layers to Add to Layer States dialog box on page 1001, in which you can add layers from the current drawing that are not defined in the layer state.

\section*{Select Layers to Add to Layer State Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Save, Restore, and Edit Layer States


\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Layer State drop-down \(>\) Manage Layer States.
\(\$\) Menu: Format \(>\) Layer States Manager
\(\$\) Toolbar: Layers
座 Command entry: layerstate

\section*{Summary}

Displays layers by name and includes descriptions that are not defined in the selected named layer state.
Multiple layers can be selected. Clicking OK displays the selected layers in the Edit Layer State dialog box on page 1000.

\section*{List of Option}

The following option is available in this dialog box.
Layer List
Displays layers by name and description.

\section*{Select Layer States Dialog Box}

\section*{Quick Reference}

See also:
- Import and Export Layer States

Displays a list of layer states to be imported from a drawing file into the current drawing.


\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Layer State drop-down \(>\) Manage Layer States.
\(\$\) Menu: Format \(>\) Layer States Manager
\(\$\) Toolbar: Layers
锉 Command entry: layerstate

\section*{List of Option}

The following option is available in this dialog box.

\section*{Check Layer States to Import}

Displays a list of layer states, the space (model tab or layout tab) in which the layer state was saved, and a description.

The layer state names in the selected file (DWG, DWS, DWT) are compared to the layer state names in the current drawing. Duplicate layer state names are not checked by default. When a duplicate layer state name is checked, a prompt displays if you want to overwrite the existing layer state.

NOTE If the layer state to be imported contains linetypes or plot styles that do not exist in the current drawing, they are imported from the DWG, DWS or DWT file.

\section*{LAYFRZ}

\section*{Quick Reference}

See also:
■ Use Layers to Manage Complexity

Freezes the layer of selected objects.

\section*{Access Methods}


Button

Ribbon: Home tab \(>\) Layers panel \(>\) Freeze
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Layer Freeze
Toolbar: Layers II

\section*{Summary}

Objects on frozen layers are invisible. In large drawings, freezing unneeded layers speeds up operations involving display and regeneration. In a layout, you can freeze layers in individual layout viewports.

\section*{List of Prompts}

The following prompts are displayed.
Current settings: Viewports=Vpfreeze, Block nesting level=Block (Default settings value)
Select an object on a layer to be frozen or ["Settings"/"Undo"]: Select an object or enter \(\mathbf{s}\) or \(\mathbf{u}\)
Layer <layer name> has been frozen.

\section*{Select an Object on a Layer to be Frozen}

Specifies the layer to be frozen.

Layer "<layer name>" has been frozen.

\section*{Settings}

Displays settings for viewports and block definitions. The setting you choose persists from session to session.
Enter setting type for [Viewports/Block selection]:
Viewports Displays settings for viewports.
In paper space viewport use [Freeze/Vpfreeze] <Vpfreeze>: Enterf to freeze objects in all viewports or \(\mathbf{v}\) to freeze an object in the current viewport only

Block Selection Displays settings for block definitions.
■ Block. If a selected object is nested in a block, freezes the layer of that block. If a selected object is nested in an xref, freezes the layer of the object.

■ Entity. Freezes the layers of selected objects even if they are nested in an xref or a block.
- None. If a block or an xref is selected, freezes the layer containing that block or xref.

\section*{Undo}

Cancels the previous layer selection.

\section*{LAYISO}

\section*{Quick Reference}

See also:
■ Use Layers to Manage Complexity

Hides or locks all layers except those of the selected objects.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Isolate
\(\$\) Menu: Format \(\boldsymbol{>}\) Layer Tools \(>\) Layer Isolate
\(\$\) Toolbar: Layers II

\section*{Summary}

All layers except the layers of the selected objects are either turned off, frozen in the current layout viewport, or locked, depending on the current setting. The layers that remain visible and unlocked are called isolated.

\section*{List of Prompts}

The following prompts are displayed.
Current setting: <current settings>
Select objects on the layer(s) to be isolated or [Settings]: Select objects or enter s

\section*{Select Objects on the Layer(s) to be Isolated}

After selecting one or more objects, all layers except the layers of the selected objects are either turned off, frozen in the current layout viewport, or locked, depending on the current setting. The layers that remain visible and unlocked are termed isolated.

NOTE Locked layers are faded by default. You can specify the percent of the fading from the Lock option in this command. You can later change the value with the LAYLOCKFADECTL system variable.

If you make changes to layers within a session and you want to restore the layers to the state they were in immediately before you entered the LAYISO command, use the LAYUNISO command.

\section*{Settings}

Controls whether layers are turned off, frozen in the current layout viewports, or locked.

Off Turns off or freezes all layers except the layers of the selected objects.
Vpfreeze In a layout, freezes all but the selected layers in the current layout viewport only. Other layout viewports in the drawing are unchanged.
If not in a layout, all other layers are turned off instead.
Off Turns off all but the selected layers in all viewports.

\section*{Lock and Fade}

Locks all layers except the layers of the selected objects, and sets the fading for locked layers.

\section*{LAYMCH}

\section*{Quick Reference}

See also:
- Use Layers to Manage Complexity

Changes the layer of a selected object to match the destination layer.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Match
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Layer Match
\(\%\) Toolbar: Layers II

\section*{Summary}

If you enter -laymch at the Command prompt, options are displayed on page 1008.

\section*{List of Prompts}

The following prompts are displayed.
Select objects to be changed: Select an object to change its layer
Select object on destination layer or [Name]: Select an object or enter \(\mathbf{n}\) to open the Change to Layer dialog box
Select Object on Destination Layer Select an object on the destination layer.
Name Displays the Change to Layer dialog box on page 1008.
If you create an object on the wrong layer, you can change its layer to the one you want using LAYMCH.

\section*{Change to Layer Dialog Box}

\section*{Quick Reference}

See also:
- Use Layers to Manage Complexity

Displays a list of layers to choose as the destination layer. You can also create a new destination layer.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Match
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Layer Match
\(\$\) Toolbar: Layers II
㟇 Command entry: laymch

\section*{List of Options}

The following options are displayed.
Current Layer Displays the currently selected layer. Create a new layer name by entering a name.

Destination Layer list Displays a list of layers in the drawing.
-LAYMCH

\section*{Quick Reference}

See also:
■ Use Layers to Manage Complexity

\section*{List of Prompts}

The following prompts are displayed.
Select objects to be changed:
Select objects: Select an object to change its layer
After you select the object(s) to change, the following prompt is displayed:
Select object on destination layer on page 1009 or [Name on page 1009]: Select an object or enter \(\mathbf{n}\) to enter a layer name
Select Object on Destination Layer Select an object on the destination layer.
Name Displays the Change to Layer dialog box on page 1008.
If you create an object on the wrong layer, you can change its layer to the one you want using LAYMCH.

\section*{LAYLCK}

\section*{Quick Reference}

See also:
■ Prevent Objects from Being Selected

Locks the layer of a selected object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Lock
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Layer Lock
Toolbar: Layers II

Summary
Using this command, you can prevent objects on a layer from being accidentally modified. You can also fade the objects on a locked layer using the LAYLOCKFADECTL system variable.

\section*{LAYMCUR}

\section*{Quick Reference}

See also:
- Use Layers to Manage Complexity

Sets the current layer to that of a selected object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Make Object's Layer Current
\(\$\) Menu: Format > Layer Tools > Make Object's Layer Current
\(\$\) Toolbar: Layers

\section*{Summary}

You can change the current layer by selecting an object on that layer. This is a convenient alternative to specifying the layer name in the Layer Properties Manager.

\section*{LAYMRG}

\section*{Quick Reference}

See also:
- Use Layers to Manage Complexity

Merges selected layers into a target layer, removing the previous layers from the drawing.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Merge
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Layer Merge

\section*{Summary}

You can reduce the number of layers in a drawing by merging them. Objects on merged layers are moved to the target layer, and the original layers are purged from the drawing.

\section*{List of Prompts}

The following prompts are displayed.
Select object on layer to merge on page 1011or [Name on page 1011]: Select an object or enter \(\mathbf{n}\) to select a layer in the Merge Layers dialog box

After you selected the layer(s) to merge, the following prompt is displayed:
Select object on target layer on page 1011or [Name on page 1011]: Select an object or enter \(\mathbf{n}\) to select a layer in the Merge to Layer dialog box

The layer you selected to merge into the target layer is deleted.
If you enter -laymrg at the Command prompt, options are displayed on page 1013.

Select Object on Layer to Merge Select an object on the layer you want to merge.

Name Displays the Merge Layers dialog box on page 1012.
Select Object on Target Layer Select an object on the destination layer.
Name Displays the Merge to Layer dialog box on page 1012.

\section*{Merge Layers Dialog Box}

\section*{Quick Reference}

See also:
- Use Layers to Manage Complexity

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Merge
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Layer Merge
业 Command entry: laymrg
List of Option
The following prompt is displayed in this dialog box.
Merge Layer list Displays a list of layers to merge.

\section*{Merge to Layer Dialog Box}

\section*{Quick Reference}

See also:
- Use Layers to Manage Complexity

Displays a list of layers onto which the selected layers or objects can be merged.
Access Methods


Button
```

Ribbon: Home tab > Layers panel > Merge
Menu: Format > Layer Tools > Layer Merge
鱼 Command entry: laymrg

```

\section*{List of Options}

The following options are displayed.
Target Layer Displays the first layer in an alphabetical list of the layers in the current drawing.

Target Layer list Displays an alphabetical list of the layers onto which you can merge the selected layers or objects.

\section*{-LAYMRG}

\section*{Quick Reference}

\section*{See also:}

■ Use Layers to Manage Complexity

\section*{Summary}

The layer you selected to merge into the target layer is deleted.

\section*{List of Prompts}

The following prompts are displayed.
Select object on layer to merge on page 1013or [Name on page 1013]: Select an object or enter \(\mathbf{n}\) to select a layer from a list of layers

After you selected the layer(s) to merge, the following prompt is displayed:
Select object on target layer on page 1013or [Name on page 1014]: Select an object or enter \(\mathbf{n}\) to select a target layer from a list of layers
Select Object on Layer to Merge
Select an object on the destination layer.

\section*{Name}

Displays a list of layers, where you can select layers to merge.

\section*{Select Object on Target Layer}

Select an object on the target layer.

\section*{Name}

Displays a list of layers onto which you can merge the selected object or layer.

\section*{LAYOFF}

\section*{Quick Reference}

See also:
■ Use Layers to Manage Complexity

Turns off the layer of a selected object.

Access Methods


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Off
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Layer Off
\(\$\) Toolbar: Layers II

\section*{Summary}

Turning off the layer of a selected object makes that object invisible. This command is useful if you need an unobstructed view when working in a drawing or if you don't want to plot details such as reference lines.

\section*{List of Prompts}

The following prompts are displayed.
Current settings: Viewports=, Block nesting level=
Select an object on the layer to be turned off or ["Settings"/Undo]: Select an object, enter s, or enter u
Select an Object on the Layer to be Turned Off
Selects one or more objects whose layers you want to turn off.

\section*{Settings}

Displays the Viewports and Block Definition setting types. The setting you choose persists from session to session.

Viewports Displays the Viewports setting types.
Returns the following prompt:
- Vpfreeze: In paper space, freezes the layer selected in the current viewport.

■ Off: In paper space, turns off selected layers in all viewports.

Block Selection Displays the Block Selection setting types, where you can freeze layers of selected objects.
■ Block: Turns off the layers of selected objects. If a selected object is nested in a block, the layer containing that block is turned off. If a selected object is nested in an xref, the layer of the object is turned off.
- Entity: Turns off layers of selected objects even if they are nested in an xref or a block.
- None: Turns off the layers of selected objects. If a block or an xref is selected, the layer containing that block or xref is turned off.

\section*{LAYON}

\section*{Quick Reference}

\section*{See also:}

■ Use Layers to Manage Complexity

Turns on all layers in the drawing.

\section*{Access Methods}


Button

8 Ribbon: Home tab \(>\) Layers panel \(>\) On
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Turn All Layers On

\section*{Summary}

All layers that were previously turned off are turned back on. Objects created on those layers become visible, unless the layers are also frozen.

\section*{LAYOUT}

\section*{Quick Reference}

\section*{See also:}

■ Create Multiple-View Drawing Layouts (Paper Space)

Creates and modifies drawing layout tabs.

\section*{Access Methods}


Button
\(\$\) Menu: Insert \(>\) Layout \(>\) Layout from Template
\(\$\) Toolbar: Layouts

\section*{List of Prompts}

The following prompts are displayed.
Enter layout option [Copy/Delete/New/Template/Rename/SAveas/Set/?] <set>:

NOTE Many of these options are available by right-clicking a layout tab name.
Copy Copies a layout. If you do not provide a name, the new layout assumes the name of the copied layout with an incremental number in parentheses. The new tab is inserted before the copied layout tab.

Delete Deletes a layout. The most current layout is the default.
The Model tab cannot be deleted. To remove all the geometry from the Model tab, you must select all geometry and use the ERASE command.

New Creates a new layout tab. Up to 255 layouts can be created in a single drawing.

Layout names must be unique. Layout names can be up to 255 characters long and are not case sensitive. Only the first 31 characters are displayed on the tab.

Template Creates a new layout tab based on an existing layout in a template (DWT), drawing (DWG), or drawing interchange (DXF) file. If theFILEDIA system variable is set to 1 , a standard file selection dialog box is displayed for selecting a DWT, DWG, or DXF file. After you select a file, the Insert Layouts dialog box is displayed, which lists the layouts saved in the selected file. After you select a layout, the layout and all objects from the specified template or drawing file are inserted into the current drawing.

Rename Renames a layout. The last current layout is used as the default for the layout to rename.
Layout names must be unique. Layout names can be up to 255 characters long and are not case sensitive. Only the first 31 characters are displayed on the tab.

Saveas Saves a layout as a drawing template(DWT) file without saving any unreferenced symbol table and block definition information. You can then use the template to create new layouts in your drawings without having to eliminate unnecessary information. See "Reuse Layouts and Layout Settings" in the User's Guide.
The last current layout is used as the default for the layout to save as a template. If theFILEDIA system variable is set to 1 , a standard file selection dialog box is displayed in which you can specify the template file in which to save the layout. The default layout template directory is specified in the Options dialog box.

Set Makes a layout current.
?-List Layouts Lists all the layouts defined in the drawing.

\section*{LAYOUTWIZARD}

\section*{Quick Reference}

\section*{See also:}
- Use the Layout Wizard to Specify Layout Settings

Creates a new layout tab and specifies page and plot settings.

\section*{Access Methods}

Menu: Insert \(\boldsymbol{>}\) Layout \(>\) Create Layout Wizard

\section*{Summary}

The Layout wizard is displayed.

\section*{Layout Wizard}

\section*{Quick Reference}

\section*{See also:}

■ Use the Layout Wizard to Specify Layout Settings

\section*{Access Methods}
\(\$\) Menu: Insert \(>\) Layout \(>\) Create Layout Wizard善 Command entry: layoutwizard

\section*{Summary}

The Layout wizard contains a series of pages that step you through the process of creating a new layout. You can choose to create a new layout from scratch or use an existing layout template on which to base your new layout.

Depending on which plotting device is currently configured, you can select a paper size from those available. You can select a predefined title block to apply to your new layout. The Preview area displays a preview image of the title block you select.

When you've finished using the wizard to specify your layout settings, you can modify any of the settings using the PAGESETUP command from within the new layout.

\section*{LAYTHW}

\section*{Quick Reference}

See also:
- Use Layers to Manage Complexity

Thaws all layers in the drawing.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Thaw
\(\$\) Menu: Format \(>\) Layer tools \(>\) Thaw All Layers

\section*{Summary}

All layers that were previously frozen are unfrozen. Objects created on those layers become visible, unless the layers are also turned off or have been frozen in individual layout viewports. Layers that are frozen in individual layout viewports must be thawed layer by layer.

NOTE LAYTHW does not thaw layers in a viewport. Use the VPLAYER on page 2064 command to thaw layers in a viewport.

\section*{LAYTRANS}

\section*{Quick Reference}

See also:
- Translate Layer Names and Properties

Translates the layers in the current drawing to specified layer standards.

\section*{Access Methods}


Button
\(\$\) Ribbon: Tools tab \(>\) Standards panel \(>\) Layer Translator
\(\$\) Menu: Tools \(>\) CAD Standards \(>\) Layer Translator
\(\$\) Toolbar: CAD Standards

\section*{Summary}

Maps the layers in the current drawing to different layer names and layer properties in a specified drawing or standards file, and then converts them using those mappings.
The Layer Translator is displayed.

\section*{Layer Translator}

\section*{Quick Reference}

\section*{See also:}
- Translate Layer Names and Properties

\section*{Access Methods}


Button
\(\$\) Ribbon: Tools tab \(>\) Standards panel \(>\) Layer Translator
\(\$\) Menu: Tools \(>\) CAD Standards \(>\) Layer Translator
\(\$\) Toolbar: CAD Standards
襾 Command entry: laytrans

\section*{Summary}

In the Layer Translator, you specify the layers in the current drawing that you want to translate, and the layers to translate them to.

\section*{List of Options}

The following options are displayed.

\section*{Translate From}

Specifies the layers to be translated in the current drawing. You can specify layers by selecting layers in the Translate From list or by supplying a selection filter.


The color of the icon preceding the layer name indicates whether or not the layer is referenced in the drawing. A dark icon indicates that the layer is referenced; a white icon indicates the layer is unreferenced. Unreferenced layers can be deleted from the drawing by right-clicking in the Translate From list and choosing Purge Layers.

\section*{Selection Filter}

Specifies layers to be selected in the Translate From list, using a naming pattern that can include wild-cards. For a list of valid wild-cards, see the table in "Filter and Sort the List of Layers" in the User's Guide. The layers identified by the selection filter are selected in addition to any layers previously selected.

\section*{Select}

Selects the layers specified in Selection Filter.

\section*{Map}

Maps the layers selected in Translate From to the layer selected in Translate To.

\section*{Map Same}

Maps all layers that have the same name in both lists.

\section*{Translate To}

Lists the layers you can translate the current drawing's layers to.

\section*{Load}

Loads layers in the Translate To list using a drawing, drawing template, or standards file that you specify. If the specified file contains saved layer mappings, those mappings are applied to the layers in the Translate From list and are displayed in Layer Translation Mappings.

You can load layers from more than one file. If you load a file that contains layers of the same name as layers already loaded, the original layers are retained and the duplicate layers are ignored. Similarly, if you load a file containing mappings that duplicate mappings already loaded, the original mappings are retained and the duplicates are ignored.

\section*{New}

Defines a new layer to be shown in the Translate To list for translation. If you select a Translate To layer before choosing New, the selected layer's properties are used as defaults for the new layer. You cannot create a new layer with the same name as an existing layer.

\section*{Layer Translation Mappings}

Lists each layer to be translated and the properties to which the layer will be converted. You can select layers in this list and edit their properties using Edit.

\section*{Edit}

Opens the Edit Layer dialog box, where you can edit the selected translation mapping. You can change the layer's color, linetype, lineweight, and transparency. If all drawings involved in translation use plot styles, you can also change the plot style for the mapping.

\section*{Remove}

Removes the selected translation mapping from the Layer Translation Mappings list.

\section*{Save}

Saves the current layer translation mappings to a file for later use.
Layer mappings are saved in the DWG or DWS file format. You can replace an existing file or create a new file. The Layer Translator creates the referenced layers in the file and stores the layer mappings in each layer. All linetypes used by those layers are also copied into the file.

\section*{Settings}

Opens the Settings dialog box, where you can customize the process of layer translation.

\section*{Translate}

Starts layer translation of the layers you have mapped.
If you have not saved the current layer translation mappings, you are prompted to save the mappings before translation begins.

\section*{Settings Dialog Box}

\section*{Quick Reference}

See also:
- Translate Layer Names and Properties

Controls the process of layer translation.

\section*{Access Methods}


Button
\(\$\) Ribbon: Tools tab \(>\) Standards panel \(>\) Layer Translator
\(\$\) Menu: Tools \(>\) CAD Standards \(>\) Layer Translator
\(\$\) Toolbar: CAD Standards
㬎 Command entry: laytrans

\section*{List of Options}

The following options are displayed.
Force Object Color to BYLAYER
Specifies whether or not every object translated takes on the color assigned to its layer.

\section*{Force Object Linetype to BYLAYER}

Specifies whether or not every object translated takes on the linetype assigned to its layer.

Force Object Transparency to BYLAYER
Specifies whether or not every object translated takes on the transparency assigned to its layer.

Translate Objects in Blocks
Specifies whether or not objects nested within blocks are translated.
Write Transaction Log

Specifies whether or not a log file detailing the results of translation is created. If this option is selected, a log file is created in the same folder as the translated drawing. The log file is assigned the same name as the translated drawing, with a .log file name extension.

\section*{Show Layer Contents When Selected}

Specifies which layers to display in the drawing area.

\section*{Edit/New Layer Dialog Box}

\section*{Quick Reference}

See also:
- Translate Layer Names and Properties

Sets or modifies layer properties.

\section*{Access Methods}


Button
\(\$\) Ribbon: Tools tab \(>\) Standards panel \(>\) Layer Translator
\(\$\) Menu: Tools \(>\) CAD Standards \(>\) Layer Translator
8 Toolbar: CAD Standards
㬎 Command entry: laytrans

\section*{List of Options}

The following options are displayed.
Name
Specifies the layer name.

\section*{Linetype}

Specifies the layer linetype.
Color

Specifies the layer color.

\section*{Lineweight}

Specifies the layer lineweight.
Transparency
Specifies the layer transparency.

\section*{Plot Style}

Specifies the layer plot style. You can modify the plot style only if all drawings referenced by the Layer Translator use named plot styles.

\section*{LAYULK}

\section*{Quick Reference}

See also:
■ Prevent Objects from Being Selected

Unlocks the layer of a selected object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Unlock
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Layer Unlock
\(\%\) Toolbar: Layers II

\section*{Summary}

When you move the cursor over objects on locked layers, the locked icon is displayed.

You can select an object on a locked layer and unlock that layer without specifying the name of the layer. Objects on unlocked layers can be selected and modified.

\section*{LAYUNISO}

\section*{Quick Reference}

\section*{See also:}
- Use Layers to Manage Complexity

Restores all layers that were hidden or locked with the LAYISO command.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Unisolate
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Layer Unisolate
\(\$\) Toolbar: Layers II

\section*{Summary}

Reverses the effects of the previous LAYISO command. Any additional changes made to layer settings after you use the LAYISO command will be retained.

LAYUNISO restores layers to the state they were in just before you entered the LAYISO command. Changes to layer settings after LAYISO is used are retained when you enter the LAYUNISO command. If LAYISO was not used, LAYUNISO does not restore any layers.

NOTE You can also restore layers to their previous layer state by using the Layer Previous button on the Layers toolbar (or by entering LAYERP at the Command prompt), as long as you have not made any changes to layer settings.

\section*{Quick Reference}

See also:
- Use Layers to Manage Complexity

Freezes selected layers in all layout viewports except the current viewport.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Isolate to Current Viewport
\% Menu: Format \(>\) Layer tools \(>\) Isolate Layer to Current Viewport

\section*{Summary}

Isolates the layer of a selected object in the current viewport by freezing the layer in all but the current viewport. You can choose to isolate all layouts or only the current layout.
This command automates the process of using VP Freeze in the Layer Properties Manager. You select an object on each layer to be frozen in other layout viewports.

NOTE LAYVPI works only when TILEMODE is set to 0 and when two or more paper space viewports are defined.

\section*{List of Prompts}

The following prompts are displayed.
Current settings: Layouts= , Block nesting level=
Select objects on the layer to be isolated in viewport on page 1027 or [Settings/"Undo"]: Select objects or enter an option
Select Objects on the Layer to be Isolated in Viewport
Selects an object whose layer you want to isolate in a viewport.

\section*{Settings}

Displays the Viewports and Block Definition setting types. The setting you choose persists from session to session.

Layouts Displays layout options for isolating layers.
- All Layouts: In all layouts, isolates layers of selected objects in all but the current viewport
- Current Layout: In the current layout, isolates layers of selected objects in all but the current viewport. This option persists from session to session.

Block Selection Displays the Block Selection setting types, where you can freeze layers of selected objects.
■ Block: Isolates the layers of selected objects. If a selected object is nested in a block, the layer containing that block is isolated. If a selected object is nested in an xref, the layer of the object is isolated.

■ Entity: Isolates layers of selected objects even if they are nested in an xref or a block.
- None: Isolates the layers of selected objects. If a block or an xref is selected, the layer containing that block or xref is isolated.

\section*{LAYWALK}

\section*{Quick Reference}

\section*{See also:}
- Use Layers to Manage Complexity

Displays objects on selected layers and hides objects on all other layers.

\section*{Access Methods}


Button

Ribbon: Home tab \(>\) Layers panel \(>\) Walk
\(\$\) Menu: Format \(>\) Layer Tools \(>\) Layer Walk

Toolbar: Layers II

\section*{Summary}

The LayerWalk dialog box is displayed.
Displays a dialog box with a list of all layers in the drawing. For drawings with a large number of layers, you can filter the list of layers that are displayed in the dialog box.Use this command to review the objects on each layer and to purge unreferenced layers.

By default, the effect is temporary and layers are restored when you close the dialog box.

\section*{LayerWalk Dialog Box}

\section*{Quick Reference}

See also:
■ Use Layers to Manage Complexity

Dynamically displays objects on layers that you select in the Layer list.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Layers panel \(>\) Walk
\(\%\) Menu: Format \(>\) Layer Tools \(>\) Layer Walk
\(\%\) Toolbar: Layers II
並 Command entry: laywalk

\section*{Summary}

The number of layers in the drawing are displayed in the dialog box title. You can change the current layer state when you exit, save layer states, and purge layers that are not referenced.

You can use the Layer Walk dialog box in a paper space viewport to select layers to turn on and thaw in the layer table and the current viewport. Any layer that is not selected in the Layer list is frozen in the current viewport. You can change the display of one viewport without altering the display of another viewport.

\section*{List of Options}

The following options are displayed.

\section*{Filter}

Turns an active filter on and off. When this check box is selected, the list displays only those layers that match the active filter. When this check box is cleared, the full list of layers is displayed. (This option is available only when there is an active filter.) To turn on an active filter, in the filter list, either enter a wildcard and press Enter, or select a saved filter.

\section*{Layer List}

If a filter is active, displays a list of layers defined in that filter. If no filter is active, displays a list of layers in the drawing. Double-click a layer to set it to Always Show (an asterisk to the left of the layer is displayed). Right-click in the layer list to display more options.

In the layer list, you can
- Click a layer name to display the contents of a layer.
- Double-click a layer name to turn the Always Show option on or off.
- Press Ctrl and click layers to select multiple layers.
- Press Shift and click to select layers in a sequence.
- Press either Ctrl or Shift and double-click in the layer list to turn the Always Show option on or off.
- Click and drag in the layer list to select multiple layers.

For more options in the layer list, right-click to access the Layer List shortcut menu.

\section*{Layer List Shortcut Menu Options}

Displays a list of options for the layers selected in the Layer list.
Hold Selection Turns on the Always Show option for selected layers. An asterisk (*) is displayed to the left of each layer held.

Release Selection Turns off the Always Show option for selected layers.

Release All Turns off the Always Show option for all layers.
Select All Selects and displays all layers.
Clear All Clears all layers.
Invert Selection Clears current layers and selects and displays all other layers.
Select Unreferenced Selects all unreferenced layers. Use with the Purge button to remove unused layers.

Save Layer State Saves the current selection of layers as a layer state that can be used by the Layer States Manager.

Inspect Displays the number of layers in the drawing, the number of layers selected, and the number of objects on the selected layers.

Copy as Filter Displays the name of the selected layer in the Filter text box. Can be used to create wildcards.

Save Current Filter Saves the current filter so that it is available in the Filter list for reuse.

Delete Current Filter Removes the current filter from the filter list.

\section*{Select Objects}

Selects objects and their layers.

\section*{Filter List}

Filters the layer list. Enter a wildcard and press Enter to display and highlight only those layers whose names match the wildcard. Right-click to save and delete filters. The filter list displays saved filters only.

For more information about wild-card characters, see the Wild-Card Characters section of Filter and Sort the List of Layers.

\section*{Purge}

When selected layers are not referenced, purges them from the drawing. For a list of layers that can be purged, right-click anywhere in the Layer list and click Select Unreferenced. In the Layer list, the unreferenced layers are highlighted. You can purge those layers.

\section*{Restore on Exit}

Returns layers to their previous state when you exit the dialog box. If the check box is cleared, any changes you made are saved.

\section*{LEADER}

\section*{Quick Reference}

\section*{See also:}

■ Create Leaders

Creates a line that connects annotation to a feature.

\section*{Summary}

It is recommended that you use the workflow available through the MLEADER on page 1174 command to create leader objects. For more information about multileader objects, see Create and Modify Leaders.

\section*{List of Prompts}

The following prompts are displayed.
Specify leader start point:
Specify next point:
A leader line segment is drawn and prompts for points and options are displayed.
Specify next point or [Annotation/Format/Undo] <Annotation>: Specify a point, enter an option, or press Enter
Point Specification
Draws a leader line segment to the point specified and continues to prompt you for points and options.

\section*{Annotation}

Inserts an annotation at the end of the leader line. The annotation can be single or multiple lines of text, a feature control frame containing geometric tolerances, or a block.

If you press Enter at the Annotation prompt without entering text first, the following options are displayed:

Tolerance Creates a feature control frame containing geometric tolerances using the Geometric Tolerance dialog boxes (see TOLERANCE).
You can create datum indicators and basic dimension notation in these dialog boxes. After you specify the geometric tolerance, LEADER ends.


Copy Copies text, a multiline text object, a feature control frame with geometric tolerances, or a block and connects the copy to the end of the leader line. The copy is associated with the leader line, meaning that if the copied object moves, the end of the leader line moves with it. The display of the hook line depends on the object copied.
The value of the current text gap (see DIMSTYLE or the DIMGAP system variable) determines where the text and multiline text objects are inserted. Blocks or feature control frames with geometric tolerances are attached to the end of the leader line.

Block Inserts a block at the end of the leader line. The prompts are the same as for INSERT on page 940 . The block reference is inserted at an offset from the end of the leader line and is associated to the leader line, meaning that if the block moves, the end of the leader line moves with it. No hook line is displayed.


None Ends the command without adding any annotation to the leader line.
Mtext Creates text using the In-Place Text Editor when you specify an insertion point and a second point for the text boundary.
Enter the characters for the text. Enclose format strings for prefixes and suffixes in angle brackets ( \(<>\) ). Enclose format strings for alternate units in square brackets ([]). For more information about adding a prefix or suffix, see "Control the Display of Dimension Units" in the User's Guide.
The units settings and the current text style determine how the text is displayed. The multiline text is vertically centered and horizontally aligned according to the \(X\) axis direction of the last two vertices of the leader line. The text is offset from the hook line by the distance specified under Offset from Dim Line on the Text tab of the New, Modify, or Override Dimension Style dialog box. If the offset specified is negative, the multiline text is enclosed in a box as a basic dimension.


\section*{Format}

Controls the way the leader is drawn and whether it has an arrowhead.

spline leader line

straight leader line

sample arrowheads

no arrowhead

Spline Draws the leader line as a spline. The vertices of the leader line are the control points, each of equal unit weight.

Straight Draws the leader line as a set of straight line segments.
Arrow Draws an arrowhead at the start point of the leader line.
None Draws a leader line with no arrowhead at the start point.

\section*{Undo}

Undoes the last vertex point on the leader line. The previous prompt is displayed.

\section*{LENGTHEN}

\section*{Quick Reference}

\section*{See also:}

■ Resize or Reshape Objects

Changes the length of objects and the included angle of arcs.

\section*{Access Methods}


Button
```

$\$$ Ribbon: Home tab $>$ Modify panel $>$ Lengthen

```
\(\$\) Menu: Modify \(>\) Lengthen

\section*{Summary}

You can specify changes as a percentage, an increment, or as a final length or angle. LENGTHEN is an alternative to using TRIM or EXTEND.


\section*{List of Prompts}

The following prompts are displayed.
Select an object or [DElta/Percent/Total/DYnamic]: Select one object or enter an option

\section*{Object Selection}

Displays the length and, where applicable, the included angle of the object.
LENGTHEN does not affect closed objects. The extrusion direction of the selected object need not be parallel to the \(Z\) axis of the current user coordinate system (UCS).

\section*{Delta}

Changes the length of an object by a specified increment, measured from the endpoint that is closest to the selection point. Delta also changes the angle of an arc by a specified increment, measured from the endpoint that is closest to the selection point. A positive value extends the object; a negative value trims it.

Delta Length Changes the length of the object by the specified increment.


Angle Changes the included angle of the selected arc by the specified angle.

object selected

\section*{Percent}

Sets the length of an object by a specified percentage of its total length.

\section*{Total}

Sets the length of a selected object by specifying the total absolute length from the fixed endpoint. Total also sets the included angle of a selected arc by a specified total angle.

object selected
Total Length Lengthens the object to the specified value from the endpoint that is closest to the selection point.

Angle Sets the included angle of the selected arc.

object selected

\section*{Dynamic}

Turns on Dynamic Dragging mode. You change the length of a selected object by dragging one of its endpoints. The other end remains fixed.

\section*{LIGHT}

\section*{Quick Reference}

\section*{See also:}

■ Guidelines for Lighting
Creates a light.

\section*{List of Prompts}

Depending on the type of light you specify, the prompts that are displayed are identical to the prompts in the POINTLIGHT, SPOTLIGHT, WEBLIGHT, TARGETPOINT, FREESPOT,FREEWEB or DISTANTLIGHT command.

\section*{LIGHTLIST}

\section*{Quick Reference}

See also:
- Control Light Properties

Turns on and off the Lights in Model palette that lists all lights in the model.

\section*{Access Methods}


Button


\section*{Summary}

Opens the Lights in Model palette on page 1038, which lists the lights in the drawing.

With one or more lights selected, right-click and use the shortcut menu to delete or change the properties of the selected lights.

\section*{Lights in Model Palette}

\section*{Quick Reference}

See also:
- Control Light Properties

Lists the lights in the drawing.


\section*{Access Methods}


Button

1038 | Chapter 12 L Commands
 Lights in Model
\(\$\) Menu: View \(>\) Render \(>\) Light \(>\) Light List
\(\$\) Toolbar: Render
亜 Command entry: lightlist

\section*{Summary}

An icon in the Type column indicates the type of light: point light, spotlight, or distant light, and whether it is on or off. Select a light in the list to select it in the drawing. To sort the list, click the Type or Name column head.

\section*{List of Options}

The following options are displayed on the shortcut menu.

\section*{Lights in Model}

Displays a list of different types of lights with their names used in the drawing.

\section*{Shortcut Menu}

Delete Light or Delete Lights With one or more lights selected, right-click and click Delete Light or Delete Lights to remove the light from the drawing. You can also press Delete.

Properties With one or more lights selected, right-click and click Properties to display the Properties palette on page 1535, where you can change the properties of lights and turn them on and off. When a property is selected, the panel at the bottom displays a description of the property. You can also double-click to display the Properties palette.

Glyph Display Controls the glyph display of the lights used in the drawing. This option is unavailable for distant lights or when multiple lights are selected.

\section*{LIGHTLISTCLOSE}

\section*{Quick Reference}

See also:
- Control Light Properties

Closes the Lights in Model window.

\section*{Summary}

The Lights in Model window on page 1038 closes.

\section*{LIMITS}

\section*{Quick Reference}

\section*{See also:}
- Adjust Grid and Grid Snap

Sets and controls the limits of the grid display in the current Model or layout tab.

\section*{Access Methods}

Menu: Format \(>\) Drawing Limits
齓 Command entry: 'limits for transparent use

\section*{List of Prompts}

The following prompts are displayed.
Specify lower left corneror [ON/OFF] <current>: Specify a point, enter on or off, or press Enter
Lower-Left Corner Specifies the lower-left corner for the grid limits.


On Turns on limits checking. When limits checking is on, you cannot enter points outside the grid limits. Because limits checking tests only points that you enter, portions of objects such as circles can extend outside the grid limits.

Off Turns off limits checking but maintains the current values for the next time you turn on limits checking.

\section*{LINE}

\section*{Quick Reference}

\section*{See also:}
- Draw Lines

Creates straight line segments.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Draw panel \(>\) Line
\(\%\) Menu: Draw \(>\) Line
\(\$\) Toolbar: Draw

\section*{Summary}

With LINE, you can create a series of contiguous line segments. Each segment is a line object that can be edited separately.

\section*{List of Prompts}

The following prompts are displayed.
Specify first point: Specify a point or press Enter to continue from the last drawn line or arc
Specify next point or [Close/Undo]:
Continue Continues a line from the endpoint of the most recently drawn line.


If the most recently drawn object is an arc, its endpoint defines the starting point of the line, and the line is drawn tangent to the arc.


Close Ends the last line segment at the beginning of the first line segment, which forms a closed loop of line segments. You can use Close after you have drawn a series of two or more segments.


Undo Erases the most recent segment of a line sequence.

before entering

after entering

Entering u more than once backtracks through line segments in the order you created them．

\section*{LINETYPE}

\section*{Quick Reference}

See also：
■ Work with Linetypes

Loads，sets，and modifies linetypes．

\section*{Access Methods}
－＝－
ニニニ
Button
\(\$\) Ribbon：Home tab \(>\) Properties panel \(>\) Linetype
\(\$\) Menu：Format \(>\) Linetype
菐 Command entry：＇linetype for transparent use

\section*{Summary}

The Linetype Manager is displayed．
If you enter－linetype at the Command prompt，options are displayed．

\section*{Linetype Manager}

\section*{Quick Reference}

\section*{See also：}

■ Work with Linetypes

Loads linetypes and sets the current linetype．


\section*{Access Methods}
……：
ニニニ
Button

Ribbon：Home tab \(>\) Properties panel \(>\) Linetype
Menu：Format＞Linetype
Command entry：linetype（or＇linetype for transparent use）

\section*{List of Options}

The following options are displayed．

\section*{Linetype Filters}

Determines which linetypes to display in the linetype list．You can filter linetypes based on whether they are xref－dependent，or whether they are referenced by objects．

\section*{Invert Filter}

Displays linetypes based on the opposites of the criteria you select．Linetypes that fit the inverse filter criteria are displayed in the linetype list．

\section*{Load}

Displays the Load or Reload Linetypes dialog box，in which you can load into the drawing selected linetypes from the acad．lin file and add them to the linetype list．

\section*{Current}

Sets the selected linetype to be the current linetype. Setting the current linetype to BYLAYER means that an object assumes the linetype that is assigned to a particular layer. Setting the linetype to BYBLOCK means that an object assumes the CONTINUOUS linetype until it is grouped into a block. Whenever the block is inserted, all objects inherit the block's linetype. The CELTYPE system variable stores the linetype name.

\section*{Delete}

Deletes selected linetypes from the drawing. You can delete only unused linetypes. The BYLAYER, BYBLOCK, and CONTINUOUS linetypes cannot be deleted.

NOTE Be careful about deleting linetypes if you are working on a drawing in a shared project or one based on a set of layering standards. The deleted linetype definition remains stored in the acad.lin or acadiso.lin file and can be reloaded.

\section*{Show Details or Hide Details}

Controls whether the Details section of the Linetype Manager is displayed.

\section*{Current Linetype}

Displays the current linetype name.

\section*{List of Linetypes}

Displays the loaded linetypes according to the option specified in Linetype Filters. To quickly select all or clear all linetypes, right-click in the linetype list to display the shortcut menu.

Linetype Displays names of loaded linetypes. To rename a linetype, select it and then click it again and enter a new name. BYLAYER, BYBLOCK, CONTINUOUS, and xref-dependent linetypes cannot be renamed.

Appearance Displays a sample of selected linetypes.
Description Displays descriptions of the linetypes, which can be edited in the Details area.

\section*{Details}

Provides alternative access to properties and additional settings.
Name
Displays the selected linetype name, which can be edited.

\section*{Description}

Displays the description of the selected linetype, which can be edited.

\section*{Use Paper Space Units for Scaling}

Scales linetypes in paper space and model space identically. Useful when working with multiple viewports. (PSLTSCALE system variable)

\section*{Global Scale Factor}

Displays the global scale factor for all linetypes. (LTSCALE system variable)

\section*{Current Object Scale}

Sets linetype scale for newly created objects. The resulting scale is the global scale factor multiplied by the object's scale factor. (CELTSCALE system variable)

ISO Pen Width
Sets the linetype scale to one of a list of standard ISO values. The resulting scale is the global scale factor multiplied by the object's scale factor.

\section*{Load or Reload Linetypes Dialog Box}

\section*{Quick Reference}

See also:
■ Work with Linetypes

Loads a linetype whose definition exists in a linetype library (LIN) file.


\section*{Access Methods}
＂－：＂：
ニニニ
Button
\(\$\) Ribbon：Home tab \(>\) Properties panel \(>\) Linetype
\(\$\) Menu：Format \(>\) Linetype
亜 Command entry：linetype（or＇linetype for transparent use）
Summary
The acad．lin file contains the standard linetypes．

\section*{List of Options}

The following options are displayed．
File Button
Displays the Select Linetype File dialog box，in which you can select a different linetype（LIN）file．

File Name
Displays the name of the current LIN file．You can enter the name of another LIN file or click the File button to select a file from the Select Linetype File dialog box．

\section*{Available Linetypes}

Displays the linetypes available to load．To select or clear all of the linetypes on the list，right－click and choose Select All or Clear All．

\section*{－LINETYPE}

\section*{Quick Reference}

\section*{See also：}

■ Work with Linetypes

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [?/Create/Load/Set]:
?-List Linetypes Displays the Select Linetype File dialog box (a standard file selection dialog box). After you select an LIN file, the linetypes available in the file are listed.

Create Creates a new linetype and stores it in an LIN file.
The Create or Append Linetype File dialog box (a standard file selection dialog box) is displayed. Specify the file to which you want the linetype added.
You cannot create complex linetypes with LINETYPE. For more information, see "Custom Linetypes"in the Customization Guide.

Descriptive Text Enter a linetype description up to 47 characters long. The description can be a comment or a series of underscores, dots, dashes, and spaces to show a simple representation of the linetype pattern.

Linetype Pattern Enter a pattern definition as a series of numbers separated by commas. Enter positive values to specify lengths of dashes, and enter negative values to specify lengths of spaces. Use a zero to represent a dot.
\begin{tabular}{llllll}
2.5 & -.5 & .5 & -.5 & \begin{tabular}{l} 
the pattern is \\
repeated
\end{tabular} \\
\hline
\end{tabular}

The " A " in the pattern definition prompt specifies the pattern alignment used at the ends of individual lines, circles, and arcs. Only A-type alignment is supported. With A-type alignment, lines and arcs are guaranteed to start and end with a dash. The \(A\) is automatically included in the definition. If you use a text editor to create a linetype, you must enter a at the beginning of the definition.
After creating a linetype, you must load it to make it accessible.
Load Loads a linetype whose definition exists in a file. The acad.lin file contains the standard linetypes.
The Select Linetype File dialog box (a Standard File Selection Dialog Boxesstandard file selection dialog box) is displayed. Enter or select the file in which the linetype you want to load is stored.

Set Sets the current linetype for objects that will be drawn subsequently. You can control the linetype of objects individually or by layer.
The linetype you enter becomes the current linetype. All new objects are drawn with this linetype, regardless of the current layer. If the linetype you request
is not loaded, the program searches for its definition in the acad.lin file. If the linetype is neither loaded nor in acad.lin, the program displays a message and returns you to the Command prompt.
Enter ? to list all loaded linetype names. If you enter bylayer, new objects inherit the linetype associated with the layer on which the object is drawn. If you enter byblock, new objects are drawn using the CONTINUOUS linetype until they are grouped into a block. Whenever you insert that block, the objects inherit the linetype of the block.

\section*{Quick Reference}

\section*{See also:}
- Display and Change the Properties of Objects

Displays property data for selected objects.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Properties panel \(>\) List
\(\$\) Menu: Tools \(>\) Inquiry \(>\) List
\(\$\) Toolbar: Inquiry

\section*{Summary}

You can use LIST to display and then copy the properties of selected objects to a text file.

The text window displays the object type, object layer, and the \(X, Y, Z\) position relative to the current user coordinate system (UCS) and whether the object is in model space or paper space.

LIST also reports the following information:
- Color, linetype, lineweight, and transparency information, if these properties are not set to BYLAYER.

■ The thickness of an object, if it is nonzero.
- Elevation ( \(Z\) coordinate information).

■ Extrusion direction (UCS coordinates), if the extrusion direction differs from the \(Z\) axis \((0,0,1)\) of the current UCS.
- Additional information related to the specific object type. For example, for dimensional constraint objects, LIST displays the constraint type (annotation or dynamic), reference type (yes or no), name, expression, and value.

\section*{LIVESECTION}

\section*{Quick Reference}

\section*{See also:}

■ Use Live Section to Adjust the Cross Section

Turns on live sectioning for a selected section object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Section panel \(>\) Live Section
Shortcut menu: Activate Live Sectioning

\section*{Summary}

When turned on, the cross sections of 3D objects interesected by the section object are displayed. Live sectioning only works with objects that were created with SECTIONPLANE.


\section*{List of Prompts}

The following prompts are displayed.
Select section object Turns on live sectioning for the section object you select.

\section*{Quick Reference}

\section*{See also:}
- Overview of Shape Files

Makes shapes available for use by the SHAPE command.

\section*{Summary}

The Select Shape File dialog box (a standard file selection dialog box) is displayed. Enter the shape file name, or select a file name from the list.

You must load a shape (SHP) file the first time you need it; it is loaded automatically thereafter. The shape file must be available each time you edit the drawing.

\section*{Quick Reference}

\section*{See also:}
- Create a Solid or Surface by Lofting

Creates a 3D solid or surface in the space between several cross sections.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modeling panel \(>\) Loft
\(\$\) Menu: Draw \(>\) Modeling \(>\) Loft
Toolbar: Modeling

\section*{Summary}

Creates a 3D solid or surface by specifying a series of cross sections. The cross sections define the shape of the resulting solid or surface. You must specify at least two cross sections.


Loft profiles can be open or closed, planar or non-planar, and can also be edge subobjects. Use the mode option to select whether to create a surface or a solid.

When creating surfaces, use SURFACEMODELINGMODE on page 2539 to control whether the surface is a NURBS surface or a procedural surface. Use SURFACEASSOCIATIVITY on page 2537 to control whether procedural surfaces are associative.

You can use the following objects and subobjects with LOFT:
\begin{tabular}{lll}
\begin{tabular}{l} 
Objects That Can Be \\
\begin{tabular}{l} 
Used as Cross Sec- \\
tions
\end{tabular}
\end{tabular} & \begin{tabular}{l} 
Objects That Can Be \\
Used as a Loft Path
\end{tabular} & \begin{tabular}{l} 
Objects That Can Be \\
Used as Guides
\end{tabular} \\
\hline 2D polyline & Spline & 2D spline \\
\hline 2D solid & Helix & 3D spline \\
\hline 2D spline & Circle & \begin{tabular}{l} 
2D polyline \\
\hline Arc \\
Circle \\
can be used as guides \\
if they contain only 1 \\
segment.
\end{tabular} \\
\hline Edge sub-objects & Edge subobjects & \begin{tabular}{l} 
Edge subobjects
\end{tabular} \\
\hline Ellipse & Ellipse & 3D polyline \\
\hline Elliptical arc & Elliptical arc & Elliptical arc \\
\hline Helix & 2D polyline & Line
\end{tabular}

Planar or non-planar
face of solid

Planar or non-planar
surface
Points (first and last 3D polyline
cross section only)
\begin{tabular}{l}
\begin{tabular}{l} 
Objects That Can Be \\
Used as Cross Sec- \\
tions
\end{tabular} \\
\hline Objects That Can Be \\
Uegion
\end{tabular}

To automatically delete the cross sections, guides, and paths, use DELOBJ. If surface associativity on page 2537 is on, DELOBJ is ignored and the originating geometry is not deleted.

\section*{List of Prompts}

The following prompts are displayed.
Cross Sections in Lofting Order Specifies open or closed curves in the order in which the surface or solid will pass through them.
Point If you select the Point option, you must also select a closed curve.
Join Multiple Curves Joins multiple, end-to-end curves as one cross section.
Mode Controls whether the lofted object is a solid or a surface.

\section*{Options}
- Guides

■ Path
- Cross sections only
- Settings on page 1055

Continuity This option only displays if the LOFTNORMALS on page 2395 system variable is set to 1 (smooth fit). Specifies whether the continuity is G0, G1, or G2 where the surfaces meet.

Bulge Magnitude This option only displays if the LOFTNORMALS on page 2395 system variable is set to 1 (smooth fit). Specifies a bulge magnitude value for objects that have a continuity of G1 or G2.

\section*{Guides}

Specifies guide curves that control the shape of the lofted solid or surface. You can use guide curves to control how points are matched up on corresponding cross sections to prevent undesired results, such as wrinkles in the resulting solid or surface.


Cross sections with guide curves


Lofted solid

■ Intersects each cross section
- Starts on the first cross section
- Ends on the last cross section

Select any number of guide curves for the lofted surface or solid and press Enter.

\section*{Path}

Specifies a single path for the lofted solid or surface.


Cross sections with path curve


Lofted solid

The path curve must intersect all planes of the cross sections.

\section*{Cross Sections Only}

Creates lofted objects without using guides or paths.

\section*{Settings}

Displays the Loft Settings dialog box.

\section*{Loft Settings Dialog Box}

\section*{Quick Reference}

See also:
■ Create a Solid or Surface by Lofting

Controls the contour of a lofted surface at its cross sections. Also allows you to close the surface or solid.


\section*{Access Methods}


Button

Ribbon: Home tab \(>\) Modeling panel \(>\) Loft
\(\$\) Menu: Draw \(>\) Modeling \(>\) Loft
Toolbar: Modeling
Command entry: loft

\section*{List of Options}

The following options are displayed.

\section*{Ruled}

Specifies that the solid or surface is ruled (straight) between the cross sections and has sharp edges at the cross sections. (LOFTNORMALS system variable)

\section*{Smooth Fit}

Specifies that a smooth solid or surface is drawn between the cross sections and has sharp edges at the start and end cross sections. (LOFTNORMALS system variable)

\section*{Start Continuity}

Sets the tangency and curvature of the first cross section.
End Continuity
Sets the tangency and curvature of the last cross section.

\section*{Start Bulge Magnitude}

Sets the size of the curve of the first cross section.
End Bulge Magnitude
Sets the size of the curve of the last cross section.

\section*{Normal To}

Controls the surface normal of the solid or surface where it passes through the cross sections. (LOFTNORMALS system variable)

Start Cross Section Specifies that the surface normal is normal to the start cross section.

End Cross Section Specifies that the surface normal is normal to the end cross section.

Start and End Cross Sections Specifies that the surface normal is normal to both the start and end cross sections.

All Cross Sections Specifies that the surface normal is normal to all cross sections.

\section*{Draft Angles}

Controls the draft angle and magnitude of the first and last cross sections of the lofted solid or surface. The draft angle is the beginning direction of the
surface. 0 is defined as outward from the plane of the curve. (LOFTNORMALS system variable)


Draft angles set to 0


Draft angles set to
90


Draft angles set to 180

The following illustration shows the affect of using a different draft angle for the first and last cross sections of a lofted solid. The first cross section is assigned a draft angle of 45 degrees, while the last cross section is assigned a draft angle of 135 degrees.


You can also use the draft angle handle to adjust the draft angle (triangular grip) and magnitude (circular grip).

\(\Delta \bar{\nabla}\)

\section*{Start Angle}

Specifies the draft angle for the start cross section. (LOFTANG1 system variable)

\section*{Start Magnitude}

Controls the relative distance of the surface from the start cross section in the direction of the draft angle before the surface starts to bend toward the next cross section. (LOFTMAG1 system variable)

\section*{End Angle}

Specifies the draft angle for the end cross section. (LOFTANG2 system variable)

\section*{End Magnitude}

Controls the relative distance of the surface from the end cross section in the direction of the draft angle before the surface starts to bend toward the previous cross section. (LOFTMAG2 system variable)

\section*{Close Surface or Solid}

Closes and opens a surface or solid. When using this option, the cross sections should form a torus-shaped pattern so that the lofted surface or solid can form a closed tube. (LOFTPARAM system variable)

loft created with Close surface solid option unchecked

loft created with Close surface solid option checked

\section*{Smooth Ends}

Creates a smooth, closed surface whose seam will not kink if it is reshaped. This option is only available if the loft is ruled or smooth fit and the Close Surface or solid option is selected.

\section*{LOGFILEOFF}

\section*{Quick Reference}

\section*{See also:}

■ Navigate and Edit Within the Command Window

Closes the text window log file opened by LOGFILEON.

\section*{Summary}

The program stops recording the text window contents and closes the log file. You can also control the log file with the OPTIONS on page 1314 command. Use the Maintain a Log File option on the Open and Save tab on page 1326 in the Options dialog box to turn the log file off and on. Use the Files tab on page 1316 to change the location of the log file.

Each drawing saves a log file (with the extension .log) that may need periodic deletion as the number of log files continues to grow.

\section*{LOGFILEON}

\section*{Quick Reference}

\section*{See also:}

■ Navigate and Edit Within the Command Window

Writes the text window contents to a file.

\section*{Summary}

The contents of the text window are recorded in the log file until you exit the program or use the LOGFILEOFF command.

You can also control the log file with the OPTIONS on page 1314 command. Use the Maintain a Log File option on the Open and Save tab on page 1326 in the Options dialog box to turn the log file off and on. Use the Files tab on page 1316 to change the location of the log file.

Each drawing saves a log file (with the extension .log) that may need periodic deletion as the number of log files continues to grow.

\section*{LTSCALE}

\section*{Quick Reference}

\section*{See also:}
- Control Linetype Scale

Sets the global linetype scale factor.

\section*{Access Methods}

㟇 Command entry: 'Itscale for transparent use

\section*{Summary}

Use LTSCALE to change the scale factor of linetypes for all objects in a drawing. Changing the linetype scale factor causes the drawing to be regenerated.
\[
\text { LTSCALE = } 1
\]

LTSCALE = . 5

LTSCALE \(=.25\)

\section*{LWEIGHT}

\section*{Quick Reference}
See also:
■ Overview of Lineweights

Sets the current lineweight, lineweight display options, and lineweight units.

\section*{Access Methods}
"
Button
\(\$\) Ribbon: Home tab \(>\) Properties panel \(>\) Lineweight
\(\$\) Menu: Format > Lineweight
Shortcut menu: Right-click LWT on the status bar and choose Settings.
曼 Command entry: 'lweight for transparent use

\section*{Summary}

The Lineweight Settings dialog box is displayed.
If you enter -lweight at the Command prompt, options are displayed.

\section*{Lineweight Settings Dialog Box}

\section*{Quick Reference}

See also:
■ Overview of Lineweights

Sets the current lineweight, sets the lineweight units, controls the display and display scale of lineweights, and sets the DEFAULT lineweight value for layers.


\section*{Access Methods}

Button
\(\$\) Ribbon: Home tab \(>\) Properties panel \(>\) Lineweight
Q Menu: Format > Lineweight
Shortcut menu: Right-click LWT on the status bar and choose Settings.
䱂 Command entry: Iweight (or 'lweight for transparent use)

\section*{Summary}

For a table of valid lineweights, see "Overview of Lineweights" in the User's Guide.

\section*{List of Options}

The following options are displayed.

\section*{Lineweights}

Displays the available lineweight values. Lineweight values consist of standard settings including BYLAYER, BYBLOCK, and DEFAULT. The DEFAULT value is set by the LWDEFAULT system variable, which has an initial value of 0.01 inches or 0.25 mm . All new layers use the default setting. The lineweight value of 0 plots at the thinnest lineweight available on the specified plotting device and is displayed at one pixel wide in model space.

\section*{Current Lineweight}

Displays the current lineweight. To set the current lineweight, select a lineweight from the lineweight list and choose OK.

\section*{Units for Listing}

Specifies whether lineweights are displayed in millimeters or inches. You can also set Units for Listing by using the LWUNITS system variable.

Millimeters (mm)
Specifies lineweight values in millimeters.
Inches (in.)
Specifies lineweight values in inches.

\section*{Display Lineweight}

Controls whether lineweights are displayed in the current drawing. If this option is selected, lineweights are displayed in model space and paper space. You can also set Display Lineweight by using the LWDISPLAY system variable. Regeneration time increases with lineweights that are represented by more than one pixel. Clear Display Lineweight if performance slows down when working with lineweights turned on in a drawing. This option does not affect how objects are plotted.

\section*{Default}

Controls the DEFAULT lineweight for layers. The initial DEFAULT lineweight is 0.01 inches or 0.25 mm . (LWDEFAULT system variable)

\section*{Adjust Display Scale}

Controls the display scale of lineweights on the Model tab. On the Model tab, lineweights are displayed in pixels. Lineweights are displayed using a pixel width in proportion to the real-world unit value at which they plot. If you are using a high-resolution monitor, you can adjust the lineweight display scale to better display different lineweight widths. The Lineweight list reflects the current display scale.

Objects with lineweights that are displayed with a width of more than one pixel may increase regeneration time. If you want to optimize performance when working in the Model tab, set the lineweight display scale to the minimum value or turn off lineweight display altogether.

\section*{-LWEIGHT}

\section*{Quick Reference}

\section*{See also:}
- Overview of Lineweights

\section*{List of Prompts}

The following prompts are displayed.
Current lineweight: current
Enter default lineweight for new objects or [?]: Enter a valid lineweight or enter ?

The current lineweight value is displayed; if the value is not BYLAYER, BYBLOCK or DEFAULT, the value is displayed in millimeters or inches.

Default Lineweight Sets the current default lineweight. Lineweight values consist of fixed settings, including BYLAYER, BYBLOCK, and DEFAULT. Values are calculated in either inches or millimeters; millimeters are the default. If you enter a valid lineweight value, the current default lineweight is set to the new value. If you enter any other value, the default is set to the nearest valid value.
To plot an object with a lineweight that is not found in the list of fixed lineweight values, you can use the Plot Style Table Editor to customize plotted lineweights. See "Control Plotted Lineweight and Linetype" in the User's Guide. The DEFAULT value is set by the LWDEFAULT system variable and has an initial value of 0.01 inches or 0.25 mm . The lineweight value of 0 plots at the thinnest lineweight available on the specified plotting device and is displayed at a value of one pixel in model space.
?-List Lineweights Displays a list of valid lineweight values in the current lineweight units.

NOTE If you save a drawing using the AutoCAD Release 14, or earlier, format, the drawing preview displays lineweights even though the drawing saved in the earlier format does not display lineweights.

\section*{M Commands}

MARKUP

\section*{Quick Reference}

See also:
■ View Markups
Opens the Markup Set Manager.

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Markup Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Markup Set Manager
Summary
When submitting designs for review, you can publish a drawing as a DWF or DWFx file. The reviewer can open the file in Autodesk Design Review, mark it up, and then send the file back to you.

Opens the Markup Set Manager.

\section*{Markup Set Manager}

\section*{Quick Reference}

See also:
■ View Markups

Displays information about loaded markup sets and their status.

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Markup Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools > Palettes \(>\) Markup Set Manager
米 Command entry: markup

\section*{Summary}

You can show or hide markups and their originating drawing files in your drawing area. You can change the status of individual markups and add notes and comments to them.

\section*{List of Options}

The following options are displayed.

\section*{Markup Set List Control}

The Markup Set List control displays the name of the markup set, or, if no markup sets are open, the Open option.

Names of Open Markup Sets Lists all open markup sets, if any. A check is displayed next to the current markup set. The current markup set is the open markup set that is displayed in the Markup Set Manager window.

Recent Displays a list of recently opened markup sets.
Open Displays the Open Markup DWF dialog box (a standard file selection dialog box), in which you can select a DWF or DWFx file that contains
markups. When you click Open, the markups in the selected DWF or DWFx file are loaded into the Markup Set Manager.
NOTE When opening a digitally signed DWFx file, a message box is displayed that warns you about saving a new version of the file will invalidate the attached digital signature.

\section*{Republish Markup DWF}

Provides options for republishing the marked-up DWF or DWFx file. If any sheets were added to the DWF or DWFx file in Autodesk \({ }^{\circledR}\) Design Review, those sheets will not be included in the republished DWF or DWFx file.

Republish All Sheets Republishes all sheets in the marked-up DWF or DWFx file. Opens the Select DWF File dialog box (a standard file selection dialog box), in which you can select the previously published DWF or DWFx to overwrite it, or you can enter a new name for the DWF or DWFx file. When you click Select, the previously published DWF file is overwritten or a new DWF or DWFx file is created that contains any changes you made to the drawing file geometry and the status of the markups.

Republish Markup Sheets Republishes only those sheets in the marked-up DWF or DWFx file that have associated markups. Opens the Select DWF File dialog box (a standard file selection dialog box), in which you can select the previously published DWF or DWFx to overwrite it, or you can enter a new name for the DWF or DWFx file. When you click Select, the previously published DWF or DWFx file is overwritten or a new DWF or DWFx file is created that contains any changes you made to the drawing file geometry and the status of the markups.

\section*{View Redline Geometry}

Displays or hides redline markup geometry in the drawing area.

\section*{View DWG Geometry}

Displays or hides the originating drawing file in the drawing area.

\section*{View DWF Geometry}

Displays or hides the DWF or DWFx file geometry in the drawing area.

\section*{Markups}

Displays loaded markup sets. Any sheets that were added to the DWF or DWFx file in Autodesk Design Review are listed in italics. The icon associated with each markup represents the status of the markup.

Markup Set Node Indicates the currently loaded markup set.
Drawing Sheet Node Indicates a drawing sheet that has one or more associated markups.
<None> Indicates an individual markup that does not yet have an assigned status. This is the default status for new markups.

Question Indicates an individual markup that has an assigned status of Question. When you open and view a markup, you can change the status to Question if you need additional information about the markup.

For Review Indicates an individual markup that has an assigned status of For Review. When you implement a markup, you can change the status to For Review to indicate that the markup creator should review the changes to the drawing sheet and the status of the markup.

Done Indicates an individual markup that has an assigned status of Done. When a markup has been implemented and reviewed, you can change the status to Done.

\section*{Markup Shortcut Menu Options (Markup Set Node)}

Right-clicking a markup set node in the Markups area displays the following shortcut menu options.

Open Markup DWF Opens the Open Markup DWF dialog box (a standard file selection dialog box), in which you can select a DWF or DWFx file that contains markups. When you click Open, the markups in the selected DWF or DWFx file are loaded into the Markup Set Manager.
NOTE When opening a digitally signed DWFx file, a message box is displayed that warns you about saving a new version of the file will invalidate the attached digital signature.

Close Markup DWF Closes the selected marked-up DWF or DWFx and removes it from the Markup Set Manager.

Save Markup History Changes Saves changes to the status of markups and added comments to the marked-up DWF or DWFx file.
NOTE Saving a DWFx file that contains a digital signature will invalidate the attached digital signature.

\section*{Markup Shortcut Menu Options (Drawing Sheet Node)}

Right-clicking a drawing sheet node in the Markups area displays the following shortcut menu options.

Open Sheet Opens the originating drawing file for that drawing sheet and makes that layout the active layout in the drawing area.

Republish All Sheets Opens the Specify DWF File dialog box. Use this dialog box to overwrite the previously published DWF or DWFx files, or create a DWF or DWFx file.

Republish Markup Sheets Opens the Specify DWF File dialog box. Use this dialog box to overwrite the previously published DWF or DWFx files, or create a DWF or DWFx file.
The DWF or DWFx file created contains changes you make to the drawing file geometry and the status of the markups.

\section*{Markup Shortcut Menu Options (Markup Node)}

Right-clicking an individual markup node in the Markups area displays the following shortcut menu options.

Open Markup Opens the originating drawing file for the drawing sheet associated with the selected markup and makes that layout the active layout in the drawing area. The associated markup DWF or DWFx file is also opened as a read-only reference in the drawing area.

Markup Status Displays a shortcut menu that provides a list of status options. A check mark precedes the currently assigned status for the selected markup.
- <None>: Indicates that the markup does not yet have an assigned status. This is the default status for new markups.

■ Question: After you open and view a markup, you can change its status to Question if you need additional information about the markup.
- For Review: After you have implemented a markup, you can change the status to For Review to indicate that the markup creator should review the changes to the drawing sheet and the status of the markup.
- Done: After a markup has been implemented and reviewed, you can change its status to Done.

Restore Initial Markup View If you panned or zoomed the selected markup, or rotated the view in model space, restores the original view of the selected markup.

Republish All Sheets Opens the Specify DWF File dialog box. Use this dialog box to overwrite the previously published DWF or DWFx files, or create a DWF or DWFx file.

Republish Markup Sheets Opens the Specify DWF File dialog box. Use this dialog box to overwrite the previously published DWF or DWFx files, or create a DWF or DWFx file.

The DWF or DWFx file created contains changes you make to the drawing file geometry and the status of the markups.

\section*{Show All Sheets/Hide Non-Markup Sheets}

Displays all sheets in the marked-up DWF or DWFx file in the tree view of the Markup Set Manager, or hides the sheets that do not have associated markups.

\section*{Markup Details}

Provides information about the currently selected node (markup set, drawing sheet, or individual markup) in the Markups area.

When an individual markup is selected in the Markups area, Markup Details displays the status of the markup.

The Markup History area (in the lower portion of the Markup Details area) provides a noneditable history log of the selected markup in reverse chronological order. In the Notes area, just below the Markup History area, you can add notes and comments that are automatically saved with the markup.

Preview Changes the Markup Details area to the Markup Preview area and displays a thumbnail image of the selected drawing sheet or markup. You can click the Details button to change the area back to the Markup Details area.

Details Changes the Markup Preview area to the Markup Details area, which provides information about the selected node in the Markups area. You can click the Preview button to change the area back to the Markup Preview area.

\section*{Markup Preview}

Displays a thumbnail preview of the currently selected drawing sheet or markup.

Details Changes the Markup Preview area to the Markup Details area, which provides information about the selected node in the Markups area. You can click the Preview button to change the area back to the Markup Preview area.

Preview Changes the Markup Details area to the Markup Preview area and displays a thumbnail image of the selected drawing sheet or markup. You can click the Details button to change the area back to the Markup Details area.

\section*{Markup Set Manager Settings}

The following shortcut menu options are available when you right-click the title bar.

Move Displays a four-headed arrow cursor that you can use to move the dialog box. The dialog box does not dock.

Size Displays a four-headed arrow cursor that you can use to drag an edge or a corner to make the smaller or larger.

Close Closes the Markup Set Manager.

Allow Docking Toggles the ability to dock or anchor Markup Set Manager. If this option is selected, a window can be docked when you drag it over a docking area at the side of a drawing. A docked window adheres to the side of the application window and causes the drawing area to be resized. Selecting this option also makes Anchor Right and Anchor Left available.

Anchor Right/ Anchor Left Attaches the Markup Set Manager to an anchor tab base at the right or left side of the drawing area. An anchored palette cannot be set to stay open.

Auto-hide Causes a floating palette to roll open and closed as the cursor moves across it.

Transparency Displays the Transparency dialog box.

\section*{MARKUPCLOSE}

\section*{Quick Reference}

\author{
See also: \\ - Respond to Markups
}

Closes the Markup Set Manager.

\section*{Access Methods}


Butlon
8 Menu: Tools \(>\) Palettes \(>\) Markup Set Manager
\(\$\) Toolbar: Standard

\section*{Summary}

The Markup Set Manager window closes.

\section*{MASSPROP}

\section*{Quick Reference}

\section*{See also:}
- Obtain Area and Mass Properties Information

Calculates the mass properties of regions or 3D solids.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Inquiry \(>\) Region/Mass Properties
\(\$\) Toolbar: Inquiry

\section*{Summary}

Refer to the Help system for a complete list of definitions for each of the region or mass properties computed.

\section*{List of Prompts}

The following prompts are displayed.
Select objects: Use an object selection method
If you select multiple regions, only those that are coplanar with the first selected region are accepted.

MASSPROP displays the mass properties in the text window, and then asks if you want to write the mass properties to a text file (.mpr).

The properties that MASSPROP displays depend on whether the selected objects are "regions", and whether the selected regions are coplanar with the \(X Y\) plane of the current user coordinate system (UCS), or "solids". For a list of the parameters that control the MASSPROP units, see "Calculations Based on the Current UCS".

\section*{Regions}

The following table shows the mass properties that are displayed for all regions.
Mass properties for all regions
Mass property Description
Area The surface area of solids or the enclosed area of regions.
\begin{tabular}{ll}
\hline Mass properties for all regions \\
\hline Mass property & Description \\
\hline Perimeter & \begin{tabular}{l} 
The total length of the inside and outside loops of a region. The \\
perimeter of a solid is not calculated.
\end{tabular} \\
\hline Bounding box & \begin{tabular}{l} 
The two coordinates that define the bounding box. For regions that \\
are coplanar with the \(X Y\) plane of the current user coordinate system, \\
the bounding box is defined by the diagonally opposite corners of a \\
rectangle that encloses the region. For regions that are not coplanar \\
with the \(X Y\) plane of the current \(U C S\), the bounding box is defined \\
by the diagonally opposite corners of a 3D box that encloses the re- \\
gion.
\end{tabular} \\
\hline Centroid & \begin{tabular}{l} 
A 2D or 3D coordinate that is the center of area for regions. For re- \\
gions that are coplanar with the \(X Y\) plane of the current UCS, this \\
coordinate is a 2D point. For regions that are not coplanar with the \\
\(X Y\) plane of the current UCS, this coordinate is a 3D point.
\end{tabular}
\end{tabular}

If the regions are coplanar with the \(X Y\) plane of the current UCS, the additional properties shown in the following table are displayed.
\begin{tabular}{ll}
\hline Additional mass properties for coplanar regions \\
\hline Mass property & \begin{tabular}{l} 
Description
\end{tabular} \\
\hline \begin{tabular}{l} 
Moments of in- \\
ertia
\end{tabular} & \begin{tabular}{l} 
A value used when computing the distributed loads, such as fluid \\
pressure on a plate, or when calculating the forces inside a bending \\
or twisting beam. The formula for determining area moments of iner- \\
tia is \\
area_moments_of_inertia = area_of_interest * radius \({ }^{2}\)
\end{tabular} \\
& The area moments of inertia has units of distance to the fourth power.
\end{tabular}

\section*{Additional mass properties for coplanar regions}

\section*{Mass property Description}

Principal mo- Calculations that are derived from the products of inertia and that ments and have the same unit values. The moment of inertia is highest through \(X, Y, Z\) directions a certain axis at the centroid of an object. The moment of inertia is about centroid lowest through the second axis that is normal to the first axis and that also passes through the centroid. A third value included in the results is somewhere between the high and low values.

\section*{Solids}

The following table shows the mass properties that are displayed for solids.

\section*{Mass properties for solids}
\begin{tabular}{ll}
\hline Mass property & Description \\
\hline Mass & \begin{tabular}{l} 
The measure of inertia of a body. Because a density of one is used, \\
mass and volume have the same value.
\end{tabular} \\
\hline Volume & The amount of 3D space that a solid encloses. \\
\hline
\end{tabular}
Bounding box The diagonally opposite corners of a 3D box that encloses the solid.

Centroid A 3D point that is the center of mass for solids. A solid of uniform density is assumed.
Moments of in- \(\quad\)\begin{tabular}{l} 
The mass moments of inertia, which is used when computing the \\
force required to rotate an object about a given axis, such as a wheel \\
ertia \\
rotating about an axle. The formula for mass moments of inertia is \\
mass_moments_of_inertia = object_mass * radius \({ }_{\text {axis }}{ }^{2}\)
\end{tabular}



Mass moments of inertia unit is mass (grams or slugs) times the dis-
tance squared.
Products of iner- Property used to determine the forces causing the motion of an object.
tia It is always calculated with respect to two orthogonal planes. The formula for product of inertia for the \(Y Z\) plane and \(X Z\) plane is product_of_inertia \(\mathrm{YZ}, \mathrm{xZ}=\) mass \(^{*}\) dist \(_{\text {centroid_to_YZ }}\) * dist \({ }_{\text {centroid_to_XZ }}\) This \(X Y\) value is expressed in mass units times the length squared.

Radii of gyra- Another way of indicating the moments of inertia of a solid. The fortion mula for the radii of gyration is gyration_radii \(=(\text { moments_of_inertia/body_mass) })^{1 / 2}\)

\section*{Mass properties for solids}

Mass property Description
Radii of gyration are expressed in distance units.

Principal mo- Calculations that are derived from the products of inertia and that ments and have the same unit values. The moment of inertia is highest through \(X, Y, Z\) directions a certain axis at the centroid of an object. The moment of inertia is about centroid lowest through the second axis that is normal to the first axis and that also passes through the centroid. A third value included in the results is somewhere between the high and low values.

Calculations Based on the Current UCS
The following table shows the parameters that control the units in which mass properties are calculated.

\section*{Parameters that control MASSPROP units}
\begin{tabular}{ll}
\hline Parameter & Used to calculate \\
\hline DENSITY & Mass of solids \\
\hline LENGTH & Volume of solids \\
\hline LENGTH*LENGTH & Area of regions and surface area of solids \\
\hline LENGTH*LENGTH*LENGTH & \begin{tabular}{l} 
Bounding box, radii of gyration, centroid, and \\
perimeter
\end{tabular} \\
\hline DENSITY*LENGTH*LENGTH & \begin{tabular}{l} 
Moments of inertia, products of inertia, and \\
principal moments
\end{tabular} \\
\hline
\end{tabular}

\section*{MATBROWSERCLOSE}

\section*{Quick Reference}

\section*{See also:}
- Browse Material Libraries

Closes the Materials Browser.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Materials panel \(>\) Materials Browser
\(\$\) Menu: View \(>\) Render \(>\) Materials Browser
\(\$\) Toolbar: Render

\section*{Summary}

This command closes the Materials Browser on page 1079.

\section*{MATBROWSEROPEN}

\section*{Quick Reference}

See also:
- Browse Material Libraries

Opens the Materials Browser.

Access Methods


Button

8 Ribbon: Render tab \(>\) Materials panel \(>\) Materials Browser
Menu: View \(>\) Render \(>\) Materials Browser
Toolbar: Render

\section*{Summary}

The Materials Browser on page 1079 is displayed.

\section*{Materials Browser}

\section*{Quick Reference}

See also:
- Browse Material Libraries

The Materials Browser allows you to navigate and manage your materials.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Materials panel \(>\) Materials Browser
\(\$\) Menu: View \(>\) Render \(>\) Materials Browser
Toolbar: Render

\section*{Summary}

You can also manage your material libraries in the Materials Browser. It also allows you search and sort materials in all open libraries and in the drawing.

\section*{List of Prompts}

The following prompts are displayed.
Show/Hide Library Tree Controls the visibility of the library tree
Search Searches for material appearances in multiple libraries.
Create New Material Creates or duplicates the material.
Materials in This Document Displays the materials saved with the open drawing.

Autodesk Library A standard system library which contains the Autodesk Materials provided by Autodesk for use by all applications.

My Materials A special user library which stores the collection of user-defined materials. It cannot be renamed.

Manage Allow you to create, open, or edit libraries and library categories.

View Controls the details view display of the library content.
Swatch Size Adjusts the size of the swatches.
Material Editor Displays the Materials Editor on page 1086.

\section*{MATCHCELL}

\section*{Quick Reference}

\section*{See also:}
- Add Text and Blocks to Tables

Applies the properties of a selected table cell to other table cells.

\section*{Access Methods}

Shortcut menu: With a table selected and a cell selected, right-click and click Match Cell.

\section*{Summary}

All the properties of the source cell are copied to the destination cells except for the cell type: text or block.

\section*{List of Prompts}

The following prompts are displayed.
Select source cell: Click inside a cell in a table whose properties you want to copy Select destination cell: Click inside table cells to copy properties from the source cell, and right-click or press Enter or ESC to exit

\section*{MATCHPROP}

\section*{Quick Reference}

See also:
- Copy Properties Between Objects

Applies the properties of a selected object to other objects.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Properties panel \(>\) Match Properties
\(\$\) Menu: Modify \(>\) Match Properties
\(\$\) Toolbar: Standard
聯 Command entry: painter (or 'matchprop for transparent use)

\section*{Summary}

The types of properties that can be applied include color, layer, linetype, linetype scale, lineweight, plot style, transparency, and other specified properties.

\section*{List of Prompts}

The following prompts are displayed.
Current active settings: Currently selected matchprop settings
Select destination object(s) or [Settings]: Enter s or select one or more objects to copy properties to
Destination Object(s) Specifies the objects to which you want to copy the properties of the source object.

Settings Displays the Property Settings dialog box, in which you can control which object properties to copy to the destination objects. By default, in the Property Settings dialog box all object properties are selected for copying.

\section*{Property Settings Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Copy Properties Between Objects


\section*{Access Methods}


Button

\section*{\(\$\) Ribbon: Home tab \(>\) Properties panel \(>\) Match Properties \\ Menu: Modify \(>\) Match Properties \\ Toolbar: Standard \\ 业 Command entry: matchprop or painter (or 'matchprop for transparent use)}

\section*{Summary}

Specifies which basic properties and special properties to copy from the source object to the destination objects.

\section*{List of Options}

The following options are displayed.

\section*{Basic Properties}

Color
Changes the color of the destination object to that of the source object. Available for all objects.

Layer

Changes the layer of the destination object to that of the source object. Available for all objects.

\section*{Linetype}

Changes the linetype of the destination object to that of the source object. Available for all objects except attributes, hatches, multiline text, points, and viewports.

\section*{Linetype Scale}

Changes the linetype scale factor of the destination object to that of the source object. Available for all objects except attributes, hatches, multiline text, points, and viewports.

\section*{Lineweight}

Changes the lineweight of the destination object to that of the source object. Available for all objects.

\section*{Transparency}

Changes the transparency of the of the destination object to that of the source object. Available for all objects.

\section*{Thickness}

Changes the thickness of the destination object to that of the source object. Available only for arcs, attributes, circles, lines, points, 2D polylines, regions, text, and traces.

\section*{Plot Style}

Changes the plot style of the destination object to that of the source object. If you are working in color-dependent plot style mode (PSTYLEPOLICY is set to 1), this option is unavailable. Available for all objects, except those with the Jitter edge modifier applied.

\section*{Special Properties}

\section*{Dimension}

In addition to basic object properties, changes the dimension style and properties of the destination object to that of the source object. Available only for dimension, leader, and tolerance objects.

\section*{Polyline}

In addition to basic object properties, changes the width and linetype generation properties of the destination polyline to those of the source polyline. The fit/smooth property and the elevation of the source polyline are
not transferred to the destination polyline. If the source polyline has variable width, the width property is not transferred to the destination polyline.

\section*{Material}

In addition to basic object properties, changes the material applied to the object. If the source object does not have a material assigned and the destination object does, the material is removed from the destination object.

\section*{Text}

In addition to basic object properties, changes the text style and properties of the destination object to that of the source object. Available only for single-line and multiline text objects.

\section*{Viewport}

In addition to basic object properties, changes the following properties of the destination paper space viewport to match those of the source viewport: on/off, display locking, standard or custom scale, shade plot, snap, grid, and UCS icon visibility and location.

The settings for clipping and for UCS per viewport and the freeze/thaw state of the layers are not transferred to the destination object.

\section*{Shadow Display}

In addition to basic object properties, changes the shadow display. The object can cast shadows, receive shadows, or both, or it can ignore shadows.

\section*{Hatch}

In addition to basic object properties, changes the hatch properties (including its properties) of the destination object to that of the source object. To match the hatch origin, use Inherit Properties in HATCH or HATCHEDIT. Available only for hatch objects.

\section*{Table}

In addition to basic object properties, changes the table style of the destination object to that of the source object. Available only for table objects.

\section*{Multileader}

In addition to basic object properties, changes the multileader style and properties of the destination object to that of the source object. Available only for multileader objects.

\section*{MATEDITORCLOSE}

\section*{Quick Reference}

See also:
■ Modify Materials

Closes the Materials Editor.

Access Methods


Button
\$ Ribbon: Render tab \(>\) Materials panel \(>\star>\) Materials Editor
\(\$\) Menu: View \(>\) Render \(>\) Materials Editor
Toolbar: Render

\section*{Summary}

This command closes the Materials Editor on page 1086.

\section*{MATEDITOROPEN}

\section*{Quick Reference}

See also:
■ Modify Materials

Opens the Materials Editor.
Access Methods


Button
\(\$\) Ribbon: Render tab \(>\) Materials panel \(>\forall>\) Materials Editor
\(\$\) Menu: View \(>\) Render \(>\) Materials Editor
\(\$\) Toolbar: Render

Summary
The Materials Editor on page 1086 is displayed.

\section*{Materials Editor}

\section*{Quick Reference}

See also:
- Create New Materials

Edits the material selected in the Materials in This Document panel.
Access Methods


Button

\section*{Summary}

The configuration of the Materials Editor changes depending on the type of material and template that is selected.

\section*{List of Options}

The following options are displayed.

\section*{Appearance Tab}

Contains the controls for editing the material properties.
Swatch Preview Previews the selected material

Name Specifies the name of the material.
Create Creates or duplicates the material.
Show Materials Browser Displays the Materials Browser on page 1079.
Information Tab
Contrains all controls for editing and viewing the keyword information of a material.

Information Specifies the general description of the material.
■ Description. Provides the descriptive information of the material appearance.
- Keywords. Provides keywords or tags of the material appearance. The keywords are used to search and filter materials in the Materials Browser.

About Includes the type, version, and location of the material.
■ Type. Specifies the material type.
- Version. Specifies the version number of the material.
- Location. Specifies the library where the material is stored.

Texture Paths Displays the file path of the texture file associated with the material attribute.

\section*{Texture Editor}

\section*{Quick Reference}

\footnotetext{
See also:
- Modify Materials

Edits the properties of image or procedural-based textures.

\section*{Access Methods}


Button
}

Q Ribbon: Render tab \(>\) Materials panel \(>\otimes>\) Materials Editor
\(\$\) Menu: View \(>\) Render \(>\) Materials Editor
\(\$\) Toolbar: Render

\section*{Summary}

The Texture Editor allows you to modify texture properties. In the Materials Editor on page 1086, click the image or procedural-based texture to display the Texture Editor.

\section*{List of Options}

The following options are displayed.

\section*{Preview}

Any changes in a texture are reflected in the interactive swatch preview right away. You can enlarge or reduce the size of the preview area.

\section*{Apprearance}

The Appearance settings are only available for procedural-based textures. The editing controls vary by texture type.

\section*{Transforms}

Controls the three standard transformations (position, scale, and repeat) used in various texture sockets.

Link Texture Transforms Allows all changes made to the Position, Scale, and Repeat settings of this attribute to be propagated to all other attributes within the material that use a texture.

Position Controls the coordinates and rotation of the material on a swatch.
■ Offset. Moves the starting point of the map along the X or Y axis.
■ Rotation. Rotates the map from 180 degrees - 180 degrees.

Scale Controls the scaling of the procedural maps on materials.
■ Sample Size. Specifies the vertical or horizontal scaling for procedural maps on materials. This setting is only available on Checker, Gradient, and Tiles.

■ Scale to Fit. Positions the texture relative to the object.

Repeat Controls the creation and modification of a map pattern.
- Horizontal. Adjusts the tiling of the map along the X axis.

■ Vertical. Adjusts the tiling of the map along the Y axis.

Tile causes the map to be tiled within the material. Mirror causes the map to be tiled, but each tile is a mirror of the adjacent one. None specifies no modifications to the map pattern.

\section*{Map Property Settings}

\section*{Quick Reference}

\section*{See also:}
- Modify Map Properties

The map property settings displayed on the Texture Editor depend on the selected map type.

\section*{Access Methods}

\section*{Button}
\(\$\) Ribbon: Render tab \(>\) Materials panel \(\ggg\) Materials Editor
\(\$\) Menu: View \(>\) Render \(>\) Materials Editor
\(\$\) Toolbar: Render

\section*{Summary}

For each map type there are different property settings. See each map type for specific settings:
- Checker

■ Gradient
- Marble
- Noise
- Speckle
- Tiles

■ Waves

\section*{Checker Property Settings}

\section*{Quick Reference}

\section*{See also:}
- Checker

Controls the property settings for the Checker procedural map.

\section*{List of Options}

The following options are displayed.
Color 1 Provides the option of selecting a color for one of the checkers.
Click the color box to display the Select Color dialog box.
Color 2 Provides the option of selecting a color for the other checker.
Click the color box to display the Select Color dialog box.
Soften Adjusts the value in the amount of softness or blurring between the edge of the two colors or map types. Higher values blur more. A value of 0.0 indicates sharp edges. Range \(=0\) to 5.00; Default \(=0\).

UV Scaling Specifies the horizontal and vertical scaling for procedural maps on materials.

Real World Size Adjusts the real world size of the map channel.
UV Rotation Rotates the map around the W axis of the UVW coordinate system. Rotation is not available for spherical and cylindrical mapping. Use MATERIALMAP on page 1102 to display the mapping gizmo that can rotate box, planar, spherical and cylindrical maps.

U Offset Moves the starting point of the map along the \(U\) axis.
V Offset Moves the starting point of the map along the V axis.

\section*{Gradient Property Settings}

\section*{Quick Reference}

See also:
■ Gradient

Controls the property settings for the Gradient procedural map.

\section*{List of Options}

The following options are displayed.
Gradient Type Specifies the type of shade from one color to another. These affect the entire gradient.
- 4 Corner. An asymmetrical linear transition of colors.
- Box. A box.
- Diagonal. A linear diagonal transition of colors.
- Lighting. Based on the light intensity value. No light=far left; brightest light=far right.
- Linear. A smooth, linear transition of colors.
- Mapped. Lets you assign a map to use as the gradient.
- Normal. Based on the angle between the vector from the camera to the object and the surface normal vector at the sample point. The leftmost node of the gradient is 0 degrees; the rightmost node is 90 degrees.
- Pong. A diagonal sweep that repeats in the middle.
- Radial. A radial transition of colors.
- Spiral. A smooth, circular transition of colors.

■ Sweep. A linear sweep transition of colors.
- Tartan. A plaid.

Gradient Interpolation Specifies the type of calculation for the intermediate values. These affect the entire gradient.
■ Custom. Sets an individual interpolation type for each node. Under Current Node select the interpolation type.
- Ease In. Weighted more toward the next node than the current node.
- Ease In Out. Weighted more toward the current node than the next node.

■ Ease Out. Weighted more toward the previous node than the next node.
■ Linear. Constant from one node to the next. (Default.)
- Solid. No interpolation. Transitions are a sharp line.

Noise Type Displays the different methods to create the perturbations: Regular, Fractal or Turbulence.

Noise Amount When nonzero, a random noise effect is applied to the gradient, based on the interaction of the gradient ramp colors (and maps, if present). The higher this value, the greater the effect. Range=0 to 1.

Noise Phase Controls the speed of the animation of the noise function. A 3D noise function is used for the noise; the first two parameters are U and V and the third is phase.

Noise Size Sets the scale of the noise function. Smaller values give smaller chunks of noise.

Noise Levels Sets the number of fractal iterations or turbulence (as a continuous function).

Noise Low Adjusts the low noise threshold. When the noise value is above the Low threshold and below the High threshold, the dynamic range is stretched to fill 0 to 1 . This causes a smaller discontinuity at the threshold transition and produces less potential aliasing.

Noise High Adjusts the high threshold. Range \(=0\) to 1 .
Noise Smooth Adjusts the noise smoothness. Range \(=0\) to 1 .
UV Scaling Specifies the horizontal and vertical scaling for procedural maps on materials.

Rotate Rotates the map around the W axis of the UVW coordinate system. Rotation is not available for spherical and cylindrical mapping. Use MATERIALMAP on page 1102 to display the mapping gizmo that can rotate box, planar, spherical and cylindrical maps.

\section*{Marble Property Settings}

\section*{Quick Reference}

See also:
■ Marble

Controls the property settings for the Marble procedural map.

\section*{List of Options}

The following options are displayed.
Color 1 Specifies the color of the stone.
Click the color box to display the Select Color dialog box.
Color 2 Specifies the vein color of the marble.
Click the color box to display the Select Color dialog box.
Size Sets the space between veins. Range \(=0-100 ;\) Default \(=1.00\).
Vein Width Sets the width of the veins. Range \(=0-100\); Default \(=1.00\).
UVW Offset Moves the starting point of the map along the UVW axes.
UVW Tiling Adjusts the tiling of the map along the UVW axes.

\section*{Noise Property Settings}

\section*{Quick Reference}

See also:
■ Noise

Controls the property settings for the Noise procedural map.

\section*{List of Options}

The following options are displayed.

Type Creates random perturbation of a surface based on the interaction of two colors.
- Regular. Generates plain noise. Basically the same as fractal noise with levels setting at 1. When the noise type is set to Regular, the Levels spinner is inactive (because Regular is not a fractal function).
- Fractal. Generates noise using a fractal algorithm. The Levels option sets the number of iterations for fractal noise.
- Turbulence. Generates fractal noise with an absolute value function applied to it to make fault lines. Note that the noise amount must be greater than 0 to see any effects of turbulence.

Size Sets the scale of the noise function. Smaller values give smaller chunks of noise.

Color 1 Provides the option of selecting a color for one of the components.
Click the color box to display the Select Color dialog box.
Color 2 Provides the option of selecting a color for the component.
Click the color box to display the Select Color dialog box.
Low Threshold Specifies the low noise threshold. Range \(=0\) to 1 ; Default \(=\) 0.

High Threshold Specifies the high noise threshold. Range \(=0\) to 1 ; Default \(=\) 1.

Levels Determines how much fractal energy is used for the Fractal and Turbulence noise functions. You can set the exact amount of turbulence you want and also animate the number of fractal levels. Default \(=3\).

Phase Controls the appearance of the noise. Use this option to vary the appearances of different objects that use the noise map.

UVW Offset Moves the starting point of the map along the UVW axes.
UVW Tiling Adjusts the tiling of the map along the UVW axes.

\section*{Speckle Property Settings}

\section*{Quick Reference}

See also:
- Speckle

Controls the property settings for the Speckle procedural map.

\section*{List of Options}

The following options are displayed.
Color 1 Provides the option of selecting a color for the speckle.
Click the color box to display the Select Color dialog box.
Color 2 Provides the option of selecting a second color for speckle.
Click the color box to display the Select Color dialog box.
Size Adjusts the size of the speckles.
UVW Offset Moves the starting point of the map along the UVW axes.
UVW Tiling Adjusts the tiling of the map along the UVW axes.

\section*{Tiles Property Settings}

\section*{Quick Reference}

See also:
■ Tiles

Controls the property settings for the Tiles procedural map.

\section*{List of Options}

The following options are displayed.
Pattern Types Determines either a preset or custom tile pattern. Preset patterns typically disable most or all of the stacking layout and row/column edit controls.

Color Provides the option of selecting a color for the tile.
Click the color box to display the Select Color dialog box.
Horizontal Count Controls the number of tiles in a row. Default \(=4\).
Vertical Count Controls the number of tiles in a column. Default \(=4\).
Color Variance Controls the color variation of the tiles. Default \(=0.05\).
Fade Variance Controls the fading variation of the tiles.
UV Scaling Specifies the horizontal and vertical scaling for procedural maps on materials.

Real World Size Adjusts the real world size of the map channel.
UV Rotation Rotates the map around the W axis of the UVW coordinate system. Rotation is not available for spherical and cylindrical mapping. Use MATERIALMAP on page 1102 to display the mapping gizmo that can rotate box, planar, spherical and cylindrical maps.
\(\mathbf{U}\) Offset Moves the starting point of the map along the U axis.
V Offset Moves the starting point of the map along the V axis.

\section*{Waves Property Settings}

\section*{Quick Reference}

\section*{See also:}

■ Waves

Controls the property settings for the Waves procedural map.

\section*{List of Options}

The following options are displayed.
Color 1 Provides the option of selecting a color for the waves.
Click the color box to display the Select Color dialog box.
Color 2 Provides the option of selecting a second color for the waves.
Click the color box to display the Select Color dialog box.
UVW Offset Moves the starting point of the map along the UVW axes.

UVW Tiling Adjusts the tiling of the map along the UVW axes.

\section*{Wood Property Settings}

\section*{Quick Reference}

See also:
- Wood

Controls the property settings for the Wood procedural map.

\section*{List of Options}

The following options are displayed.
Color 1 Provides the option of selecting a color for the wood.
Click the color box to display the Select Color dialog box.
Color 2 Provides the option of selecting a second color for the wood.
Click the color box to display the Select Color dialog box.
UVW Offset Moves the starting point of the map along the UVW axes.
UVW Tiling Adjusts the tiling of the map along the UVW axes.

\section*{Nested Map Navigation}

\section*{Quick Reference}

\section*{See also:}
- Modify Materials

Displays the nesting map navigation of the selected material swatch.


\section*{Access Methods}

Button

Q Ribbon: Render tab \(>\) Materials panel \(>\otimes>\) Materials Editor
\(\$\) Menu: View \(>\) Render \(>\) Materials Editor
\(\$\) Toolbar: Render

\section*{Summary}

Nested maps within a parent map or material can be selected. The Nested Map Navigation provides lists and buttons to control the current level of the nested maps.

\section*{List of Options}

The following options are displayed.
Home to Material Settings Returns the display of nested map property settings back to the current basic material settings.

Map name string Displays in bold only the current map channel level and texture map or procedural map that is being edited.

Custom drop-down tree control arrow Displays levels of nested maps by selecting the drop-down arrow. By selecting a nested map the controls for that nested map will be displayed.

Up One Level to Parent Map Returns to the controls of the parent of the current sub-procedural map.

\section*{Material Tool Property Editor}

\section*{Quick Reference}

See also:
■ Modify Materials
Controls the properties of the selected material tool.

\section*{Access Methods}


Button

8 Ribbon: Render tab \(>\) Materials panel \(>\otimes>\) Materials Editor
\(\$\) Menu: View \(>\) Render \(>\) Materials Editor

\section*{Summary}

The properties displayed here are described in the Material Editor. A few properties, such as swatch geometry and checkered underlay, are not available in the Material Tool Property Editor.

When you edit a material tool, only the tool itself is affected. If the material is being used in the drawing and you want to apply the changes, use the material tool to reapply the changed material to the objects.

To make the changed material available in the drawing, apply it to objects in the drawing or copy it to the Materials tool palette.

\section*{MATERIALASSIGN}

\section*{Quick Reference}

\section*{See also:}

■ Create New Materials

Uses the current material defined in the CMATERIAL system variable.

\section*{List of Prompts}

The following prompts are displayed.
Select objects: Pick one or more objects
Select objects or [Undo]: Press Enter to exit the command

\section*{MATERIALATTACH}

\section*{Quick Reference}

See also:
■ Apply Materials to Objects and Faces

Associates materials with layers.

Access Methods


Button
\(\$\) Ribbon: Render tab \(>\) Materials panel \(>\) Attach By Layer

Summary
The Material Attachment Options dialog box is displayed.

\section*{Material Attachment Options Dialog Box}

\section*{Quick Reference}

See also:
- Apply Materials to Objects and Faces

Associates materials with layers.


\section*{Access Methods}


Button

Ribbon: Render tab \(>\) Materials panel \(>\) Attach By Layer

\section*{Summary}

All objects on the layer that have their Material property set to BYLAYER have the specified material applied.

\section*{List of Options}

The following options are displayed.

\section*{Materials List}

Lists all the materials in the drawing, both in use and not in use. Drag a material onto a layer in the Layers List to apply the material to that layer.

Layers List
Lists all layers in the drawing and in any external references applied to the drawing. When a material is applied to the layer, that material is displayed
next to the layer. Use the Detach button to remove the material from the layer.

NOTE If you change the association of a material to a layer in an xref, the change is not saved back to the xref drawing.

\section*{MATERIALMAP}

\section*{Quick Reference}

See also:
- Adjust Mapping On Objects and Faces

Displays a material mapping gizmo to adjust the mapping on a face or an object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Materials panel \(>\) Planar Mapping
\(\$\) Toolbar: Mapping, Render

\section*{Summary}

Use this option to reverse the effects of all previous adjustments made with the mapping gizmo to the position and orientation of the map.

\section*{List of Prompts}

The following prompts are displayed.
Select an option [Box/Planar/Spherical/Cylindrical/copY mapping to/Reset mapping] <current>:

\section*{Box}

The selection set must include at least one of the following object types: 3D solid, 3D surface, face, or 2D object with thickness.

For example:


Move Displays the Move grip tool to move the map.
Rotate Displays the Rotate grip tool to rotate the map.
Fit to Object Scales the Mapping Gizmo to the object's size
Reset Resets the UV coordinates to the default for the map.
Switch Mapping Mode Re-displays the main command prompt of options.
Planar
For example:

- Move on page 1103
- Rotate on page 1103
- Fit to Object on page 1103

■ Reset on page 1103
■ Switch Mapping Mode on page 1103

\section*{Cylindrical}

For example:

- Move on page 1103
- Rotate on page 1103
- Fit to Object on page 1103
- Reset on page 1103
- Switch Mapping Mode on page 1103

\section*{Spherical}

For example:


■ Move on page 1103
- Rotate on page 1103
- Fit to Object on page 1103

■ Reset on page 1103
- Switch Mapping Mode on page 1103

\section*{Copy Mapping To}

Applies mapping from the original object or face to the selected objects.
This easily duplicates a texture map along with any adjustments to other objects.

\section*{Reset Mapping}

Resets the UV coordinates to the default for the map.

\section*{MATERIALS}

\section*{Quick Reference}

See also:
■ Create New Materials

Opens the Materials Browser.

\section*{Access Methods}


Button
9 Ribbon: Render tab \(>\) Materials panel \(>\) Materials Browser
\(\$\) Menu: View \(>\) Render \(>\) Materials Browser
\(\%\) Toolbar: Render

\section*{Summary}

The Materials Browser is displayed.
The Materials Browser allows you navigate and manage your materials. You can organize, sort, search, and select materials for use in your drawing.

\section*{MATERIALSCLOSE}

\section*{Quick Reference}

\section*{See also:}

■ Create and Modify Materials

Closes the Materials Browser.

\section*{Summary}

Closes the Materials Browser on page 1079.

\section*{MEASURE}

\section*{Quick Reference}

See also:
■ Specify Measured Intervals on Objects

Creates point objects or blocks at measured intervals along the length or perimeter of an object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Draw panel \(>\) Measure
\(\$\) Menu: Draw \(>\) Point \(>\) Measure

\section*{Summary}

The resulting points or blocks are always located on the selected object and their orientation is parallel to the \(X Y\) plane of the UCS.

Use DDPTYPE to set the style and size of all point objects in a drawing.


The points or blocks are placed in the Previous selection set, so you can select them all by entering \(\mathbf{p}\) at the next Select Objects prompt. You can use the Node object snap to draw an object by snapping to the point objects. You can then remove the points by entering erase previous.

\section*{List of Prompts}

The following prompts are displayed.
Select object to measure:
Specify length of segment or [Block]: Specify a distance or enter b
Length of Segment Places point objects at the specified interval along the selected object, starting at the endpoint closest to the point you used to select the object.
Measurement of closed polylines starts at their initial vertex (the first one drawn).

Measurement of circles starts at the angle from the center set as the current snap rotation angle. If the snap rotation angle is 0 , then the measurement of the circle starts to the right of center, on its circumference.

selected object
The illustration shows how MEASURE marks 0.5 -unit distances along a polyline, with the PDMODE on page 2446 system variable set to 35 .


Block Places blocks at a specified interval along the selected object.

\section*{Align Block With Object}
- Yes. The block is rotated about its insertion point so that its horizontal lines are aligned with, and drawn tangent to, the object being measured.
- No. The block is always inserted with a 0 rotation angle.

After you specify the segment length, the block is inserted at the specified interval. If the block has variable attributes, these attributes are not included.

\section*{MEASUREGEOM}

\section*{Quick Reference}

\section*{See also:}

■ Obtain Area and Mass Properties Information

Measures the distance, radius, angle, area, and volume of selected objects or sequence of points.

\section*{Access Methods}
\(\stackrel{H}{\longrightarrow}\)
Button
\(\$\) Ribbon: Home tab \(>\) Utilities panel \(>\) Measure drop-down \(>\) Distance
\(\$\) Menu: Tools \(>\) Inquiry \(>\) Distance
\(\$\) Toolbar: Inquiry

\section*{Summary}

The MEASUREGEOM command performs many of the same calculations as the following commands:
- AREA

■ DIST
■ MASSPROP

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [Distance/Radius/Angle/ARea/Volume] <Distance>: Specify Distance, Radius, Angle, Area, or Volume

Information displays at the Command prompt and in the tooltip in the current units format.

\section*{Distance}

Measures the distance between specified points. The following display at the Command prompt and in the tooltip:

■ The current UCS \(X\) axis
- Distance in \(X\) direction (Delta \(X\) )
- Distance in \(Y\) direction (Delta \(Y\) )

Multiple Points A running total of distance based on existing line segments and the current rubber-band line is calculated. The total updates as you move the cursor and displays in the tooltip.
If you enter Arc, Length, or Undo Options for Selecting Polylines display.

\section*{Radius}

Measures the radius and diameter of a specified arc or circle.

\section*{Angle}

Measures the angle of a specified arc, circle, line, or vertex.
Arc Measures the angle of an arc.
Circle Measures a specified angle within a circle. The angle updates as you move the cursor.

Line Measures the angle between two lines.
Vertex Measures the angle of a vertex.
Area
Measures the area and perimeter of an object or defined area.
NOTE MEASUREGEOM cannot calculate the area of a self-intersecting object.
Specify Corner Points Calculates the area and perimeter defined by specified points.
If you enter Arc, Length, or Undo, Options for Selecting Polylines display.
Add Area Turns on Add mode and keeps a running total of area as you define areas. You can use the Add Area option to calculate the
- Individual areas of defined areas and objects
- Individual perimeters of defined areas and objects
- Total area of all defined areas and objects
- Total perimeter of all defined areas and objects

Subtract Area Subtracts a specified area from the total area. The total area and perimeter displays at the Command prompt and in the tooltip.

Volume
Measures the volume of an object or a defined area.
Object Measures the volume of an object or defined area.
You can select a 3D solids or 2D objects. If you select a 2D object you must specify a height for that object.
If you define an object by specifying points, you must specify at least three points to define a polygon. All must lie on a plane parallel to the \(X Y\) plane of the UCS. If you do not close the polygon, an area will be calculated as if a line existed between the first and last points entered.
If you enter Arc, Length, or Undo Options for Selecting Polylines display.
Add Volume Turns on Add mode and keeps a running total of volume as you define areas.

Subtract Volume Turns on Subtract mode and subtracts a specified volume from the total volume.

\section*{Options for Selecting Polylines}

You can select polylines when using the Distance, Area, and Volume options.
Arc Adds arc segments to the polyline.
Endpoint of Arc Draws an arc segment. The arc segment is tangent to the previous segment of the polyline.

Angle Specifies the included angle of the arc segment from the start point. Entering a positive number creates counterclockwise arc segments. Entering a negative number creates clockwise arc segments.

■ Endpoint of Arc on page 1455

Radius Specifies the radius of the arc segment.
Center Specifies the center of the arc segment.
- Endpoint of Arc on page 1455
- Angle on page 1455

Length Specifies the chord length of the arc segment. If the previous segment is an arc, the new arc segment is drawn tangent to the previous arc segment.

Close Draws an arc segment from the last point specified to the starting point, creating a closed polyline. At least two points must be specified to use this option.

Direction Specifies a starting direction for the arc segment.
- Endpoint of Arc on page 1455

Half width Specifies the width from the center of a wide polyline segment to one of its edges.
The starting half-width becomes the default ending half-width. The ending half-width becomes the uniform half-width for all subsequent segments until you change the half-width again. The starting and ending points of wide line segments are at the center of the line.
Typically, the intersections of adjacent wide polyline segments are beveled. No beveling is performed for nontangent arc segments or very acute angles or when a dot-dash linetype is used.

Radius Specifies the radius of the arc segment.
- Endpoint of Arc on page 1455
- Angle on page 1455

Second Pt Specifies the second point and endpoint of a three-point arc.
- Endpoint of Arc on page 1455

Width Specifies the width of the next arc segment.
The starting width becomes the default ending width. The ending width becomes the uniform width for all subsequent segments until you change the width again. The starting and ending points of wide line segments are at the center of the line.
Typically, the intersections of adjacent wide polyline segments are beveled. No beveling is performed for nontangent arc segments, very acute angles, or when a dot-dash linetype is used.

Length Draws a line segment of a specified length at the same angle as the previous segment. If the previous segment is an arc, the new line segment is drawn tangent to that arc segment.

Undo Removes the most recent arc segment added to the polyline.
Close Draws an arc segment from the last point specified to the starting point, creating a closed polyline. At least two points must be specified to use this option.

\section*{MENU}

\section*{Quick Reference}

\section*{See also:}
- Understand User Interface Customization

Loads a customization file.

\section*{Summary}

The Select Customization File dialog box (a standard file selection dialog box) is displayed. Enter or select a customization file name.

A customization file is an XML-based file containing the menus, toolbars, workspaces, and other interface elements that you can customize.
You can create a customized menu file and use MENU or CUI to load the file.
NOTE The Legacy Menu File (MNS), Legacy Menu Template (MNU), and Customization (CUI) files used in past releases have been replaced with just one file type, the XML-based CUIx file.

\section*{MESH}

\section*{Quick Reference}

\section*{See also:}
- Create 3D Mesh Primitives

Creates a 3D mesh primitive object such as a box, cone, cylinder, pyramid, sphere, wedge, or torus.

\section*{Access Methods}


Button
\(\$\) Ribbon: Mesh tab \(>\) Primitives panel \(>\) Box
\(\$\) Menu: Draw \(>\) Modeling \(>\) Meshes \(>\) Primitives
\(\$\) Toolbar: Smooth Mesh Primitives, Smooth Mesh

\section*{Summary}

The basic mesh forms, known as mesh primitives, are the equivalent of the primitive forms for 3D solids.

You can reshape mesh objects by smoothing, creasing, refining, and splitting faces. You can also drag edges, faces, and vertices to mold the overall form.

NOTE By default, new mesh primitives are created with no smoothness. To change the default smoothness, enter mesh at the Command prompt. Specify the Settings option before you specify the type of mesh primitive you want to create.

\section*{List of Prompts}

The following prompts are displayed.
Select primitive [Box/Cone/CYlinder/Pyramid/Sphere/Wedge/Torus/SEttings]
Box
Creates a 3D mesh box.


Specify the length of the sides.

First corner / Corner Sets the first corner of the mesh box.
■ Other corner. Sets the opposite corner of the mesh box.
■ Cube
- Length

Center Sets the center of the mesh box.
- Corner. Sets the opposite corner of the mesh box.
- Cube

■ Length

Cube Sets all edges of the box to be of equal length.
- Length

Length Sets the length of the mesh box along the \(X\) axis.
■ Width (not available for cubes)

Width Sets the width of the mesh box along the \(Y\) axis.
- Height
- 2Point (height)

Height Sets the height of the mesh box along the \(Z\) axis.
2Point (height) Sets the height based on the distance between two points:
- First point. Sets the first point of a two-point distance.
- Second point. Sets the second point of a two-point distance.

\section*{Cone}

Creates a 3D mesh with a circular or elliptical base that tapers symmetrically to a point or to a planar face.


Specify the diameter and height.
Center point of base Sets the center point of the base of the mesh cone.
- Base radius

■ Diameter

3P (three points) Sets the location, size, and plane of the mesh cone by specifying three points:
■ First point. Sets the first point on the circumference of the mesh cone base.
- Second point. Sets a second point on the circumference of the mesh cone base.
- Third point. Sets the size and planar rotation of the mesh cone base.

■ Height
- 2Point (height)
- Axis endpoint
- Top radius

2P (diameter) Defines the base diameter of the mesh cone based on two points:
- First endpoint of diameter. Sets the first location on the circumference of the mesh cone base.
- Second endpoint of diameter. Determines the general location and size of the mesh cone base by setting the endpoint of the diameter.
■ Height
- 2Point (height)
- Axis endpoint
- Top radius

Ttr (tangent, tangent, radius) Defines the base of the mesh cone with a specified radius that is tangent to two objects:
■ Point on object for first tangent. Sets a point on an object to serve as the first tangent point.

■ Point on object for second tangent. Sets a point on an object to serve as the second tangent point.

■ Radius of circle. Sets the radius of the mesh cone base.
■ Height
- 2Point (height)
- Axis endpoint
- Top radius

If the specified criteria can produce multiple results, the closest tangent points are used.

Elliptical Specifies an elliptical base for the mesh cone.
- Endpoint of first axis. Sets the start point for the first axis of the mesh cone base and then specifies the other axis endpoints:
■ Other endpoint of first axis. Sets the first axis endpoint.
- Endpoint of second axis. Sets the second axis endpoint
- Center. Specifies the method for creating an elliptical mesh cone base that starts with the center point of the base:
- Center point. Sets the center of the mesh cone base.

■ Distance to first axis. Sets the radius of the first axis.
- Endpoint of second axis. Sets the endpoint of the second axis.

Base radius Sets the radius of the mesh cone base.
- Height
- 2Point (height)
- Axis endpoint
- Top radius

Diameter Sets the diameter for the base of the cone.
- Height
- 2Point (height)
- Axis endpoint
- Top radius

Height Sets the height of the mesh cone along an axis that is perpendicular to the plane of the base.

2Point (height) Defines the height of the mesh cone by specifying the distance between two points:
- First point. Sets the first point of a two-point distance.
- Second point. Sets the second point of a two-point distance.

Axis endpoint Sets the location of the top point of the cone or the center of the top face of a cone frustum. The orientation of the axis endpoint can be anywhere in 3D space.

Top radius Specifies the top radius of the cone, creating a cone frustum.
- Height
- 2Point (height)
- Axis endpoint

\section*{Cylinder}

Creates a 3D mesh cylinder.


Specify the size of the base and height.
Center point of base Sets the center point of the mesh cylinder base.
■ Base Radius
■ Diameter

3P (three points) Sets the location, size, and plane of the mesh cylinder by specifying three points:
- First point. Sets the first point on the circumference of the mesh cylinder base.
- Second point. Sets a second point on the circumference of the mesh cylinder base.
- Third point. Sets the size and planar rotation of the mesh cylinder base.

■ Height
- 2Point (height)
- Axis endpoint

2P (diameter) Sets the diameter of the mesh cylinder base by specifying two points:
- First endpoint of diameter. Sets the first point on the diameter of the mesh cylinder base.
- Second endpoint of diameter. Sets the second point on the diameter of the mesh cylinder base.
■ Height
- 2Point (height)
- Axis endpoint

2Point (height) Defines the height of the mesh cylinder by specifying the distance between two points:
- First point. Sets the first point of a two-point distance.
- Second point. Sets the second point of a two-point distance.

Ttr (tangent, tangent, radius) Defines the base of the mesh cylinder with a specified radius that is tangent to two objects. If the specified criteria can produce multiple results, the closest tangent points are used.
- Point on object for first tangent. Sets a point on an object to serve as the first tangent point.

■ Point on object for second tangent. Sets a point on an object to serve as the second tangent point.
- Radius of circle. Sets the radius of the mesh cylinder base.

■ Height
- 2Point (height)
- Axis endpoint

Base Radius Sets the radius of the mesh cylinder base.
- Height
- 2Point (height)
- Axis endpoint

Diameter Sets the diameter for the base of the cylinder.
■ Height
- 2Point (height)
- Axis endpoint

Height Sets the height of the mesh cylinder along an axis that is perpendicular to the plane of the base.

Axis endpoint Sets the location of the top face of the cylinder. The orientation of the axis endpoint can be anywhere in 3D space.

Elliptical Specifies an elliptical base for the mesh cylinder.
- Endpoint of first axis. Sets the start point for the first axis of the mesh cone base.
- Other endpoint of first axis. Sets the first axis endpoint.
- Endpoint of second axis. Sets the second axis endpoint.
- Center. Specifies the method for creating an elliptical mesh cone base that starts with the center point of the base.
- Center point. Sets the center of the mesh cone base.

■ Distance to first axis. Sets the radius of the first axis.
- Endpoint of second axis. Sets the endpoint of the second axis.

\section*{Pyramid}

Creates a 3D mesh pyramid.


Specify the diameter and height.
Center point of base Sets the center point of the mesh pyramid base.
- Base radius

■ Inscribed

Edge Sets the length of the one edge of the mesh pyramid base, as indicated by two points that you specify:
- First endpoint of edge. Sets the first location of the edge of the mesh pyramid.
- Second endpoint of edge. Sets the second location of the edge of the mesh pyramid.
- Height
- 2Point (height)
- Axis endpoint
- Top radius

Sides Sets the number of sides for the mesh pyramid. Enter a positive value from 3-32.
- Center point of base

■ Edge
- Sides. Resets the number of sides for the mesh pyramid.

Base radius Sets the radius of the mesh pyramid base.
- Height
- 2Point (height)
- Axis endpoint
- Top radius

Inscribed Specifies that the base of the mesh pyramid is inscribed, or drawn within, the base radius.
- Base radius
- Circumscribed

Height Sets the height of the mesh pyramid along an axis that is perpendicular to the plane of the base.

2Point (height) Defines the height of the mesh cylinder by specifying the distance between two points:
- First point. Sets the first point of a two-point distance.
- Second point. Sets the second point of a two-point distance.

Axis endpoint Sets the location of the top point of the pyramid or the center of the top face of a pyramid frustum. The orientation of the axis endpoint can be anywhere in 3D space.

Top radius Specifies the top radius of the mesh pyramid, creating a pyramid frustum.
- Height
- 2Point (height)

■ Axis endpoint
Circumscribed Specifies that the base of the pyramid is circumscribed, or is drawn around, the base radius.
■ Base radius
- Inscribed

\section*{Sphere}

Creates a 3D mesh sphere.


Specify the size of the sphere (diameter or radius).
Center point Sets the center point of the sphere.
- Radius. Creates a mesh sphere based on a specified radius.

■ Diameter. Creates a mesh sphere based on a specified diameter.

3P (three points) Sets the location, size, and plane of the mesh sphere by specifying three points:
■ First point. Sets the first point on the circumference of the mesh sphere.
- Second point. Sets a second point on the circumference of the mesh sphere.

■ Third point. Sets the size and planar rotation of the mesh sphere.

2P (diameter) Sets the diameter of the mesh sphere by specifying two points:
- First endpoint of diameter. Sets the first point on the diameter of the mesh sphere.
- Second endpoint of diameter. Sets the opposite point on the diameter of the mesh sphere.

Ttr (tangent, tangent, radius) Defines a mesh sphere with a specified radius that is tangent to two objects:
- Point on object for first tangent. Sets a point on an object to serve as the first tangent point.

■ Point on object for second tangent. Sets a point on an object to serve as the second tangent point.
- Radius of circle. Sets the radius of the mesh sphere.

If the specified criteria can produce multiple results, the closest tangent points are used.

\section*{Wedge}

Creates a 3D mesh wedge.


Specify the length and width of the base and the height.
First corner Sets the first corner of the mesh wedge base.
- Other corner. Sets the opposite corner of the mesh wedge base, located on the \(X, Y\) plane.
■ Height
- 2Point (height)

■ Cube
- Length

Center Sets the center point of the mesh wedge base.
- Corner. Sets one corner of the mesh wedge base.

■ Height
■ 2Point (height)
- Cube
- Length

Cube Sets all edges of the mesh wedge base to be of equal length.
- Length

Length Sets the length of the mesh wedge base along the X axis.
■ Width (not available for Cube)

Width Sets the width of the mesh box along the Y axis.
- Height
- 2Point (height)

Height Sets the height of the mesh wedge. Enter a positive value to draw the height along the positive \(Z\) axis of the current UCS. Enter a negative value to draw the height along the negative \(Z\) axis.

2Point (height) Defines the height of the mesh wedge by specifying the distance between two points:
- First point. Sets the first point of a two-point distance.
- Second point. Sets the second point of a two-point distance.

\section*{Torus}

Creates a 3D mesh primitive torus.


Specify two values: the size of the tube and the distance from the center of the torus to the center of the tube.

Center point Sets the center point of the mesh torus.
- Radius (torus)

■ Diameter (torus)

3P (three points) Sets the location, size, and rotation of the mesh torus by specifying three points. The path of the tube passes through the specified points:
- First point. Sets the first point on the path of the tube.
- Second point. Sets the second point on the path of the tube.
- Third point. Sets the third point on the path of the tube.
- Tube radius
- 2Point (tube radius)

■ Diameter (tube)

2P (torus diameter) Sets the diameter of the mesh torus by specifying two points. The diameter is calculated from the center point of the torus to the center point of the tube.
- First endpoint of diameter. Sets the first point used to specify the torus diameter distance.
- Second endpoint of diameter. Sets the second point used to specify the torus diameter distance.
■ Tube radius
- 2Point (tube radius)
- Diameter (tube)

Ttr (tangent, tangent, radius) Defines a mesh torus radius that is tangent to two objects. The specified tangent points are projected into the current UCS:
- Point on object for first tangent. Sets a point on an object to serve as the first tangent point.

■ Point on object for second tangent. Sets a point on an object to serve as the second tangent point.

■ Radius of circle. Sets the radius of the mesh torus.

If the specified criteria can produce multiple results, the closest tangent points are used.

Radius (torus) Sets the radius of the mesh torus, measured from the center point of the torus to the center point of the tube.
■ Tube radius
- 2Point (tube radius)

■ Diameter (tube)

Diameter (torus) Sets the diameter of the mesh torus, measured from the center point of the torus to the center point of the tube.
■ Tube radius
- 2Point (tube radius)
- Diameter (tube)

Tube radius Sets the radius of the profile that is swept around the mesh torus path.

2Point (tube radius) Sets the radius of the profile of the tube based on the distance between two points that you specify:
■ First point. Sets the first point of a two-point distance.
■ Second point. Sets the second point of a two-point distance.

Tube diameter Sets the diameter of the profile of the mesh torus tube.

\section*{Settings}

Modifies the smoothness and tessellation values for the new mesh object.
Level of smoothness Sets the initial degree of smoothness, or roundness, to be applied to the mesh. Enter \(\mathbf{0}\) to eliminate smoothness. Enter a positive integer up to 4 for increased degrees of smoothness. The value is retained for the current drawing session.

This smoothness value is limited by the value of SMOOTHMESHMAXLEV.
Tessellation Opens the Mesh Primitive Options dialog box, where you can update tessellation values (the number of faces) for each dimension of a mesh primitive option.

\section*{Mesh Object Ribbon Contextual Panels}

\section*{Quick Reference}

\section*{See also:}

■ Modify Mesh Objects

Provides ribbon access to commonly used tools when a mesh object is selected.

\section*{Access Methods}

Pointing device: Select a mesh object.


Smooth More (MESHSMOOTHMORE) Increases the level of smoothness for mesh objects by one level.

Smooth Less (MESHSMOOTHLESS) Decreases the level of smoothness for mesh objects by one level.

Refine Mesh (MESHREFINE) Multiplies the number of faces in selected mesh objects or faces.

\section*{Convert Mesh Panel}


Convert to Solid (CONVTOSOLID) Converts 3D meshes and polylines and circles with thickness to 3D solids.

Convert to Surface (CONVTOSURFACE) Converts objects to 3D surfaces.
Smooth, Optimized (SMOOTHMESHCONVERT = 0) Creates a smooth model. Coplanar faces are optimized, or merged.

Smooth, Not Optimized (SMOOTHMESHCONVERT = 1) Creates a smooth model. Original mesh faces are retained in the converted object.

Faceted, Optimized (SMOOTHMESHCONVERT = 2) Creates a model with flattened faces. Coplanar faces are optimized, or merged.

Faceted, Not Optimized (SMOOTHMESHCONVERT = 3) Creates a model with flattened faces. Original mesh faces are retained in the converted object.

\section*{Mesh Subobject Ribbon Contextual Panels}

\section*{Quick Reference}

See also:
■ Modify Mesh Objects

Provides ribbon access to commonly used tools when a mesh subobject is selected.

\section*{Access Methods}

Pointing device: Select a mesh face, edge, or vertex.


Add Crease (MESHCREASE) Sharpens the edges of selected mesh subobjects.
Remove Crease (MESHUNCREASE) Removes the crease from selected mesh faces, edges, or vertices.

\section*{Edit Face Panel}


Split Face (MESHSPLIT) Splits a mesh face into two faces.
Extrude Face (EXTRUDE) Extrudes the face of a mesh object to add more definition to the mesh.

Refine Mesh (MESHREFINE) Multiplies the number of faces in selected mesh objects or faces.

\section*{MESHCAP}

\section*{Quick Reference}

See also:
- Create and Close Mesh Gaps

Creates a mesh face that connects open edges.

\section*{Access Methods}


Bution
8 Ribbon: Mesh tab \(>\) Mesh Edit panel \(>\) Close Hole
\(\$\) Menu: Modify \(>\) Mesh Editing \(>\) Close Hole

\section*{Summary}

You can close gaps in mesh objects by selecting the edges of the surrounding mesh faces. For best results, the faces should be on the same plane.


\section*{List of Prompts}

The following prompts are displayed.
Select connecting mesh edges to create a new mesh face Specifies which mesh edges form the boundary for the closure. Click the edges to select them.

\section*{MESHCOLLAPSE}

\section*{Quick Reference}

See also:
■ Modify Mesh Faces

Merges the vertices of selected mesh faces or edges.

\section*{Access Methods}

署而
Button

Ribbon: Mesh tab > Mesh Edit panel > Collapse Face or Edge
Menu: Modify \(>\) Mesh Editing \(>\) Collapse Face or Edge

\section*{Summary}

You can cause the vertices of surrounding mesh faces to converge at the center of a selected edge or face. The shapes of surrounding faces change to accommodate the loss of one or more vertices.


\section*{List of Prompts}

The following prompts are displayed.
Select mesh face or edge to collapse Specifies a mesh edge or a face whose midpoint becomes the point of convergence for the surrounding faces. Click a single mesh edge or face.

\section*{MESHCREASE}

\section*{Quick Reference}

\section*{See also:}

■ Add Creases to Mesh

Sharpens the edges of selected mesh subobjects.

\section*{Access Methods}


Button
\(\$\) Ribbon: Mesh tab \(>\) Mesh panel \(>\) Add Crease
Menu: Modify \(>\) Mesh Editing \(>\) Crease
Toolbar: Smooth Mesh

\section*{Summary}

You can sharpen, or crease, the edges of mesh objects. Creasing deforms mesh faces and edges that are adjacent to the selected subobject. Creases added to mesh that has no smoothness are not apparent until the mesh is smoothed.


You can also apply creases to mesh subobjects by changing the crease type and crease level in the Properties palette.

\section*{List of Prompts}

The following prompts are displayed.

Select mesh subobjects to crease Specifies the mesh subobjects to crease. Click mesh faces, edges, and vertices to crease their associated edges. Press Shift+click to remove a subobject from the selection set.
- Crease value
- Always

Crease value Sets highest smoothing level at which the crease is retained. If the smoothing level exceeds this value, the crease is also smoothed. Enter a value of 0 to remove an existing crease.

Always Specifies that the crease is always retained, even if the object or subobject is smoothed or refined. A crease value of -1 is the same as Always.

\section*{MESHEXTRUDE}

\section*{Quick Reference}

See also:
- Modify Mesh Faces

Extends a mesh face into 3D space.

\section*{Access Methods}


Button
\(\$\) Ribbon: Mesh tab \(>\) Mesh Edit panel \(\boldsymbol{>}\) Extrude Face
\(\$\) Menu: Modify \(>\) Mesh Editing \(>\) Extrude Face

\section*{Summary}

When you extrude, or extend, a mesh face, you can specify several options to determine the shape of the extrusion. You can also determine whether extruding multiple mesh faces results in joined or separate extrusions.


\section*{List of Prompts}

The following prompts are displayed.
Mesh face(s) to extrude Specifies the mesh faces to extrude. Click one or more faces to select them.
■ Height of extrusion
- Direction
- Path
- Taper angle

Setting (Available only when you start the command before selecting faces) Sets the style for extruding multiple adjacent mesh faces.
■ Join adjacent mesh faces when extruding Specifies whether adjacent mesh faces are extruded singly or as a unit. (The difference between the two options is not always apparent on a mesh that has not been smoothed.)
■ Yes. Extrudes all adjacent faces as a unit.

- No. Extrudes each adjacent face separately.


Height of extrusion Extrudes mesh faces along the \(Z\) axis. Enter a positive value to extrude the face along the positive \(Z\) axis. Enter a negative value to extrude along the negative \(Z\) axis. Multiple mesh faces do not need to be parallel to the same plane.

Direction Specifies the length and direction of the extrusion. (The direction cannot be parallel to the plane of the sweep curve created by the extrusion.)
- Start point of direction. Specifies the first point in the direction vector.
- End point of direction. Specifies the second point in the direction vector.

Path Specifies an object, such as a line or spline, that determines the path and length of the extrusion. The outline of the mesh face is swept along the path. The new orientation of the swept mesh face is perpendicular to the endpoint of the path.


The path should not lie on the same plane as the mesh face or have areas of high curvature. For extrusions that adhere closely to the curved path, use a spline, not an arced polyline, as the path.

Taper angle Sets an angle of taper for an extrusion.


Positive angles taper inward from the base mesh face. Negative angles taper outward. The default angle, 0 , extrudes the face perpendicular to the plane of the mesh.
If the adjacent faces are not set to be joined, the faces that are selected for extrusion are tapered to the same value. However, for joined extrusions, the taper is applied only to the portion of the extrusion that is not adjacent to another extruded face.
Specifying a large taper angle or a long extrusion height can cause the object or portions of the object to taper to a point before reaching the extrusion height.
■ Angle of taper. Sets an angle between -90 and +90 degrees.
■ Specify two points. Sets the taper angle to be the distance between two specified points.

\section*{MESHMERGE}

\section*{Quick Reference}

\section*{See also:}
- Modify Mesh Faces

Merges adjacent faces into a single face.

\section*{Access Methods}


Butlon
\(\oint\) Ribbon: Mesh tab \(>\) Mesh Edit panel \(>\) Merge Face
\(\$\) Menu: Modify \(>\) Mesh Editing \(>\) Merge Face

\section*{Summary}

You can merge two or more adjacent mesh faces to form a single face.


The merge operation is performed only on mesh faces that are adjacent. Other types of subobjects are removed from the selection set.
Merging mesh faces that wrap a corner can have unintended results when you try to edit the mesh or convert it to other types of solid objects. For example, the mesh might no longer be watertight. For best results, restrict mesh merging to faces that are on the same plane.

\section*{List of Prompts}

The following prompts are displayed.
Select adjacent faces to merge Specifies the mesh faces to combine. Click each face to select it.

\section*{MESHOPTIONS}

\section*{Quick Reference}

See also:
- Create Meshes by Conversion

Displays the Mesh Tessellation Options dialog box, which controls default settings for converting existing objects to mesh objects.

\section*{Access Methods}
\(\pm\)
\(\$\) Ribbon: Home tab \(>\) Mesh panel \(>\) Mesh Tessellation Options Summary

The Mesh Tessellation Options dialog box is displayed.

\section*{Mesh Tessellation Options Dialog Box}

\section*{Quick Reference}

See also:
■ Create Meshes by Conversion

Controls default settings for converting objects to mesh objects.


\section*{Access Methods}
*
\(\$\) Ribbon: Home tab \(>\) Mesh panel \(\gg\) Mesh Tessellation Options並 Command entry: meshoptions

\section*{Summary}

The defaults that you set in the Mesh Tessellation Options dialog box control the appearance of objects that you convert to 3D mesh objects. For a complete list of objects that can be converted to mesh, see the MESHSMOOTH command.

This dialog box is also available from the Options dialog box.

\section*{List of Options}

The following options are displayed.

\section*{Select Objects to Tessellate}

Temporarily closes the dialog box so that you can select an object to convert to a mesh object. You can select 3D solids, 3D surfaces, 3D faces, polygon or polyface meshes, regions, and closed polylines.

\section*{Mesh Type and Tolerance}

Specifies the default properties of objects that are converted to 3D mesh objects. Settings that increase the number of mesh faces can slow program performance.

\section*{Mesh Type}

Specifies the type of mesh to be used in the conversion. (FACETERMESHTYPE system variable)
- Smooth Mesh Optimized. Sets the shape of the mesh faces to adapt to the shape of the mesh object.
- Mostly Quads. Sets the shape of the mesh faces to be mostly quadrilateral.

■ Triangles. Sets the shape of the mesh faces to be mostly triangular.

\section*{Mesh Distance from Original Faces}

Sets the maximum deviation of the mesh faces from the surface or shape of the original object. Smaller values result in less deviation, but create more faces and might affect program performance. (FACETERDEVSURFACE system variable)

\section*{Maximum Angle Between New Faces}

Sets the maximum angle of the surface normal of two adjacent faces. (FACETERDEVNORMAL system variable)

Increasing this value increases the density of the mesh in areas of high curvature, and decreases the density in flatter areas. If the value of Mesh Distance from Original Faces (FACETERDEVSURFACE) is high, you can increase the maximum angle value. This setting is useful if you want to refine the appearance of small details such as holes or fillets.

\section*{Maximum Aspect Ratio for New Faces}

Sets the maximum aspect ratio (height/width) of new mesh faces. (FACETERGRIDRATIO system variable)

Use this value to prevent long, slivered faces. You can specify the following values:
- 0 (zero). Ignores the aspect ratio limitation.
- 1. Specifies that the height and width must be the same.
- Greater than 1. Sets the maximum ratio by which the height can exceed the width.
- Greater than \(\mathbf{0}\) but less than 1 . Sets the maximum ratio by which the width can exceed the height.

This option does not affect faces that are planar before conversion.

\section*{Maximum Edge Length for New Faces}

Sets the maximum length of any edge that is created during a conversion to a mesh object. (FACETERMAXEDGELENGTH system variable)

With the default value 0 (zero), the size of the model determines the size of the mesh faces. Setting larger values results in fewer faces and less accurate adherence to the original shape, but improves program performance. You can improve conversions that result in long, slivered faces by decreasing this value.

\section*{Meshing Primitive Solids}

Specifies which settings to use when you convert 3D solid primitive objects to mesh objects.

Use Optimized Representation for 3D Primitive Solids
Specifies which settings to use when you convert primitive solid objects to mesh objects. (FACETERPRIMITIVEMODE system variable)

Select the check box to use the mesh settings specified in the Mesh Primitive Options dialog box. Clear the check box to use the settings specified in the Mesh Tessellation Options dialog box.

Mesh Primitives Opens the Mesh Primitive Options dialog box.
This button is available only when Use Optimized Representation for 3D Primitive Solids is selected.

\section*{Smooth Mesh After Tessellation}

Specifies what level of smoothness is applied to objects after they are converted to mesh.

When the Mesh Type option is set to Mostly Quads or Triangle, the converted mesh objects have no smoothness. The following settings are not available for those conversions.

\section*{Apply Smoothness After Tessellation}

Sets whether the new mesh objects are smoothed after they are converted.
Select the check box to apply smoothing.

\section*{Smoothness Level After Tessellation}

Sets the level of smoothness for new mesh objects. (FACETERSMOOTHLEV system variable)

Enter \(\mathbf{0}\) to eliminate smoothness. Enter a positive integer for increased degrees of smoothness.

This option is available only when Apply Smoothness After Tessellation is selected.

\section*{Preview}

Displays the effect of the current settings in the drawing area. Press Enter to accept the changes.
To display the dialog box again, press Esc.

\section*{MESHPRIMITIVEOPTIONS}

\section*{Quick Reference}

See also:
- Overview of Creating Meshes

Displays the Mesh Primitive Options dialog box, which sets the tessellation defaults for primitive mesh objects.

\section*{Access Methods}
\(\$\) Ribbon: Mesh tab \(>\) Primitives panel \(\ggg\) Mesh Primitive Options

\section*{Summary}

The Mesh Primitive Options dialog box is displayed.

\section*{Mesh Primitive Options Dialog Box}

\section*{Quick Reference}

See also:
- Overview of Creating Meshes

Sets the tessellation defaults for primitive mesh objects.


\section*{Access Methods}
\(\$\) Ribbon: Mesh tab \(>\) Primitives panel \(\ggg\) Mesh Primitive Options Command entry: meshprimitiveoptions

\section*{Summary}

The defaults you set in the Mesh Primitive Options dialog box control the appearance of new mesh primitive objects. Mesh primitives include boxes, cones, pyramids, cylinders, spheres, wedges, and tori.

This dialog box is also available from the Options and Mesh Tessellation Options dialog boxes.

\section*{List of Options}

The following options are displayed.

\section*{Mesh}

Specifies the initial mesh density for each type of mesh primitive by specifying the number of divisions per side.

Mesh Primitive Specifies a mesh primitive to modify. Select a primitive type (such as Box or Cone) to display its settings under Tessellation Divisions.

\section*{Tessellation Divisions}

For each selected mesh primitive type, sets the default number of divisions for each side.

Enter a new value to reset the number of divisions for new mesh primitives.

\section*{■ Box}

Length. Sets the number of divisions for the length of a mesh box along the \(X\) axis. (DIVMESHBOXLENGTH system variable)


Width. Sets the number of divisions for the width of a mesh box along the \(Y\) axis. (DIVMESHBOXWIDTH system variable)


Height. Sets the number of divisions for the height of a mesh box along the \(Z\) axis. (DIVMESHBOXHEIGHT system variable)


\section*{■ Cone}

Axis. Sets the number of divisions around the perimeter of the mesh cone base. (DIVMESHCONEAXIS system variable)


Height. Sets the number of divisions between the base and the point or top of the mesh cone. (DIVMESHCONEHEIGHT system variable)


Base. Sets the number of divisions between the perimeter and the center point of the mesh cone base. (DIVMESHCONEBASE system variable)


\section*{- Cylinder}

Axis. Sets the number of divisions around the perimeter of the mesh cylinder base. (DIVMESHCYLAXIS system variable)


Height. Sets the number of divisions between the base and the top of the mesh cylinder. (DIVMESHCYLHEIGHT system variable)


Base. Sets the number of divisions between the perimeter and the center point of the mesh cylinder base. (DIVMESHCYLBASE system variable)


Pyramid
Length. Sets the number of divisions for the sides of the mesh pyramid base. (DIVMESHPYRLENGTH system variable)


Height. Sets the number of divisions between the base and the top of the mesh pyramid. (DIVMESHPYRHEIGHT system variable)


Base. Sets the number of divisions between the perimeter and the center point of the mesh pyramid base. (DIVMESHPYRBASE system variable)

- Sphere

Axis. Sets the number of radial divisions around the axis endpoint of the mesh sphere. (DIVMESHSPHEREAXIS system variable)


Height. Sets the number of divisions between the two axis endpoints of the mesh sphere. (DIVMESHSPHEREHEIGHT)


Length. Sets the number of divisions for the length of a mesh wedge along the \(X\) axis. (DIVMESHWEDGELENGTH system variable)


Width. Sets the number of divisions for the width of the mesh wedge along the \(Y\) axis. (DIVMESHWEDGEWIDTH system variable)


Height. Sets the number of divisions for the height of the mesh wedge along the \(Z\) axis. (DIVMESHWEDGEHEIGHT system variable)


Slope. Sets the number of divisions in the slope that extends from the apex of the wedge to the edge of the base. (DIVMESHWEDGESLOPE system variable)


Base. Sets the number of divisions between the midpoint of the perimeter of the triangular side of the mesh wedge. (DIVMESHWEDGEBASE system variable)


\section*{■ Torus}

Radius. Sets the number of divisions around the circumference of the profile that forms the tube of the torus. (DIVMESHTORUSSECTION system variable)


Sweep Path. Sets the number of divisions around the circumference of the path that is swept by the profile. (DIVMESHTORUSPATH system variable)


\section*{Preview}

Displays different views of the changes you make.
Zoom Extents button Sets the preview display so that the image fits entirely within the Preview window.

Pan button Moves the image horizontally and vertically within the Preview window. You can also pan by holding down the scroll wheel of your mouse as you move the mouse.

Zoom button Changes the magnification of the Preview image. When the button is selected, hold the left mouse button and drag upwards to zoom in or downwards to zoom out.
You can also roll the mouse scroll wheel to zoom in or out at any time.
Orbit button Rotates the preview image within the Preview window as you drag the image with the mouse.

Preview window Displays a wireframe example of the Tessellation Divisions settings.
You can change the visual style of the preview by using the shortcut menu to select such options as Hidden, Wireframe, Conceptual, Realistic, Shades of Gray, Sketchy, X-ray, Shaded with Edges, and Shaded.

\section*{Preview's Smoothness Level}

Changes the preview image to reflect a specific level of smoothness you specify.
Changing this value does not affect the default level of smoothness for new primitive meshes.

Preview Shortcut Menu Displays the following options on a shortcut menu when you right-click the preview image:
- Zoom Extents. Sets the preview display so that the image fits entirely within the Preview window.
- Pan. Moves the image horizontally and vertically within the Preview window.
- Zoom. Changes the magnification of the Preview image.
- Visual Styles. Sets the preview display in the dialog box to reflect the selected visual style.

\section*{Preview Update}

Sets how often the preview image is updated.

\section*{Auto-update}

Sets whether the preview image is automatically updated as you modify the options.

If you clear this check box, you can update the preview by using the Update button.

Update Updates the preview image to show any changes you have made. This button is not available when Auto-update is selected.

\section*{MESHREFINE}

\section*{Quick Reference}

See also:
- Refine Mesh Objects or Subobjects

Multiplies the number of faces in selected mesh objects or faces.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Mesh panel \(>\) Refine Mesh
\(\$\) Menu: Modify \(>\) Mesh Editing \(>\) Refine Mesh
\(\$\) Toolbar: Smooth Mesh

\section*{Summary}

Refining a mesh object increases the number of editable faces, providing additional control over fine modeling details. To preserve program memory, you can refine specific faces instead of the entire object.


Refining an object resets the smoothing level that was assigned to the object to 0 (zero). This level of smoothness becomes the new baseline for the object. That is, the smoothness level can no longer be decreased beyond that level. Refining a subobject does not reset the smoothing level.

\section*{List of Prompts}

The following prompts are displayed.
Mesh object or face subobjects to refine Specifies 3D mesh objects or mesh faces to be refined. Press Ctrl+click to isolate a specific face.

\section*{MESHSMOOTH}

\section*{Quick Reference}

\section*{See also:}
- Create Meshes by Conversion

Converts 3D objects such as polygon meshes, surfaces, and solids to mesh objects.

\section*{Access Methods}

Bution
\(\$\) Ribbon: Home tab \(>\) Mesh panel \(>\) Smooth Objects
\(\$\) Menu: Draw \(>\) Modeling \(>\) Meshes \(>\) Smooth Mesh
\(\$\) Toolbar: Smooth Mesh

\section*{Summary}

Take advantage of the detailed modeling capabilities of 3D mesh by converting objects such as 3D solids and surfaces to mesh.

Use this method to convert 3D faces (3DFACE) and legacy polygonal and polyface meshes (from AutoCAD 2009 and earlier). You can also convert 2D objects such as regions and closed polylines.

The default mesh settings are defined in the Mesh Tessellation Options dialog box. The level of smoothness upon conversion depends on the mesh type setting in this dialog box. If the mesh type is not set to be optimized, the converted object is not smoothed.

To convert mesh objects to 3D surfaces or solids, use CONVTOSOLID or CONVTOSURFACE commands.

\section*{Objects That Can Be Converted to Mesh}

Object type
3D solids

3D surfaces

3D faces

Polyface and polygon meshes (legacy)
Regions
Closed polylines

\section*{MESHSMOOTHLESS}

\section*{Quick Reference}

\section*{See also:}

■ Change Mesh Smoothness Levels

Decreases the level of smoothness for mesh objects by one level.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Mesh panel \(>\) Smooth Less
\(\$\) Menu: Modify \(>\) Mesh Editing \(>\) Smooth Less
Toolbar: Smooth Mesh

\section*{Summary}

Decrease the smoothness of selected mesh objects by one level. You can only decrease the smoothness of objects whose level of smoothness is 1 or higher. You cannot decrease the smoothness level of objects that have been refined.


You can decrease the smoothness of multiple objects. If the selected objects have different levels of smoothness, their respective levels are decreased by one. If the selection set contains ineligible objects, those objects can be filtered out.

\section*{MESHSMOOTHMORE}

Quick Reference
See also:
- Change Mesh Smoothness Levels

Increases the level of smoothness for mesh objects by one level.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Mesh panel \(>\) Smooth More
\(\$\) Menu: Modify \(>\) Mesh Editing \(>\) Smooth More
\(\$\) Toolbar: Smooth Mesh

\section*{Summary}

Smoothing increases the number of facets in the mesh, resulting in a rounder object.


Facets are the underlying components of each mesh face. You can increase the smoothness level up to the value of SMOOTHMESHMAXLEV as long as the number of faces does not exceed the value in the SMOOTHMESHMAXFACE system variable. If you select multiple objects with differing levels of smoothness, their respective levels are increased by one.

You can only smooth mesh objects. However, you have the option of converting some types of objects to mesh during the smoothing operation. You can also filter out ineligible objects that you do not want to convert. For a list of objects that can be converted, see MESHSMOOTH on page 1157.

\section*{MESHSPIN}

\section*{Quick Reference}

\section*{See also:}
- Modify Mesh Faces

Spins the adjoining edge of two triangular mesh faces.

\section*{Access Methods}

Z
4
Bution
\(\$\) Ribbon: Mesh tab \(>\) Mesh Edit panel \(>\) Spin Triangle Face
\(\$\) Menu: Modify \(>\) Mesh Editing \(>\) Spin Triangle Face

\section*{Summary}

You can rotate the edge that joins two triangular mesh faces to modify the shapes of the faces. The edge shared by the selected faces spins to intersect the apex of each face.


NOTE You can use MESHSPLIT to divide a rectangular face into two triangular faces. If you plan to spin the edge between the triangular faces, use the Vertex option to ensure that the split extends precisely from one vertex to the other.

\section*{List of Prompts}

The following prompts are displayed.
First triangular mesh face to spin Specifies one of two faces to be modified. Click a triangular mesh face.

Second adjacent triangular mesh face to spin Specifies the second of two faces to be modified. Click a triangular mesh face that is next to the first selected face.

\section*{MESHSPLIT}

\section*{Quick Reference}

\section*{See also:}
- Modify Mesh Faces

Splits a mesh face into two faces.

\section*{Access Methods}


Button
\(\$\) Ribbon: Mesh tab \(>\) Mesh Edit panel \(>\) Split Mesh Face
\(\%\) Menu: Modify \(>\) Mesh Editing \(>\) Split Face
Summary
Split a face to add more definition to an area without having to refine it. Because you specify the start and endpoint of the split, this method provides greater control over the location of the split.


For more precision in the placement of the split, you can specify that the split starts or ends at a vertex. The Vertex option is useful for creating two triangular faces from a rectangular face. It provides the precision you need if you later want to spin the new edge using MESHSPIN.

\section*{List of Prompts}

The following prompts are displayed:

Face to split In the drawing area, specifies which mesh face to split.
- First split point on face edge. Sets the location on an edge of the mesh face to start the split.
- Second split point on face edge. Sets a second location on an edge of the mesh face to define the path of the split.

■ Vertex

Vertex Limits the first endpoint of the split to a mesh vertex.
- First vertex for the split. Specifies a vertex on a mesh face.
- Second split point on face edge. Sets the second location on an edge of the mesh face to define the path of the split.
- Vertex. Limits the second endpoint so that it can only intersect with a vertex.
- Second vertex for the split. Specifies a second vertex on the same mesh face.

\section*{MESHUNCREASE}

\section*{Quick Reference}

See also:
- Add Creases to Mesh

Removes the crease from selected mesh faces, edges, or vertices.

\section*{Access Methods}


Button
\$ Ribbon: Mesh tab \(\boldsymbol{>}\) Mesh panel \(>\) Remove Crease
\(\$\) Menu: Modify \(>\) Mesh Editing \(>\) Uncrease

Toolbar: Smooth Mesh

\section*{Summary}

Restore smoothness to an edge that has been creased.


You can also remove a selected crease in the Crease area of Properties palette by changing the Type value to None.

\section*{List of Prompts}

The following prompt is displayed:
Select crease to remove Specifies which creased edges to smooth. You do not need to press Ctrl to select a creased subobject.

\section*{MIGRATEMATERIALS}

\section*{Quick Reference}

\section*{See also:}
- Convert Materials

Finds any legacy materials in Tool Palettes and converts them to generic type.

\section*{Summary}

The legacy materials in your tool palettes can be converted to generic type materials. All converted materials are added to the library in the Materials Browser.

NOTE Any library created using MIGRATEMATERIALS exists in \Documents and Settings\<username>\Application Data\Autodesk\AutoCAD \(2011 \backslash R 18.1\) \enu \(\backslash\) Support.

\section*{MINSERT}

\section*{Quick Reference}

See also:
- Insert Blocks

Inserts multiple instances of a block in a rectangular array.

\section*{Summary}

Options at the insertion point preset the scale and rotation of a block before you specify its position. Presetting is useful for dragging a block using a scale factor and a rotation other than 1 or 0 . If you enter one of the options, respond to the prompts by specifying a distance for the scale options or an angle for rotation.

Blocks inserted using MINSERT cannot be exploded.
You cannot use MINSERT with blocks.

\section*{List of Prompts}

The following prompts are displayed.
Enter block name or [?]: Enter a name, enter ? to list the currently defined blocks in the drawing, or enter ~ to display the Select Drawing File dialog box

NOTE You cannot precede the name of a block with an asterisk to explode the block's objects during insertion, as you can with INSERT.

Specify "insertion point" or [Basepoint/"Scale"/"X"/"Y"/"Z"/"Rotate"]: Specify a point or enter an option
Insertion Point
Specifies a location for the blocks.
Enter X scale factor, specify opposite corner, or [Corner/XYZ] <1>: Enter a value, enter an option, or press Enter

X Scale Factor Sets \(X\) and \(Y\) scale factors.
Specify Rotation Angle The rotation angle sets the angle of the individual block inserts and also sets the angle of the entire array.

Number of Rows/Columns Specifies the number of rows and columns in the array.

Distance Between Rows Specifies the distance (in units) between rows. You can use the pointing device to specify the distance between rows, or specify two points to define a box whose width and height represent the distance between rows and between columns.

Distance Between Columns Specifies the distance (in units) between columns.
Corner Sets the scale factor by using the block insertion point and the opposite corner.
- Specify Rotation Angle on page 1166

■ Number of Rows/Columns on page 1167
- Distance Between Rows on page 1167
- Distance Between Columns on page 1167

XYZ Sets \(X, Y\), and \(Z\) scale factors.
■ X Scale Factor on page 1166
- Corner on page 1167
- Specify Rotation Angle on page 1166
- Number of Rows/Columns on page 1167

■ Distance Between Rows on page 1167
- Distance Between Columns on page 1167

\section*{Basepoint}

Temporarily drops the block in the drawing where it is currently positioned and allows you to specify a new base point for the block reference as it is dragged into position. This does not affect the actual base point defined for the block reference.

\section*{Scale}

Sets the scale factor for the \(X, Y\), and \(Z\) axes. The scale for the \(Z\) axis is the absolute value of the specified scale factor.
- XYZ on page 1167
- Specify Rotation Angle on page 1166

■ Number of Rows/Columns on page 1167
- Distance Between Rows on page 1167
- Distance Between Columns on page 1167

X
Sets the \(X\) scale factor.
- Specify Rotation Angle on page 1166
- Number of Rows/Columns on page 1167
- Distance Between Rows on page 1167
- Distance Between Columns on page 1167

\section*{Y}

Sets the \(Y\) scale factor.
- Specify Rotation Angle on page 1166
- Number of Rows/Columns on page 1167
- Distance Between Rows on page 1167
- Distance Between Columns on page 1167

\section*{Z}

Sets the \(Z\) scale factor.
- Specify Rotation Angle on page 1166

■ Number of Rows/Columns on page 1167
- Distance Between Rows on page 1167

■ Distance Between Columns on page 1167

\section*{Rotate}

Sets the angle of insertion for both the individual blocks and the entire array.
- Specify Rotation Angle on page 1166
- X Scale Factor on page 1166

■ Number of Rows/Columns on page 1167
- Distance Between Rows on page 1167

■ Distance Between Columns on page 1167

■ Corner on page 1167
- XYZ on page 1167

\section*{Preview Scale}

Sets the scale factor for the \(X, Y\), and \(Z\) axes to control the display of the block as it is dragged into position.
- X Scale Factor on page 1166
- Corner on page 1167

■ XYZ on page 1167

\section*{Preview \(X\)}

Sets the scale factor for the \(X\) axis to control the display of the block as it is dragged into position.

■ X Scale Factor on page 1166
■ Corner on page 1167
■ XYZ on page 1167

\section*{Preview Y}

Sets the scale factor for the \(Y\) axis to control the display of the block as it is dragged into position.

■ X Scale Factor on page 1166
- Corner on page 1167

■ XYZ on page 1167

\section*{Preview Z}

Sets the scale factor for the \(Z\) axis to control the display of the block as it is dragged into position.
- X Scale Factor on page 1166

■ Corner on page 1167
■ XYZ on page 1167

\section*{Preview Rotate}

Sets the rotation angle of the block as it is dragged into position.
- X Scale Factor on page 1166
- Corner on page 1167
- XYZ on page 1167

\section*{MIRROR}

\section*{Quick Reference}

\section*{See also:}
- Mirror Objects

Creates a mirrored copy of selected objects.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Mirror
\(\$\) Menu: Modify > Mirror
\(\$\) Toolbar: Modify

\section*{Summary}

You can create objects that represent half of a drawing, select them, and mirror them across a specified line to create the other half.

NOTE By default, when you mirror a text object, the direction of the text is not changed. Set the MIRRTEXT on page 2412 system variable to 1 if you do want the text to be reversed.

before mirroring

after mirroring MIRRTEXT=1

after mirroring MIRRTEXT=0

\section*{List of Prompts}

The following prompts are displayed.
Select objects: Use an object selection method and press Enter to finish
Specify first point of mirror line: Specify a point
Specify second point of mirror line: Specify a point


The two specified points become the endpoints of a line about which the selected objects are mirrored. For mirroring in 3D, this line defines a mirroring plane perpendicular to the \(X Y\) plane of the user coordinate system (UCS) containing the mirror line.

Erase source objects? [Yes/No] <N>: Enter y or \(\mathbf{n}\), or press Enter
Yes Places the mirrored image into the drawing and erases the original objects.
No Places the mirrored image into the drawing and retains the original objects.


\section*{MIRROR3D}

\section*{Quick Reference}

See also:
- Mirror Objects

Creates a mirrored copy of selected objects across a mirroring plane.

\section*{Access Methods}


Button

Ribbon: Home tab \(>\) Modify panel \(>\) 3D Mirror
Menu: Modify \(>\) 3D Operations \(>\) 3D Mirror

\section*{Summary}

It is recommended that you use the gizmos available through the 3DMOVE, 3DROTATE, and 3DSCALE commands to manipulate 3D objects. For more information about using gizmos, see Use Gizmos to Modify Objects.

For example:


\section*{List of Prompts}

The following prompts are displayed.
Select objects: Use an object selection method and press Enter to finish Specify first point of mirror plane (3 points) or [Object/Last/Zaxis/View/XY/YZ/ZX/3points] <3points>: Enter an option, specify a point, or press Enter


Object Uses the plane of a selected planar object as the mirroring plane.


Delete Source Objects If you enter \(\mathbf{y}\), the reflected object is placed into the drawing and the original objects are deleted. If you enter \(\mathbf{n}\) or press Enter, the reflected object is placed into the drawing and the original objects are retained.

Last Mirrors the selected objects about the last defined mirroring plane.
Z Axis Defines the mirroring plane by a point on the plane and a point normal to the plane.


View Aligns the mirroring plane with the viewing plane of the current viewport through a point.

XY/YZ/ZX Aligns the mirroring plane with one of the standard planes ( \(X Y\), \(Y Z\), or \(Z X\) ) through a specified point.

\(x y\)

\(y z\)


ZX

3 Points Defines the mirroring plane by three points. If you select this option by specifying a point, the First Point on Mirror Plane prompt is not displayed.


\section*{MLEADER}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Leaders

Creates a multileader object.


1174 | Chapter 13 M Commands

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Multileader
\(\$\) Menu: Dimension \(>\) Multileader
\(\$\) Toolbar: Multileader

\section*{Summary}

A multileader object typically consists of an arrowhead, a horizontal landing, a leader line or curve, and either a multiline text object or a block.

Multileaders can be created arrowhead first, leader landing first, or content first. If a multileader style has been used, then the multileader can be created from that specified style.

\section*{List of Prompts}

The following prompts are displayed.
Arrowhead First ["leader Landing first"/"Content first"/"Options"]

\section*{Leader Arrowhead First}

Specifies a location for the arrowhead of the multileader object.
Specify Leader Landing Location Sets placement of the leader landing for the new multileader object.

If you exit the command at this point, then no text is associated with the multileader object.

\section*{Leader Landing First}

Specifies a location for the landing line of the multileader object.
Specify Leader Arrowhead Location Sets placement of the arrowhead for the new multileader object.
If you exit the command at this point, then no text is associated with the multileader line.

\section*{Content First}

Specifies a location for the text or block associated with the multileader object.
Point Selection Sets placement for the text box for the text label associated with the multileader object. When you finish entering your text, click OK or click outside the text box.

If you choose End at this point, then no landing line is associated with the multileader object.

\section*{Options}

Specifies options for placing the multileader object.
Leader Type Specifies a straight, spline, or no leader line.
■ Straight.
- Spline.
- None.

Leader Landing Changes the distance of the horizontal landing line
- Yes.

■ No.

If you choose No at this point, then no landing line is associated with the multileader object.

Content Type Specifies the type of content that will be used for the multileader.
■ Block on page 1176
- Mtext on page 1176

■ None on page 1176

Block Specifies a block within your drawing to associate with the new multileader.
■ Enter block name.

Mtext Specifies that multiline text is included with the multileader.
■ Enter the multiline text.

None Specifies no content type.
Maxpoints Specifies a maximum number of points for the new leader line.
- Enter the maximum points for leader line.

■ None.

First Angle Constrains the angle of the first point in the new leader line.
- Enter first angle constraint.
- None.

Second Angle Constrains the second angle in the new leader line.
- Enter second angle constraint.

■ None.

\section*{MLEADERALIGN}

\section*{Quick Reference}

\section*{See also: \\ - Create and Modify Leaders}

Aligns and spaces selected multileader objects.

\section*{Access Methods}


Button

Ribbon: Annotate tab \(>\) Multileaders panel \(>\) Align
Toolbar: Multileader

\section*{Summary}

After multileaders have been selected, specify the multileader to which all others are aligned.


\section*{List of Prompts}

The following prompts are displayed.
Select multileader to align to or [Options]
Options
Specifies options for aligning and spacing the selected multileaders.
Distribute Spaces content evenly between two selected points.
Make Leader Segments Parallel Places content so that each of the last leader segments in the selected multileaders are parallel.

Specify Spacing Specifies spacing between the extents of the content of selected multileaders.

Use Current Spacing Uses the current spacing between multileader content.

\section*{MLEADERCOLLECT}

\section*{Quick Reference}

See also:
- Create and Modify Leaders

Organizes selected multileaders that contain blocks into rows or columns, and displays the result with a single leader.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Multileaders panel \(>\) Collect
\(\$\) Toolbar: Multileader

\section*{Summary}

After you select multileaders, you can specify their placement.
For example:


\section*{List of Prompts}

The following prompts are displayed.
Specify collected multileader location on page 1179 or [Vertical on page
1179/Horizontal on page 1179/Wrap on page 1179]
Specify Collected Multileader Location Specifies the point for placing the multileader collection in the upper-left corner of the collection.

Vertical Places the multileader collection in one or more columns.
Horizontal Places the multileader collection in one or more rows.
Wrap Specifies a width for a wrapped multileader collection.
- Specify wrap width.
- Number. Specifies a maximum number of blocks per row in the multileader collection.

\section*{MLEADEREDIT}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Leaders

Adds leader lines to, or removes leader lines from, a multileader object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Multileaders panel \(>\) Add Leader
\(\$\) Toolbar: Multileader

\section*{List of Prompts}

The following prompts are displayed.
Specify leader arrowhead location on page 1180 or [Remove Leader on page 1180] Add Leader

Adds a leader line to a selected multileader object. The new leader line is added to the left or right of the selected multileader, depending on the location of the cursor.


Remove Leader Removes a leader line from a selected multileader object.
For example:


\section*{MLEADERSTYLE}

\section*{Quick Reference}

See also:
■ Work with Leader Styles
Creates and modifies multileader styles.
Access Methods


Button
\(\$\) Ribbon: Annotate tab \(>\) Leaders panel \(\ggg\) Multileader Style
\(\$\) Menu: Format \(>\) Multileader Style
\(\$\) Toolbar: Multileader, Styles

\section*{Summary}

The Multileader Style Manager is displayed.

\section*{Multileader Style Manager}

\section*{Quick Reference}

\section*{See also: \\ ■ Work with Leader Styles}

Creates and modifies styles that you can use to create multileader objects


\section*{Access Methods}


Ribbon: Annotate tab \(>\) Leaders panel \(>\boxtimes>\) Multileader Style
Menu: Format \(>\) Multileader Style
Toolbar: Multileader
Toolbar: Styles
㟇 Command entry: mleaderstyle

\section*{Summary}

Sets the current multileader style and creates, modifies, and deletes multileader styles.

The appearance of multileaders is controlled by multileader styles. These styles specify formatting for landing lines, leader lines, arrowheads, and content.

\section*{List of Options}

The following options are displayed.

\section*{Current Multileader Style}

Displays the name of the multileader style that is applied to multileaders you create. The default multileader style is STANDARD.

Styles
Displays a list of multileader styles. The current style is highlighted.

List
Controls the contents of the Styles list. Click All Styles to display all multileader styles available in the drawing. Click Styles In Use to display only the multileader styles that are referenced by multileaders in the current drawing.

\section*{Preview}

Displays a preview image of the style that is selected in the Styles list.

\section*{Set Current}

Sets the multileader style selected in the Styles list as the current style. All new multileaders are created using this multileader style.

New
Displays the Create New Multileader Style dialog box, in which you can define new multileader styles.

\section*{Modify}

Displays the Modify Multileader Style dialog box, in which you can modify multileader styles.

Delete
Deletes the multileader style selected in the Styles list. A style that is being used in the drawing cannot be deleted.

\section*{Modify Multileader Style Dialog Box}

\section*{Quick Reference}

See also:
■ Work with Leader Styles

Modifies an existing multileader style.

\section*{Access Methods}


\title{
Ribbon: Annotate tab \(>\) Leaders panel \(\ggg\) Multileader Style \\ \(\$\) Menu: Format > Multileader Style \\ \(\$\) Toolbar: Multileader \\ Toolbar: Styles \\ 棶 Command entry: mleaderstyle
}

\section*{Summary}

Controls the general appearance of the multileader.


\section*{List of Options}

The following options are displayed.
Preview
Displays a preview image of the style being modified.

\section*{Learn About Multiline Styles}

Click the link or information icon to learn more about multileaders and multileader styles.

\section*{List of Tabs}

The following tabs are displayed.
- Leader Format Tab on page 1185
- Leader Structure Tab on page 1186
- Content Tab on page 1187

\section*{Leader Format Tab}

\section*{Quick Reference}

\section*{See also:}

■ Work with Leader Styles

\section*{General}

Controls the general settings of the arrowheads.
Type
Determines the type of leader line. You can choose a straight leader, a spline, or no leader line.

\section*{Color}

Determines the color of the leader line.

\section*{Linetype}

Determines the linetype of the leader line.

\section*{Lineweight}

Determines the lineweight of the leader line.

\section*{Arrowhead}

Controls the appearance of the multileader arrowheads.

\section*{Symbol}

Sets the arrowhead symbol for the multileader.
Size
Displays and sets the size of arrowheads.

\section*{Leader Break}

Controls the settings used when adding a dimension break to a multileader.
Break Size
Displays and sets the break size used for the DIMBREAK command when the multileader is selected.

\section*{Leader Structure Tab}

\section*{Quick Reference}

See also:
■ Work with Leader Styles

\section*{Constraints}

Controls the constraints of the multileader.

\section*{Maximum Leader Points}

Specifies a maximum number of points for the leader line.

\section*{First Segment Angle}

Specifies the angle of the first point in the leader line.

\section*{Second Segment Angle}

Specifies the angle of the second point in the multileader landing line.

\section*{Landing Settings}

Controls the landing settings of the multileader.

\section*{Automatically Include Landing}

Attaches a horizontal landing line to the multileader content.
Set Landing Distance
Determines the fixed distance for the multileader landing line.

\section*{Scale}

Controls the scaling of the multileader.

\section*{Annotative}

Specifies that the multileader is annotative. Click the information icon to learn more about annotative objects.

\section*{Scale Multileaders to Layout}

Determines a scaling factor for the multileader based on the scaling in the model space and paper space viewports.
This option is available when the multileader is not annotative.
Specify Scale
Specifies the scale for the multileader.
This option is available when the multileader is not annotative.

\section*{Content Tab}

\section*{Quick Reference}

\section*{See also:}
- Work with Leader Styles

Multileader Type
Determines whether the multileader contains text or a block.

\section*{MText: Text Options}

Controls the appearance of the text for the multileader.
Default Text
Sets default text for the multileader content. The [...] button launches the MTEXT In Place Editor.

\section*{Text Style}

Lists the available text styles.

\section*{Text Style Button}

Displays the Text Style Dialog Box where you can create or modify text styles.
Text Angle
Specifies the rotation angle of the multileader text.

\section*{Text Color}

Specifies the color of the multileader text.

\section*{Text Height}

Specifies the height of the multileader text.

\section*{Always Left Justify}

Specifies that the multileader text is always left justified.

\section*{Frame Text Check Box}

Frames the multileader text content with a text box.

\section*{Mtext: Leader Connection}

Controls the leader connection settings of the multileader.
Horizontal Attachment Inserts the leader to the left or right of the text content. A horizontal attachment includes a landing line between the text and the leader.

\section*{Left Attachment}

Controls the attachment of the landing line to the multileader text when the text is to the right of the leader.

\section*{Right Attachment}

Controls the attachment of the landing line to the multileader text when the text is to the left of the leader.

\section*{Landing Gap}

Specifies the distance between the landing line and the multileader text.
Vertical Attachment Inserts the leader at the top or bottom of the text content. A vertical attachment does not include a landing line between the text and the leader.

\section*{Top Attachment}

Attaches the leader to the top center of the text content. Click the drop-down to insert an overline between the leader attachment and the text content.

\section*{Bottom Attachment}

Attaches the leader to the bottom of the text content. Click the drop-down to insert an underline between the leader attachment and the text content.

\section*{Block: Block Options}

Controls the properties of block content in a multileader object.
Source block
Specifies the block used for multileader content.

\section*{Attachment}

Specifies the way the block is attached to the multileader object. You can attach the block by specifying the insertion point of the block or the center point of the block.

\section*{Color}

Specifies the color of the multileader block content. The Block color control in the MLEADERSTYLE Content tab only takes effect if the object color included in the block is set to ByBlock.

\section*{Scale}

Specifies the scale of the block upon insertion. For example, if the block is a 1 inch square and the scale specified is 0.5000 , then the block is inserted as a \(1 / 2\) inch square.

\section*{Create New Multileader Style Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Work with Leader Styles

Specifies a name for the new multileader style and specifies the existing multileader style on which the new multileader style will be based.


\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Leaders panel \(\ggg\) Multileader Style
\(\$\) Menu: Format \(>\) Multileader Style
\(\$\) Toolbar: Multileader, Styles

\section*{List of Options}

The following options are displayed.

\section*{New Style Name}

Names the new multileader style.

\section*{Start With}

Specifies an existing multileader style whose settings are the default for the new multileader style.

\section*{Annotative}

Specifies that the multileader object is. Click the information icon to learn more about annotative objects.

\section*{Continue}

Displays the Multileader Style Manager, in which you define the new multileader style.

\section*{MLEDIT}

\section*{Quick Reference}

\section*{See also:}
- Modify Multilines

Edits multiline intersections, breaks, and vertices.

\section*{Access Methods}
\(\$\) Menu: Modify \(>\) Object \(>\) Multiline

\section*{Summary}

The Multiline Edit Tools dialog box is displayed.
If you enter -mledit at the Command prompt, options are displayed.

\section*{Multiline Edit Tools Dialog Box}

\section*{Quick Reference}

See also:
■ Modify Multilines

Modifies multiline objects.


\footnotetext{
Access Methods
\(\$\) Menu: Modify \(>\) Object \(>\) Multiline聯 Command entry: mledit
}

\section*{Summary}

The dialog box displays tools with sample images in four columns. The first column controls multilines that cross, the second controls multilines that form a tee, the third controls corner joints and vertices, and the fourth controls breaks in multilines.

\section*{List of Options}

The following options are displayed.

\section*{Closed Cross}

Creates a closed-cross intersection between two multilines.


Select First Mline Select the foreground multiline
Select Second Mline Select the intersecting multiline
First Mline Edits another multiline.

first mline selected

second mline selected

result

Undo Undoes the closed-cross intersection.

\section*{Open Cross}

Creates an open-cross intersection between two multilines. Breaks are inserted in all elements of the first multiline and only the outside elements of the second multiline.


Select First Mline Select a multiline.
- Select Second Mline on page 1192
- First Mline on page 1192

first mline selected

second mline selected

result

Undo Undoes the open-cross intersection.
- First Mline on page 1192

\section*{Merged Cross}

Creates a merged-cross intersection between two multilines. The order in which you select the multilines is not important.

- Select First Mline on page 1192
- Select Second Mline on page 1192
- First Mline on page 1192
- Undo on page 1193

first mline selected

second mline selected

result

\section*{Closed Tee}

Creates a closed-tee intersection between two multilines. The first multiline is trimmed or extended to its intersection with the second multiline.
\(\overline{\# \#}\)
- Select First Mline on page 1192
- Select Second Mline on page 1192
- First Mline on page 1192

■ Undo on page 1193

first mline selected

second mline selected

result

\section*{Open Tee}

Creates an open-tee intersection between two multilines. The first multiline is trimmed or extended to its intersection with the second multiline.

\section*{\(\overline{\overline{1}} \overline{\bar{F}}\)}

■ Select First Mline on page 1192
- Select Second Mline on page 1192
- First Mline on page 1192
- Undo on page 1193


\section*{Merged Tee}

Creates a merged-tee intersection between two multilines. The multiline is trimmed or extended to its intersection with the other multiline.

- Select First Mline on page 1192
- Select Second Mline on page 1192
- First Mline on page 1192
- Undo on page 1193


\section*{Corner Joint}

Creates a corner joint between multilines. The multilines are trimmed or extended to their intersection.

- Select First Mline on page 1192
- Select Second Mline on page 1192
- First Mline on page 1192
- Undo on page 1193

first mline selected

second mline selected

result

\section*{Add Vertex}

Adds a vertex to a multiline.
\(|\mid \rightarrow i / i /\)
Select Mline Select a multiline
Mline Edits another multiline. The Select Mline prompt is displayed again.
■ Undo on page 1193

mline selected

result

\section*{Delete Vertex}

Deletes a vertex from a multiline.
渻 \(>1\)

Select Mline The vertex nearest to the selected point is deleted.
- Mline on page 1196
- Undo on page 1193

mline selected

result

\section*{Cut Single}

Creates a visual break in a selected element of a multiline.


Select Mline The selection point on the multiline is used as the first cut point.
Select Second Point Specify the second cut point on the multiline.
■ Mline on page 1196
- Undo on page 1193

first mline selected

second point selected

result

\section*{Cut All}

Creates a visual break through the entire multiline.
\(\|\rightarrow\|\)
- Select Mline on page 1197

■ Select Second Point on page 1197
- Mline on page 1196
- Undo on page 1193

first mline selected

second point selected

result

\section*{Weld All}

Rejoins multiline segments that have been cut.


Select Mline The selection point on the multiline is used as the start of the weld.

Select Second Point. Specify the end of the weld on the multiline.
■ Mline on page 1196
■ Undo on page 1193
-MLEDIT

\section*{Quick Reference}

See also:
■ Modify Multilines

\section*{Access Methods}

䱂 Command entry: -mledit

\section*{Summary}

For more information about the Command prompt options, see the Multiline Edit Tools dialog box.

\section*{List of Prompts}

The following prompts are displayed.
CC Creates a closed-cross intersection between two multilines.
OC Creates an open-cross intersection between two multilines. Breaks are inserted in all elements of the first multiline and only the outside elements of the second multiline.

MC Creates a merged-cross intersection between two multilines. The order in which you select the multilines is not important.

CT Creates a closed-tee intersection between two multilines. The first multiline is trimmed or extended to its intersection with the second multiline.

OT Creates an open-tee intersection between two multilines. The first multiline is trimmed or extended to its intersection with the second multiline.

MT Creates a merged-tee intersection between two multilines.The multiline is trimmed or extended to its intersection with the other multiline.

CJ Creates a corner joint between multilines. The multilines are trimmed or extended to their intersection.

AV Adds a vertex to a multiline.
DV Deletes a vertex from a multiline.
CS Creates a visual break in a selected element of a multiline.
CA Creates a visual break through the entire multiline.
WA Rejoins multiline segments that have been cut.

\section*{MLINE}

\section*{Quick Reference}

\section*{See also:}
- Draw Multiline Objects

Creates multiple parallel lines.

\section*{Access Methods}
\$
Button

Menu: Draw \(>\) Multiline

\section*{List of Prompts}

The following prompts are displayed.
Specify start point or [Justification/Scale/STyle]: Specify a point or enter an option Start Point
Specifies the next vertex of the multiline.
If you create a multiline with two or more segments, the prompt includes the Close option.


Next Point Draws a multiline segment to the specified point using the current multiline style and continues to prompt for points.


Undo Undoes the last vertex point on the multiline.
Close Closes the multiline by joining the last segments with the first segments.


\section*{Justification}

Determines how the multiline is drawn between the points you specify.
- Top on page 1201
- Zero on page 1201

■ Bottom on page 1201

Top Draws the multiline below the cursor, so that the line with the most positive offset is at the specified points.


Zero Draws the multiline with its origin centered at the cursor, so that the MLSTYLE Element Properties offset of 0.0 is at the specified points.


Bottom Draws the multiline above the cursor, so that the line with the most negative offset is at the specified points.


\section*{Scale}

Controls the overall width of the multiline. This scale does not affect linetype scale.

The scale factor is based on the width established in the multiline style definition. A scale factor of 2 produces a multiline twice as wide as the style definition. A negative scale factor flips the order of the offset line-the smallest on top when the multiline is drawn from left to right. A negative scale value also alters the scale by the absolute value. A scale factor of 0 collapses the
multiline into a single line. For information about the multiline style definition, see MLSTYLE.
\(\qquad\)
\(\qquad\)
scale at 1
scale at 2

\section*{Style}

Specifies a style to use for the multiline. See "Draw Multiline Objects" in the User's Guide, and see MLSTYLE.
- Style Name on page 1202

■ ? on page 1202
Style Name Specifies the name of a style that has already been loaded or that's defined in a multiline library (MLN) file you've created.
?-List Styles Lists the loaded multiline styles.

\section*{MLSTYLE}

\section*{Quick Reference}

\section*{See also:}

■ Modify Multilines
Creates, modifies, and manages multiline styles.

\section*{Access Methods}


Button

Menu: Format \(>\) Multiline Style

\section*{Summary}

Displays the Multiline Style dialog box.

\section*{Multiline Style Dialog Box}

\section*{Quick Reference}

See also:
■ Modify Multilines

Creates, modifies, saves, and loads multiline styles.


\section*{Access Methods}

\(\$\) Menu: Format > Multiline Style亜 Command entry: mlstyle

\section*{Summary}

The multiline style controls the number of elements and the properties of each element. MLSTYLE also controls the background color and the end caps of each multiline.

\section*{List of Options}

The following options are displayed.
Current Multiline Style Displays the name of the current multiline style to be used for subsequently created multilines.

Styles Displays a list of multiline styles that are loaded in the drawing.
The list of multiline styles can include multiline styles that exist in an externally referenced drawing (xref). Externally referenced multiline style names use the same syntax as other externally dependent nongraphical objects. See "Overview of Referenced Drawings (Xrefs)" in the User's Guide.

Description Displays the description of the selected multiline style.
Preview Of Displays the name and an image of the selected multiline style.
Set Current Sets the current multiline style for subsequently created multilines.
NOTE You cannot make a multiline style from an xref the current style.
New Displays the Create New Multiline Style dialog box, in which you can create a new multiline style.

Modify Displays the Modify Multiline Style dialog box, in which you can modify a selected multiline style.

NOTE You cannot edit the element and multiline properties of any multiline style that is being used in the drawing. To edit an existing multiline style, you must do so before you draw any multilines that use the style.

Rename Renames the currently selected multiline style. You cannot rename the STANDARD multiline style.

Delete Removes the currently selected multiline style from the Styles list. It does not delete the style from the MLN file.
You cannot delete the STANDARD multiline style, the current multiline style, or a multiline style that is in use.

Load Displays the Load Multiline Styles dialog box, in which you can load multiline styles from a specified MLN file.

Save Saves or copies a multiline style to a multiline library (MLN) file. If you specify an MLN file that already exists, the new style definition is added to the file and existing definitions are not erased.

\section*{Create New Multiline Style Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Modify Multilines

Names the new multiline style and specifies the multiline style from which to start the new one.


\section*{Access Methods}


Button
\(\$\) Menu: Format \(>\) Multiline Style座 Command entry: mlstyle

\section*{List of Options}

The following options are displayed.
New Style Name Names a new multiline style. The element and multiline properties are unavailable until you enter a new name and click Continue.

Start With Determines the multiline style from which to start the new one. To save time, choose a multiline style that is similar to the one that you want to create.

Continue Displays the New Multiline Style dialog box.

\section*{New, Modify Multiline Style Dialog Boxes}

\section*{Quick Reference}

See also:
■ Modify Multilines

Sets the properties and elements for a new multiline style, or changes them for an existing multiline style.


\section*{Access Methods}


Button

Menu: Format \(>\) Multiline Style
Command entry: mlstyle

\section*{List of Options}

The following options are displayed.

\section*{Description}

Adds a description to a multiline style.

\section*{Caps}

Controls the start and end caps of the multiline.
Line Displays a line segment across each end of the multiline.


Outer Arc Displays an arc between the outermost elements of the multiline.


Inner Arcs Displays an arc between pairs of inner elements. If there's an odd number of elements, the center line is unconnected. For example, if there are six elements, inner arcs connect elements 2 and 5 and elements 3 and 4. If there are seven elements, inner arcs connect elements 2 and 6 and elements 3 and 5 . Element 4 is left unconnected.

without Inner Arc

with Inner Arc

Angle Specifies the angle of the end caps.

without Angle

with Angle

Fill
Controls the background fill of the multiline.
Fill Color Sets the background fill color of the multiline. When you choose Select Color, the Select Color dialog box is displayed.

\section*{Display Joints}

Controls the display of the joints at the vertices of each multiline segment. A joint is also known as a miter.


\section*{Elements}

Sets element properties, such as the offset, color, and linetype, of new and existing multiline elements.

Offset Color Ltype Displays all the elements in the current multiline style. Each element in the style is defined by its offset from the middle of the multiline, its color, and its linetype. Elements are always displayed in descending order of their offsets.

Add Adds a new element to the multiline style. Not available until color or linetype has been selected for a multiline style other than STANDARD.

Delete Deletes an element from the multiline style.
Offset Specifies the offset for each element in the multiline style.

a four-element multiline, each element offset
from 0.0

Color Displays and sets the color for elements in the multiline style. When you choose Select Color, the Select Color dialog box is displayed.

Linetype Displays and sets the linetype for elements in the multiline style. When you choose Linetype, the Select Linetype Properties dialog box is displayed, which lists loaded linetypes. To load a new linetype, click Load. The Load or Reload Linetypes dialog box is displayed.

\section*{Load Multiline Styles Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Modify Multilines

Loads a multiline style from an MLN file.


\section*{Access Methods}


Button
\(\$\) Menu: Format > Multiline Style
並 Command entry: mlstyle

\section*{Summary}

The default file name is acad.mln. If acad.mln does not exist, or if it exists but cannot be found, click File to specify another file or file location.

\section*{List of Options}

The following options are displayed.
File Displays a standard file selection dialog box in which you can locate and select another multiline library file.

List Lists the multiline styles available in the current multiline library file.

\section*{MODEL}

\section*{Quick Reference}

\section*{See also:}

■ Work with Model Space and Paper Space
Switches from a layout tab to the Model tab.

\section*{Summary}

On the Model tab, you can create drawings in model space. The Model tab automatically sets the TILEMODE on page 2554 system variable to 1 , and you can create model viewports to display various views of your drawing. Once you've completed your drawing, you can choose a layout tab to begin designing a layout environment from which to plot.

For possible performance gains when you switch between layout tabs or between the Model tab and a layout tab, use the LAYOUTREGENCTL system variable to control how the display list is updated.

\section*{MOVE}

\section*{Quick Reference}

\section*{See also:}
- Move Objects

Moves objects a specified distance in a specified direction.

\section*{Access Methods}


Ribbon: Home tab \(>\) Modify panel \(>\) Move
Menu: Modify > Move
\(\$\) Toolbar: Modify
Shortcut menu: Select the objects to move, and right-click in the drawing area. Click Move.

\section*{Summary}

Use coordinates, grid snaps, object snaps, and other tools to move objects with precision.

\section*{List of Prompts}

The following prompts are displayed.
Select objects.
Specify base point or [Displacement].
Specify second point or <use first point as displacement>.

The two points you specify define a vector that indicates how far the selected objects are to be moved and in what direction.

If you press Enter at the Specify Second Point prompt, the first point is interpreted as a relative \(X, Y, Z\) displacement. For example, if you specify \(\mathbf{2 , 3}\) for the base point and press Enter at the next prompt, the objects move 2 units in the \(X\) direction and 3 units in the \(Y\) direction from their current position.

Displacement Enter coordinates to represent a vector
The coordinate values that you enter specify a relative distance and direction.

\section*{MREDO}

\section*{Quick Reference}

See also:
■ Correct Mistakes

Reverses the effects of several previous UNDO or U commands.

\section*{Access Methods}
\(\rightarrow\)
Bitlon
\(\$\) Toolbar: Standard

\section*{List of Prompts}

The following prompts are displayed.
Enter number of actions or [All/Last]:
Number of Actions Reverses the specified number of actions.
All Reverses all previous actions.
Last Reverses only the last action.

\section*{MSLIDE}

\section*{Quick Reference}

See also:
■ Overview of Slides
Creates a slide file of the current model viewport or the current layout.

\section*{Summary}

The Create Slide File dialog box (a standard file selection dialog box) is displayed. Enter a file name or select a slide (SLD) file from the list. A slide file is a raster image of a viewport.

In model space, MSLIDE makes a slide file of the current viewport only. In paper space, MSLIDE makes a slide file of the paper space display, including all viewports and their contents.

Off-screen portions of the drawing, or layers that are off or frozen, are not included in the slide.

Use the VSLIDE command to view slides, or the SLIDELIB utility to create a slide library.
When you view slides of images shaded with the SHADE command in a larger window or at a higher resolution than was used for creating the slide, black lines may appear interspersed among the lines of the shaded image. To avoid this situation, use a full screen that is set at the highest resolution when creating slides.

\section*{MSPACE}

\section*{Quick Reference}

\section*{See also:}

■ Work with Model Space and Paper Space

In a layout, switches from paper space to model space in a layout viewport.

\section*{Summary}

Commands operate in either model space or paper space. You use model space (the Model tab) to do drafting and design work and to create two-dimensional drawings or three-dimensional models. You use paper space (a layout tab) to create a finished layout of a drawing for plotting.

When you are in a layout, you can enter mspace at the Command prompt to make the last viewport in the layout current, and then work in model space in that viewport within the layout. You can switch to model space by double-clicking a viewport, and you can switch to paper space by double-clicking an area of paper space.

\section*{MTEDIT}

\section*{Quick Reference}

See also:
■ Change Multiline Text

Edits multiline text.

\section*{Access Methods}

Pointing device: Double-click a multiline text object.

\section*{Summary}

Displays either the multiline text tab on the ribbon or the In-Place Text Editor to modify the formatting or content of the selected mtext object.

The In-Place Text Editor is displayed.

\section*{MTEXT}

\section*{Quick Reference}

See also:
■ Overview of Multiline Text

Creates a multiline text object.

\section*{Access Methods}

A
Button

8 Ribbon: Home tab \(>\) Annotation panel \(>\) Multiline Text
\(\$\) Menu: Draw \(>\) Text \(>\) Multiline Text
\(\$\) Toolbar: Draw
Pointing device: Double-click a multiline text object.

\section*{Summary}

You can create several paragraphs of text as a single multiline text (mtext) object. With the built-in editor, you can format the text appearance, columns, and boundaries.

After you specify the point for the opposite corner when the ribbon is active, the Text Editor ribbon contextual tab displays. If the ribbon is not active, the in-place text editor is displayed.

If you specify one of the other options, or if you enter -mtext at the Command prompt, MTEXT bypasses the In-Place Text editor and displays additional Command prompts.

See also:
■ Symbols and Special Characters on page 1244

\section*{Text Editor Ribbon Contextual Tab}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Multiline Text

Creates or modifies multiline text objects.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Multiline Text.
\(\$\) Menu: Draw \(>\) Text \(>\) Multiline Text
\(\%\) Toolbar: Draw
鰦 Command entry: mtext

\section*{List of Options}

The following options are displayed.

\section*{Style Panel}
\begin{tabular}{ll} 
Style & \begin{tabular}{l} 
Applies a text style to the multiline text object. The Standard text \\
style is active by default
\end{tabular} \\
Annotative & \begin{tabular}{l} 
Turns Annotative on or off for the current mtext object.
\end{tabular} \\
Text Height & \begin{tabular}{l} 
Sets the character height in drawing units for new text or changes \\
the height of selected text. If the current text style has no fixed \\
height, the text height is the value stored in theTEXTSIZE system \\
variable. A multiline text object can contain characters of various \\
heights.
\end{tabular}
\end{tabular}

\section*{Formatting Panel}
\begin{tabular}{ll} 
Bold & \begin{tabular}{l} 
Turns bold formatting on and off for new or selected text. This op- \\
tion is available only for characters using TrueType fonts.
\end{tabular} \\
\begin{tabular}{ll} 
Italic & \begin{tabular}{l} 
Turns italic formatting on and off for new or selected text. This op- \\
tion is available only for characters using TrueType fonts.
\end{tabular} \\
Underline & Turns underlining on and off for new or selected text. \\
Overline & Turns overline on and off for new or selected text. \\
Make Uppercase & Changes the selected text to uppercase. \\
Make Lowercase & Changes the selected text to lowercase.
\end{tabular}
\end{tabular}
\begin{tabular}{ll} 
Font & \begin{tabular}{l} 
Specifies a font for new text or changes the font of selected text. \\
TrueType fonts are listed by font family name. AutoCAD compiled \\
shape (SHX) fonts are listed by the name of the file in which the \\
fonts are stored. Custom fonts and third-party fonts are displayed \\
in the editor with Autodesk-supplied proxy fonts.
\end{tabular} \\
Color & Specifies a color for new text or changes the color of selected text. \\
Background & \begin{tabular}{l} 
Displays the Background Mask dialog box. (Not available for table \\
cells.)
\end{tabular} \\
Mask & \begin{tabular}{l} 
Determines the forward or backward slant of the text. The angle \\
represents the offset from 90 degrees. Entering a value between - \\
85 and 85 makes the text oblique. A positive obliquing angle slants \\
text to the right. A negative obliquing angle slants text to the left.
\end{tabular} \\
Tracking & \begin{tabular}{l} 
Decreases or increases the space between the selected characters.
\end{tabular} \\
The 1.0 setting is normal spacing.
\end{tabular}

\section*{Paragraph Panel}
\begin{tabular}{ll} 
MText Justification & \begin{tabular}{l} 
Displays the MText Justification menu with nine alignment options \\
available. Top Left is the default.
\end{tabular} \\
Paragraph & \begin{tabular}{l} 
Displays the Paragraph dialog box. See the Paragraph dialog box \\
for a list of the options.
\end{tabular} \\
Line Spacing & \begin{tabular}{l} 
Displays suggested line spacing options or the Paragraph dialog \\
box. Line spacing is set in the current or selected paragraph.
\end{tabular} \\
\begin{tabular}{l} 
NOTE Line spacing is the distance between the bottom \\
of the upper line and the top of the lower line of text in a \\
multiple line paragraph.
\end{tabular} \\
\hline
\end{tabular}

The predefined options are:
- \(1.0 x, 1.5 x, 2.0 x\), or \(2.5 x\) : Sets the line spacing at \(.5 x\) increments in multiline text.
- More: Displays the Paragraph dialog box, which provides additional options.
- Clear Paragraph Spacing: Removes line spacing settings from the selected or current paragraph. The paragraph defaults to the mtext space setting.

\section*{Additional options in the Paragraph dialog box:}
- Exact: Defines the space with an arbitrary unit value the user specifies. Changing text height will not affect line spacing.
- Multiple: Instead of assigning a value to line spacing, you specify spacing according to text height. When text height is not consistent in one line, the line space will be determined by the largest text height value in that line.
- At least: Takes both the user specified arbitrary value and the text height to determine spacing. If text height is smaller than the arbitrary value the line space is determined by the user specified value. If the text height is larger, the line spacing is equal to the text height value.

NOTE Not all of the new options for paragraph and paragraph line spacing are supported in AutoCAD 2007 and previous releases. See MTEXT Paragraph and Paragraph Line Spacing in Previous Releases in the User's Guide.

Numbering Displays the bullet and numbering menu. Displays options for creating lists. (Not available for table cells.) The list is indented to align with the first selected paragraph.
- Off: When selected, removes letters, numbers, and bullets from selected text that has list formatting applied. Indentation is not changed.
- Lettered: Applies list formatting that uses letters with periods for the items in the list. If the list has more items than the alphabet has letters, the sequence continues by using double letters.
- Numbered: Applies list formatting that uses numbers with periods for the items in the list.
- Bulleted: Applies list formatting that uses bullets for the items in the list.

■ Restart: Starts a new letter or number sequence in list formatting. If the selected items are in the middle of a list, unselected items below them also become part of the new list.
- Continue: Adds the selected paragraphs to the last list above and continues the sequence. If list items rather than paragraphs are selected, unselected items below the selected items continue the sequence.
- Allow Auto-list: Applies list formatting as you type. The following characters can be used as punctuation after letters and numbers and cannot be used as bullets: period (.), comma (,), close parenthesis ()), close angle bracket (>), close square bracket (]), and close curly bracket (\}).
- Use Tab Delimiter Only: Limits the Allow Auto-list and Allow Bullets and Lists options. List formatting is applied to text only when the space after the letter, number, or bullet character was created by Tab, not Space.
- Allow Bullets and Lists: When this option is selected, list formatting is applied to all plain text in the multiline text object that looks like a list. Text that meets the following criteria is considered to be a list. The line begins with (1) one or more letters or numbers or a symbol, followed by (2) punctuation after a letter or number, (3) a space created by pressing Tab, and (4) some text before the line is ended by Enter or Shift+Enter.

When you clear the check mark, any list formatting in the multiline text object is removed and the items are converted to plain text. Allow Auto-list is turned off, and all the Bullets and Lists options are unavailable except Allow Bullets and Lists.

Left, Center, Right, Sets the justification and alignment for the left, center, or right Justified and Distributed text boundaries of the current or selected paragraph. Spaces entered at the end of a line are included and affect the justification of a line.

\section*{Insert Panel}

Symbol Inserts a symbol or a nonbreaking space at the cursor position. You can also insert symbols manually. See Symbols and Special Characters on page 1244.
Commonly used symbols are listed on the submenu, along with their control code or Unicode string. Click Other to display the Character Map dialog box, which contains the entire character set for each font available on your system. When you have selected all the characters
that you want to use, click Copy to close the dialog box. In the editor, right-click and click Paste.
Symbols are not supported in vertical text.
\begin{tabular}{|c|c|}
\hline Insert Field & Displays the Field dialog box, where you can select a field to insert in the text. When the dialog box closes, the current value of the field is displayed in the text. \\
\hline Columns & Displays the column flyout menu, which provides three column options: No Columns, Static Columns, and Dynamic columns. See Columns menu on page 1231. \\
\hline
\end{tabular}

\section*{Spell Check Panel}
Spell Check \(\quad\) Determines whether As-You-Type spell checking is turned on or off.
Edit Dictionaries \(\quad\)\begin{tabular}{l} 
Displays the Dictionaries dialog box on page 1823, where you can \\
add or remove custom dictionaries for use during spell check.
\end{tabular}

\section*{Tools Panel}

Find and Replace Displays the Find and Replace dialog box.
Import Text Displays the Select File dialog box (a standard file selection dialog box). Select any file that is in ASCII or RTF format. Imported text retains its original character formatting and style properties, but you can edit and format the imported text in the editor. After you select a text file to import, you can replace either selected text or all text, or append the inserted text to text selected within the text boundary. The file size for imported text is limited to 32 KB.
The editor automatically sets the text color to BYLAYER. When black characters are inserted and the background color is black, the editor automatically changes to white or the current color.
NOTE A Microsoft Excel spreadsheet imported into a drawing is truncated at 72 rows unless the spreadsheet was created in Microsoft Office 2002 with Service Pack 2 installed. The same limitation applies when the drawing that contains the OLE object is opened on a system with an earlier version of Microsoft Office installed; the spreadsheet is truncated.

AutoCAPS Converts all new and imported text to uppercase. AutoCAPS does not affect existing text. To change the case of existing text, select the text and right-click.

\section*{Options Panel}
\begin{tabular}{ll} 
Undo & \begin{tabular}{l} 
Undoes actions in the Text Editor ribbon contextual tab, including \\
changes to either text content or text formatting.
\end{tabular} \\
Redo & \begin{tabular}{l} 
Redoes actions in the Text Editor ribbon contextual tab, including \\
changes to either text content or text formatting.
\end{tabular} \\
Ruler & \begin{tabular}{l} 
Displays a ruler at the top of the editor. Drag the arrows at the end \\
of the ruler to change the width of the mtext object. Also displays \\
height and column grips when column mode is active. \\
You can also select tabs from the ruler. Clicking the Tab Selection \\
button changes tab styles from left, center, right, and decimal. Once \\
you make your selection, you adjust the corresponding tab in the \\
ruler or in the Paragraph dialog box.
\end{tabular} \\
More & \begin{tabular}{l} 
Displays a list of additional text options. See Additional Text Options \\
on page 1227.
\end{tabular}
\end{tabular}

\section*{Close Panel}

Close Text Editor Ends the MTEXT command and closes the Text Editor ribbon contextual tab.

\section*{In-Place Text Editor}

\section*{Quick Reference}

\section*{See also:}
- Overview of Multiline Text

Creates or modifies single or multiline text objects.


\section*{Access Methods}

A
Button

Ribbon: Home tab \(>\) Annotation panel \(>\) Multiline Text
\(\$\) Menu: Draw \(>\) Text \(>\) Multiline Text
Toolbar: Draw
业 Command entry: mtext

\section*{Summary}

You can import or paste text from other files to use in multiline text, set tabs, adjust paragraph and line spacing and alignment, and create and modify columns.

The In-Place Text Editor includes a Text Formatting Toolbar on page 1223, a Paragraph Dialog Box on page 1229, a Columns Menu on page 1231, and an Options Menu. When a table cell is selected for editing, the In-Place Text Editor displays column letters and row numbers.

\section*{List of Options}

The following options are displayed.

\section*{Text Formatting Toolbar}

Controls the text style for a multiline text object and character and paragraph formatting for selected text.

NOTE Text that you paste from other word processing applications such as Microsoft Word will retain most of its formatting. With the options in Paste Special, you can strip out paragraph formatting such as paragraph-based alignment or character formatting from the pasted text.

Style Applies a text style to the multiline text object. The current style is saved in the TEXTSTYLE on page 2552 system variable.
Character formatting for font, height, and bold or italic attributes is overridden if you apply a new style to an existing multiline text object. Stacking, underlining, and color attributes are retained in characters to which a new style is applied.
Styles that have backward or upside-down effects are not applied. If a style defined with a vertical effect is applied to an SHX font, the text is displayed horizontally in the In-Place Text Editor.

Font Specifies a font for new text or changes the font of selected text. TrueType fonts are listed by font family name. AutoCAD compiled shape (SHX) fonts are listed by the name of the file in which the fonts are stored. Custom fonts and third-party fonts are displayed in the editor with Autodesk-supplied proxy fonts.
A sample drawing (TrueType. \(d w g\) ) showing each font is provided in the sample directory.

Annotative Turns Annotative on or off for the current mtext object.
Text Height Sets the character height in drawing units for new text or changes the height of selected text. If the current text style has no fixed height, the text height is the value stored in theTEXTSIZE system variable. A multiline text object can contain characters of various heights.

Bold Turns bold formatting on and off for new or selected text. This option is available only for characters using TrueType fonts.

Italic Turns italic formatting on and off for new or selected text. This option is available only for characters using TrueType fonts.

Underline Turns underlining on and off for new or selected text.
Overline Turns overline on and off for new or selected text.

Undo Undoes actions in the In-Place Text Editor, including changes to either text content or text formatting.

Redo Redoes actions in the In-Place Text Editor, including changes to either text content or text formatting.

Stack Creates stacked text, for example, fractions, if the selected text contains stack characters. Also, unstacks text if stacked text is selected. When the stack characters, carat ( \(\wedge\) ), forward slash (/), and pound sign (\#), are used, the text to the left of the stack character is stacked on top of the text to the right.
By default, text that contains a carat converts to left-justified tolerance values. Text that contains the forward slash converts to center-justified fractional numbers; the slash is converted to a horizontal bar the length of the longer text string. Text that contains the pound sign converts to a fraction separated by a diagonal bar the height of the two text strings. The characters above the diagonal fraction bar are bottom-right aligned; the characters beneath the diagonal bar are top-left aligned.

Text Color Specifies a color for new text or changes the color of selected text.
You can assign text the color associated with the layer it is on (BYLAYER) or the color of the block it is contained in (BYBLOCK). You can also select one of the colors in the color list or click Other to open the Select Color dialog box.

Ruler Displays a ruler at the top of the editor. Drag the arrows at the end of the ruler to change the width of the mtext object. Also displays height and column grips when column mode is active.
You can also select tabs from the ruler. Clicking the Tab Selection button changes tab styles from left, center, right, and decimal. Once you make your selection, you adjust the corresponding tab in the ruler or in the Paragraph dialog box.

OK Closes the editor and saves any changes that you made.
Options Displays a list of additional text options. See Additional Text Options on page 1227 .

Columns Displays the column flyout menu, which provides three column options: No Columns, Static Columns, and Dynamic columns. See Columns menu on page 1231.

MText Justification Displays the MText Justification menu with nine alignment options available.

Paragraph Displays the Paragraph dialog box. See the Paragraph dialog box on page 1229 for a list of the options.

Left, Center, Right, Justified and Distributed Sets the justification and alignment for the left, center, or right text boundaries of the current or selected paragraph. Spaces entered at the end of a line are included and affect the justification of a line.

Line Spacing Displays suggested line spacing options or the Paragraph dialog box. Line spacing is set in the current or selected paragraph.
NOTE Line spacing is the distance between the bottom of the upper line and the top of the lower line of text in a multiple line paragraph.

The predefined options are:
- \(1.0 x, 1.5 x, 2.0 x\), or \(2.5 x\) : Sets the line spacing at \(.5 x\) increments in multiline text.

■ More: Displays the Paragraph dialog box, which provides additional options.
- Clear Paragraph Spacing: Removes line spacing settings from the selected or current paragraph. The paragraph defaults to the mtext space setting.

Additional options in the Paragraph dialog box:
- Exact: Defines the space with an arbitrary unit value the user specifies. Changing text height will not affect line spacing.
- Multiple: Instead of assigning a value to line spacing, you specify spacing according to text height. When text height is not consistent in one line, the line space will be determined by the largest text height value in that line.
- At least: Takes both the user specified arbitrary value and the text height to determine spacing. If text height is smaller than the arbitrary value the line space is determined by the user specified value. If the text height is larger, the line spacing is equal to the text height value.

NOTE Not all of the new options for paragraph and paragraph line spacing are supported in releases before AutoCAD 2008. See MTEXT Paragraph and Paragraph Line Spacing in Previous Releases.

Numbering Displays the bullet and numbering menu.
Displays options for creating lists. (Not available for table cells.) The list is indented to align with the first selected paragraph.
- Off: When selected, removes letters, numbers, and bullets from selected text that has list formatting applied. Indentation is not changed.

■ Lettered: Applies list formatting that uses letters with periods for the items in the list. If the list has more items than the alphabet has letters, the sequence continues by using double letters.

■ Numbered: Applies list formatting that uses numbers with periods for the items in the list.
- Bulleted: Applies list formatting that uses bullets for the items in the list.

■ Restart: Starts a new letter or number sequence in list formatting. If the selected items are in the middle of a list, unselected items below them also become part of the new list.
- Continue: Adds the selected paragraphs to the last list above and continues the sequence. If list items rather than paragraphs are selected, unselected items below the selected items continue the sequence.
- Allow Auto-list: Applies list formatting as you type. The following characters can be used as punctuation after letters and numbers and cannot be used as bullets: period (.), comma (,), close parenthesis ()), close angle bracket ( \(>\) ), close square bracket (]), and close curly bracket (\}).
- Use Tab Delimiter Only: Limits the Allow Auto-list and Allow Bullets and Lists options. List formatting is applied to text only when the space after the letter, number, or bullet character was created by Tab, not Space.
- Allow Bullets and Lists: When this option is selected, list formatting is applied to all plain text in the multiline text object that looks like a list. Text that meets the following criteria is considered to be a list. The line begins with (1) one or more letters or numbers or a symbol, followed by (2) punctuation after a letter or number, (3) a space created by pressing Tab, and (4) some text before the line is ended by Enter or Shift+Enter.
When you clear the check mark, any list formatting in the multiline text object is removed and the items are converted to plain text. Allow Auto-list is turned off, and all the Bullets and Lists options are unavailable except Allow Bullets and Lists.

Insert Field Displays the Field dialog box, where you can select a field to insert in the text.

Uppercase Changes the selected text to uppercase.
Lowercase Changes the selected text to lowercase.
Symbol Inserts a symbol or a nonbreaking space at the cursor position. You can also insert symbols manually. See Symbols and Special Characters on page 1244.

Commonly used symbols are listed on the submenu, along with their control code or Unicode string. Click Other to display the Character Map dialog box, which contains the entire character set for each font available on your system. Select a character and click Select to place it in the Characters to Copy box. When you have selected all the characters that you want to use, click Copy to close the dialog box. In the editor, right-click and click Paste.

Symbols are not supported in vertical text.
Oblique Angle Determines the forward or backward slant of the text. The angle represents the offset from 90 degrees. Entering a value between -85 and 85 makes the text oblique. A positive obliquing angle slants text to the right. A negative obliquing angle slants text to the left.

Tracking Decreases or increases the space between the selected characters. The 1.0 setting is normal spacing. Set to more than 1.0 to increase spacing, and set to less than 1.0 to decrease spacing.

Width Factor Widens or narrows the selected characters. The 1.0 setting represents the normal width of the letter in this font. You can increase the width (for example, use a width factor of 2 to double the width) or decrease the width (for example, use a width factor of 0.5 for half the width).

\section*{Additional Text Options}

Insert Field Displays the Field dialog box.
Symbol Displays a list of available symbols. You can also select a Non-breaking space and open the Character Map for additional symbols.

Import Text Displays the Select File dialog box (a standard file selection dialog box). Select any file that is in ASCII or RTF format. Imported text retains its original character formatting and style properties, but you can edit and format the imported text in the editor. After you select a text file to import, you can replace either selected text or all text, or append the inserted text to text selected within the text boundary. The file size for imported text is limited to 32 KB.
The editor automatically sets the text color to BYLAYER. When black characters are inserted and the background color is black, the editor automatically changes to white or the current color.

NOTE A Microsoft Excel spreadsheet imported into a drawing is truncated at 72 rows unless the spreadsheet was created in Microsoft Office 2002 with Service Pack 2 installed. The same limitation applies when the drawing that contains the OLE object is opened on a system with an earlier version of Microsoft Office installed; the spreadsheet is truncated.

Paragraph Alignment Sets alignment for the multiline text object. You can choose to align your text to the left, center, or right. You can justify your text, or align the first and last characters of your text with the margins of your mtext box, or center each line of text within the margins of your mtext box. Spaces entered at the end of a line are included as part of the text and affect the justification of the line.

Paragraph Displays options for paragraph formatting. See the Paragraph dialog box on page 1229.

Bullets and Lists Displays the options for numbering lists.
Columns Displays options for columns. See the Columns menu on page 1231.
Find and Replace Displays the Find and Replace dialog box.
Change Case Changes the case of selected text. Options are Uppercase and Lowercase.

AutoCAPS Converts all new and imported text to uppercase. AutoCAPS does not affect existing text. To change the case of existing text, select the text and right-click. Click Change Case.

Character Set Displays a menu of code pages. Select a code page to apply it to the selected text.

Combine Paragraphs Combines selected paragraphs into a single paragraph and replaces each paragraph return with a space.

Remove Formatting Removes character formatting for selected characters, paragraph formatting for a selected paragraph, or all formatting from a selected paragraph.

Background Mask Displays the Background Mask dialog box. (Not available for table cells.)

Editor Settings Displays a list of options for the Text Formatting toolbar. See Editor Settings for more information.
Learn About MText Displays the New Features Workshop, which contains an overview of the MText feature.

\section*{Editor Settings}

Provides options for changing the behavior of the Text Formatting toolbar and provides additional editing options. Options are specific to the Editor Settings menu and are not available elsewhere on the Text Formatting toolbar.

NOTE Some options may not be available depending on what you are editing.

Always Display As WYSIWYG (What You See Is What You Get) Controls display of the In-Place Text Editor and the text within it. When unchecked, text that would otherwise be difficult to read (if it is very small, very large, or is rotated) is displayed at a legible size and is oriented horizontally so that you can easily read and edit it.
When this option is checked, the MTEXTFIXED system variable will be set to 0 . Otherwise, MTEXTFIXED will be set to 2 .

Show Toolbar Controls display of the Text Formatting toolbar. To restore display of the toolbar, right-click in the editor and click Option \(>\) Show Toolbar.

Show Options Expands the Text Formatting toolbar to show more options.
Show Rulers Controls the display of the ruler.
Opaque Background When selected, makes the background of the editor opaque. (Not available for table cells.)

Check Spelling Determines whether As-You-Type spell checking is on or off.
Check Spelling Settings Displays the Check Spelling Settings dialog box, where you can specify text options that will be checked for spelling errors within your drawing.

Dictionaries Displays the Dictionaries dialog box, where you can change the dictionary that is checked against any found misspelled words.

Text Highlight Color Displays the AutoCAD generic Select Color dialog box. Specifies the highlight color when text is selected.

\section*{Paragraph Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Multiline Text

Sets indentation for paragraphs and the first lines of paragraphs.

\section*{Access Methods}
\(A\)
Button
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Multiline Text
\(\$\) Menu: Draw \(>\) Text \(>\) Multiline Text
\(\%\) Toolbar: Draw
䱂 Command entry: mtext

\section*{Summary}

Specifies tab stops, indents, controls paragraph alignment, paragraph spacing, and paragraph line spacing.

NOTE Not all of the new options for paragraph and paragraph line spacing are supported in AutoCAD 2007 and previous releases. See MTEXT Paragraph and Paragraph Line Spacing in Previous Releases in the User's Guide.

\section*{List of Options}

The following options are displayed.
Tab
Displays tab setting options, including adding and removing tabs. Options include setting left, center, right, and decimal tabs. You can also set tabs from the Tab selection button on the In-Place Editor's ruler.

\section*{Decimal style}

Sets the decimal style based on current user locale. Options include setting the decimal style as period, comma, and space. This setting is preserved with the drawing even if the locale setting is changed.

\section*{Left Indent}

Sets the indent value for the first line or hanging indent to the selected or current paragraphs.

\section*{Right Indent}

Applies the indent to the entire selected or current paragraph.

\section*{Paragraph Alignment}

Sets the alignment properties for the current or selected paragraphs.

\section*{Paragraph Spacing}

Specifies the spacing before or after the current or selected paragraphs. The distance between two paragraphs is determined by the total of the after paragraph spacing value of the upper paragraph and the before paragraph spacing value of the lower paragraph.

\section*{Paragraph Line Spacing}

Sets the spacing between individual lines in the current or selected paragraphs.

\section*{Columns Menu}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Multiline Text

Allows you to format an mtext object into multiple columns.
```


No Columns

Dynamic Column
\#\#\#}\mathrm{ Static Columns
Insert Column Break Alt+Enter
Column Settings..

```

\section*{Access Methods}

\section*{A}

Button
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Multiline Text
\(\%\) Menu: Draw > Text > Multiline Text
8 Toolbar: Draw
㟇 Command entry: mtext

\section*{Summary}

You can specify column and gutter width, height, and number of columns. You can edit column width and height with grip-editing.

To create multiple columns you always start with a single column. Depending on the column mode you choose, you have two different methods for creating and manipulating columns - static mode or dynamic mode.

\section*{List of Options}

The following options are displayed.
No Columns Specifies no columns for the current mtext object.
Dynamic Columns Sets dynamic columns mode to the current mtext object. Dynamic columns are text driven. Adjusting columns affects text flow and text flow causes columns to be added or removed. Auto height or Manual height options are available.

Static Columns Sets static columns mode to the current mtext object. You can specify the total width and height of the mtext object, and the number of columns. All the columns share the same height and are aligned at both sides.

Insert Column Break Alt+Enter Inserts a manual column break.
Column Settings Displays Column Settings dialog box.

\section*{Column Settings Dialog Box}

\section*{Quick Reference}

See also:
■ Overview of Multiline Text

Displays options for setting up columns such as the type, number of columns, height, and width, and gutter size.


\section*{Access Methods}
\(A\)

\section*{Button}
```

Ribbon: Home tab > Annotation panel > Multiline Text
Menu: Draw > Text > Multiline Text
Toolbar: Draw
彞 Command entry: mtext

```

\section*{List of Options}

The following options are displayed.
Column Type
Displays choices for the type of columns you want to create.

\section*{Column Number}

Sets the number of columns. This is only active when you select Static Columns.

\section*{Height}

Displays mtext height when Auto Height with Dynamic or Static Columns is selected.

\section*{Width}

Displays and specifies control column and gutter width values. The gutter value is five times the default mtext text height.

Also displays the total width value of the mtext object.

\section*{Background Mask Dialog Box}

\section*{Quick Reference}

See also:
■ Overview of Multiline Text

Controls using an opaque background behind multiline text.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Multiline Text
\$ Menu: Draw > Text > Multiline Text
\(\%\) Toolbar: Draw
菐 Command entry: mtext

\section*{List of Options}

The following options are displayed.

\section*{Use Background Mask}

Puts an opaque background behind the text.
NOTE When you apply a background mask to mtext multiple columns only the column areas will be masked. The space between the columns commonly referred to as gutters will be unmasked.

\section*{Border Offset Factor}

Specifies the margin around the text for the opaque background. The value is based on the text height. A factor of 1.0 exactly fits the multiline text object. A factor of 1.5 extends the background by 0.5 times the text height.

\section*{Fill Color}

Specifies the color for the background.

\section*{Use Background Drawing Color}

Provides a background that is the same color as the background of the drawing.
Color
Specifies a color for the opaque background. You can select one of the colors in the list or click Select Color to open the Select Color dialog box.

\section*{Find and Replace Dialog Box - MTEXT}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Multiline Text

Searches for specified text strings and replaces them with new text.
\begin{tabular}{|lc|}
\hline Wind and Replace & Find \\
Find what: & AUTOCAD \\
Reglace with: & AutoCAD \\
\(\square\) Match case & Eind Next \\
\(\square\) Find whole words only & Replace \\
\(\square\) Use wildcards & Replace All \\
\(\square\) Match diagritics & Close \\
\(\square\) Match half/full width forms (East Asian languages) \\
\hline
\end{tabular}

\section*{Access Methods}
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Multiline Text曼 Command entry: mtext
Shortcut menu: Select the Find and Replace icon in the text editor or from the MTEXT short cut menu

\section*{List of Options}

The following options are displayed.
Find What Provides a space for you to type the text you want to find.
Replace With Provides a space for you to type the text you want to replace the text you typed in Find What.

Find Next Finds the next instance of the text specified in Find What.
Replace Finds the next instance of the text specified in Find What and replaces it with the text in Replace With.

Replace All Finds all instances of the text specified in Find What and replaces it with the text in Replace With.

Match Whole Word Only Finds only whole words specified in Find What.
Text that is part of another word is ignored. When this option is cleared, a match is found for text strings, whether they are single words or parts of other words.

Match Case Finds only text with uppercase and lowercase characters as specified in Find What.
The case of all characters in the text string must match the case of the text in Find What. When this option is cleared, a match is found for specified text strings regardless of case.

\section*{Stack Properties Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Overview of Multiline Text

Edits the text, stack type, alignment, and size of stacked text.


\section*{Access Methods}

A
Button
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Multiline Text
\(\$\) Menu: Draw \(>\) Text \(>\) Multiline Text
\(\$\) Toolbar: Draw
两 Command entry: mtext

\section*{Summary}

To open the Stack Properties dialog box, select the stacked text, right-click, and click Properties on the shortcut menu.

You can edit the upper and lower text separately. The Appearance options control the stack style, position, and text size of the stacked text.

\section*{List of Options}

The following options are displayed.

\section*{Text}

Changes the upper and lower numbers of a stacked fraction.

\section*{Upper}

Edits the number in the upper part or first half of a stacked fraction.

\section*{Lower}

Edits the number in the lower part or second half of a stacked fraction.

\section*{Appearance}

Edits the style, position, or text size of a stacked fraction.

\section*{Style}

Specifies a style format for stacked text: horizontal fraction, diagonal fraction, tolerance, and decimal.

Fraction (Horizontal) Stacks the selected text with the first number on top of the second number separated by a horizontal line.

Fraction (Diagonal) Stacks the selected text with the first number on top of the second number separated by a diagonal line.

NOTE Releases of AutoCAD earlier than AutoCAD 2000 do not support diagonal fractions. If a multiline text object contains diagonal fractions, the fractions are converted to horizontal fractions when you save the drawing to pre-AutoCAD 2000 releases. Diagonal fractions are restored when the drawing is re-opened in AutoCAD 2000 or a later release. If a single multiline text object contains both horizontal and diagonal fractions, all fractions are converted to diagonal fractions when the drawing is reopened in AutoCAD 2000 or a later release.

Tolerance Stacks the selected text with the first number on top of the second number. There is no line between the numbers.

Decimal A variation of the Tolerance style that aligns the decimal point of both the upper and lower numbers of selected text.

\section*{Position}

Specifies how fractions are aligned. Center alignment is the default. All stacked text in an object uses the same alignment.

Top Aligns the top of the fraction with the top of the text line.
Center Centers the fraction vertically at the center of the text line.
Bottom Aligns the bottom of the fraction with the text baseline.

\section*{Text Size}

Controls the size of the stacked text as a percentage of the size of the current text style (from 25 to 125 percent).

\section*{Defaults}

Saves the new settings as defaults or restores the previous default values to the current stacked text.

\section*{AutoStack Button}

Displays the AutoStack Properties dialog box. AutoStack only stacks numeric characters immediately before and after the carat, slash, and pound characters. To stack nonnumeric characters, or text that includes spaces, select the text and choose the Stack button.

\section*{AutoStack Properties Dialog Box}

\section*{Quick Reference}

See also:
■ Overview of Multiline Text

Sets the defaults for automatically stacking characters.


\section*{Access Methods}

A
Button
\(\$\) Ribbon: Home tab \(\boldsymbol{>}\) Annotation panel \(>\) Multiline Text
\(\$\) Menu: Draw \(>\) Text \(>\) Multiline Text
\(\%\) Toolbar: Draw
亜 Command entry: mtext

\section*{Summary}

To display the AutoStack Properties dialog box when you have suppressed automatic display, select stacked text, right-click, and click Properties on the shortcut menu. In the Stack Properties dialog box, click AutoStack.

\section*{List of Options}

The following options are displayed.
Enable AutoStacking

Automatically stacks numeric characters entered before and after the carat, slash, or pound character. For example, if you type 1\#3 followed by a nonnumeric character or space, the text is automatically stacked as a diagonal fraction.

\section*{Remove Leading Blank}

Removes blanks between a whole number and a fraction.

\section*{Convert It to a Diagonal Fraction}

Converts the slash character to a diagonal fraction when AutoStack is on.

\section*{Convert It to a Horizontal Fraction}

Converts the slash character to a horizontal fraction when AutoStack is on.
NOTE Whether AutoStack is on or off, the pound character is always converted to a diagonal fraction, and the carat character is always converted to a tolerance format.

\section*{Don't Show This Dialog Again; Always Use These Settings}

Suppresses display of the AutoStack Properties dialog box. The current property settings are used for all stacked text. When this option is cleared, the AutoStack Properties dialog box is automatically displayed if you type two numbers separated by a slash, carat, or pound sign followed by a space or nonnumeric character.

\section*{-MTEXT}

\section*{Quick Reference}

\section*{See also:}
- Overview of Multiline Text

\section*{List of Prompts}

The following prompts are displayed.
Specify first corner.
Specify opposite corner or [Height/Justify/Line spacing/Rotation/Style/Width/Columns].

\section*{Opposite Corner}

As you drag the pointing device to specify the opposite corner, a rectangle is displayed to show the location and size of the multiline text object. Arrows within the rectangle indicate the direction of the paragraph's text flow.

\section*{Height}

Specifies the text height to use for multiline text characters.

\section*{- Specify Height.}

The Specify Height prompt is displayed only if the current text style is not .

\section*{■ Specify Paper Text Height.}

The Specify Paper Text Height prompt is displayed only if the current text style is annotative.

The default height, if nonzero, is the height of the current style; otherwise, it is the height stored in the TEXTSIZE on page 2552 system variable. Character height is calculated in drawing units. Changing the height updates the value stored in TEXTSIZE on page 2552.

\section*{Justify}

Determines both text justification and text flow, for new or selected text, in relation to the text boundary. The current justification is applied to new text. The text is justified within the specified rectangle based on the justification setting and one of nine justification points on the rectangle. The justification point is based on the first point used to specify the rectangle. Text is center-, left-, or right-justified with respect to the left and right text boundaries. Spaces entered at the end of a line are included as part of the text and affect the justification of the line. Text flow controls whether text is aligned from the middle, the top, or the bottom of the paragraph with respect to the top and bottom text boundaries.

Enter justification [TL/TC/TR/ML/MC/MR/BL/BC/BR] <TL>.
Justify Options
\begin{tabular}{ll}
\hline Option & Meaning \\
\hline TL & Top Left \\
\hline TC & Top Center \\
\hline TR & Top Right \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline \multicolumn{2}{l}{ Justify Options } \\
\hline Option & Meaning \\
\hline ML & Middle Left \\
\hline MC & Middle Center \\
\hline MR & Middle Right \\
\hline BL & Bottom Left \\
\hline BC & Bottom Center \\
\hline BR & Bottom Right \\
\hline
\end{tabular}

The following illustrations show each justification option.


\section*{Line Spacing}

Specifies line spacing for the multiline text object. Line spacing is the vertical distance between the bottom (or baseline) of one line of text and the bottom of the next line of text.

NOTE Exact spacing is recommended when you use MTEXT to create a table. Use a smaller text height than the specified line spacing to ensure that text does not overlap.

At Least Adjusts lines of text automatically based on the height of the largest character in the line. When At Least is selected, lines of text with taller characters have added space between lines.

Distance Sets the line spacing to an absolute value measured in drawing units. Valid values must be between \(0.0833(0.25 \mathrm{x})\) and \(1.3333(4 \mathrm{x})\).

Exactly Forces the line spacing to be the same for all lines of text in the multiline text object. Spacing is based on the text height of the object or text style.

Spacing Factor Sets the line spacing to a multiple of single-line spacing. Single spacing is 1.66 times the height of the text characters. You can enter a spacing factor as a number followed by \(\mathbf{x}\) to indicate a multiple of single spacing. For example, specify single spacing by entering \(\mathbf{1 x}\), or specify double spacing by entering \(\mathbf{2 x}\).

\section*{Rotation}

Specifies the rotation angle of the text boundary.

\section*{- Specify rotation angle.}

If you use the pointing device to specify a point, the rotation angle is determined by the angle between the \(X\) axis and the line defined by the most recently entered point (default \(0,0,0\) ) and the specified point.

The previous prompt is redisplayed until you specify the opposite corner of the text boundary.

\section*{Style}

Specifies the text style to use for multiline text.
Style Name Specifies a text style name. Text styles can be defined and saved using the STYLE command.
?-List Styles Lists text style names and characteristics.
The previous prompt is redisplayed until you specify the opposite corner of the text boundary.

\section*{Width}

Specifies the width of the text boundary.
If you use the pointing device to specify a point, the width is calculated as the distance between the start point and the specified point. Words within each line of the multiline text object wrap to fit the width of the text boundary. If you specify a width of 0 , word wrap is turned off and the width of the multiline text object is as wide as the longest line of text. You can end a line of text at a specific point by typing the text and pressing Enter. To end the command, press Enter at the MTEXT prompt.

\section*{Columns}

Specifies the column options for an mtext object.
Static Specifies the total column width, the number of columns, the gutter width (the space between the columns), and the height of columns.

Dynamic Specifies column width, gutter width and column height. Dynamic columns are text driven. Adjusting columns affect text flow and text flow causes columns to be added or removed.

No columns Sets no column mode to current mtext object.
The default column setting is stored in the MTEXTCOLUMN system variable.

\section*{Symbols and Special Characters}

\section*{Quick Reference}

See also:
■ Overview of Multiline Text

You can enter the following special characters and symbols by entering a control code or a Unicode string. Or in the In-Place Text Editor on page 1221, click Symbol on the expanded toolbar.

NOTE Symbols are not supported in vertical text.
Unicode strings and control codes
\begin{tabular}{lll}
\hline Control Codes & Unicode Strings & Result \\
\hline\(\% \% d\) & \(\backslash U+00 B O\) & Degree symbol ( \({ }^{\circ}\) )
\end{tabular}
\begin{tabular}{lll}
\multicolumn{3}{l}{ Unicode strings and control codes } \\
\hline Control Codes & Unicode Strings & Result \\
\hline\(\% \% p\) & TU+00B1 & Tolerance symbol ( ) \\
\hline\(\% \% c\) & \\
& \(\backslash U+2205\) & Diameter symbol ( \(\left(\begin{array}{l}\text { (1) }\end{array}\right.\)
\end{tabular}

To insert the following text symbols, click Symbol on the expanded Text Formatting toolbar or enter the appropriate Unicode string:

\section*{Text symbols and Unicode strings}
\begin{tabular}{|c|c|c|}
\hline Name & Symbol & Unicode String \\
\hline Almost equal & \(\approx\) & \(\backslash \mathrm{U}+2248\) \\
\hline Angle & \(\angle\) & \(\backslash \mathrm{U}+2220\) \\
\hline Boundary line & ® & \(\backslash \mathrm{U}+\mathrm{E} 100\) \\
\hline Centerline & ¢ & \(\backslash \mathrm{U}+2104\) \\
\hline Delta & \(\triangle\) & \(\backslash \mathrm{U}+0394\) \\
\hline Electrical phase & \(\phi\) & \(\backslash \mathrm{U}+0278\) \\
\hline Flow line & \(F\) & \(\backslash \mathrm{U}+\mathrm{E} 101\) \\
\hline Identity & 三 & \(\backslash \mathrm{U}+2261\) \\
\hline Initial length & Q & \U+E200 \\
\hline Monument line & \[
M
\] & \U+E102 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline \multicolumn{3}{l}{ Text symbols and Unicode strings } \\
\hline Name & Symbol & \begin{tabular}{l} 
Unicode \\
String
\end{tabular} \\
\hline Not equal & \(\neq\) & \(\backslash U+2260\) \\
\hline Ohm & \(\Omega\) & \(\backslash U+2126\) \\
\hline Omega & \(\Omega\) & \(\backslash U+03 A 9\) \\
\hline Plate/property line & \(\Omega\) & \(\backslash U+214 \mathrm{~A}\) \\
\hline Subscript 2 & 2 & \(\backslash U+2082\) \\
\hline Squared & 2 & \(\backslash U+00 B 2\) \\
\hline Cubed & 3 & \(\backslash U+00 B 3\) \\
\hline
\end{tabular}

These text symbols are available in the following True Type (TTF) and SHX fonts:
- Simplex*

■ Romans*
■ gdt*
- amgdt*
- Isocp
- Isocp2
- Isocp3

■ Isoct
- Isoct2
- Isoct3
- Isocpeur (TTF only)*
- Isocpeur italic (TTF only)

■ Isocteur (TTF only)
- Isocteur italic (TTF only)
* These fonts also include the Initial Length symbol used for arc length dimensions.

\section*{MULTIPLE}

\section*{Quick Reference}

\section*{See also:}
- Enter Commands on the Command Line

Repeats the next command until canceled.

\section*{Summary}

The command that you enter is repeated until you press Esc. Because MULTIPLE repeats only the command name, any parameters must be specified each time.

MULTIPLE does not repeat commands that display dialog boxes.
NOTE You cannot use MULTIPLE as an argument to the AutoLISP \({ }^{\circledR}\) command function.

\section*{MVIEW}

\section*{Quick Reference}

\footnotetext{
See also:
- Create and Modify Layout Viewports
}

Creates and controls layout viewports.

\section*{Access Methods}

Menu: View \(>\) Viewports \(>1\) Viewport, 2 Viewports, 3 Viewports,

\section*{Summary}

In a layout, you can create as many viewports as you want, but only up to 64 viewports can be active at one time (see MAXACTVP). Objects in model space are visible only in active viewports. Viewports that are not active are blank. Use the On and Off options to control whether viewports are active.

\section*{List of Prompts}

The following prompts are displayed.
Specify corner of viewportor [ON/OFF/Fit/Shadeplot/Lock/Object/Polygonal/Restore/LAyer/2/3/4].

\section*{Corner of Viewport}

Specifies the first corner of a rectangular viewport.

\section*{On}

Makes a selected viewport active. An active viewport displays objects in model space. The MAXACTVP system variable controls the maximum number of viewports that can be active at one time. If your drawing contains more viewports than the number specified in MAXACTVP, you must turn one off to make another one active.

\section*{Off}

Makes a selected viewport inactive. Objects in model space are not displayed in an inactive viewport.

Fit
Creates one viewport that fills the layout to the edges of the printable area. When the paper background and printable area are turned off, the viewport fills the display.

fit

\section*{Shadeplot}

Specifies how viewports in layouts are plotted.
As Displayed Specifies that a viewport is plotted the same way it is displayed.
Wireframe Specifies that a viewport is plotted wireframe regardless of the current display.

Hidden Specifies that a viewport is plotted with hidden lines removed regardless of the current display.

All Visual Styles Specifies that a viewport is plotted using the specified visual style.

All Render Presets Specifies that a viewport is plotted using the specified render preset.

\section*{Lock}

Prevents the zoom scale factor in the selected viewport from being changed when working in model space.

\section*{Object}

Specifies a closed polyline, ellipse, spline, region, or circle to convert into a viewport. The polyline you specify must be closed and contain at least three vertices. It can be self-intersecting, and it can contain an arc as well as line segments.

\section*{Polygonal}

Creates an irregularly shaped viewport using specified points.
Arc Adds arc segments to the polygonal viewport.
For a description of the options for creating arc segments, see the Arc option in PLINE.

Close Closes the boundary. If you press Enter after specifying at least three points, the boundary is closed automatically.

Length Draws a line segment of a specified length at the same angle as the previous segment. If the previous segment is an arc, the new line segment is drawn tangent to that arc segment.

Undo Removes the most recent line or arc segment added to the polygonal viewport.

\section*{Restore}

Restores viewport configurations saved with the VPORTS command.

\section*{- Enter Viewport Configuration Name.}

\section*{■ ?}

First Corner Positions and sizes new viewports using the window selection method; the viewports are fit into the selected area.

Fit Sizes the viewports to fill the drawing area.

\section*{Layer}

Resets layer property overrides for the selected viewport to their global layer properties.
- Reset Viewport Layer Property Overrides Back To Global Properties. Enter Y to remove all layer property overrides.

\section*{■ Select Viewports.}

\section*{2}

Divides the specified area horizontally or vertically into two viewports of equal size.

■ Enter Viewport Arrangement.


2/vertical

First Corner Positions and sizes new viewports using the window selection method; the viewports are fit into the selected area.

Fit Sizes the viewports to fill the drawing area.

\section*{3}

Divides the specified area into three viewports.
The Horizontal and Vertical options split the specified area into thirds. The other options split the area into three viewports: one large viewport and two smaller ones. The Above, Below, Left, and Right options specify where the larger viewport is placed.

- First Corner on page 1250
- Fit on page 1250

4
Divides the specified area horizontally and vertically into four viewports of equal size.


4
- First Corner on page 1250
- Fit on page 1250

\section*{MVSETUP}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Layout Viewports

Sets up the specifications of a drawing.

\section*{Summary}

When you enter mvsetup, the prompts displayed depend on whether you are on the Model tab (model space) or on a layout tab (paper space).

\section*{MVSETUP on the Model Tab}

\section*{Quick Reference}

\section*{See also:}

■ Create and Modify Layout Viewports

The Model tab is most useful for plotting multiple views of a drawing within a single border.

On the Model tab, you set the units type, drawing scale factor, and paper size at the Command prompt using MVSETUP. Using the settings you provide, a rectangular border is drawn at the grid limits.

\section*{List of Prompts}

When the TILEMODE system variable is on (the default), the following prompt are displayed:

Enable paper space? [No/Yes] <Y>: Enter \(\mathbf{n}\) or press Enter
Pressing Enter turns off TILEMODE and proceeds as described in the following section, "MVSETUP on a Layout Tab"

Entering \(\mathbf{n}\) displays the following prompt:
Enter units type [Scientific/Decimal/Engineering/Architectural/Metric]: Enter an option

A list of available units and prompts for the scale factor and paper size are displayed.

Enter the scale factor: Enter a value Enter the paper width: Enter a value Enter the paper height: Enter a value

A bounding box is drawn and the command ends.

\section*{MVSETUP on a Layout Tab}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Layout Viewports

On a layout tab, you can insert one of several predefined title blocks into the drawing and create a set of layout viewports within the title block.

You can specify a global scale as the ratio between the scale of the title block in the layout and the drawing on the Model tab.

To easily specify all layout page settings and prepare your drawing for plotting, you can also use the Page Setup dialog box, which is automatically displayed when you select a layout in a new drawing session.

\section*{List of Prompts}

When the TILEMODE system variable is off, or when you enter \(\boldsymbol{y}\) or press Enter at the Enable Paper Space prompt, the following prompts are displayed:

Enter an option [Align on page 1253/Create on page 1254/Scale viewports on page 1255 /Options on page 1255/Title block on page 1255/Undo on page 1255]: Enter an option or press Enter to end the command

\section*{Align}

Pans the view in a viewport so that it aligns with a base point in another viewport. The current viewport is the viewport that the other point moves to.

Angled Pans the view in a viewport in a specified direction.
The next two prompts specify the distance and angle from the base point to the second point.

Horizontal Pans the view in one viewport until it aligns horizontally with a base point in another viewport. This option should be used only if the two viewports are oriented horizontally. Otherwise, the view might be panned outside the limits of the viewport.

Vertical Alignment Pans the view in one viewport until it aligns vertically with a base point in another viewport. This option should be used only if the two viewports are oriented vertically. Otherwise, the view might be panned outside the limits of the viewport.

Rotate View Rotates the view in a viewport about a base point.

Undo Reverses operations performed in the current MVSETUP session.

\section*{Create}

Creates viewports.
Delete Objects
Deletes existing viewports.

\section*{Create Viewports}

Displays options for creating viewports.
Layout Number to Load Controls creation of viewports.
Entering \(\mathbf{0}\) or pressing Enter creates no viewports.
Entering 1 creates a single viewport whose size is determined by the following prompts.
Entering 2 creates four viewports by dividing a specified area into quadrants. You are prompted for the area to be divided and the distance between the viewports.
The viewing angle for each quadrant is set as shown in the table.
Standard engineering viewports
\begin{tabular}{ll}
\hline Quadrant & View \\
\hline Upper-left & Top (XY plane of UCS) \\
\hline Upper-right & SE isometric view \\
\hline Lower-left & Front (XZ plane of UCS) \\
\hline Lower-right & Right side (YZ plane of UCS)
\end{tabular}

Entering \(\mathbf{3}\) defines a matrix of viewports along the \(X\) and \(Y\) axes. Specifying points at the next two prompts defines the rectangular area of the drawing that contains the viewport configuration. If you have inserted a title block, the Specify First Corner prompt also includes an option for selecting a default area.
If you enter more than one viewport in each direction, the following prompts are displayed:
Specify distance between viewports in X direction \(<0.0\rangle\) : Specify a distance
Specify distance between viewports in Y direction \(<0.0\rangle\) : Specify a distance The array of viewports is inserted into the defined area.

Redisplay Redisplays the list of viewport layout options.

\section*{Undo}

Reverses operations performed in the current MVSETUP session.

\section*{Scale Viewports}

Adjusts the zoom scale factor of the objects displayed in the viewports. The zoom scale factor is a ratio between the scale of the border in paper space and the scale of the drawing objects displayed in the viewports.

Interactively Selects one viewport at a time and displays the following prompts for each:
For example, for an engineering drawing at a scale of 1:4, or quarter scale, enter \(\mathbf{1}\) for paper space units and \(\mathbf{4}\) for model space units.

Uniform Sets the same scale factor for all viewports.
Options
Sets the MVSETUP preferences before you change your drawing.
Layer Specifies a layer on which to insert the title block.
Limits Specifies whether to reset the grid limits to the drawing extents after a title block has been inserted.

Units Specifies whether the sizes and point locations are translated to inch or millimeter paper units.

Xref Specifies whether the title block is inserted or externally referenced.

\section*{Title Block}

Prepares paper space, orients the drawing by setting the origin, and creates a drawing border and a title block.

\section*{Delete Objects}

Deletes objects from paper space.

\section*{Origin}

Relocates the origin point for this sheet.

\section*{Undo}

Reverses operations performed in the current MVSETUP session.

\section*{Insert}

Displays title block options.
Title Block to Load Inserts a border and a title block. Entering \(\mathbf{0}\) or pressing Enter inserts no border. Entering 1 through 13 creates a standard border of the appropriate size. The list includes ANSI and DIN/ISO standard sheets.

Add Adds title block options to the list. Selecting this option prompts you to enter the title block description to be displayed in the list and the name of a drawing to insert.
A line similar to the following example is added after the last entry in the mvsetup.dfs default file:
A/E (24 x 18in), arch-b.dwg, (1.12 0.99 0.00), (18.63 17.02 0.00), in
The last field of the line specifies whether the title block has been created in inches or in millimeters. The units field allows title blocks created in either unit system to be changed by setting the unit type using the Options option. You can also add title blocks that have variable attributes.

Delete Removes entries from the list.
Redisplay Redisplays the list of title block options.

\section*{Undo}

Reverses operations performed in the current MVSETUP session.

\title{
N Commands
}

\section*{14}

NAVBAR

\section*{Quick Reference}

See also:
- Use Navigation Bar

Provides access to navigation and orientation tools from a single interface.

\section*{Access Methods}
\(\$\) Ribbon: View Tab \(>\) Windows Panel \(>\) User Interface drop-down \(>\) Navigation Bar
\(\$\) Menu: View > Display \(>\) Navigation Bar

\section*{Summary}

Provides access to the ViewCube tool, SteeringWheels, 3Dconnexion, and product-specific navigation tools. Use these tools to navigate or reorient your model. You can customize which tools are available on the navigation bar to fit the way you work.

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [ON/OFF] <ON>:
On Displays the navigation bar.

Off Hides the navigation bar.

\section*{3Dconnexion Settings Dialog Box}

\section*{Quick Reference}

See also:
- Use 3Dconnexion 3D mouse to Navigate Views

Controls the settings of 3Dconnexion navigation tools.

\section*{Access Methods}


Butlon
\(\$\) Ribbon: View Tab \(>\) Windows Panel \(>\) User Interface drop-down \(>\)
Navigation Bar \(>\) 3Dconnexion
\(\$\) Menu: View > Display \(>\) Navigation Bar
聯 Command entry: navbar

\section*{Summary}

Controls the settings for 3Dconnexion navigation tools which are available from the navigation bar. Customize the speed and movements of the 3Dconnexion 3D mouse to manipulate the current view. These settings (except Keep Scene Upright) are in synchronization with the 3Dconnexion Control Panel settings of the 3Dconnexion 3D mouse driver.

\section*{List of Options}

The following options are displayed.

\section*{Sensitivity}

Controls the sensitivity of the 3Dconnexion 3D mouse controller cap.

\section*{Keep Scene Upright}

Specifies whether the viewpoint of the model can be turned upside-down while navigating.

Pan/Zoom
Controls pan and zoom navigation. When this option is disabled, you can only rotate the model around the \(\mathrm{X}, \mathrm{Y}\), and Z axes.

\section*{Tilt/Spin/Roll}

Controls the rotation of the model around the \(\mathrm{X}, \mathrm{Y}\), and Z axes. When this option is disabled, you can only pan and zoom.

\section*{Restore Defaults}

Restores the default settings of the 3Dconnexion Settings dialog box.

\section*{NAVSMOTION}

\section*{Quick Reference}

See also:
■ Define and Change Views with ShowMotion
Provides an on-screen display for creating and playing back cinematic camera animations for design review, presentation, and bookmark-style navigation.

\section*{Access Methods}


Bution

Menu: View \(>\) ShowMotion
\(\$\) Toolbar: Navigation Bar \(>\) ShowMotion

\section*{Summary}

ShowMotion is divided into three main parts: control bar, shot sequence thumbnails, and shot thumbnails. Shots are named locations that show specific features or parts of the model. Related shots can be organized into a group called a shot sequence.

\section*{NAVSMOTIONCLOSE}

\section*{Quick Reference}

See also:
■ Define and Change Views with ShowMotion

Closes the ShowMotion interface.

\section*{Access Methods}


Bution
\(\$\) Menu: View > ShowMotion
\(\$\) Toolbar: Navigation Bar \(>\) ShowMotion

Summary
Closes the ShowMotion interface where you can navigate a drawing by selecting a named view.

\section*{NAVSWHEEL}

\section*{Quick Reference}

See also:
■ Navigate with SteeringWheels

Provides access to enhanced navigation tools that are quickly accessible from the cursor.

\section*{Access Methods}


Button

8 Menu: View > SteeringWheels
Toolbar: Navigation Bar > SteeringWheels
Shortcut menu: SteeringWheels

\section*{Summary}

Selecting a tool on the wheel is different from the selection of a typical command. Press on a wedge and drag to use the desired navigation tool. Release the mouse button to return to the wheel and switch navigation tools.

The NAVSWHEEL command displays the wheel as defined by the NAVSWHEELMODE system variable. Right-click over a wheel and click SteeringWheels Settings to access the SteeringWheels Settings dialog box on page 1261 where you control the display of the SteeringWheels.

\section*{SteeringWheels Settings Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Navigate with SteeringWheels

Controls the settings of SteeringWheels.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Navigate panel \(>\) 2D Wheel
\(\$\) Menu: View \(>\) SteeringWheels
\(\$\) Toolbar: Navigation bar \(>\) SteeringWheels
Shortcut menu: SteeringWheels Command entry: navswheel

\section*{List of Options}

The following options are displayed.

\section*{Big Wheels}

Preview Thumbnail Displays a real-time preview of the big wheels based on the current settings.

Wheel Size
Specifies the size of the big SteeringWheels.
(NAVSWHEELSIZEBIG system variable)
Wheel Opacity
Controls the opacity of the big SteeringWheels.
(NAVSWHEELOPACITYBIG system variable)
Mini Wheels
Preview Thumbnail Displays a real-time preview of the mini wheels based on the current settings.

Wheel Size
Specifies the size of the mini SteeringWheels.
(NAVSWHEELSIZEMINI system variable)
Wheel Opacity
Controls the opacity of the mini SteeringWheels.
(NAVSWHEELOPACITYMINI system variable)

\section*{Display}

Show Tool Messages
Controls the display of messages for the active tool.
Show Tooltips
Controls the display of tooltips for the wedges and buttons on a wheel.
Walk Tool
Walk Speed
Sets the movement speed for the Walk tool.

\section*{Zoom Tool}

Enable Single Click Incremental Zoom Applies incremental zoom on a single mouse click.

\section*{Constrain Movement Angle to the Ground Plane}

Controls if you can adjust the current view along the \(Z\) direction when using the Look and Up/Down tool.

\section*{Invert Vertical Axis for Look Tool}

Determines the direction you drag the mouse in to move the source and target points of the current view up or down when using the Look tool.

\section*{Keep Scene Upright}

Specifies whether the viewpoint of the model can be turned upside-down or not when using the Orbit tool.

\section*{Rewind Thumbnail}

Controls when thumbnails are generated for view changes that are made without using a wheel. The generated thumbnails are used for the Rewind tool.
(CAPTURETHUMBNAILS system variable)

\section*{Never}

Specifies that no preview thumbnails are generated when a view change occurs outside the SteeringWheels.

\section*{On Demand When the Bracket is Moved Over an Empty Frame}

Generates preview thumbnails on demand for the Rewind tool when the bracket is positioned over an empty frame.

\section*{Automatically When a View Change Occurs}

Automatically generates preview thumbnails after each view change occurs.

\section*{Restore Defaults}

Applies the default settings for SteeringWheels.

\section*{NAVVCUBE}

\section*{Quick Reference}

See also:
■ Use ViewCube

Indicates the current viewing direction. Dragging or clicking the ViewCube tool rotates the scene.

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Windows panel \(>\) User Interface drop-down \(>\) ViewCube
\(\$\) Menu: View \(>\) Display \(>\) ViewCube \(>\) On
\(\$\) Toolbar: Navigation Bar > ViewCube

\section*{Summary}

Click the ViewCube tool to rotate and fill the window with the entire model or an object selected in the view. The Home button displayed near the ViewCube tool rotates the model to a three-fourths view or a user-defined view while performing a fit-to-view. Use the ViewCube menu to define the Home view for the model.

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [ON/OFF/Settings] <ON> On Displays the ViewCube.

Off Turns off the display of the ViewCube.
Settings Displays the ViewCube Settings dialog box on page 1265, in which you can control the appearance and location of the ViewCube.

\section*{ViewCube Settings Dialog Box}

\section*{Quick Reference}

\author{
See also: \\ - Use ViewCube
}

Controls the display properties of the ViewCube tool.


\section*{Access Methods}


Button

Ribbon: View Tab \(>\) Windows Panel \(>\) User Interface drop-down
- ViewCube

Menu: View > Display \(>\) ViewCube \(>\) Settings
\(\$\) Toolbar: Navigation Bar \(>\) ViewCube
巢 Command entry: navvcube

\section*{List of Options}

The following options are displayed.

\section*{Display}

On-screen Position
Identifies the corner in a viewport where the ViewCube tool is displayed.
(NAVVCUBELOCATION system variable)
ViewCube Size
Specifies the size of the ViewCube tool.
(NAVVCUBESIZE system variable)
Select Automatic to have the size of the ViewCube tool adjust based on the current size of the active viewport, zoom factor of the active layout, or drawing window.

Inactive Opacity
Controls the opacity of the ViewCube tool when inactive.
(NAVVCUBEOPACITY system variable)
Preview Thumbnail Displays a real-time preview of the ViewCube based on the current settings.

Show UCS Menu
Controls the display of the UCS drop-down menu below the ViewCube tool.

\section*{When Dragging on the ViewCube}

Snap to Closest View
Specifies if the current view is adjusted to the closest preset view when changing the view by dragging the ViewCube tool.

\section*{When Clicking on the ViewCube}

Zoom to Extents After View Change
Specifies if the model is forced to fit the current viewport after a view change.
Use View Transitions When Switching Views
Controls the use of smooth view transitions when switching between views.
Orient ViewCube to Current UCS
Controls whether the ViewCube tool reflects the current UCS or WCS.
(NAVVCUBEORIENT system variable)

\section*{Keep Scene Upright}

Specifies whether the viewpoint of the model can be turned upside-down.

\section*{Show Compass Below the ViewCube}

Controls whether the compass is displayed below the ViewCube tool. The North direction indicated on the compass is the value defined by the NORTHDIRECTION system variable.

\section*{Restore Defaults}

Applies the default settings for the ViewCube tool.

\section*{NETLOAD}

\section*{Quick Reference}

See also:
- Loading Managed Applications in AutoCAD

Loads a .NET application.

\section*{Summary}

The Choose .NET Assembly dialog box, a standard file selection dialog box, is displayed.

When FILEDIA is set to 0 (zero), NETLOAD displays the following command prompt:
Assembly file name: Enter a file name and press ENTER.

\section*{Quick Reference}

See also:
■ Overview of Starting a New Drawing

Creates a new drawing.

\section*{Access Methods}


Button

8 Menu: File \(>\) New

\section*{Summary}

The behavior of the NEW command is determined by the STARTUP system variable.
- 1: NEW displays the Create New Drawing dialog box.
- 0: NEW displays the Select Template dialog box (a standard file selection dialog box).

If the FILEDIA system variable is set to 0 instead of 1 , a Command prompt is displayed. If you set FILEDIA to 0 , this prompt is displayed regardless of the Startup setting.

\section*{Create New Drawing Dialog Box}

\section*{Quick Reference}

See also:
■ Overview of Starting a New Drawing

\section*{Access Methods}


Button
8 Menu: File \(>\) New
䱂 Command entry: new

\section*{Summary}

Defines the settings for a new drawing. Start from Scratch creates a new drawing using either imperial or metric default settings. Use a Template creates a new drawing using the settings defined in a drawing template you select. Use a Wizard creates a new drawing using the settings you specify in either the Quick or Advanced wizard. (The first option, Open a Drawing, is not available from the NEW command. To open an existing drawing, use OPEN.)

\section*{List of Options}

The following options are displayed.

\section*{Start from Scratch}

Starts an empty drawing using default imperial or metric settings (MEASUREINIT system variable). You can change the measurement system for a given drawing by using the MEASUREMENT system variable. The Drawing1.dwg that opens when you start the program is a drawing that is started from scratch.


Imperial Starts a new drawing based on the imperial measurement system. The default drawing boundary (the grid limits) is 12 by 9 inches.

Metric Starts a new drawing based on the metric measurement system. The default drawing boundary (the grid limits) is 429 by 297 millimeters.

\section*{Tip}

Displays a description of the selected measurement setting.

\section*{Use a Template}

\section*{[}

Starts a drawing based on a drawing template file. Template drawings store all the settings for a drawing and may also include predefined layers, dimension styles, and views. Template drawings are distinguished from other drawing files by the . \(d w t\) file extension. They are normally kept in the template directory.

Several template drawings are included with this program. You can make additional template drawings by changing the extensions of drawing file names to .dwt. See "Use a Drawing Template File" in the User's Guide.


\section*{Select a Template}

Lists all DWT files that currently exist in the drawing template file location, which is specified in the Options dialog box. Select a file to use as a starting point for your new drawing.

\section*{Preview}

Displays a preview image of the selected file.

\section*{Browse}

Displays the Select a Template File dialog box (a standard file selection dialog box), where you can access template files that are not available in the Select a Template list.

\section*{Template Description}

Displays a description of the selected template. If you create your own template, you can use the Template Options dialog box on page 1686to specify the text that you want to display here. See the SAVEAS command.

\section*{Use a Wizard}

B
Sets up a drawing using a step-by-step guide. You can choose from two wizards: Quick Setup and Advanced Setup


Quick Setup Displays the Quick Setup wizard, in which you can specify the units and area for your new drawing. The Quick Setup wizard also changes settings, such as text height and snap spacing, to an appropriate scale.

Advanced Setup Displays the Advanced Setup wizard, in which you can specify the units, angle, angle measure, angle direction, and area for your new drawing. The Advanced Setup wizard also changes settings, such as text height and snap spacing, to an appropriate scale.

\section*{Wizard Description}

Displays a description of the selected wizard.

\section*{Quick Setup Wizard}

\section*{Quick Reference}

\section*{See also:}
- Overview of Starting a New Drawing

Defines the units and area of your drawing.


\section*{Access Methods}
\(\square\)

\section*{Button}
\(\$\) Menu: File \(>\) New
\(\$\) Toolbar: Standard
䱂 Command entry: new

\section*{List of Options}

The following options are displayed.
The Quick Setup wizard has two pages: Units and Area. As you work in this wizard, choose Back and Next to switch between pages; choose Finish on the last page to close the wizard and create the new drawing with the settings you specified.

\section*{Units}

Indicates the format in which you enter and in which the program displays coordinates and measurements. Several formats are available. Engineering and Architectural have a specific base unit (inches) assigned to them. You can select from other measurement styles that can represent any convenient unit of measurement.

NOTE You control the precision (the number of decimal places displayed in all measurements) by using the Advanced Setup wizard or the UNITS command. The default precision used by Quick Setup is four (0.0000).

Decimal Displays measurements in decimal notation.
Engineering Displays measurements in feet and decimal inches.
Architectural Displays measurements in feet, inches, and fractional inches.
Fractional Displays measurements in mixed-number (integer and fractional) notation.

Scientific Displays measurements in scientific notation (numbers expressed in the form of the product of a decimal number between 0 and 10 and a power of 10 ).

\section*{Area}

Indicates the width and length in full-scale units of what you plan to draw. This setting limits the area of the drawing covered by grid dots when the grid is turned on. When limits checking is turned on with the LIMITS command, this setting also restricts the coordinates you can enter to within the rectangular area. You can change the drawing area and turn limits checking on and off with the LIMITS command.

\section*{Advanced Setup Wizard}

\section*{Quick Reference}

\section*{See also:}
- Specify Units and Unit Formats

Defines the units, angle, angle measure, angle direction, and area of your new drawing.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Advanced Setup & & & & & \(x^{x}\) \\
\hline \multirow[t]{8}{*}{Units
Angle
Angle Measure
Angle Direction
Area} & \multicolumn{5}{|l|}{Select the unit of measurement.} \\
\hline & \multicolumn{5}{|l|}{\multirow[t]{5}{*}{Decimal
Engineering
Architectural
Fractional
Scientific}} \\
\hline & & & & & \\
\hline & \multicolumn{3}{|c|}{Precision:} & & \\
\hline & & 0.0000 & & & \\
\hline & & < Back & Next > & Cancel & \\
\hline
\end{tabular}

\section*{Access Methods}


Button
\(\$\) Menu: File > New
\(\$\) Toolbar: Standard
䱂 Command entry: new

\section*{Summary}

\section*{List of Options}

The following options are displayed.
The Advanced Setup wizard contains five pages: Units, Angle, Angle Measure, Angle Direction, and Area. As you work in this wizard, choose Back and Next to navigate between pages; choose Finish on the last page to close the wizard and create the new drawing with the settings you specified.

You can later change units, angle, angle measure, and angle direction using the UNITS command, and you can change area using the LIMITS command.

\section*{Units}

Indicates the unit format and precision. The unit format is the format in which you enter and in which the program displays coordinates and measurements.

The Units page of the Quick Setup wizard includes the same formats. See Specify Units and Unit Formats for more information.

The unit precision specifies the number of decimal places or the fractional size for displaying linear measurements.

\section*{Angle}

Indicates the format in which you enter angles and in which the program displays angles.

Decimal Degrees Displays partial degrees as decimals.
Deg/Min/Sec Displays partial degrees as minutes and seconds.
Grads Displays angles as grads.
Radians Displays angles as radians.
Surveyor Displays angles in surveyor's units.

\section*{Angle Measure}

Indicates the direction of the 0 angle for the entry of angles. When you enter an angle value, the angle is measured either counter-clockwise or clockwise from the compass direction that you select on this page. You control the counterclockwise/clockwise direction on the Angle Direction page.

East Specifies the compass direction east as the 0 angle.
North Specifies the compass direction north as the 0 angle.
West Specifies the compass direction west as the 0 angle.
South Specifies the compass direction south as the 0 angle.
Other Specifies a direction other than east, north, west, or south. Enter a specific compass angle to treat as the 0 angle.

\section*{Angle Direction}

Indicates the direction from the 0 angle in which you enter and in which the program displays positive angle values: counterclockwise or clockwise.

\section*{Area}

Indicates the width and length in full-scale units of what you plan to draw. This setting limits the area of the drawing covered by grid dots when the grid is turned on. When limits checking is turned on with the LIMITS command, this setting also restricts the coordinates you can enter to within the rectangular area. You can change the drawing area and turn limits checking on and off with the LIMITS command.

\section*{NEW Command Prompt}

\section*{Quick Reference}

See also:
- Overview of Starting a New Drawing

\section*{Summary}

Enter a tilde (~) at the prompt to display the Select Template dialog box (a standard file selection dialog box).

If you turned off the display of the Create New Drawing dialog box, or if FILEDIA is set to 0 , NEW displays the following prompt:

\section*{List of Prompts}

The following prompts are displayed.
Enter template file name or [. (for none)] <current>: Enter a name, enter a period (.), or press ENTER

\section*{NEWSHEETSET}

\section*{Quick Reference}

\section*{See also: \\ - Create a Sheet Set}

Creates a new sheet set data file that manages drawing layouts, file paths, and project data.

\section*{Access Methods}


Butlon
\(\$\) Menu: Application menu \(>\) New \(>\) Sheet Set

\section*{Summary}

The Create Sheet Set wizard contains a series of pages that step you through the process of creating a new sheet set. You can choose to create a new sheet set from existing drawings, or use an existing sheet set as a template on which to base your new sheet set.

\section*{NEWSHOT}

\section*{Quick Reference}

See also:
- Create Preview Animations

Creates a named view with motion that is played back when viewed with ShowMotion.

\section*{Access Methods}

黄
Bto

Menu: View \(>\) Named Views

\section*{Summary}

Displays the New view / Shot Properties dialog box on page 2028 with the Shot Properties tab on page 2033 active.

\section*{NEWVIEW}

\section*{Quick Reference}

See also:
- Save and Restore Views

Creates a named view with no motion.

\section*{Access Methods}

SO
Bution
\$ Menu: View > Named Views

\section*{Summary}

Displays the New view / Shot Properties dialog box on page 2028 with the View Properties tab on page 2031 active.

\section*{O Commands}

\section*{15}

\section*{OBJECTSCALE}

\section*{Quick Reference}

See also:
- Set Annotation Scale

Adds or deletes supported scales for annotative objects.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Annotation Scaling panel \(>\) Add/Delete Scales
\(\%\) Menu: Modify \(>\) Annotative Object Scale \(>\) Add/Delete Scales
Shortcut menu: With an annotative object selected, right-click in the drawing area. Click Annotative Object Scale > Add/Delete Scales.
㗀 Command entry: 'objectscale for transparent use

\section*{Summary}

An annotative object can support several annotation scales for views at different scales. You can add or delete scales from the list of scales assigned to the selected annotative objects.

If you enter objectscale, you are prompted to select annotative objects.
The Annotative Object Scale Dialog Box on page 1282 is displayed.
If you enter -objectscale at the Command prompt, options are displayed on page 1285.

\section*{Annotative Object Scale Dialog Box}

\section*{Quick Reference}

See also:
- Scale Views in Layout Viewports

Adds or deletes supported scales for the selected object.


\section*{Access Methods}


Button
\$ Ribbon: Annotate tab \(>\) Annotation Scaling panel \(>\) Add/Delete Scales
\(\$\) Menu: Modify \(>\) Annotative Object Scale \(>\) Add/Delete Scales
Shortcut menu: With an annotative object selected, right-click in the drawing area. Click Annotative Object Scale > Add/Delete Scales.
並 Command entry: objectscale (or 'objectscale for transparent use)

\section*{List of Options}

The following options are displayed.

\section*{Object Scale List}

Displays the list of scales supported by the selected object.

\section*{Scale in Units (Unlabeled)}

Displays the scale (in units) of the named scale selected in the Object Scale List.

List all scales for selected objects
Specifies that all scales supported by the selected objects are displayed in the Object Scale List.

List scales common to all selected objects only
Specifies that only the supported scales that are common to all selected objects are displayed in the Object Scale List.

Add
Displays the Add Scales to Object Dialog Box on page 1283.
Delete
Removes the selected scale from the scale list.
NOTE The current scale or scales referenced by objects or views cannot be deleted.

\section*{Add Scales to Object Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Scale Views in Layout Viewports
Adds a new scale to the selected object.


\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(\boldsymbol{>}\) Annotation Scaling panel \(>\) Add/Delete Scales
\(\$\) Menu: Modify \(>\) Annotative Object Scale \(>\) Add/Delete Scales
Shortcut menu: With an annotative object selected, right-click in the drawing area. Click Annotative Object Scale > Add/Delete Scales.
业 Command entry: objectscale (or 'objectscale for transparent use)

\section*{List of Options}

The following option is displayed.

\section*{Scale List}

Displays the list of scales that can be added to the selected annotative object. Multiple scales can be selected by holding down the Shift or Ctrl key while selecting the scales.

Use the SCALELISTEDIT on page 1693 command to add custom scales to this list.

\section*{-OBJECTSCALE}

\section*{Quick Reference}

See also:
- Scale Views in Layout Viewports

\section*{List of Prompts}

The following prompts are displayed.
Select annotative objects: Use an object selection method
Enter an option [Add on page 1285/Delete on page 1285/? on page 1285] <Add>:
Enter a or d or press Enter
Add
Adds an annotation scale to the selected objects.
When created, an annotative object supports one annotation scale: the current annotation scale. However, an annotative object can be updated to support additional annotation scales for views at different scales.

■ Enter named scale to add.
■ ? on page 1285
? Displays the list of scales in the scale list.

\section*{Delete}

Removes a specified current annotation scale from the selected objects.
If an annotative object supports a single scale, that scale cannot be deleted from the object.
- Enter named scale to delete.

■ ? on page 1285
? Displays the union of all scales of the selected objects.

\section*{OFFSET}

\section*{Quick Reference}

See also:
■ Offset an Object

Creates concentric circles, parallel lines, and parallel curves.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Offset
\(\$\) Menu: Modify \(>\) Offset
\(\%\) Toolbar: Modify

\section*{Summary}

You can offset an object at a specified distance or through a point. After you offset objects, you can trim and extend them as an efficient method to create drawings containing many parallel lines and curves.


The OFFSET command repeats for convenience. To exit the command, press Enter.

\section*{List of Prompts}

The following prompts are displayed.
Current settings: Erase source \(=\) current Layer \(=\) current OFFSETGAPTYPE \(=\) current
Specify Offset Distance on page 1287or [Through on page 1287/Erase on page 1287/Layer on page 1288] <current>: Specify a distance, enter an option, or press Enter Offset Distance
Creates an object at a specified distance from an existing object.


Exit Exits the OFFSET command.
Multiple Enters the Multiple offset mode, which repeats the offset operation using the current offset distance.

Undo Reverses the previous offset.

\section*{Through}

Creates an object passing through a specified point.
\(\overline{\text { NOTE For best results when you offset a polyline with corners, specify the through }}\) point near the midpoint of a line segment, not near a corner.

- Exit on page 1287

■ Multiple on page 1287
- Undo on page 1287

\section*{Erase}

Erases the source object after it is offset.

\section*{Layer}

Determines whether offset objects are created on the current layer or on the layer of the source object.

\section*{OLELINKS}

\section*{Quick Reference}

See also:
- Link OLE Objects in Drawings

Updates, changes, and cancels existing OLE links.

\section*{Access Methods}

Menu: Edit > OLE Links

\section*{Summary}

The Links dialog box is displayed. If there is no existing OLE link in the drawing, OLE Links is not available on the Edit menu and the Links dialog box is not displayed. To specify a different source application for an embedded object, right-click the embedded object and click Convert on the shortcut menu to display the Convert dialog box.
See "Link and Embed Data (OLE)" in the User's Guide.

\section*{Links Dialog Box}

\section*{Quick Reference}

See also:
■ Link OLE Objects in Drawings

Lists and modifies linked files and objects.


\section*{Access Methods}
\(\$\) Menu: Edit > OLE Links
畨 Command entry: olelinks

\section*{List of Options}

The following options are displayed.
Links Lists information about linked objects. The information listed depends on the type of link. To change information for a linked object, select the object.

Source Displays the path name of the source file and the type of object.
Type Displays the format type.
Update: Automatic Updates the link automatically whenever the source changes.

Update: Manual Prompts you to update a link when you open the document.
Update Now Updates the selected links.
Open Source Opens the source file and highlights the portion linked to the AutoCAD drawing.

Change Source Displays the Change Source dialog box (a standard file dialog box), in which you can specify a different source file. If the source is a selection within a file (instead of the entire file), Item Name displays a string representing the selection.

Break Link Severs the link between the object and the original file. The object in your drawing is changed to WMF (Windows metafile format), which is not affected by future changes to the original file.

\section*{Convert Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Link OLE Objects in Drawings

Specifies a different source application for an embedded object.


\section*{Access Methods}

Shortcut menu: Right-click an embedded object and click OLE \(>\) Convert.

\section*{List of Options}

The following options are displayed,
Current Type Displays the type of object you are converting or activating.
Object Type Displays a list of available object types. If you select AutoCAD Entities, text is converted to a multiline text (mtext) object, a spreadsheet is converted to a table object, and a bitmap file is converted to an image object.

Convert To Converts the embedded object to the type specified under Object Type.

Activate As Opens the embedded object as the type selected under Object Type but returns the object to its current type after editing.

Display as Icon Displays the source application's icon in the drawing.
Double-clicking the icon displays the linked or embedded information.
Change Icon Displays the Change Icon dialog box. This option is available only if you select Display as Icon.

Result Describes the result of the selected options.

\section*{Change Icon Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Link OLE Objects in Drawings

Changes the icon that represents an embedded or linked object in a drawing.


\section*{Access Methods}
\(\$\) Menu: Edit > OLE Links
座 Command entry: olelinks

\section*{List of Options}

The following options are displayed.

\section*{Icon}

Specifies an icon to represent an embedded or linked object.

Current Specifies the currently selected icon.
Default Specifies the default icon for the source application.
From File Specifies an icon from a file (valid types include EXE, DLL, and ICO).

Label
Specifies a caption for the icon. The file type is displayed unless you specify otherwise.

\section*{Browse}

Displays the Browse dialog box (a standard file selection dialog box), in which you can select an icon from a file.

\section*{OLESCALE}

\section*{Quick Reference}

See also:
■ Edit OLE Objects in Drawings

Controls the size, scale, and other properties of a selected OLE object.

\section*{Access Methods}

Shortcut menu: With an OLE object selected, right-click and click Text Size.

\section*{Summary}

The OLE Text Size dialog box is displayed.
NOTE You must select an OLE object before entering the OLESCALE command.

\section*{OLE Text Size Dialog Box}

\section*{Quick Reference}

See also:
■ Edit OLE Objects in Drawings

Maps the point size of one of the fonts in an OLE object to a text height in the drawing.


\section*{Access Methods}

Shortcut menu: With an OLE object selected, right-click and click Text Size.
菐 Command entry: olescale

\section*{Summary}

The OLE object is scaled automatically to accommodate the size of the text.

\section*{List of Options}

The following options are displayed.
OLE Font Displays a list of the fonts used in the OLE object.
OLE Point Size Displays a list of the point sizes available for the selected font.
Text Height Sets a text height for the font at the selected point size.
Reset Restores the OLE object to its size when it was inserted in the drawing.

\section*{Quick Reference}

See also:
- Erase Objects

Restores erased objects.

\section*{Summary}

OOPS restores objects erased by the last ERASE command.


You can also use OOPS after BLOCK or WBLOCK because these commands can erase the selected objects after creating a block. However, you cannot use OOPS to restore parameters, actions, or grips in the Block Editor on page 231.

You cannot use OOPS to restore objects on a layer that has been removed with the PURGE command.

\section*{OPEN}

\section*{Quick Reference}

See also:
■ Open a Drawing

Opens an existing drawing file.

\section*{Access Methods}


Button

\section*{Summary}

The Select File dialog box (a standard file selection dialog box) is displayed.
You can open and load a portion of a drawing, including geometry on a specific view or layer. In the Select File dialog box, click the arrow next to Open and choose Partial Open or Partial Open Read-Only to display the Partial Open dialog box.

When FILEDIA is set to 0 (zero), OPEN displays a Command prompt.
NOTE If the drawing you open contains macros, the AutoCAD Macro Virus Protection dialog box is displayed.

\section*{Standard File Selection Dialog Boxes}

\section*{Quick Reference}

\section*{See also:}

■ Save a Drawing

Several commands display standard file selection dialog boxes, in which you can navigate through local and network drives and through FTP sites and Web folders to select files. While each dialog box may vary slightly, following is a list of the possible options.


\section*{Access Methods}


Button

Menu: Application menu \(>\) Open \(>\) Drawing
Toolbar: Standard
Command entry: open

\section*{List of Options}

The following options are displayed.

\section*{Places List}

Provides quick access to predefined locations. You can reorder the icons in the Places list by dragging them to a new position. To add a new icon to Places, drag a folder from the list. Changes to Places affect all standard file selection dialog boxes.
History Displays shortcuts to the files most recently accessed from the dialog box. It is recommended that you periodically remove unwanted shortcuts
from the History list. Select History, then select the unwanted shortcuts in the Files list and click Delete. To sort the shortcuts by date, click Views > Details, and then click the Modified column in the Files list.

Personal/My Documents Displays the contents of the Personal or My Documents folder for the current user profile.

Favorites Displays the contents of the Favorites folder for the current user profile. This folder consists of shortcuts to files or folders that you added to Favorites using the Tools \(>\) Add to Favorites option in the dialog box.

FTP Displays the FTP sites that are available for browsing in the standard file selection dialog box. To add FTP locations to this list, or to modify an existing FTP location, click Tools \(>\) Add/Modify FTP Locations in the dialog box.

Desktop Displays the contents of your desktop.
Buzzsaw Provides access to Buzzsaw projects. Buzzsaw is a secure Internet-based collaboration and project management service that connects project teams in different locations. To use Buzzsaw, you must already have a project hosting account on Buzzsaw or be given access to a subscriber's Buzzsaw site. If you do not yet have a project hosting account on Buzzsaw, clicking Buzzsaw displays the Select Template dialog box where you can add a Buzzsaw location shortcut. Double-clicking Add a Buzzsaw Location Shortcut opens the Log In To Buzzsaw dialog box where you can register for a free 30-day trial subscription to the service. Also, the first time you access Buzzsaw, your default web browser opens with the project hosting page displayed. If you already have a project hosting account, clicking Buzzsaw shows all of your project sites in the Site list.

\section*{Look In/Save In}

Displays the current folder or drive. Click the arrow to view the hierarchy of the folder path and to navigate up the path tree or to other drives, network connections, FTP locations, or web folders (either Web Folders or My Network Places, depending on the version of your operating system). You can create web folders in Windows Explorer. Consult your system administrator or Windows Explorer Help for more information about web folders. To control whether the last used paths in each particular standard file selection dialog box are stored across sessions, use the REMEMBERFOLDERS system variable.

\section*{Back}

Returns to the previous file location.

\section*{Up One Level}

Navigates one level up in the current path tree.

\section*{Search the Web}

Displays the Browse the Web dialog box, from which you can access and store files on the Internet.

\section*{Delete}

Deletes the selected file or folder.

\section*{Create New Folder}

Creates a new folder in the current path using a name that you specify.

\section*{Views}

Controls the appearance of the Files list or Folders list and, for a Files list, specifies whether to show a preview image when a file is selected.

List Displays a multi-column list.
Details Displays a single-column list with file details.
Thumbnail Displays each file in a thumbnail view.
Preview Displays a bitmap of the selected file. To save a bitmap with a drawing file, use the Save a Thumbnail Preview Image option on the Open and Save tab in the Options dialog box.

\section*{Tools}

Provides tools to help with file selection and other actions available in file selection dialog boxes.

Find Displays the Find dialog box, in which you can search for files using name, location, and date-modified filters.

\section*{Locate}

Uses the AutoCAD search path to locate the file specified in File Name. You set the search path on the Files tab in the Options dialog box.

Add/Modify FTP Locations Displays the Add/Modify FTP Locations dialog box, in which you can specify the FTP sites to make available for browsing. To browse these sites, select FTP from the Places list.

Add Current Folder to Places Adds an icon for the selected folder to the Places list, providing quick access to that folder from all standard file selection dialog boxes. To remove the icon, right-click the icon and choose Remove.

Add to Favorites

Creates a shortcut to the current Look In location, or to the selected file or folder. The shortcut is placed in the Favorites folder for the current user profile, which you can access by choosing Favorites in the Places list.

\section*{Look in Favorites}

Sets the Look In path to your system's Favorites folder.
Options Provides additional options for certain standard file selection dialog boxes.

Security Options Provides options for a digital signature and password that are invoked when you save a file.

\section*{Files List}

Displays the files and folders in the current path and of the selected file type. Use the Views menu in the dialog box to switch between List view and Details view.

\section*{Preview}

Displays a bitmap of the selected file when you choose Views \(>\) Preview in the dialog box. To save a bitmap with a drawing file, use the Save a Thumbnail Preview Image option on the Open and Save tab in the Options dialog box.

\section*{File Name}

Displays the name of the file you select in the Files list. If you select multiple files, File Name displays each selected file within quotation marks. You must use quotation marks when entering multiple file names. You can use wild-card characters to filter files displayed in the Files list.

\section*{Files of Type}

When you are saving files, Files of Type specifies the format in which the file is saved.

\section*{Select Initial View}

Displays the specified model space view when you open the drawing if the drawing contains more than one named view.

\section*{Update Sheet and View Thumbnails Now}

Reflects the current setting of the UPDATETHUMBNAIL system variable. This option temporarily overrides that setting. This option does not change the current setting of UPDATETHUMBNAIL.

\section*{Open/Save}

Depending on the purpose of the specific file selection dialog box, opens or saves the selected file or enters the path of the selected folder in the previous dialog box. Certain file selection dialog boxes may include additional options, accessed by clicking the arrow next to the Open button.

Open Read-Only Opens a file in read-only mode. You cannot save changes to the file using the original file name.

\section*{Partial Open}

Displays the Partial Open dialog box. You can open and load a portion of a drawing, including geometry on a specific view or layer. The PARTIALOPEN command can be used only for drawings in AutoCAD 2004 or later format.

Partial Open Read-Only Opens the specified drawing portions in read-only mode.

\section*{Buzzsaw Location Shortcuts Dialog Box}

\section*{Quick Reference}

See also:
■ Open a Drawing

Creates, renames, modifies, and deletes Buzzsaw location shortcuts.

\section*{Access Methods}


Button


\section*{List of Options}

The following options are displayed.

Buzzsaw Location Shortcuts Lists the location of existing Buzzsaw shortcuts.
New Opens the Log In to Buzzsaw Site dialog box.
Rename Renames the shortcuts you select.
Modify Opens the Log In to Buzzsaw Site dialog box, where you can change settings for the selected shortcut.

Delete Removes the selected shortcut.
Close Closes the selected shortcut location.

\section*{Log In to Buzzsaw Dialog Box}

\section*{Quick Reference}

See also:
- Open a Drawing

Logs in to the Buzzsaw site in order to browse to a specific location
\begin{tabular}{|c|c|c|c|}
\hline A. Log in to Buzzsaw Site & & & \\
\hline \multicolumn{4}{|l|}{Buzzsaw site:} \\
\hline https://projectpoint.buzzsaw.com/WWL & & & - \\
\hline \multicolumn{4}{|l|}{Login} \\
\hline \multicolumn{4}{|l|}{Buzzsaw user name:} \\
\hline UserName & & & \\
\hline \multicolumn{4}{|l|}{Password:} \\
\hline \multicolumn{4}{|l|}{\(\cdots\)} \\
\hline \multicolumn{4}{|l|}{\(\square\) Save login name and password} \\
\hline \multicolumn{4}{|l|}{Warning: Anyone using the sheetset can use saved credentials to access the site.} \\
\hline OK & Cancel & Help & \\
\hline \multicolumn{4}{|l|}{(V) Free Autodesk Buzzsaw trial} \\
\hline
\end{tabular}

\section*{Access Methods}


Button
\(\%\) Menu: Application menu \(>\) Open \(>\) Drawing
\(\$\) Toolbar: Standard
菐 Command entry: open

\section*{List of Options}

The following options are displayed.
Buzzsaw Site Specifies the location of the most recently used Buzzsaw site. Enter any existing address or site name.

Buzzsaw User Name Specifies the user name you use for the Buzzsaw site you want to access.

Password Specifies your password for the Buzzsaw site.
Save Login Name and Password Saves your user and login name so that you don't need to retype it the next time you access the site.

Click here to register for a free trial Registers you for a free trial of the Buzzsaw site.

\section*{Create or Edit a Buzzsaw Location Shortcut Dialog Box}

\section*{Quick Reference}

See also:
■ Open a Drawing

Sets a shortcut to a Buzzsaw location.

\section*{Access Methods}


Button


\section*{Command entry: open}

\section*{Summary}

Provides access to a new Autodesk Buzzsaw location that you specify. You can open drawings or save drawings at this location. If a sheet set is open, the Autodesk Buzzsaw location is associated with your current sheet set. The only Buzzsaw locations displayed are those associated with the current sheet set.

\section*{List of Options}

The following options are displayed.
Buzzsaw Site Displays the name of the current Buzzsaw site.
Select a Buzzsaw Site Project or Folder Lists the most recently opened projects and folders in the site.

Browse Displays the Select a Buzzsaw Project or Folder dialog box, which you can use to find and select a project or folder.

Enter a Name for this Buzzsaw Location Shortcut Specifies the name of the shortcut.

\section*{Select a Buzzsaw Location Dialog Box}

\section*{Quick Reference}

See also:
■ Open a Drawing

Specifies a Buzzsaw project or folder to save with a Buzzsaw location shortcut.

\section*{Access Methods}


Button

\section*{Command entry: open}

\section*{List of Options}

The following option is displayed.
List of Buzzsaw Projects and Folders Specifies Buzzsaw projects or folders that can be linked to the shortcut.

\section*{Find Dialog Box}

\section*{Quick Reference}

See also:
■ Specify Search Paths and File Locations

Searches for files using name, location, and date modified filters.


\section*{Access Methods}


Button

\title{
Menu: Application menu \(>\) Open \(>\) Drawing \\ \(\$\) Toolbar: Standard \\ Command entry: open
}

\section*{Summary}

To access the Find dialog box, in a standard file selection dialog box, click Tools menu > Find.

\section*{List of Options}

The following options are displayed.
Name \& Location Tab
Filters the file search based on file type, file name, and location.

\section*{Named}

Specifies the full or partial file names to include in the search. When entering multiple file names, enclose each name in quotation marks. Use the following wild-card characters to broaden your search:

■ * (Asterisk): Matches any string and can be used anywhere in the search string.

■ ? (Question mark): Matches any single character; for example, ?BC matches ABC, 3BC, and so on.

The type of files to include in the search is determined by Type, so you don't need to enter a file extension in Named. For example, to find house102.dwg, enter house* and set Type to Drawing (*.dwg).

Type
Specifies the type of files to include in the search. Available file types are limited to those supported by the specific standard file selection dialog box.

\section*{Look In}

Specifies the location to search. Enter a location, choose a location from the list, or choose Browse to navigate to a location. When entering multiple locations, enclose each location in quotation marks.

\section*{Browse}

Displays the Browse for Folder dialog box, in which you can navigate to a location for the search.

\section*{Include Subfolders}

Searches all subfolders within the Look In location.
Date Modified Tab
Filters the file search based on the file's creation or modified date.

\section*{All Files}

Searches without a date filter.

\section*{Find All Files Created or Modified}

Restricts the search to files created or modified within a specified time.
- Between: Searches for files created or modified between two dates. Enter the dates or click the arrows to choose dates from a calendar. To navigate the calendar, use the left and right arrows, or click the month and year.
- During the Previous \(N\) Months: Searches for files created or modified within a specified number of months.

■ During the Previous \(N\) Days: Searches for files created or modified within a specified number of days.

\section*{Find Now}

Searches for files using the criteria specified in both tabs.

\section*{Stop}

Ends the search.

\section*{New Search}

Clears the search results and resets the default values for all search options.

\section*{OK}

When one or more files are selected in the search results, closes the Find dialog box and enters the selected file names in the standard file selection dialog box.

\section*{Search Results}

Lists all files found by the search. To pass a file to the standard file selection dialog box, select a file and choose OK. When used with a standard file selection dialog box that allows multiple file selection, you can pass multiple files from the Search Results.

\section*{Add/Modify FTP Locations Dialog Box}

\section*{Quick Reference}

See also:
■ Open a Drawing

Defines the FTP sites that you can browse within standard file selection dialog boxes.


\section*{Access Methods}


Button

\section*{Summary}

To browse the sites that you add, select FTP from the Places list in the standard file selection dialog box.

\section*{List of Options}

The following options are displayed.

\section*{Name of FTP Site}

Specifies the site name for the FTP location (for example, ftp.autodesk.com).

\section*{Log On As}

Specifies whether to log on to the FTP site anonymously or with a specific user name.

\section*{Anonymous}

Logs you on to the FTP site as an anonymous user. If the FTP site does not allow anonymous logons, select User and enter a valid user name.

User
Logs you on to the FTP site using the specified user name.
Password
Specifies the password to use to \(\log\) on to the FTP site.

\section*{Add}

Adds a new FTP site to the list of FTP locations available from the standard file selection dialog box.

Modify
Modifies the selected FTP site to use the specified site name, logon name, and password.

\section*{Remove}

Removes the selected FTP site from the list of FTP locations available from the standard file selection dialog box

\section*{FTP Sites}

Lists the FTP sites that are available from the Places list in all standard file selection dialog boxes.

\section*{URL}

Displays the URL for the selected FTP site.

\section*{Partial Open Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Open Part of a Large Drawing (Partial Load)

Displays the drawing views and layers available for specifying what geometry to load into the selected drawing.


\section*{Access Methods}


Button
\(\$\) Menu: Application menu \(>\) Open
\(\$\) Toolbar: Standard
並 Command entry: open

\section*{Summary}

When working with large drawing files, you can select the minimal amount of geometry you need to load when opening a drawing.

When a drawing is partially open, all named objects, as well as the specified geometry, are loaded into the file. Named objects include blocks, dimension styles, layers, layouts, linetypes, text styles, UCSs, views, and viewport configurations.

\section*{List of Options}

The following options are displayed.

\section*{View Geometry to Load}

Displays the selected view and available views in the drawing. Only model space views are available for loading. You can load paper space geometry by loading the layer that the paper space geometry is drawn on.

\section*{View Name}

Displays the currently selected view. Geometry that is common to both the selected view and the layers is loaded into the drawing.

\section*{View List}

Displays all the model space views available in the selected drawing file. When a view is selected, the program loads only the geometry in the selected view. The default view is Extents. Geometry that is common to both the selected view and the layers is loaded into the drawing. You can load geometry from only one view.

You can use the PARTIALOAD command to load additional geometry into a partially open drawing.
NOTE When a drawing is partially open, named objects are still loaded into the file along with the specified geometry from the selected view. All views are still available in the partially open drawing, but only geometry from the view specified to load is displayed in the drawing.

\section*{Layer Geometry to Load}

Displays all the layers available in the selected drawing file. The geometry on selected layers is loaded into the drawing, including both model space and paper space geometry. The default loads no layer geometry into the drawing, but you can load geometry from one or more layers. If you specify to load no layer geometry into the drawing, no geometry from the selected view is loaded either because no layer geometry in that view or in the entire drawing is
loaded. Xref-dependent layers are displayed in the Layer Geometry to Load list only if the selected drawing was last saved with theVISRETAIN system variable set to 1 . Any layers created in the xref since the xref was loaded into the selected drawing are not displayed in the Layer Geometry to Load list.
You can use the PARTIALOAD command to load additional geometry into a partially open drawing.

NOTE When a drawing is partially open, named objects are still loaded into the file along with the specified geometry from the selected layers. All layers are still available in the partially open drawing, but only geometry from the layers specified to load appears in the drawing.

Layer Name Displays the layer names in the selected drawing.
Load Geometry Loads geometry from the layer when the drawing is opened.

\section*{Load All}

Loads geometry from all layers when the drawing is opened. You can right-click and use the shortcut menu to load geometry from all layers into the drawing.

\section*{Clear All}

Loads no geometry from any layer when the drawing is opened. No geometry at all is loaded, including geometry specified to load from a view. You can right-click and use the shortcut menu to load no geometry into the drawing.

\section*{Index Status}

Displays whether the selected drawing file contains a spatial or layer index. INDEXCTL controls whether layer and spatial indexes are saved with the drawing file.

\section*{Use Spatial Index}

Controls whether a spatial index is used when partially opening a drawing. A spatial index can be used to locate what portion of the drawing is read; this minimizes the time required to open the drawing.

\section*{Spatial Index}

Displays whether the selected drawing file contains an index that organizes objects based on their location in space.

\section*{Layer Index}

Displays whether the selected drawing file contains a list of the objects that are on each layer. A layer index can be used to locate what portion of the drawing is read; this minimizes the time required to open the drawing.

\section*{Unload All Xrefs on Open}

Unloads all external references when opening the drawing. Selecting this option enhances the opening process. If you partially open a drawing that contains a bound xref, only the portion of the xref that is loaded (defined by the selected view) is bound to the partially open drawing.
Open
Opens the drawing file, loading only combined geometry from the selected view and layers.

\section*{OPEN Command Prompt}

\section*{Quick Reference}

\section*{See also:}

■ Open a Drawing

\section*{Access Methods}


Button

\section*{8 Menu: Application menu \(>\) Open \(>\) Drawing \\ \(\$\) Toolbar: Standard \\ 菐 Command entry: open}

WhenFILEDIA is set to 0 (zero), OPEN displays the following Command prompt.

Enter name of drawing to open:
Enter ~ (tilde) at the prompt to ignore FILEDIA and display the Select File dialog box, a standard file selection dialog box.

\section*{OPENDWFMARKUP}

\section*{Quick Reference}

See also:
- Respond to Markups

Opens a DWF or DWFx file that contains markups.

\section*{Access Methods}
\(\$\) Menu: File \(>\) Load Markup Set

\section*{Summary}

Displays the Open Markup DWF dialog box (a standard file selection dialog box), in which you can select a DWF or DWFx file that contains markups to load into the Markup Set Manager.

NOTE When opening a digitally signed DWFx file, a message box is displayed that warns you about saving a new version of the file will invalidate the attached digital signature.

\section*{OPENSHEETSET}

\section*{Quick Reference}

See also:
■ Create and Manage a Sheet Set

Opens a selected sheet set.

\section*{Access Methods}


Button

Menu: File \(>\) Open Sheet Set

\section*{Summary}

The Open Sheet Set dialog box (a standard file selection dialog box) is displayed.

In this dialog box, you can select a sheet set data (DST) file to load sheet set information into the Sheet Set Manager.

\section*{OPTIONS}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Customizes the program settings.

\section*{Access Methods}


Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and choose Options.

\section*{Summary}

The Options dialog box is displayed.

\section*{Options Dialog Box}

\section*{Quick Reference}

See also:
■ Set Up the Drawing Area

Customizes the program settings.

\section*{Access Methods}

8 Menu: Application menu \(>\) Options
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and choose Options.
並 Command entry: options

\section*{List of Options}

The following options are displayed.

\section*{Current Profile}

Displays the name of the current profile above the tabs. To set the current profile, create a new profile, or edit an existing profile, use the Profiles tab. (CPROFILE system variable)

\section*{Drawing Icon}

Signifies that an option is saved with the drawing. An option saved with the drawing affects only the current drawing. An option saved in the registry (and not displayed with a drawing file icon) affects all drawings in a work session. Options that are saved in the registry are saved in the current profile.

\section*{Current Drawing}

Displays the name of the current drawing above the tabs. (DWGNAME system variable)

\section*{List of Tabs}

The Options dialog box includes the following tabs:
■ Files on page 1316
■ Display on page 1321
- Open and Save on page 1326
- Plot and Publish on page 1330

■ System on page 1335
- User Preferences on page 1339

■ Drafting on page 1342
- 3D Modeling on page 1346
- Selection on page 1348

■ Profiles on page 1354

\section*{Files Tab (Options Dialog Box)}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Lists the folders in which the program searches for support, driver, menu, and other files. Also lists optional, user-defined settings such as which dictionary to use for checking spelling.

\section*{List of Options}

The following options are displayed.

\section*{Browse}

Displays the Browse for Folder or Select a File dialog box (a standard file selection dialog box), in which you can specify a new location for the folder or file selected in the list.

\section*{Support File Search Path}

Specifies the folders in which the program should look for text fonts, customization files, plug-ins, drawings to insert, linetypes, and hatch patterns that are not in the current folder.

\section*{Working Support File Search Path}

Displays the active directories that the program searches for support files specific to your system. The list is read-only and displays valid paths from the Support Files Search Path that exist within the current directory structure and network mappings.

\section*{Device Driver File Search Path}

Specifies the search path for device drivers for the video display, pointing devices, printers, and plotters.

WARNING Do NOT remove DRV path and always add paths as secondary paths.

\section*{Project Files Search Path}

Specifies a project name for the drawing. The project name corresponds to a search path for external reference (xref) files associated with the project. You can create any number of project names with associated folders, but each drawing can have only one project name. (PROJECTNAME system variable)

\section*{Customization Files}

Specifies the names and locations of various types of files.
Main Customization File Specifies the default location of the main customization file (acad.cuix).

Enterprise Customization File Specifies the location of an enterprise customization file.

Custom Icon Location Specifies the location for custom icons used in customization files.

\section*{Help and Miscellaneous File Names}

Specifies the names and locations of various types of files.
Help File Specifies the location of the local Help file.
(HELPPREFIX on page 2346 system variable)
Default Internet Location Specifies the default Internet location used by both the BROWSER command and the Browse the Web button on the Web toolbar.

Configuration File Specifies the location of the configuration file used to store hardware device driver information. This value is read-only and can be changed only by using the /c command line switch. See "Customize Startup" in the User's Guide.

\section*{Text Editor, Dictionary, and Font File Names}

Specifies a number of optional settings.
Text Editor Application (MTEXTED system variable)
Main Dictionary Displays the three letter keyword for the current main spelling dictionary.
(DCTMAIN system variable)
Custom Dictionary File Displays the path and file name of the current custom spelling dictionary.
(DCTCUST system variable)
Alternate Font File Specifies the alternate font to be used when the specified font file cannot be located.
(FONTALT system variable)
If you click Browse, the Alternate Font dialog box is displayed, from which you can choose an available font.

Font Mapping File Specifies the font mapping file to be used.
(FONTMAP system variable)

\section*{Print File, Spooler, and Prolog Section Names}

Specifies settings related to plotting.
Plot File Name for Legacy Plotting Scripts Specifies a default name for the temporary plot files used with plotting scripts created with AutoCAD Release 14 or earlier. The default name is the drawing name plus the .plt file extension. The default name used with AutoCAD 2000 and later drawings is the drawing name-layout name plus the .plt file name extension. Some plotting device drivers, however, use a different plot file extension.

Print Spool Executable Specifies the application to use for print spooling. You can enter the executable file name as well as any command line arguments you want to use. For example, you can enter myspool.bat \%s to spool plot files to myspool.bat and have a unique plot file name automatically generated. See "Use AutoSpool" in the Driver and Peripheral Guide.

PostScript Prolog Section Name Present for legacy reasons only. Autodesk has dropped active support of PostScript and the PSIN, PSOUT, and PSPROLOG commands.

\section*{Printer Support File Path}

Specifies search path settings for printer support files.
Print Spooler File Location Specifies the path for print spool files.
Printer Configuration Search Path Specifies the path for printer configuration files (PC3 files).

Printer Description File Search Path Specifies the path for files with a .pmp file extension, or printer description files.

Plot Style Table Search Path Specifies the path for files with an .stb or .ctb extension, or plot style table files (both named plot style tables and color-dependent plot style tables).

\section*{Automatic Save File Location}

Specifies the path for the file created when you select Automatic Save on the Open and Save tab.
(SAVEFILEPATH system variable)

\section*{Color Book Locations}

Specifies the path for color book files that can be used when specifying colors in the Select Color dialog box. You can define multiple folders for each path specified. This option is saved with the user profile.

\section*{Data Sources Location}

Specifies the path for database source files. Changes to this setting do not take effect until you close and restart the program.

\section*{Template Settings}

Specifies the drawing template settings.
Drawing Template File Location Specifies the path to locate drawing template files used by the Start Up wizard and New dialog box.

Sheet Set Template File Location Specifies the path to locate sheet set template files used by the Create Sheet Set wizard.

Default Template File Name for QNEW Specifies the drawing template file used by the QNEW command.

Default Template for Sheet Creation and Page Setup Overrides Specifies the default template file that is used for creating new sheets and to store page setup overrides that can be applied to Publish operations from the Sheet Set Manager.

\section*{Tool Palettes File Locations}

Specifies the path for tool palette support files.

\section*{Authoring Palette File Locations}

Specifies the path for the Block Authoring Palettes support files. Block Authoring Palettes are used in the Block Editor and provide tools for creating dynamic blocks.

\section*{Log File Location}

Specifies the path for the log file created when you select Maintain a Log File on the Open and Save tab. (LOGFILEPATH system variable)

\section*{Action Recorder Settings}

Specifies the locations used to store recorded action macros or where additional action macros are located for playback.
Actions Recording File Location Specifies the path used to store new action macros.
(ACTRECPATH system variable)
Additional Actions Reading File Locations Specifies the additional paths to use when locating available action macros for playback.
(ACTPATH system variable)

\section*{Plot and Publish Log File Location}

Specifies the path for the log file that is created if you select the Automatically Save Plot and Publish Log option on the Plot and Publish tab.

\section*{Temporary Drawing File Location}

Specifies the location to store temporary files. This program creates temporary files and then deletes them when you exit the program. If you plan to run the program from a write-protected folder (for example, if you are working on a network or opening files from a CD), specify an alternate location for your temporary files. The folder you specify must not be write-protected.

Windows has a character limit of 255 for the combined file name and path length of temporary files. You can modify this limit from the Options dialog box, Files tab, under Temporary Drawing File Location.

The TEMPPREFIX system variable (read-only) stores the current location of temporary drawing files.

\section*{Temporary External Reference File Location}

Creates a path for storing temporary copies of demand-loaded xref files.
(XLOADPATH system variable)

\section*{Texture Maps Search Path}

Specifies the folders to search for rendering texture maps.

\section*{Web File Search Path}

Specifies the folders to search for photometric web files.

\section*{i-drop Associated File Location}

Specifies the location of data files associated with i-drop content. When the location is not specified, the location of the current drawing file is used.

\section*{DGN Mapping Setups Location}

Specifies the location of the dgnsetups.ini file where DGN mapping setups are stored. This location must exist and have read/write permissions for DGN commands to function normally.

\section*{Browse}

Displays the Browse for Folder or Select a File dialog box, depending on what you selected in the List of Folders and Files.

\section*{Add}

Adds a search path for the selected folder.

\section*{Remove}

Removes the selected search path or file.

\section*{Move Up}

Moves the selected search path above the preceding search path.

\section*{Move Down}

Moves the selected search path below the following search path.

\section*{Set Current}

Makes the selected project or spelling dictionary current.

\section*{Display Tab (Options Dialog Box)}

\section*{Quick Reference}

See also:
■ Set Up the Drawing Area

Customizes the display.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{A Options} & \(\times\) \\
\hline \multicolumn{2}{|l|}{Current profile:} & \multicolumn{3}{|l|}{<<Unnamed Profie>>} & \multicolumn{2}{|l|}{17 Current drawing:} & \multicolumn{3}{|l|}{Drawing 1.dwg} & \\
\hline Files & Display & Open and Save & Plot and Publish & System & User Preferences & Dratting & 3D Modeling & Selection & Profil & \\
\hline \multicolumn{5}{|r|}{\begin{tabular}{l}
Window Elements \\
Color scheme: \\
Dark
Display scroll bars in drawing window
Display Drawing status bar
Display screen menu
Use large buttons for Toolbars
Show IoolTips
Show shortcut keys in Tool Tips
Show extended Tool Tips 2 Number of seconds to delay
Show rollover Tool Tips
\end{tabular}} & \begin{tabular}{l}
Display resolutio \\
1000 \\
用 \\
8 \\
8 \\
0.5 \\
4 \\
Display perform
Pan a \\
Fade control \\
Xref display \\
70 \\
In-place edit and 50
\end{tabular} & \begin{tabular}{l}
Arc an Segme Render Contou \\
nce \\
d zoom w \\
It laster in olid fill \\
ext bound ue silhoue
\(\square\)
\end{tabular} & \begin{tabular}{l}
circle smooth s in a polyline d object smod lines per suffa \\
raster \& OLE ge frame only \\
y frame only es for solids a \\
e representatio
\end{tabular} & ess curve thness ce
\(\square\)
\(\square\) & & \\
\hline \multicolumn{11}{|l|}{} \\
\hline
\end{tabular}

\section*{List of Options}

The following options are displayed.

\section*{Window Elements}

Controls display settings specific to the drawing environment.

\section*{Color scheme}

Controls color settings in a dark or light color for elements such as the status bar, title bar, ribbon bar, and the application menu frame.

\section*{Display Scroll Bars in Drawing Window}

Displays scroll bars at the bottom and right sides of the drawing area.

\section*{Display Drawing Status Bar}

Displays the drawing status bar, which displays several tools for scaling annotations.

When the drawing status bar is turned on it displays at the bottom of the drawing area. When the drawing status bar is turned off, the tools found on the drawing status bar are moved to the application status bar.

\section*{Display Screen Menu}

Displays the screen menu on the right side of the drawing area. The screen menu font is controlled by the Windows system font settings. If you use the screen menu, you should set the Windows system font setting to a font and font size that fits the screen menu size restrictions.
(SCREENMENU on page 2502 system variable)

\section*{Use Large Buttons for Toolbars}

Displays buttons in a larger format at 32 by 32 pixels.
Show Tooltips
Controls the display of tooltips on the ribbon, toolbars, and other user interface elements.
(TOOLTIPS on page 2559 system variable)

\section*{Show shortcut keys in Tooltips}

Displays shortcut keys in the tooltip (Alt + Key) (Ctrl + Key).

\section*{Show extended Tooltips}

Controls the display of extended tooltips.

\section*{Number of seconds to delay}

Sets the delay time between the display of basic tooltips and extended tooltips.

\section*{Show rollover Tooltips}

Controls the display of rollover tooltips in the application.
(ROLLOVERTIPS on page 2497 system variable)

\section*{Colors}

Displays the Color Options dialog box. Use this dialog box to specify colors of elements in the main application window.

\section*{Fonts}

Displays the Command Line Window Font dialog box. Use this dialog box to specify the font for the command window text.

\section*{Layout Elements}

Controls options for existing and new layouts. A layout is a paper space environment in which you can set up drawings for plotting.

Display Layout and Model Tabs

Displays the layout and Model tabs at the bottom of the drawing area. When this option is cleared, the tabs are replaced by buttons on the status bar.

\section*{Display Printable Area}

Displays printable area in a layout. The printable area is represented by the area within the dashed line and is determined by the selected output device. Objects drawn outside of the printable area are clipped or omitted when the drawing is plotted.

\section*{Display Paper Background}

Displays a representation of the specified paper size in a layout. The paper size and plot scale determine the size of the paper background.

\section*{Display Paper Shadow}

Displays shadow around the paper background in layout. This option is unavailable if the Display Paper Background option is cleared.

\section*{Show Page Setup Manager for New Layouts}

Displays the Page Setup Manager the first time you click a layout tab. Use this dialog box to set options related to paper and plot settings.

\section*{Create Viewport in New Layouts}

Creates a single viewport automatically when you create a new layout.

\section*{Crosshair Size}
(CURSORSIZE system variable)

\section*{Display Resolution}

Controls the quality of the display of objects. If you set high values to improve display quality, the impact on performance is significant.

Arc and Circle Smoothness
Sets the resolution for objects in the current viewport.
(VIEWRES command)
Segments in a Polyline Curve
Sets the number of line segments to be generated for each spline-fit polyline generated by the Spline option of the PEDIT command.
(SPLINESEGS system variable)

\section*{Rendered Object Smoothness}
(FACETRES system variable)

\section*{Contour Lines per Surface}

Specifies the number of contour lines per surface on objects.
(ISOLINES system variable)

\section*{Display Performance}

Controls display settings that affect performance.

\section*{Pan and Zoom with Raster and OLE}
(RTDISPLAY system variable)
If dragging display is turned on and you select Pan and Zoom with Raster and OLE, a copy of the object moves with the cursor as you reposition the original. (DRAGMODE system variable)

\section*{Highlight Raster Image Frame Only}

Controls whether the entire raster image or only the raster image frame is highlighted.
(IMAGEHLT system variable)
Apply Solid Fill
Specifies whether hatches and fills, 2D solids, and wide polylines are filled in.
(FILLMODE system variable)
Show Text Boundary Frame Only
Controls how text is displayed.
(QTEXTMODE system variable)
Draw True Silhouettes for Solids and Surfaces
Controls display of silhouette edges of 3D solid objects in a 2D Wireframe or 3D Wireframe visual style.
(DISPSILH system variable)

\section*{Fade Control}

Controls the fading intensity value for DWG xrefs and reference editing.

\section*{Xref Display}

Controls the dimming for all DWG xref objects.
(XDWGFADECTL on page 2626 system variable)
This option only affects the display on the screen. It does not affect plotting or plot preview.

In-place Edit and Annotative Representations

Specifies the fading intensity value for objects during in-place reference editing. Objects that are not being edited are displayed at a lesser intensity. (XFADECTL on page 2627 system variable)

With in-place reference editing, you can edit a block reference or external reference from within the current drawing. The valid range is 0 through 90 percent.

\section*{Open and Save Tab (Options Dialog Box)}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Controls options that relate to opening and saving files.


\section*{List of Options}

The following options are displayed.
File Save
Controls settings related to saving a file.

\section*{Save As}

Displays the valid file formats used when saving a file with SAVE, SAVEAS, QSAVE, SHAREWITHSEEK on page 1735 and WBLOCK. The file format selected for this option is the default format that all drawings are saved as when you use SAVE, SAVEAS, QSAVE, and WBLOCK.

NOTE AutoCAD 2004 is the drawing file format used by the AutoCAD 2004, AutoCAD 2005, and AutoCAD 2006 releases. AutoCAD 2007 is the file format used by AutoCAD 2007, AutoCAD 2008, and AutoCAD 2009 releases.

Maintain Visual Fidelity for Annotative Objects
Controls whether the drawing is saved with visual fidelity.
Click the information icon to learn more about saving drawings with visual fidelity. (SAVEFIDELITY on page 2499 system variable)

Annotative objects may have multiple. Annotative objects are decomposed and scale representations are saved to separate layers, which are named based on their original layer and appended with a number.
NOTE Enabling Maintain Visual Fidelity for Annotative Objects only impacts drawings saved to a legacy drawing file format (AutoCAD 2007 and earlier).

Maintain Drawing Size Compatibility
Controls large object size limit support when you open and save drawings.
Click the information icon to learn more about object size limits and how they affect opening and saving a drawing. (LARGEOBJECTSUPPORT on page 2377 system variable)

\section*{Thumbnail Preview Settings}

Displays the Thumbnail Preview Settings dialog box, which controls whether thumbnail previews are updated when the drawing is saved.

\section*{Incremental Save Percentage}

Sets the percentage of potentially wasted space in a drawing file. Full saves eliminate wasted space. Incremental saves are faster but they increase the size of your drawing. If you set Incremental Save Percentage to 0, every save is a full save. For optimum performance, set the value to 50 . If hard disk space

Options Dialog Box | 1327
becomes an issue, set the value to 25 . If you set the value to 20 or less, performance of the SAVE and SAVEAS commands slows significantly.
(ISAVEPERCENT system variable)

\section*{File Safety Precautions}

Assists in avoiding data loss and in detecting errors.

\section*{Automatic Save}

Saves your drawing automatically at the intervals you specify. You can specify the location of all Autosave files by using the SAVEFILEPATH system variable.SAVEFILE (read-only) stores the name of the Autosave file.

NOTE Automatic save is disabled when the Block Editor on page 231 is open.
Minutes Between Saves: When Automatic Save is on, specifies how often the drawing is saved.
(SAVETIME system variable)
Create Backup Copy with Each Save
Improves the speed of incremental saves, especially for large drawings.
(ISAVEBAK system variable)
For information about using backup files, see Create and Restore Backup Files in the User's Guide.

\section*{Full-Time CRC Validation}

Specifies whether a cyclic redundancy check (CRC) should be performed each time an object is read into the drawing. CRC is an error-checking mechanism. If your drawings are being corrupted and you suspect a hardware problem or a software error, turn this option on.

\section*{Maintain a Log File}

Writes the contents of the text window to a log file. To specify the location and name of the log file, use the Files tab in the Options dialog box. You can also set the log file location by using the LOGFILEMODE system variable. The LOGFILENAME system variable (read-only) stores the log file name of the current drawing.

\section*{File Extension for Temporary Files}

Specifies a unique extension for temporary save files. The default extension is.\(a c \$\).

\section*{Security Options}

Provides options for a digital signature and password that are invoked when you save a file.

\section*{Display Digital Signature Information}

Presents digital signature information when a file with a valid digital signature is opened. (SIGWARN on page 2513 system variable)

\section*{File Open}

Controls settings that relate to recently used files and open files.
Number of Recently Used Files
Controls the number of recently used files that are listed in the File menu for quick access. Valid values are 0 to 9 .

\section*{Display Full Path In Title}

Displays the full path of the active drawing in the drawing's title bar, or in the application window title bar if the drawing is maximized.

\section*{Application Menu}

Number of Recently Used Files
Controls the number of recently used files listed in the application menu's Recent Documents quick menu. Valid values are 0 to 50.

\section*{External References (Xrefs)}

Controls the settings that relate to editing and loading external references.

\section*{Demand Load Xrefs}

Turns xref demand-loading on and off, and controls whether it opens the referenced drawing or a copy.

\section*{(XLOADCTL system variable)}
- Disabled: Turns off demand loading.
- Enabled: Turns on demand loading and improves performance. Select the Enabled setting to enhance the loading process when working with clipped xrefs that contain a spatial or layer index. When this option is selected, other users cannot edit the file while it is being referenced.
- Enabled with Copy: Turns on demand loading but uses a copy of the referenced drawing. Other users can edit the original drawing.

Retain Changes to Xref Layers
Controls the properties of xref-dependent layers.
(VISRETAIN system variable)

\section*{Allow Other Users to Refedit Current Drawing}

Controls whether the current drawing can be edited in-place when being referenced by another drawing.
(XEDIT system variable)

\section*{ObjectARX Applications}

Controls settings that relate to AutoCAD Runtime Extension applications and proxy graphics.

Demand Load ObjectARX Apps
Specifies if and when to demand-load certain applications.
(DEMANDLOAD system variable)
- Disable Load on Demand: Turns off demand-loading.

■ Custom Object Detect: Demand-loads the source application when you open a drawing that contains custom objects. This setting does not demand-load the application when you invoke one of the application's commands.
- Command Invoke: Demand-loads the source application when you invoke one of the application's commands. This setting does not demand-load the application when you open a drawing that contains custom objects.
- Object Detect and Command Invoke: Demand-loads the source application when you open a drawing that contains custom objects or when you invoke one of the application's commands.

Proxy Images for Custom Objects
Controls the display of proxy objects in a drawing.
(PROXYSHOW system variable)
Show Proxy Information Dialog Box
Displays a notice when a proxy is created.
(PROXYNOTICE system variable)

\section*{Plot and Publish Tab (Options Dialog Box)}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Controls options related to plotting and publishing.


\section*{List of Options}

The following options are displayed.

\section*{Default Plot Settings For New Drawings}

Controls default plotting settings for new drawings or drawings created in AutoCAD Release 14 or earlier that have never been saved in AutoCAD 2000 or later format.

\section*{Use As Default Output Device}

Sets the default output device for new drawings and for drawings created in AutoCAD Release 14 or earlier that have never been saved in AutoCAD 2000 or later format. The list displays any plotter configuration files (PC3) found in the plotter configuration search path and any system printers that are configured in the system.

\section*{Use Last Successful Plot Settings}

Sets the plotting settings to match those of the last successful plot.

\section*{Add or Configure Plotters}

Displays the Plotter Manager (a Windows system window). You can add or configure a plotter with the Plotter Manager.

\section*{Plot To File}

Specifies the default location for plot to file operations.

\section*{Background Processing Options}

Controls whether background plotting is turned on or off for plotting and publishing.
You can use background plotting to start a job you are plotting or publishing and immediately return to work on your drawing while your job is plotted or published as you work. (BACKGROUNDPLOT system variable)
Background plot and publish details are available through the Plot and Publish status bar icon shortcut menu.
You can plot or publish jobs in the background even if the program is not running by entering acad/pl <DSD file name> at the Windows Command Prompt.

\section*{Enable Background Plotting When}

Plotting: Specifies that plot jobs are processed in the background. This setting is also affected by the BACKGROUNDPLOT system variable.
Publishing: Specifies that published jobs are processed in the background. This setting is also affected by the BACKGROUNDPLOT system variable.

NOTE When -PLOT, PLOT, -PUBLISH, and PUBLISH are used in a script (SCR file), the BACKGROUNDPLOT system variable value is ignored, and -PLOT, PLOT, -PUBLISH, and PUBLISH are processed in the foreground.

\section*{Plot and Publish Log File}

Controls options for saving a plot and publish log file as a comma-separated value (CSV) file that can be viewed in a spreadsheet program. To view or change the location of the log file, see the Files tab in the Options dialog box on page 1316 .
This log file contains information about plot and publish jobs such as:
- Job ID
- Job name
- Sheet set name
- Category name
- Date and time started and completed

■ Sheet name
- Full file path
- Selected layout name
- Page setup name

■ Named page setup path
- Device name
- Paper size name
- Final status

\section*{Automatically Save Plot and Publish Log}

Specifies that a log file that contains information about all plot and publish jobs is automatically saved.

\section*{Save One Continuous Plot Log}

Specifies that a single log file that contains information about all plot and publish jobs is automatically saved.

Save One Log File Per Plot
Specifies that a separate \(\log\) file is created for each plot and publish job.

\section*{Auto Publish}

Specifies whether drawings are published automatically to DWF, DWFx, or PDF files. You can also control options for automatic publishing.

\section*{Automatic Publish}

When this options is selected, drawings are published to DWF, DWFx, or PDF files automatically when you save or close a drawing file. (AUTOMATICPUB on page 2161, AUTODWFPUBLISH system variables)

\section*{Automatic Publish Settings}

Displays the Auto Publish Settings palette on page 186 where you can customize the settings for publishing including when it occurs and the location to store the published files.

\section*{General Plot Options}

Keep the Layout Paper Size If Possible

Uses the paper size specified in the Page Setup dialog box as long as the selected output device can plot to this paper size. If the selected output device cannot plot to this paper size, the program displays a warning message and uses the paper size specified either in the plotter configuration file (PC3) or in the default system settings if the output device is a system printer. (PAPERUPDATE system variable \(=0\) )

\section*{Use the Plot Device Paper Size}

Uses the paper size specified either in the plotter configuration file (PC3) or in the default system settings if the output device is a system printer.
(PAPERUPDATE system variable \(=1\) )

\section*{System Printer Spool Alert}

Controls whether you are alerted when the plotted drawing is spooled through a system printer because of an input or output port conflict.

■ Always Alert (And Log Errors): Alerts you and always logs an error when the plotted drawing spools through a system printer.
- Alert First Time Only (And Log Errors): Alerts you once and always logs an error when the plotted drawing spools through a system printer.
- Never Alert (And Log First Error): Never alerts you and logs only the first error when the plotted drawing spools through a system printer.

■ Never Alert (Do Not Log Errors): Never alerts you or logs an error when the plotted drawing spools through a system printer.

OLE Plot Quality
Sets the default plot quality for OLE objects.
(OLEQUALITY system variable)

\section*{Use OLE Application When Plotting OLE Objects}

Controls whether the source application of an embedded OLE object loads when plotting.
(OLESTARTUP system variable)

\section*{Hide System Printer}

Controls whether Windows system printers are displayed in the Plot and Page Setup dialog boxes. This option hides standard Windows system printers only. It does not hide Windows system printers that have been configured using the Add-a-Plotter wizard.

You can control the size of the list of devices in the Plot and Page Setup dialog boxes by moving a device's PC3 file out of the Plotters folder and its subfolders.

\section*{Specify Plot Offset Relative To}

Controls whether the plot offset is relative to the printable area or to the edge of the paper.
(PLOTOFFSET system variable).
Printable Area
Specifies that the plot offset is relative to the printable area.

\section*{Edge of Paper}

Specifies that the plot offset is relative to the edge of the paper.
Plot Stamp Settings
Opens the Plot Stamp dialog box.
Plot Style Table Settings
Opens the Plot Style Table Settings dialog box.

\section*{System Tab (Options Dialog Box)}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Controls system settings.


\section*{List of Options}

The following options are displayed.

\section*{3D Performance}

Controls settings that relate to configuration of the 3D graphics display system.

\section*{3D Performance Settings}

Displays the Adaptive Degradation and Performance Tuning dialog box on page 21.

\section*{Current Pointing Device}

Controls options that relate to the pointing device.

\section*{Current Pointing Device}

Displays a list of the available pointing device drivers.
- Current System Pointing Device: Sets the system pointing device as current.

■ Wintab Compatible Digitizer: Sets the Wintab-compatible digitizer as current.

\section*{Accept Input From}

Specifies whether the program accepts input from both a mouse and a digitizer or ignores mouse input when a digitizer is set.

\section*{Layout Regen Options}

Specifies how the display list is updated in the Model tab and layout tabs.
For each tab, the display list is updated either by regenerating the drawing when you switch to that tab or by saving the display list to memory and regenerating only the modified objects when you switch to that tab. Changing these settings can improve performance. (LAYOUTREGENCTL system variable)

\section*{Regen When Switching Layouts}

Regenerates the drawing each time you switch tabs.

\section*{Cache Model Tab and Last Layout}

For the Model tab and the last layout made current, saves the display list to memory and suppresses regenerations when you switch between the two tabs. For all other layouts, regenerations still occur when you switch to those tabs.

\section*{Cache Model Tab and All Layouts}

Regenerates the drawing the first time you switch to each tab. For the remainder of the drawing session, the display list is saved to memory and regenerations are suppressed when you switch to those tabs.

\section*{dbConnect Options}

Controls options that relate to database connectivity.

\section*{Store Links Index in Drawing File}

Stores the database index in the drawing file. Select this option to enhance performance during Link Select operations. Clear this option to decrease drawing file size and to enhance the opening process for drawings with database information.

\section*{Open Tables in Read-Only Mode}

Specifies whether to open database tables in Read-only mode in the drawing file.

\section*{General Options}

Hidden Messages Settings
Displays Hidden Message Settings dialog box on page 1374.
Display OLE Text Size Dialog

Displays the OLE Text Size dialog box when OLE objects are inserted into drawings.

\section*{Beep on Error in User Input}

Sounds an alarm beep when an invalid entry is detected.
Load acad.lsp with Every Drawing
Controls whether the acad.lsp file is loaded into every drawing or just the first drawing opened in a session.

Clear this option if you do not want to run certain LISP routines in specific drawing files. (ACADLSPASDOC system variable)

\section*{Allow Long Symbol Names}

Sets the parameters for named object names (such as linetypes and layers) stored in definition tables.
(EXTNAMES system variable)

\section*{Live Enabler Options}

Specifies whether the program checks for object enablers.
Using object enablers, you can display and use custom objects in drawings even when the ObjectARX application that created them is unavailable.

Check Web for Live Enablers
Specifies how the program checks for object enablers.
(PROXYWEBSEARCH system variable)

\section*{Maximum Number of Unsuccessful Checks}

Specifies the number of times to check for object enablers if unsuccessful.
For more information, see "Work with Custom and Proxy Objects".

\section*{Help}

Controls options related to the Help system.
Use Online Help from Autodesk Website When Available
Specifies whether Help is accessed from the Autodesk website or from locally installed files.

\section*{Help Browser}

Specifies whether to use Microsoft \({ }^{\circledR}\) Internet Explorer \({ }^{\circledR}\) or the default Web browser for viewing Help.

\section*{User Preferences Tab (Options Dialog Box)}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Controls options that optimize the way you work.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{A. Options} \\
\hline \multicolumn{5}{|l|}{Current profile: <<Unnamed Profile>>} & \multicolumn{5}{|l|}{Pr Current drawing: Drawing7.dwg} \\
\hline Files & Display & Open and Save & Plot and Publish & System & User Preferences & Drating & 3D Modeling & Selection & Profiles \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Insertion scale \\
Default settings when units are set to unitless: \\
Source content units: \\
Inches \\
Target drawing units: \\
Inches
\end{tabular}} &  & \begin{tabular}{l}
Priority for Coord
Running ob
Keyboard e
Keyboard e \\
Associative Dim
Make \\
Hyperlink
Display hyp
\end{tabular} & \begin{tabular}{l}
inate Data ect snap try \\
try except \\
ensioning \\
new dime \\
erink curso
\end{tabular} & \begin{tabular}{l}
Entry \\
scripts \\
sions associat \\
, tooltip, and
\end{tabular} & hortcut me & nu \\
\hline \multicolumn{5}{|c|}{\begin{tabular}{l}
Fields
Display background of fields \\
Field Update Settings...
\end{tabular}} & \multicolumn{4}{|l|}{Undo/Redo
Combine zoom and pan commands
Combine layer property change} &  \\
\hline & & & & & OK & Cancel & Apply & & Help \\
\hline
\end{tabular}

\section*{List of Options}

The following options are displayed.

\section*{Windows Standard Behavior}

Controls keystroke and right-click behavior.
Double-click Editing
Controls the double click editing behavior in the drawing area.
(DBLCLKEDIT system variable)

\section*{Shortcut Menus in Drawing Area}

Controls whether Default, Edit, and Command mode shortcut menus are available in the drawing area.
If this option is cleared, right-click is interpreted as Enter. (SHORTCUTMENU system variable)

\section*{Right-Click Customization}

Displays the Right-Click Customization dialog box. This dialog box provides further definition for the Shortcut Menus in Drawing Area option. (SHORTCUTMENU system variable)

\section*{Insertion Scale}

Controls the default scale for inserting blocks and drawings into a drawing.

\section*{Source Content Units}

If Unspecified-Unitless is selected, the object is not scaled when inserted. (INSUNITSDEFSOURCE system variable)

Target Drawing Units
Sets target drawing units value when INSUNITS is set to 0 .
(INSUNITSDEFTARGET system variable)

\section*{Fields}

Sets preferences related to fields.

\section*{Display Background of Fields}

Controls whether fields are displayed with a gray background.
When this option is cleared, fields are displayed with the same background as any text. (FIELDDISPLAY system variable)

\section*{Field Update Settings}

Displays the Field Update Settings dialog box. (FIELDEVAL system variable)

\section*{Priority for Coordinate Data Entry}

Controls whether coordinates entered on the command line will override running object snaps.
(OSNAPCOORD system variable)
Running Object Snap

Specifies that running object snaps override coordinate entry at all times. \((\) OSNAPCOORD system variable \(=0)\)

\section*{Keyboard Entry}

Specifies that coordinate entry overrides running object snaps at all times.
(OSNAPCOORD system variable \(=1\) )
Keyboard Entry Except Scripts
Specifies that coordinate entry overrides running object snaps, except in scripts. (OSNAPCOORD system variable \(=2\) )

\section*{Associative Dimensioning}

Controls whether associative dimension objects or legacy-style, nonassociative dimension objects are created.

\section*{Make New Dimensions Associative}

Creates associative dimensions, which automatically adjust their locations, orientations, and measurement values when the geometric objects associated with them are modified. (DIMASSOC system variable)

\section*{Hyperlink}

Controls settings that relate to the display properties of hyperlinks.

\section*{Display Hyperlink Cursor, Tooltip, and Shortcut Menu}

Controls the display of the hyperlink cursor, tooltips, and shortcut menu.
The shortcut menu provides additional hyperlink options when you select an object that contains a hyperlink and then right-click in the drawing area. (HYPERLINKOPTIONS on page 922 command)

\section*{Undo/Redo}

Controls Undo and Redo for Zoom and Pan.
Combine Zoom and Pan Commands
Groups multiple and consecutive zoom and pan commands as a single action for undo and redo operations.

NOTE Pan and zoom commands that are started from the menu are not combined, and always remain separate actions.

\section*{Combine Layer Property Changes}

Groups layer property changes made from the Layer Properties Manager.

\section*{Initial Setup}

Displays the Initial Setup dialog box on page 1376 which is used to perform some basic customization of AutoCAD.

For information, see Customize AutoCAD with Initial Setup.

\section*{Block Editor Settings}

Displays the Block Editor Settings dialog box on page 241. Use this dialog box to control the environment settings of the Block Editor.

\section*{Lineweight Settings}

Displays the Lineweight Settings dialog box. Use this dialog box to set lineweight options, such as display properties and defaults, and also to set the current lineweight.

\section*{Default Scale List}

Displays the Default Scale List dialog box. Use this dialog box to manage the default list of scales displayed in several dialog boxes associated with layout viewports and plotting. You can delete all custom scales and restore the default list of scales.

\section*{Drafting Tab (Options Dialog Box)}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Sets options for several editing features, including AutoSnap and AutoTrack.


\section*{List of Options}

The following options are displayed.

\section*{AutoSnap Settings}

Controls the display of the AutoSnap marker, tooltip, and magnet.
When the cursor, or aperture box, is on an object, you can press Tab to cycle through all the snap points available for that object.

\section*{Marker}

Controls the display of the AutoSnap marker. The marker is a geometric symbol that is displayed when the crosshairs move over a snap point. (AUTOSNAP system variable)

\section*{Magnet}

Turns the AutoSnap magnet on or off. The magnet is an automatic movement of the crosshairs that locks the crosshairs onto the nearest snap point. (AUTOSNAP system variable)

Display AutoSnap Tooltip

Controls the display of the AutoSnap tooltip. The tooltip is a label that describes which part of the object you are snapping to. (AUTOSNAP system variable)

\section*{Display AutoSnap Aperture Box}

Turns the display of the AutoSnap aperture box on or off.
The aperture box is a box that appears inside the crosshairs when you snap to an object. (APBOX system variable)

\section*{Colors}

Displays the Drawing Window Colors dialog box.

\section*{AutoSnap Marker Size}

Sets the display size for the AutoSnap marker.

\section*{Object Snap Options}

Sets running object snap modes.
(OSNAP command)

\section*{Ignore Hatch Objects}

Specifies options for object snaps. (OSOPTIONS system variable)

\section*{Replace Z Value with Current Elevation}

Specifies that object snaps ignore the \(Z\)-value of the object snap location and use the \(Z\)-value of the elevation set for the current UCS.

\section*{Ignore Negative Z Object Snaps for Dynamic UCS}

Specifies that object snaps ignore geometry with negative \(Z\) values during use of a dynamic UCS. (OSOPTIONS system variable)

\section*{AutoTrack Settings}

Controls the settings that relate to AutoTrack \({ }^{\mathrm{TM}}\) behavior, which is available when polar tracking or object snap tracking is turned on (see DSETTINGS).

\section*{Display Polar Tracking Vector}

Displays a vector along specified angles when polar tracking is on. With polar tracking, you can draw lines along angles. Polar angles are 90-degree divisors, such as 45,30 , and 15 degrees.

In a \(3 D\) view, a polar tracking vector parallel to the \(Z\) axis of the UCS is also displayed, and the tooltip displays +Z or -Z for the angle depending on the direction along the Z axis.
\((\) TRACKPATH system variable \(=2)\)

\section*{Display Full-Screen Tracking Vector}

Tracking vectors are construction lines from which you can draw objects at specific angles or in specific relationships to other objects. If this option is selected, alignment vectors are displayed as infinite lines.
\((\) TRACKPATH system variable \(=1)\)
Display AutoTrack Tooltip
Controls the display of the AutoSnap marker, tooltip, and magnet.
(AUTOSNAP system variable)

\section*{Alignment Point Acquisition Automatic}

Displays tracking vectors automatically when the aperture moves over an object snap.

\section*{Shift to Acquire}

Displays tracking vectors when you press Shift and move the aperture over an object snap.

\section*{Aperture Size}

Sets the display size for the object snap target box, in pixels.
When Display AutoSnap Aperture Box is selected (or when APBOX is set to 1), the aperture box is displayed in the center of the crosshairs when you snap to an object. The aperture size determines how close to a snap point you can be before the magnet locks the aperture box to the snap point. Values range from 1 to 50 pixels. (APERTURE system variable)

\section*{Drafting Tooltip Appearance}

Controls the color, size, and transparency of drafting tooltips.

\section*{Settings}

Displays the Tooltip Appearance dialog box.

\section*{Lights Glyph Settings}

Displays the Light Glyph Appearance dialog box on page 1360.

\section*{Cameras Glyph Settings}

Displays the Camera Glyph Appearance dialog box on page 1361.

\section*{3D Modeling Tab (Options Dialog Box)}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Sets options for working with solids and surfaces in 3D.

\section*{List of Options}

The following options are displayed.

\section*{3D Crosshairs}

Controls settings for the display style of the crosshairs pointer in 3D operations.
Show Z Axis in Crosshairs
Controls whether the \(Z\) axis is displayed by the crosshairs pointer.

\section*{Label Axes in Standard Crosshairs}

Controls whether axis labels are displayed with the crosshairs pointer.
Show Labels for Dynamic UCS
Displays axis labels on the crosshairs pointer for the dynamic UCS even when the axis labels are turned off in the Label Axes in Standard Crosshairs box.

\section*{Crosshair Labels}

Choose the labels to display with the crosshairs pointer.
Use X, Y, Z
Labels the axes \(\mathrm{X}, \mathrm{Y}\), and Z .
Use N, E, z
Labels the axes with abbreviations for North, East, and Z elevation.
Use Custom Labels
Labels the axes with characters that you specify.

\section*{Display ViewCube or UCS Icon}

Controls the display of the ViewCube and the UCS icon.

\section*{In 2D Model Space}

Controls the display of ViewCube and the UCS icon in 2D model space.
In 3D Model Space
Controls the display of the ViewCube and UCS icon in 3D model space.

\section*{Dynamic Input}

Controls the display of dynamic input fields for coordinate entry.

\section*{Show Z Field for Pointer Input}

Displays a field for the \(Z\) coordinate when using dynamic input.

\section*{3D Objects}

Controls settings for the display of 3D solids, surfaces, and meshes.
Visual Style While Creating 3D Objects
Sets the visual style that is displayed while creating 3D solid and mesh primitives and extruded solids, surfaces, and meshes.
(DRAGVS system variable).
Deletion Control While Creating 3D Objects
Controls whether geometry used to create 3D objects is retained or deleted.
(DELOBJ system variable).
Isolines on Surfaces and Meshes
Sets the surface density for PEDIT Smooth in the \(M\) direction and the \(U\) isolines density on surface objects.
(SURFU system variable).
Sets the surface density for PEDIT Smooth in the N direction and the V isolines density on surface objects.
(SURFV system variable).

\section*{Tessellation}

Opens the Mesh Tessellation Options dialog box, where you can specify settings to be applied to objects that are converted to mesh objects with MESHSMOOTH.

\section*{Mesh Primitives}

Opens the Mesh Primitive Options dialog box, where you can specify settings to be applied to new mesh primitive objects.

\section*{Surface Analysis}

Opens the Analysis Options dialog box on page 113, where you can set options for zebra, curvature, and draft analysis.

\section*{3D Navigation}

Sets walk, fly, and animation options for displaying 3D models.

\section*{Reverse Mouse Wheel Zoom}

Toggles the direction of transparent zoom operations when you scroll the middle mouse wheel.
(ZOOMWHEEL system variable)
Walk and Fly
Displays the Walk and Fly Settings dialog box.

\section*{Animation}

Displays the Animation Settings dialog box.
ViewCube
Displays the ViewCube Settings dialog box.

\section*{SteeringWheel}

Displays the SteeringWheel Settings dialog box.

\section*{Selection Tab (Options Dialog Box)}

\section*{Quick Reference}

Sets options for selecting objects.


\section*{List of Options}

The following options are displayed.

\section*{Pickbox Size}

Sets the object selection target height, in pixels.
The pickbox is the object selection tool that appears in editing commands. (PICKBOX system variable)

\section*{Selection Preview}

Highlights objects as the pickbox cursor rolls over them. (PREVIEWEFFECT system variable)

\section*{When a Command Is Active}

Displays selection previewing only when a command is active and the Select Objects prompt is displayed. (SELECTIONPREVIEW system variable)

\section*{When No Command Is Active}

Displays selection previewing when no commands are active.
(SELECTIONPREVIEW system variable)

\section*{Visual Effect Settings}

Displays the Visual Effect Settings dialog box.

\section*{Selection Modes}

Controls settings that relate to object selection methods.

\section*{Noun/Verb Selection}

Controls whether you select objects before (noun-verb selection) or after you issue a command.

The command affects the previously selected object or objects. (PICKFIRST system variable)

You can use many editing and inquiry commands with noun/verb selection, including
\begin{tabular}{lll}
\hline 3DALIGN & DVIEW & PROPERTIES \\
\hline ARRAY & ERASE & ROTATE \\
\hline BLOCK & EXPLODE & SCALE \\
\hline CHANGE & LIST & STRETCH \\
\hline CHPROP & MIRROR & WBLOCK \\
\hline COPY & MOVE & \\
\hline
\end{tabular}

\section*{Use Shift to Add to Selection}

Controls whether subsequent selections replace the current selection set or add to it.

To clear a selection set quickly, draw a selection window in a blank area of the drawing. (PICKADD system variable)

Press and Drag
Controls the method of drawing a selection window.
If this option is cleared, you can draw a selection window by selecting two separate points with the pointing device. (PICKDRAG system variable)

\section*{Implied Windowing}

Initiates the drawing of a selection window when you select a point outside an object.

Drawing the selection window from left to right selects objects that are entirely inside the window's boundaries. Drawing from right to left selects objects within and crossing the window's boundaries. (PICKAUTO system variable)

\section*{Object Grouping}

Selects all objects in a group when you select one object in that group. With GROUP you can create and name a set of objects for selection. (PICKSTYLE system variable \(=1\) )

\section*{Associative Hatch}

Determines which objects are selected when you select an associative hatch. If this option is selected, boundary objects are also selected when you select an associative hatch. (PICKSTYLE system variable \(=2\) )

\section*{Grip Size}
(GRIPSIZE system variable)


\section*{Grips}

Grips are small squares displayed on an object after it has been selected.

\section*{Grip Colors}

Displays the Grip Colors dialog box on page 1352 where you can specify the colors for different grip status and elements.

\section*{Show Grips}

Controls the display of grips on selected objects. You can edit an object with grips by selecting a grip and using the shortcut menu. Displaying grips in a drawing significantly affects performance. Clear this option to optimize performance. (GRIPS system variable)

\section*{Show Grips within Blocks}

Controls the display of grip tips and Ctrl-cycling tooltips. (GRIPBLOCK system variable)


\section*{Show Grip Tips}

Controls the display of grip tips and Ctrl-cycling tooltips. This option has no effect on standard objects. (GRIPTIPS system variable)

\section*{Show Dynamic Grip Menu}

Controls the display of dynamic menu when pausing over a multi-functional grip. (GRIPMULTIFUNCTIONAL on page 2338 system variable)

\section*{Allow Ctrl-cycling Behavior}

Allows the Ctrl-cycling behavior for multi-functional grips.
(GRIPMULTIFUNCTIONAL on page 2338 system variable)

\section*{Object Selection Limit for Display of Grips}

Suppresses the display of grips when the selection set includes more than the specified number of objects. The valid range is 1 to 32,767 . The default setting is 100 . (GRIPOBJLIMIT system variable)

\section*{Ribbon Options}

\section*{Contextual Tab States Button}

The Ribbon Contextual Tab State Options dialog box on page 1369 is displayed, where you can set object selection settings for the display of ribbon contextual tabs.

\section*{Grip Colors Dialog Box}

\section*{Quick Reference}

See also:
■ Set Up the Drawing Area

Sets the color properties of the grip.


\section*{List of Options}

The following options are displayed.

\section*{Settings}

Controls the color settings of the grip.

\section*{Unselected Grip Color}

Controls the color of unselected grips.
An unselected grip is displayed as a small, filled square. (GRIPCOLOR on page 2336 system variable)


\section*{Selected Grip Color}

Controls the color of selected grips.
A selected grip is displayed as a small, filled square. (GRIPHOT on page 2337 system variable)

\section*{Hover Grip Color}

Controls the fill color of an unselected grip when the cursor pauses over it.
(GRIPHOVER on page 2338 system variable)
Grip Contour Color
Controls the color of the grip contour.
(GRIPCONTOUR on page 2336 system variable)

\section*{Profiles Tab (Options Dialog Box)}

\section*{Quick Reference}

\section*{See also:}

■ Set Up the Drawing Area

Controls the use of profiles. A profile is a configuration you define.


\section*{List of Options}

The following options are displayed.

\section*{Available Profiles}

Displays a list of the available profiles.

\section*{Set Current}

Makes the selected profile the current profile.

\section*{Add to List}

Displays the Add Profile dialog box to save the selected profile under a different name.

\section*{Rename}

Displays the Change Profile dialog box for changing the name and description of the selected profile. Use Rename when you want to rename a profile but keep its current settings.

Delete
Deletes the selected profile (unless it is the current profile).

\section*{Export}

Exports a profile as a file with an .arg extension so the file can be shared with other users. You can import the file on the same computer or a different computer.

\section*{Import}

Imports a profile (a file with an .arg extension) created by using the Export option.

\section*{Reset}

Resets the values in the selected profile to the system default settings.

\section*{Alternate Font Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Specify Application Fonts

Specifies the location of the font file to use if the original font cannot be located and an alternate font is not specified in the font mapping file.


\section*{Access Methods}

Menu: Tools \(\boldsymbol{>}\) Options (Options dialog box, Files tab)
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and choose Options.

\section*{區 Command entry: options}

\section*{Summary}

You can also set the location of Alternate Font File by using the FONTALT system variable.

If you do not specify an alternate font through the Options dialog box or the FONTALT system variable, when you open a drawing containing fonts that cannot be located, a dialog box is displayed in which you specify a font to use for each missing font.

\section*{List of Options}

The following options are displayed.

\section*{Font Name}

Lists the font family name for all registered TrueType fonts and all SHX fonts in the Fonts folder.

\section*{Font Style}

Specifies font character formatting, such as italic, bold, or regular. If the missing font is a Big Font, this option changes to Big Font and lists all available Asian-language Big Font files.

\section*{Drawing Window Colors Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Sets the display colors of the interface elements for each context in the application.


\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Options (Options dialog box, Display tab)
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and then click Options.

\section*{Summary}

A context is an operating environment such as model space. An interface element is an item that is visible in that context such as the crosshairs pointer or the background color.

\section*{List of Options}

The following options are displayed.

\section*{Context}

A context is an operating environment such as model space. Interface elements can have different colors assigned depending on the context.The context you select displays a list of associated elements. Select a context, an interface element, and then a color.

\section*{Interface Element}

Lists the interface elements in a selected context. An interface element is an item that is visible in a context (for example, the background color). Select an interface element and then a color.

\section*{Color}

Lists the available color settings to apply to the selected interface element. You can choose one of the colors in the color list or choose Select Color to open the Select Color dialog box.

Color tinting applies pure red, blue and green hues using the luminance (lightness) of the color you specify while increasing the color saturation by 50\%.

\section*{Tint for X, Y, Z}

Controls whether \(X, Y\), and \(Z\) axis color tinting is applied to the following interface elements: crosshairs pointer, Autotrack vectors, ground plane grid lines, and drafting tooltips.

\section*{Restore Current Element}

Restores the currently selected interface element to its default color.

\section*{Restore Current Context}

Restores all interface elements in the currently selected context to their default colors.

\section*{Restore All Contexts}

Restores all interface elements back to their default color settings.

\section*{Restore Classic Colors}

Restores only the interface elements of 2D model space back to the AutoCAD 2008 classic color settings.

\section*{Preview}

Displays a preview of the drawing based on defined settings.

\section*{Command Line Window Font Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Specify Application Fonts

Sets the font displayed in the command window.


\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Options (Options dialog box, Display tab)
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and choose Options.
座 Command entry: options

\section*{Summary}

The screen menu font is controlled by the Windows system font settings. (If you use the screen menu, you should set the Windows system font setting to a font and font size that fit the screen menu size restrictions.)

\section*{List of Options}

The following options are displayed.
Font Lists the system fonts available for selection.
Font Style Lists the styles available to apply to the current font.
Size Lists the font sizes available for the current font.

\section*{Light Glyph Appearance Dialog Box}

\section*{Quick Reference}

See also:
■ Set Up the Drawing Area

Specifies the appearance of the light glyphs.

\section*{Access Methods}

Menu: Tools > Options (Options dialog box, Drafting tab)

\section*{List of Options}

The following options are displayed.
Glyph Preview
Shows the current appearance of the light glyph and updates as you make changes.

\section*{Point}

Displays a point light glyph in the preview.
Spot
Displays a spotlight glyph in the preview.
Web
Displays a weblight glyph in the preview.

\section*{Edit Glyph Colors}

Displays the Drawing Window Colors dialog box on page 1357.

\section*{Glyph Size}

Adjusts the size of the glyph.

\section*{Camera Glyph Appearance Dialog Box}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Specifies the appearance of the camera glyphs.

Access Methods
\(\$\) Menu: Tools \(>\) Options (Options dialog box, Drafting tab)

\section*{List of Options}

The following options are displayed.
Glyph Preview Shows the current appearance of the glyph and updates as you make changes.

Edit Glyph Colors
Displays the Drawing Window Colors dialog box on page 1357.
Glyph Size
Changes the size of the glyph in the drawing area.

\section*{Thumbnail Preview Settings Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Controls whether thumbnail previews are updated when the drawing is saved.

\section*{Access Methods}
\(\$\) Menu: Tools > Options (Options dialog box, Open and Save tab)
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and choose Options.

\section*{兹 Command entry: options}

\section*{List of Options}

The following options are displayed.

\section*{Drawing}

Save a Thumbnail Preview Image
Controls whether BMP preview images are saved with the drawing.
(RASTERPREVIEW system variable)

\section*{Use the View when Drawing Last Saved}

Uses the last saved view to generate the thumbnail preview for the drawing.

\section*{Use the Home View}

Uses the Home view saved with the drawing to generate the thumbnail preview for the drawing.

\section*{Home View}

Set current View as Home
Defines the current view of the drawing as the Home view.

\section*{Reset Home to Default}

Restores the default Home view.

\section*{Sheets and Views}

Generate Sheet, Sheet View and Model View Thumbnails
Controls updating of the thumbnail previews in the Sheet Set Manager and Quick View.

Sheet thumbnails are displayed on the Sheet List tab, sheet view thumbnails on the View List tab, and model space view thumbnails on the Resource Drawings tab. (UPDATETHUMBNAIL system variable)

\section*{Performance-Accuracy Slider}

Specifies when thumbnails are updated and which thumbnails are updated. (UPDATETHUMBNAIL system variable)

Information Panel Displays information about the current position of the slider.

\section*{Named Views}

Sets the size for thumbnails created for named views.
Named views
Sets the maximum size of the named views.

\section*{Plot Style Table Settings Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Specifies settings for plot style tables.

\section*{Access Methods}
\$ Menu: Tools > Options (Options dialog box, Plot and Publish tab)
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and choose Options.
巠 Command entry: options

\section*{List of Options}

The following options are displayed.

\section*{Default Plot Style Behavior for New Drawings}

Controls the plot style mode, Color-Dependent or Named, that is used when opening a drawing that was created in a release prior to AutoCAD 2000 or when creating a new drawing from scratch without using a drawing template.
A plot style is a collection of property settings defined in a plot style table and applied when the drawing is plotted. Changing the default plot style setting by using the Options dialog box does not affect the current drawing.

The default plot style setting is Use Color Dependent Plot Styles. The Plot Style Control on the Properties toolbar is unavailable by default. The Plot Style

Control is available when you select the Use Named Plot Styles option and open a new drawing. (PSTYLEPOLICY system variable)

\section*{Use Color Dependent Plot Styles}

Uses color-dependent plot styles in both new drawings and drawings created in AutoCAD Release 14 or earlier. Color-dependent plot styles use the numbers from the AutoCAD Color Index to create a plot style table with a .ctb file extension. Each color is defined by a name or number ranging from 1 to 255 . You can assign each color number to a different pen on a pen plotter to achieve different property settings in the plotted drawing. If this option is selected, a plot style is created for each color setting. (PSTYLEPOLICY system variable \(=\) 1)

Once a drawing is saved with Use Color Dependent Plot Styles as the default, you can convert it to Use Named Plot Styles using the CONVERTCTB and CONVERTPSTYLES commands.

\section*{Use Named Plot Styles}

Uses named plot styles in both new drawings and drawings created in earlier versions of AutoCAD. The drawing is plotted according to the property settings that you specify in the plot style definition. The plot style is defined in the plot style table attached to the layout. Named plot style tables are files with the file extension .stb. (PSTYLEPOLICY system variable \(=0\) )

Once a drawing is saved with Use Named Plot Styles as the default, you can convert it to Use Color Dependent Plot Styles using the CONVERTCTB and CONVERTPSTYLES commands. However, once you use CONVERTPSTYLES to convert a drawing from using a named plot style table to a color plot style table, you cannot use CONVERTPSTYLES to convert it back to using a named plot style table.

\section*{Current Plot Style Table Settings}

Specifies the current plot style table settings that are applied to new drawings.

\section*{Default Plot Style Table}

Specifies the default plot style table to attach to new drawings. A plot style table is a file with a .ctb or an .stb extension that includes and defines plot styles. If you are using color-dependent plot styles, this option lists all color dependent plot style tables found in the search path as well as the value of None. If you are using named plot styles, this option lists all named plot styles tables.

\section*{Default Plot Style for Layer 0}

Specifies the default plot style for all layers in a drawing when opening a drawing that was created in a release prior to AutoCAD 2000, or for Layer 0 when creating a new drawing from scratch without using a drawing template.
(DEFLPLSTYLE system variable)

\section*{Default Plot Style for Objects}

Specifies the default plot style for new objects in a drawing when opening a drawing that was created in a release prior to AutoCAD 2000, or when creating a new drawing from scratch without using a drawing template.
(DEFPLSTYLE system variable)

\section*{Add or Edit Plot Style Tables}

Displays the Plot Style Manager (a Windows Explorer window), where you can create or edit plot style tables.

\section*{Right-Click Customization Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Controls whether right-clicking in the drawing area displays a shortcut menu or has the same effect as pressing Enter.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Options (Options dialog box, User Preferences tab) Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and choose Options.
䱂 Command entry: options

\section*{Summary}

If you are accustomed to using the right-click method for Enter while a command is active, you might prefer to disable Command shortcut menus from this dialog box. You can also control shortcut menus by using the SHORTCUTMENU system variable.

\section*{List of Options}

The following options are displayed.

\section*{Turn on Time-Sensitive Right-Click}

Controls right-click behavior. A quick click is the same as pressing Enter. A longer click displays a shortcut menu. You can set the duration of the longer click in milliseconds.

\section*{Default Mode}

Determines what happens when you right-click in the drawing area when no objects are selected and no commands are in progress.

\section*{Repeat Last Command}

Disables the Default shortcut menu. As a result, right-clicking in the drawing area when no objects are selected and no commands are in progress is the same as pressing Enter, which repeats the last issued command.

\section*{Shortcut Menu}

Enables the Default shortcut menu.

\section*{Edit Mode}

Determines what happens when you right-click in the drawing area when one or more objects are selected and no commands are in progress.

\section*{Repeat Last Command}

Disables the Edit shortcut menu. As a result, right-clicking in the drawing area when one or more objects are selected and no commands are in progress is the same as pressing Enter, which repeats the last issued command.

\section*{Shortcut Menu}

Enables the Edit shortcut menu.

\section*{Command Mode}

Determines what happens when you right-click in the drawing area when a command is in progress.

\section*{Enter}

Disables the Command shortcut menu. As a result, right-clicking in the drawing area when a command is in pro-gress is the same as pressing Enter.

\section*{Shortcut Menu: Always Enabled}

Enables the Command shortcut menu.

\section*{Shortcut Menu: Enabled When Command Options Are Present}

Enables the Command shortcut menu only when options are currently available at the Command prompt. At the Command prompt, options are enclosed in square brackets. If no options are available, right-clicking is the same as pressing Enter.

\section*{Field Update Settings Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

\section*{Access Methods}
\(\$\) Menu: Tools > Options (Options dialog box, User Preferences tab)
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and choose Options.
亜 Command entry: options

\section*{Summary}

Controls how fields are updated. (FIELDEVAL system variable)

\section*{List of Options}

The following options are displayed
Open
Automatically updates fields when the file is opened.

\section*{Save}

Automatically updates fields when the file is saved.
Plot
Automatically updates fields when the file is plotted.
eTransmit
Automatically updates fields when the file is sent using ETRANSMIT.
Regen

Automatically updates fields when the file is regenerated.

\section*{Visual Effect Settings Dialog Box}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Controls the appearance of selection previewing.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Options (Options dialog box, Selection tab)
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and click Options.

\section*{List of Options}

The following options are displayed.

\section*{Selection Preview Effect}

Specifies the visual effect used for previewing selection of objects. (PREVIEWEFFECT system variable)

\section*{Preview Area}

Displays the effect of the current settings.
Face Highlighting Controls the face highlighting setting.
■ Texture Fill. Highlights the face with texture fill effect.

Line Highlighting Controls the line highlighting settings.
■ Dash. Displays dashed lines when the pickbox cursor rolls over an object. This selection previewing indicates that the object would be selected if you clicked. Dashed lines are the default display for selected objects. (PREVIEWEFFECT system variable \(=0\) )

■ Thicken. Displays thickened lines when the pickbox cursor rolls over an object. This selection previewing indicates that the object would be selected if you clicked. (PREVIEWEFFECT system variable = 1)

■ Both. Displays thickened, dashed lines when the pickbox cursor rolls over an object. This selection previewing indicates that the object would be selected if you clicked. (PREVIEWEFFECT system variable \(=2\) )

\section*{Advanced Options}

Displays the Advanced Preview Options dialog box.

\section*{Selection Area Effect}

Controls the appearance of selection areas during selection preview.

\section*{Preview Area}

Displays the effect of the current settings.

\section*{Indicate Selection Area}
(SELECTIONAREA system variable)
Window Selection Color
Controls the color of the transparent selection area during window selection.
(WINDOWAREACOLOR system variable)
Crossing Selection Color
(CROSSINGAREACOLOR system variable)

\section*{Selection Area Opacity}

Controls the transparency of the selection area during window and crossing selection.
(SELECTIONAREAOPACITY system variable)

\section*{Ribbon Contextual Tab State Options Dialog Box}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Sets object selection settings for the display of ribbon contextual tabs

\section*{Access Methods}

Menu: Application menu \(>\) Options (Options dialog box, Selection tab)
亜 Command entry: options

\section*{List of Options}

The following options are available in this dialog box.

\section*{Contextual Tab Display}

Controls how ribbon contextual tabs are displayed when you single- or double-click an object.
(RIBBONCONTEXTSELECT on page 2493 system variable)
Do Not Switch To Contextual Tab on Selection
When an object or selection set is single- or double-clicked, focus is not automatically switched to ribbon contextual tabs. (RIBBONCONTEXTSELECT system variable \(=0\) )

\section*{Show On Single-click}

When an object or selection set is single-clicked, focus is switched to the first ribbon contextual tab. (RIBBONCONTEXTSELECT system variable \(=1\) )

\section*{Show On Double-click}

When an object or selection set is double-clicked, focus is switched to the first ribbon contextual tab. (RIBBONCONTEXTSELECT system variable \(=2\) )

\section*{Object Selection Options}

Retain Pickfirst Selections When Commands Are Invoked From a Contextual Tab

When checked, the pickfirst selection set remains selected after a command is executed from a ribbon contextual tab. (RIBBONSELECTMODE on page 2494 system variable \(=1\) )

When cleared, the pickfirst selection set does not remain selected after a command is executed from a ribbon contextual tab. (RIBBONSELECTMODE system variable \(=0\) )

\section*{Object Selection Maximum for Contextual Tab Display}

Limits the number of objects that can be changed at one time with the ribbon property controls or a contextual tab.
(RIBBONCONTEXTSELLIM on page 2493 system variable)

\section*{Advanced Preview Options Dialog Box}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Allows you to turn selection cycling on and off and configure selection cycling display options.

\section*{Access Methods}
\(\$\) Menu: Tools > Options (Options dialog box, Selection tab)
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and click Options.
柬 Command entry: options
Summary
(PREVIEWFILTER system variable)

\section*{List of Options}

The following options are displayed.

\section*{Exclude Objects on Locked Layers}
(PREVIEWFILTER system variable)

\section*{Exclude}

Turns off selection previewing for the selected object types. (PREVIEWFILTER system variable)

\section*{Xrefs}

Excludes objects in xrefs from selection previewing. This option is on by default. (PREVIEWFILTER system variable)

\section*{Tables}

Excludes tables from selection previewing. This option is on by default. (PREVIEWFILTER system variable)

\section*{Groups}

Excludes objects in groups from selection previewing. This option is off by default. (PREVIEWFILTER system variable)

\section*{Multiline Text}

Excludes multiline text objects from selection previewing. This option is off by default. (PREVIEWFILTER system variable)

\section*{Hatches}

Excludes hatch objects from selection previewing. This option is off by default. (PREVIEWFILTER system variable)

\section*{Add or Change Profile Dialog Box}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Creates a new profile from an existing one.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Options (Options dialog box, Profiles tab)
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and choose Options.

\section*{菐 Command entry: options}

\section*{Summary}

The new profile is displayed in the Profile list box on the Profiles tab in the Options dialog box.

\section*{List of Options}

The following options are displayed.

\section*{Profile Name}

Assigns a new profile name to the selected profile.
Description

Assigns a new or updated description for the selected profile.

\section*{Transparency Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Controls transparency for dockable windows.

\section*{Access Methods}

Shortcut menu: Right-click the title bar on the dockable window and click Transparency.

\section*{List of Options}

The following options are displayed.
How transparent should the palette be? Sets the degree of transparency for the palette. The palette has maximum transparency when the slider is at Clear. With the slider at Solid, the palette is opaque.
(PALETTEOPAQUE on page 2441 system variable)
How transparent should the palette be on mouse-over? Sets the degree of transparency for the palette on mouse-over. The palette has maximum transparency when the slider is at Clear. When the palette is at Solid, it is opaque on mouse-over.
(ROLLOVEROPACITY on page 2496 system variable)
NOTE The degree of transparency on mouse-over cannot be more than the degree of transparency of the palette.

Click to Preview Preview the palette mouse-over transparency value when the button is held down. The palette returns to the default transparency set when the button is released.

Apply these settings to all palettes Sets the degree of transparency for the palette and mouse-over for all palettes.
(APPLYGLOBALOPACITIES on page 2154 system variable)

Disable all window transparency (global) Disables transparency for all palettes.
(GLOBALOPACITY on page 2332 system variable)

\section*{Hidden Message Settings Dialog Box}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Displays all dialog boxes that you marked to not display again or to always use a specified option in them.

\section*{Access Methods}
\(\$\) Menu: Tools > Options (Options dialog box, System tab)
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and choose Options.

\section*{座 Command entry: options}

\section*{List of Options}

The following options are displayed.
Search Finds messages by using one or more keywords.
Check messages to show Displays the list of hidden messages.
Message preview Displays the currently checked message.
The tree view displays the dialog information in the form below.
- Application Name

Category

■ Dialog title

\section*{Default Scale List Dialog Box}

\section*{Quick Reference}

See also:
- Scale Views in Layout Viewports

Controls the default list of scales stored in the registry.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Options (Options dialog box, User Preferences tab)

\section*{Summary}

When the scale list in a drawing is reset, the list is restored to the default list of scales defined in the Default Scale List dialog box on page 1375.

\section*{List of Options}

The following options are displayed.

\section*{Scale List}

Metric Displays the default list of metric scales.
Imperial Displays the default list of imperial scales.
If a scale name is duplicated, but has a different value, a number is appended to the name.

\section*{Add}

Displays the Add Scale dialog box.

\section*{Edit}

Displays the Edit Scale dialog box.
NOTE You cannot edit temporary scales.

\section*{Move Up}

Moves the currently selected scale in the scale list up one position.
Move Down
Moves the currently selected scale in the scale list down one position.

\section*{Delete}

Removes all unreferenced scales from the scale list and leaves the referenced scale when multiple scales are selected.
Reset
Deletes all scales and restores the default list of scales defined in AutoCAD.

\section*{Initial Setup Dialog Box}

\section*{Quick Reference}

See also:
- Customize AutoCAD with Initial Setup

Allows you to perform some basic customization of AutoCAD.

\section*{Access Methods}
\(\$\) Menu: Tools > Options (Options dialog box, User Preferences tab)
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and click Options.
幽 Command entry: options

\section*{List of Options}

The following options are displayed.
- Specify Industry on page 1377

■ Optimize Your Default Workspace on page 1377
■ Specify a Drawing Template File on page 1378

\section*{Specify Industry}

\section*{Quick Reference}

See also:
- Customize AutoCAD with Initial Setup

Specifies an industry that best describes your work.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Options (Options dialog box, User Preferences tab) Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and click Options.
亜 Command entry: options
Summary
The selected industry is used to specify the default drawing template and affects how some tools are configured in AutoCAD.

\section*{Optimize Your Default Workspace}

\section*{Quick Reference}

See also:
- Customize AutoCAD with Initial Setup

Adds task-based tools to your current workspace.

\section*{Access Methods}
\(\$\) Menu: Tools > Options (Options dialog box, User Preferences tab) Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and click Options.
㟇 Command entry: options

\section*{List of Options}

The following options are displayed.

\section*{Task-based Tools}

Displays a list of the available task-based tools that can be displayed with Initial Setup.

3D Modeling Displays user interface elements related to creating 3D models.
Photorealistic Rendering Displays user interface elements related to creating photorealistic renderings.

Review and Markup Displays the Markup Set Manager palette that you use to review and mark up DWF and DWFx files.

Sheet Sets Displays the Sheet Set Manager palette where you can manage and plot a set of drawings electronically.

\section*{Preview}

Displays a preview of the task-based tools that are displayed when the cursor hovers over an item under the Task-based Tools list.

\section*{Specify a Drawing Template File}

\section*{Quick Reference}

See also:
- Customize AutoCAD with Initial Setup

Specifies the default drawing template that is used when you create a new drawing.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Options (Options dialog box, User Preferences tab)
Shortcut menu: Right-click in the command window, or (with no commands active and no objects selected) right-click in the drawing area, and click Options.

\section*{锉 Command entry: options}

\section*{List of Options}

The following options are displayed.

Use AutoCAD 2011's default drawing template file Designates acad.dwt as the default drawing template file.

Use my existing drawing template file Designates the drawing template file of your choosing.

Use the default drawing template file based on my industry and unit format Specifies the default drawing template file based on the industry selected on the Specify Industry page and a unit value of Imperial (Feet and Inches) or Metric.

\section*{ORTHO}

\section*{Quick Reference}

See also:
■ Use Orthogonal Locking (Ortho Mode)

Constrains cursor movement to the horizontal or vertical direction.

\section*{Access Methods}


Bulton

Toolbar: Status bar > Ortho菐 Command entry: 'ortho for transparent use

\section*{Summary}

In the illustration, a line is drawn using Ortho mode. Point 1 is the first point specified, and point 2 is the position of the cursor when the second point is specified.


Ortho mode is used when you specify an angle or distance by means of two points using a pointing device. In Ortho mode, cursor movement is constrained to the horizontal or vertical direction relative to the UCS.

Horizontal is defined as being parallel to the \(X\) axis of the UCS and vertical as being parallel to the \(Y\) axis.

In a 3D view, ORTHO is additionally defined as being parallel to the \(Z\) axis of the UCS, and the tooltip displays +Z or -Z for the angle depending on the direction along the Z axis.

\section*{OSNAP}

\section*{Quick Reference}

\section*{See also:}
- Use Object Snaps

Sets running object snap modes.

\section*{Access Methods}


Bitn
\(\$\) Menu: Tools menu > Drafting Settings
Shortcut menu: Press Shift while right-clicking in the drawing area and choose Osnap Settings.

Toolbar: Status bar \(>\) Osnap


䱂 Command entry: 'osnap for transparent use

\section*{Summary}

The Object Snaps tab of the Drafting Settings dialog box is displayed.
If you enter -osnap at the Command prompt, the following prompts are displayed.

\section*{List of Prompts}

The following prompts are displayed.
Current osnap modes: current
Enter list of object snap modes on page 1381: Enter names of object snap modes separated with commas, or enter none or off

\section*{Object Snap Modes}

Specify one or more object snap modes by entering the first three characters of the name. If you enter more than one name, separate the names with commas.
\begin{tabular}{lll}
\hline ENDpoint & CENter & TANgent \\
\hline MIDpoint & NODe & NEArest \\
\hline INTersection & QUAdrant & PARallel \\
\hline EXTension & INSertion & \\
\hline APParent Intersection & PERpendicular & \\
\hline
\end{tabular}

For a description of each of these object snap modes, see the Object Snaps tab of the Drafting Settings dialog box.

QUIck Snaps to the first snap point found. Quick must be used in conjunction with other object snap modes.

NONe Turns off object snap modes.
NOTE The index for the Command Reference is at the end of Volume II.

\section*{P Commands}

\section*{PAGESETUP}

\section*{Quick Reference}

See also:
- Specify Page Setup Settings

Controls the page layout, plotting device, paper size, and other settings for each new layout.

Access Methods


Bation
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Page Setup


Shortcut menu: Right-click the Model tab or a layout tab and click Page Setup Manager.

\section*{Summary}

The Page Setup Manager is displayed.

A page setup is a collection of plot device and other settings that determine the appearance and format of your final output. These settings are stored in the drawing file and can be modified and applied to other layouts.

\section*{Page Setup Manager}

\section*{Quick Reference}

See also:
- Specify Page Setup Settings

Specifies the page setup for the current layout or drawing sheet.

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Page Setup


Shortcut menu: Right-click the Model tab or a layout tab and click Page Setup Manager.
曼 Command entry: pagesetup

\section*{Summary}

You can also create named page setups, modify existing ones, or import page setups from other drawings.


\section*{List of Options}

The following options are displayed.

\section*{Current Layout or Current Sheet Set}

Lists the current layout to which the page setup will be applied.
Layout icon Displayed when the Page Setup Manager is opened from a layout.
Sheet set icon Displayed when the Page Setup Manager is opened from the Sheet Set Manager.

\section*{Page Setups}

Displays the current page setup, sets a different page setup as current, creates a new page setup, modifies an existing page setup, and imports page setups from other drawings.

\section*{Current Page Setup}

Displays the page setup that is applied to the current layout. You cannot apply a page setup to an entire sheet set after it has been created.

\section*{Page Setup List}

Lists the page setups that are available to apply to the current layout or when you publish a sheet set.

The list includes the named page setups and layouts that are available in the drawing. Layouts that have a named page setup applied to them are enclosed
in asterisks, with the named page setup in parentheses; for example, *Layout 1 (System Scale-to-fit)*.
If the Page Setup Manager is opened from the Sheet Set Manager, only named page setups in the page setup overrides file (a drawing template [. \(d w t\) f file) that have Plot Area set to Layout or Extents are listed. Any of these page setups can be applied temporarily for a PUBLISH operation.
The shortcut menu also provides options for removing and renaming page setups.

\section*{Set Current}

Sets the selected page setup as the current page setup for the current layout. You cannot set the current layout as the current page setup. Set Current is not available for sheet sets.

\section*{New}

Displays the New Page Setup dialog box, in which you can enter a name for the new page setup and specify the page setup to use as a starting point.

\section*{Modify}

Displays the Page Setup dialog box, in which you can edit the settings for the selected page setup.

\section*{Import}

Displays the Select Page Setup From File dialog box (a standard file selection dialog box), in which you can select a drawing format (DWG), DWT, or drawing interchange format (DXF) \({ }^{\mathrm{TM}}\) file from which to import one or more page setups. If you select DWT as the file type, the Template folder opens automatically in the Select Page Setup From File dialog box. When you click OK, the Import Page Setups dialog box is displayed.

\section*{Selected Page Setup Details}

Displays information about the selected page setup.

\section*{Device Name}

Displays the name of the plot device specified in the currently selected page setup.

\section*{Plotter}

Displays the type of plot device specified in the currently selected page setup.

\section*{Plot Size}

Displays the plot size and orientation specified in the currently selected page setup.

Where Displays the physical location of the output device specified in the currently selected page setup.

\section*{Description}

Displays descriptive text about the output device specified in the currently selected page setup.

\section*{Display When Creating a New Layout}

Specifies that the Page Setup dialog box is displayed when a new layout tab is selected or a new layout is created.

You can reset this function by turning on the Show Page Setup Dialog for New Layouts option on the Display tab of the Options dialog box.

\section*{New Page Setup Dialog Box}

\section*{Quick Reference}

\section*{See also: \\ - Specify Page Setup Settings}

Specifies a name for the new page setup, as well as the page setup to use as a starting point.


\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Page Setup

Menu: Application menu \(>\) Print \(>\) Page Setup
Shortcut menu: Right-click the Model tab or a layout tab and click Page Setup Manager
座 Command entry: pagesetup

\section*{List of Options}

The following options are displayed.

\section*{New Page Setup Name}

Specifies the name for the new page setup.

\section*{Start With}

Specifies a page setup to use as a starting point for the new page setup. When you click OK, the Page Setup dialog box is displayed with the settings of the selected page setup, which you can modify as necessary.

If you open the New Page Setup dialog box from the Sheet Set Manager, only the named page setups in the page setup overrides file are listed.
<None> Specifies that no page setup is used as a starting point. The default settings that are displayed in the Page Setup dialog box can be modified.
<Default Output Device> Specifies that the default output device specified in the Options dialog box, Plot and Publish tab, is set as the printer in the new page setup.
<Previous Plot> Specifies that the new page setup uses the settings specified in the last plot job.

\section*{Page Setup Dialog Box}

\section*{Quick Reference}

See also:
- Specify Page Setup Settings

Specifies page layout and plotting device settings.


\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Page Setup
8 Menu: Application menu \(>\) Print \(>\) Page Setup
Shortcut menu: Right-click the Model tab or a layout tab and click Page
Setup Manager.
座 Command entry: pagesetup

\section*{Summary}

The Page Setup dialog box is displayed in the following cases:
- When you create a new page setup through the Page Setup Manager
- When you modify an existing page setup through the Page Setup Manager

The page setup settings that you specify are stored with the layout and can be applied to other layouts or imported into other drawings.

\section*{List of Options}

The following options are displayed.

\section*{Page Setup}

Name Displays the name of the current page setup.

\section*{Icon}

Displays a DWG icon when the Page Setup dialog box is opened from a layout, and displays a sheet set icon when the Page Setup dialog box is opened from the Sheet Set Manager.

\section*{Printer/Plotter}

Specifies a configured plotting device to use when plotting or publishing layouts or sheets.

Name
Lists the available PC3 files or system printers from which you can select to plot or publish the current layout or sheet. An icon in front of the device name identifies it as a PC3 file or a system printer.

\section*{Properties}

Displays the Plotter Configuration Editor (PC3 editor), in which you can view or modify the current plotter configuration, ports, device, and media settings.

If you make changes to the PC3 file using the Plotter Configuration Editor, the Changes to a Printer Configuration File dialog box is displayed.

\section*{Plotter}

Displays the plot device specified in the currently selected page setup.

\section*{Where}

Displays the physical location of the output device specified in the currently selected page setup.

\section*{Description}

Displays descriptive text about the output device specified in the currently selected page setup. You can edit this text in the Plotter Configuration Editor.

\section*{Partial Preview}

Shows an accurate representation of the effective plot area relative to the paper size and printable area. The tooltip displays the paper size and printable area.


\section*{Paper Size}

Displays standard paper sizes that are available for the selected plotting device.
If the selected plotter doesn't support the layout's selected paper size, a warning is displayed, and you can select the plotter's default paper size or a custom paper size.

A default paper size is set for the plotting device when you create a PC3 file with the Add-a-Plotter wizard. For information about this wizard, see "Set Up Plotters and Printers" in the Driver and Peripheral Guide. The paper size that you select in the Page Setup dialog box is saved with the layout and overrides the PC3 file settings.
The actual printable area of the page, which is determined by the selected plotting device and paper size, is indicated in the layout by a dashed line.

If you are plotting a raster image, such as a BMP or TIFF file, the size of the plot is specified in pixels, not in inches or millimeters.

\section*{Plot Area}

Specifies the area of the drawing to be plotted. Under What to Plot, you can select an area of the drawing to be plotted.
Layout/Limits When plotting a layout, plots everything within the printable area of the specified paper size, with the origin calculated from 0,0 in the layout.
When plotting from the Model tab, plots the entire drawing area that is defined by the grid limits. If the current viewport does not display a plan view, this option has the same effect as the Extents option.

Extents Plots the portion of the current space of the drawing that contains objects. All geometry in the current space is plotted. The drawing may be regenerated to recalculate the extents before plotting.

Display Plots the view in the current viewport in the Model tab or in the current paper space view in a layout tab.

View Plots a view that was previously saved with the VIEW command.

\section*{Window}

Plots any portion of the drawing that you specify. When you specify the two corners of the area to plot, the Window button becomes available.

Click the Window button to use the pointing device to specify the two corners of the area to be plotted, or enter coordinate values.

\section*{Plot Offset}

Specifies an offset of the plot area relative to the lower-left corner of the printable area or to the edge of the paper, depending on the setting made in the Specify Plot Offset Relative To option (Options dialog box, Plot and Publish tab). The Plot Offset area of the Page Setup dialog box displays the specified plot offset option in parentheses.

The printable area of a drawing sheet is defined by the selected output device and is represented by a dashed line in a layout. When you change to another output device, the printable area may change.
You can offset the geometry on the paper by entering a positive or negative value in the X and Y offset boxes. The plotter unit values are in inches or millimeters on the paper.

\section*{Center the Plot}

Automatically calculates the \(X\) and \(Y\) offset values to center the plot on the paper.

\section*{X}

Specifies the plot origin in the \(X\) direction relative to the setting of the Plot Offset Definition option.

\section*{Y}

Specifies the plot origin in the \(Y\) direction relative to the setting of the Plot Offset Definition option.

\section*{Plot Scale}

Controls the relative size of drawing units to plotted units.

NOTE If the Layout option is specified in Plot Area, the layout is plotted at 1:1 regardless of the setting specified in Scale.

\section*{Fit to Paper}

Scales the plot to fit within the selected paper size and displays the custom scale factor in the Scale, Inch \(=\), and Units boxes.

\section*{Scale}

Defines the exact scale for the plot. Custom defines a user-defined scale. You can create a custom scale by entering the number of inches (or millimeters) equal to the number of drawing units.

NOTE You can modify the list of scales with SCALELISTEDIT.
\(\operatorname{Inch}(\mathrm{es})=/ \mathrm{mm}=/ \operatorname{Pixel}(\mathrm{s})=\)
Specifies the number of inches, millimeters, or pixels equal to the specified number of units.

Inch/mm/pixel
Specifies inches or mm for display of units in the Plot dialog box. The default is based on the paper size and changes each time a new paper size is selected. Pixel is available only when a raster output is selected.

\section*{Units}

Specifies the number of units equal to the specified number of inches, millimeters, or pixels.

\section*{Scale Lineweights}

Scales lineweights in proportion to the plot scale. Lineweights normally specify the linewidth of plotted objects and are plotted with the linewidth size regardless of the plot scale.

\section*{Plot Style Table (Pen Assignments)}

Sets the plot style table, edits the plot style table, or creates a new plot style table.

\section*{Name (Unlabeled)}

Displays the plot style table that is assigned to the current Model tab or layout tab and provides a list of the currently available plot style tables.
If you select New, the Add Plot Style Table wizard is displayed, which you can use to create a new plot style table. The wizard that is displayed is determined by whether the current drawing is in color-dependent or named mode.

\section*{Edit}

Displays the Plot Style Table Editor, in which you can view or modify plot styles for the currently assigned plot style table.

\section*{Display Plot Styles}

Controls whether the properties of plot styles assigned to objects are displayed on the screen.

\section*{Shaded Viewport Options}

Specifies how shaded and rendered viewports are plotted and determines their resolution levels and dots per inch (dpi).

\section*{Shade Plot}

Specifies how views are plotted. To specify this setting for a viewport on a layout tab, select the viewport and then, on the Tools menu, click Properties.
From the Model tab, you can select from the following options:
■ As Displayed: Plots objects the way they are displayed on the screen.
- Wireframe: Plots objects in wireframe regardless of the way they are displayed on the screen.
- Hidden: Plots objects with hidden lines removed regardless of the way they are displayed on the screen.
- 3D Hidden: Plots objects with the 3D Hidden visual style applied regardless of the way the objects are displayed on the screen.
- 3D Wireframe: Plots objects with the 3D Wireframe visual style applied regardless of the way the objects are displayed on the screen.

■ Conceptual: Plots objects with the Conceptual visual style applied regardless of the way the objects are displayed on the screen.
- Realistic: Plots objects with the Realistic visual style applied regardless of the way the objects are displayed on the screen.
- Rendered: Plots objects as rendered regardless of the way they are displayed on the screen.

\section*{Quality}

Specifies the resolution at which shaded and rendered viewports are plotted.

You can select from the following options:
■ Draft: Sets rendered and shaded model space views to be plotted as wireframe.

■ Preview: Sets rendered and shaded model space views to be plotted at one quarter of the current device resolution, to a maximum of 150 dpi .

■ Normal: Sets rendered and shaded model space views to be plotted at one half of the current device resolution, to a maximum of 300 dpi .
- Presentation: Sets rendered and shaded model space views to be plotted at the current device resolution, to a maximum of 600 dpi .

■ Maximum: Sets rendered and shaded model space views to be plotted at the current device resolution with no maximum.
- Custom: Sets rendered and shaded model space views to be plotted at the resolution setting that you specify in the DPI box, up to the current device resolution.

\section*{DPI}

Specifies the dots per inch for shaded and rendered views, up to the maximum resolution of the current plotting device.

\section*{Plot Options}

Specifies options for lineweights, transparency, plot styles, shaded plots, and the order in which objects are plotted.

\section*{Plot Object Lineweights}

Specifies whether lineweights assigned to objects and layers are plotted.

\section*{Plot Transparency}

Specifies whether object transparency is plotted. This option should only be used when plotting drawings with transparent objects.

IMPORTANT For perfomance reasons, plotting transparency is disabled by default. To plot transparent objects, check the Plot Transparency option. This setting can be overridden by the PLOTTRANSPARENCYOVERRIDE on page 2457 system variable. By default, the system variable honors the setting in the Page Setup and the Plot dialog boxes.

\section*{Plot with Plot Styles}

Specifies whether plot styles applied to objects and layers are plotted.

\section*{Plot Paper Space Last}

Plots model space geometry first. Paper space geometry is usually plotted before model space geometry.

\section*{Hide Paper Space Objects}

Specifies whether the HIDE operation applies to objects in the paper space viewport. This option is available only from a layout tab. The effect of this setting is reflected in the plot preview, but not in the layout.

\section*{Drawing Orientation}

Specifies the orientation of the drawing on the paper for plotters that support landscape or portrait orientation.

\section*{Portrait}

Orients and plots the drawing so that the short edge of the paper represents the top of the page.

\section*{Landscape}

Orients and plots the drawing so that the long edge of the paper represents the top of the page.

Plot Upside-Down
Orients and plots the drawing upside-down.

\section*{Icon}

Indicates the media orientation of the selected paper and represents the orientation of the drawing on the page as a letter on the paper.

NOTE The orientation of plots is also affected by the PLOTROTMODE system variable.

\section*{Preview}

Displays the drawing as it will appear when plotted on paper by executing the PREVIEW command

\title{
Changes to a Printer Configuration File Dialog Box (Page Setup)
}

\section*{Quick Reference}

See also:
■ Specify Page Setup Settings

Notifies you that you have made changes to an existing plotter configuration (PC3) file.

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Page Setup


Shortcut menu: Right-click the Model tab or a layout tab and click Page Setup Manager.
㟇 Command entry: pagesetup

\section*{Summary}

You can cancel your changes, click OK to overwrite the PC3 file, or specify a new file name for the modified PC3 file.

\section*{List of Options}

The following options are displayed.
Save Changes to the Following File Specifies the path of the PC3 file that you have changed. To preserve the original PC3 file, specify a new file name.

\section*{Import Page Setups Dialog Box}

\section*{Quick Reference}

\author{
See also: \\ - Specify Page Setup Settings
}

Displays the page setups in the selected drawing that are available to import.

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Page Setup

Menu: Application menu \(>\) Print \(>\) Page Setup
Shortcut menu: Right-click the Model tab or a layout tab and click Page Setup Manager.
座 Command entry: pagesetup

\section*{Summary}

\section*{List of Options}

The following options are displayed.

\section*{Source Drawing}

Displays the source drawing that contains the listed page setups that are available to import.

\section*{Page Setups}

Lists the page setups that are available to import and their location in the source drawing. Selected page setups are imported into the current drawing when you click OK.

When you import page setups into a page setup overrides file for a sheet set, only page setups with Plot Area set to Layout or Extents are listed.

Name Specifies the name of the page setup available to import.
Location Specifies the location (model or layout) of the page setup in the drawing from which you are importing the page setup.

\section*{Details}

Displays information about the selected page setup.

\section*{Device Name}

Displays the name of the plot device specified in the currently selected page setup.

\section*{Plotter}

Displays the type of plot device specified in the currently selected page setup.

\section*{Plot Size}

Displays the plot size and orientation specified in the currently selected page setup.

Where
Displays the physical location of the output device specified in the currently selected page setup.

\section*{Description}

Displays descriptive text about the output device specified in the currently selected page setup.

\section*{PAN}

\section*{Quick Reference}

See also:
- Pan or Zoom a View

Moves the view planar to the screen.

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Navigate panel \(>\) Pan
8 Toolbar: Standard
\(\$\) Menu: View \(>\) Pan \(>\) Realtime
Shortcut menu: With no objects selected, right-click in the drawing area and choose Pan.

\section*{Summary}

You can pan the drawing display in real time.

\section*{List of Prompts}

The following prompts are displayed.
Press Esc or Enter to exit, or right-click to display a shortcut menu.
If you enter -pan at the Command prompt, PAN displays command prompts, and you can specify a displacement to pan the drawing display.

Position the cursor at the start location and press the mouse button down. Drag the cursor to the new location. You can also press the mouse scroll wheel or middle button down and drag the cursor to pan.

\section*{Panning in Real Time}

\section*{Quick Reference}

\section*{See also:}

■ Pan or Zoom a View

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Navigate panel \(>\) Pan
\(\$\) Toolbar: Standard
\(\$\) Menu: View > Pan > Realtime
Shortcut menu: With no objects selected, right-click in the drawing area and choose Pan.

\section*{Summary}

The cursor changes to a hand cursor. By holding down the pick button on the pointing device, you lock the cursor to its current location relative to the viewport coordinate system. The drawing display is moved in the same direction as the cursor.

When you reach a logical extent (edge of the drawing space), a bar is displayed on the hand cursor on that edge. Depending on whether the logical extent is at the top, bottom, or side of the drawing, the bar is either horizontal (top or bottom) or vertical (left or right side).


When you release the pick button, panning stops. You can release the pick button, move the cursor to another location in the drawing, and then press the pick button again to pan the display from that location.

To stop panning at any time, press Enter or Esc.

\section*{Quick Reference}

\section*{See also:}
- Pan or Zoom a View

\section*{List of Prompts}

The following prompts are displayed.
Specify base point or displacement: Specify a point
You can specify a single point, indicating the relative displacement of the drawing with respect to the current location, or (more commonly) you can specify two points, in which case the displacement is computed from the first point to the second point.


If you press Enter, the drawing is moved by the amount you specified in the Specify Base Point or Displacement prompt. For example, if you specify \(\mathbf{2 , 2}\) at the first prompt and press Enter at the second prompt, the drawing is moved 2 units in the \(X\) direction and 2 units in the \(Y\) direction. If you specify a point at the Specify Second Point prompt, the location of the first point is moved to the location of the second point.

You cannot use PAN transparently during VPOINT or DVIEW, or while another ZOOM, PAN, or VIEW command is in progress.

\section*{Pan Shortcut Menu}

\section*{Quick Reference}

See also:
- Pan or Zoom a View

To access the Pan shortcut menu, right-click in the drawing area while PAN is active.

\section*{List of Options}

The following options are displayed.
Exit Cancels PAN or ZOOM.
Pan Switches to PAN.
Zoom Switches to ZOOM in real time.
3D Orbit Switches to 3DORBIT.
Zoom Window Zooms to display an area specified by a rectangular window.
Zoom Original Restores the original view.
Zoom Extents Zooms to display the drawing extents.

\section*{PARAMETERS}

\section*{Quick Reference}

See also:
- Work With Constraint Parameters in Blocks

Controls the associative parameters used in the drawing.

\section*{Access Methods}
\(f x\)

Button
\(\$\) Ribbon: Parametric tab \(>\) Manage panel \(>\) Parameters Manager
\(\$\) Menu: Parametric \(>\) Parameters Manager
\(\$\) Toolbar: Parametric

\section*{Summary}

The Parameters Manager palette displays relevant parametric information based on whether you access it from within the drawing or from within the Block Editor.
- Parameters Manager - Drawing Editor on page 1403

■ Parameters Manager - Block Editor on page 1408

\section*{Parameters Manager - Drawing Editor}

\section*{Quick Reference}

See also:
■ Work With Constraint Parameters in Blocks

Controls the associative parameters used in the drawing.

\section*{Access Methods}
\(f_{x}\)
Button
\(\$\) Ribbon: Parametric tab \(>\) Manage panel \(>\) Parameters Manager
\(\$\) Menu: Parametric \(>\) Parameters Manager
\(\$\) Toolbar: Parametric
並 Command entry: parameters

\section*{Summary}

The Parameters Manager palette displays all associative variables (dimensional constraint variables and user-defined variables) available in the drawing.

You can create, edit, rename, group, and delete associative variables.
The Parameters Manager palette includes a grid control with three columns, by default. You can also add two columns (Description, Type) using the shortcut menu.

\section*{List of Options}

The following options are displayed.
\begin{tabular}{ll}
\hline Column & Description \\
\hline Name & Displays the variable name \\
\hline Expression & \begin{tabular}{l} 
Displays the real number or the equation \\
for the expression, for example, d1+d2
\end{tabular} \\
\hline Value & Displays the value of the expression \\
\hline Additional Columns & \begin{tabular}{l} 
Displays the dimensional constraint type \\
or variable value
\end{tabular} \\
\hline Type & \begin{tabular}{l} 
Displays the comments or notes associated \\
with the user variable
\end{tabular} \\
\hline Description &
\end{tabular}

\section*{Create a Dimensional Variable}

To create a dimensional variable, you apply a dimensional constraint to an object in the drawing. Dimensional variables are displayed under the Dimensional Constraint Parameters group header in the Parameters Manager palette.

User variables are custom variables that enable you to create and drive object relationships. These variables can contain constants, or equations.

Click the New User Parameter icon on the Parameters Manager palette to create a user variable. Alternatively, double-click an empty cell to create a user-defined variable.

User variables have the following characteristics:
- Default values are: Name \(=\) user1, Expression \(=1\), and value \(=1.00\).
- Name should be alphanumeric and cannot begin with a number, contain spaces, or exceed 256 characters.

■ Expression values should be within the range of -1e100 and 1e100.

\section*{Edit a Dimensional Variable}

You can edit the dimensional variable name and expression. To do so:
- Double-click the name or expression box.
- Select the row and press F2. Press the Tab key to edit the contiguous columns.
You cannot edit the Value column.

When you rename a dimensional variable, all instances of the variable are updated in the drawing and in the Parameters Manager palette.

TIP Use the shortcut menu for the Name and Expression cells when copying and pasting values. The Expressions shortcut menu contains commonly used mathematical functions.

Invalid expressions are displayed in red text.

\section*{Delete a Dimensional Variable}

When you delete a dimension variable:
- The associated dimensional constraint in the drawing is removed.
- The variables retain the value calculated by the expression as a constant. This action is for variables referenced by other variables, and ensures that the geometry does not change.

\section*{Sorting a Column}

Click a column heading to sort the variables in the table in ascending or descending order of the column property. When you sort by variable type, the name column is second in order to be sorted.The sort order is persistent.

The sort order is not affected when you add a variable, or change a name or expression.

\section*{Defining a Parameter Group}

The Parameters Manager allows you to define parameter groups in the drawing editor. A parameter group is a collection of named parameters. It contains a
subset of all parameters defined for the current space, but the group can also be empty.

Click the Filter icon to create a group, which displays a filter tree on the left vertical panel of the palette where you can show, hide, or expand the group filters. Drag and drop the parameters from the grid control into a parameter group.

The Invert Filter check box displays all the parameters which do not belong in the group.

You can filter the display of variables to do the following:
- All - Displays all associative variables. No filter is applied.
- All Used in Expressions - Displays all variables that contain expressions to evaluate a value, and variables contained in expressions.
- Custom group filter - Displays all parameters added in the defined parameter group.

\section*{Searching a Parameter}

An edit box allows you to search for parameters by name.

\section*{Highlighting Dimensional Constraints}

When you select a dimensional constraint in the Parameters Manager palette, the associated object is highlighted in the drawing.

If the parameter is a dynamic constraint that is hidden, the dynamic constraint will be temporarily displayed and highlighted when you select the cell.

NOTE The object is not selected when highlighted; the highlighting is to visually identify the dimensionally constrained object.

\section*{Shortcut Menu Options}

The following options are displayed on the shortcut menus in the Parameters Manager palette.
\begin{tabular}{ll}
\hline Column Header Shortcut Menu & \\
\hline Expression & Displays or hides the Expression column \\
\hline Value & Displays or hides the Value column \\
\hline Type & Displays or hides the Type column \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Description & Displays or hides the Description column \\
\hline Maximize All Columns & Displays all columns using the maximum value in each column as the base. \\
\hline \multicolumn{2}{|l|}{Row Shortcut Menu} \\
\hline Show Filter Tree & Expands and displays the Filter Tree. \\
\hline Remove from Group Filter & Removes the selected parameters from the group filter. \\
\hline Delete Parameter & Deletes the selected parameters from the drawing and the Parameters Manager. \\
\hline \multicolumn{2}{|l|}{Cell Shortcut Menu} \\
\hline Cut & Removes the value from the cell and pastes it to the clipboard. \\
\hline Copy & Copies the value in the cell and pastes it to the clipboard. \\
\hline Paste & Pastes the immediately transferred value from the clipboard. \\
\hline Delete & Deletes the value from the cell based on the selection. \\
\hline Expressions & Displays a list of functions for use in the expression column (available only within the Expression cell) \\
\hline \multicolumn{2}{|l|}{Group Filter Shortcut Menu} \\
\hline New Group Filter & Creates a new parameter group filter. \\
\hline Rename & Edits the group filter name. \\
\hline Delete & Deletes the group filter. \\
\hline Isolate Dynamic Constraints in Group & Displays only the dynamic constraints for the group filter. \\
\hline
\end{tabular}

\section*{Parameters Manager - Block Editor}

\section*{Quick Reference}

See also:
- Work With Constraint Parameters in Blocks

Controls the associative parameters used in the Block Editor.

\section*{Access Methods}
\(f x\)

Button
\$ Ribbon: Block Editor tab \(>\) Manage panel \(>\) Parameters Manager菐 Command entry: parameters

\section*{Summary}

In the Block Editor, the Parameters Manager displays a consolidated view of all parameters and user-defined properties for the block definition.

The Parameters Manager palette includes a grid control with three columns (Name, Expression, Value) by default. You can add one or more additional columns (Type, Order, Show, or Description) using the shortcut menu.
\begin{tabular}{ll}
\hline Column & Description \\
\hline Name & Displays the variable name \\
\hline Expression & \begin{tabular}{l} 
Displays the real number or equation, for \\
example, \(\mathrm{d} 1+\mathrm{d} 2\)
\end{tabular} \\
\hline Value & Displays the value of the expression \\
\hline
\end{tabular}

Additional Columns
\begin{tabular}{ll}
\hline Type & \begin{tabular}{l} 
Displays the dimensional constraint type \\
or variable value
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
\hline Column & Description \\
\hline Order & \begin{tabular}{l} 
Controls the order properties are displayed \\
in the Properties palette
\end{tabular} \\
\hline Show & \begin{tabular}{l} 
Displays the parameter as a property of the \\
block reference
\end{tabular} \\
\hline Description & \begin{tabular}{l} 
Displays the comments or notes associated \\
with the user variable
\end{tabular} \\
\hline
\end{tabular}

The Type column affects the formatting of the parameter in the Parameters Manager and Properties palette. It also affects the value of the parameter when the block is scaled.
\begin{tabular}{llll}
\hline Type & Units & Precision & Block Scale Factor \\
\hline Distance & LUNITS & LUPREC & Scaled by scale factor \\
\hline Angle & AUNITS & AUPREC & No scale \\
\hline Real & Decimal & LUPREC & No scale \\
\hline Area & Decimal & LUPREC & \begin{tabular}{l} 
Multiplied by square of \\
scale
\end{tabular} \\
\hline Volume & Decimal & LUPREC & Multiplied by cube of scale \\
\hline String & Not applicable & Not applicable & Not applicable \\
\hline
\end{tabular}

The Type cell for User parameters displays a drop-down list of the value types. The parameter can be sorted and can be set to Show or Hide in the Properties palette. The value of the parameter resets to 1 when you change the type from String to another type.

Parameters can be renamed; equations and values can be entered or modified. Changes to a parameter name are immediately updated throughout the table and in the Block Editor.

The parameters for the block definition are organized in the following categories:
- Action Parameters
- Dimensional Constraint Parameters

■ Reference Parameters
■ User Parameters
■ Attributes

You can only add user parameters to the table. When you delete any item from the table, the item is automatically deleted from the block definition.

\section*{Create a Dimensional Variable}

To create a dimensional variable, you apply a dimensional constraint to an object in the Block Editor. Dimensional variables are displayed under the Dimensional Constraint Parameters group header in the Parameters Manager palette.
User variables are custom variables that create and drive object relationships. These variables can contain constants, or equations.

Click the New User Parameter icon on the Parameters Manager palette to create a user variable. Alternatively, double-click an empty cell to create a user-defined variable.

User variables have the following characteristics:
- Default values are: Name \(=\) user1, Expression \(=1\), and value \(=1.00\).
- Name should be alphanumeric.

■ Expression values should be within the range of -1e100 and 1e100.

\section*{Edit a Dimensional Variable}

You can edit the dimensional variable name and expression. To do so:
- Double-click the name or expression box.
- Select the row and press F2. Press the Tab key to edit the contiguous columns.
You cannot edit the Value column.

When you rename a dimensional variable, all instances of the variable are updated in the drawing and in the Parameters Manager palette.
Invalid expressions are displayed in red text.

\section*{Delete a Dimensional Variable}

The following are the current behavioral changes in the drawing when you delete a dimension variable:
- The associated dimensional constraint in the drawing is removed.
- The variables retain the value calculated by the expression as a constant. This action is for variables referenced by other variables, and ensures that the geometry does not change.

\section*{Filtering the Display of Variables}

You can filter the display of variables to do the following:
■ Display All Parameters - Displays all associative variables. No filter is applied.
- Display Parameters Used in Expressions - Displays all variables that contain expressions to evaluate a value, and variables contained in expressions.

\section*{Sorting a Column}

The sort order is not affected when you change a cell value.

\section*{Searching a Parameter}

An edit box in the upper-right corner of the Parameters Manager allows you to search for parameters by name.

\section*{Shortcut Menu Options}

The following options are displayed on the shortcut menus in the Parameters Manager palette.
\begin{tabular}{ll}
\hline Column Header Shortcut Menu & \\
\hline Expression & Displays or hides the Expression column. \\
\hline Value & Displays or hides the Value column. \\
\hline Type & Displays or hides the Type column. \\
\hline Show & \begin{tabular}{l} 
Displays or hides the Show column. The \\
Show property can be set for dimensional \\
constraint parameters and user parameters
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|}
\hline & created in the Block Editor only. This property is read-only and is set to No for dimensional contraint parameters and user parameters which are created in the drawing editor. \\
\hline Order & Displays or hides the Order column. \\
\hline Description & Displays or hides the Description column. \\
\hline Maximize All Columns & Displays all columns using the maximum value in each column as the base. \\
\hline \multicolumn{2}{|l|}{Row Shortcut Menu} \\
\hline Delete Parameter & Deletes the selected parameters from the drawing and the Parameters Manager. \\
\hline Convert Parameter & Converts dimensional constraints and user parameters to constraint parameters and user parameters. \\
\hline \multicolumn{2}{|l|}{Cell Shortcut Menu} \\
\hline Cut & Removes the value from the cell and pastes it to the clipboard. \\
\hline Copy & Copies the value in the cell and pastes it to the clipboard. \\
\hline Paste & Pastes the immediately transferred value from the clipboard. \\
\hline Delete & Deletes the value from the cell based on the selection. \\
\hline Expressions & Displays a list of functions for use in the expression column (available only within the Expression cell) \\
\hline
\end{tabular}

\section*{-PARAMETERS}

\section*{Quick Reference}

See also:
■ Work With Constraint Parameters in Blocks

Controls the associative parameters used in the drawing.

\section*{List of Prompts}

The following prompts are displayed.
Enter a parameter option [New on page 1413/Edit on page 1413/Rename on page 1413/Delete on page 1413/? - List Parameters on page 1413 ]:

NOTE You cannot use the -PARAMETERS command in the Block Editor on page 231.

New Creates a user variable.
Edit Edits the expression of the specified user variable.
Rename Renames the user variable.
Delete Removes the user variable from the list.
? - List Parameters Lists available user variables in the drawing.

\section*{PARAMETERSCLOSE}

\section*{Quick Reference}

\author{
See also: \\ ■ Work With Constraint Parameters in Blocks \\ Closes the Parameters Manager palette.
}

\section*{PARTIALOAD}

\section*{Quick Reference}

See also:
■ Open Part of a Large Drawing (Partial Load)

Loads additional geometry into a partially opened drawing.

\section*{Access Methods}
\(\$\) Menu: File menu > Partial Load

\section*{Summary}

The Partial Load dialog box is displayed. PARTIALOAD can be used only in a partially open drawing. To partially open a drawing, use OPEN and choose Partial Open in the Select File dialog box (a standard file selection dialog box). Any information that is loaded into the file using PARTIALOAD cannot be unloaded, not even with UNDO.

If you enter -partiaload at the Command prompt, options are displayed.

\section*{Partial Load Dialog Box}

\section*{Quick Reference}

See also:
■ Open Part of a Large Drawing (Partial Load)

Displays the views and layers available for specifying additional geometry to load into a partially open drawing.


\section*{Access Methods}
\(\$\) Menu: File menu > Partial Load菐 Command entry: partiaload

\section*{Summary}

You can select and load geometry from a view or a selected area and from layers. You cannot unload any information that is currently loaded in the drawing. If the drawing contains attached xrefs that were not loaded at the time that the drawing was partially opened, you can reload the xrefs by using the External References palette. See XREF.

\section*{List of Options}

The following options are displayed.

\section*{View Geometry to Load}

Displays the selected view and available views in the drawing. Views available for loading include only views defined in model space. You can load paper space geometry by loading the layer on which the paper space geometry is drawn.

View Name
Displays the currently selected view. Geometry that is common to both the selected view and the layers is loaded into the drawing.

View List

Displays all the model space views available in the selected drawing file. When a view is selected, only the geometry in the selected view is loaded. You can select to load geometry from only one view. Geometry that is common to both the selected view and the layers is loaded into the drawing. Any information currently loaded into the file cannot be unloaded.

\section*{Pick Window}

Prompts you to use the pointing device to specify an area using window selection.

\section*{Layer Geometry to Load}

Displays all the layers available in the selected drawing file. The geometry on selected layers is loaded into the drawing, including both model space and paper space geometry. You can load geometry from multiple layers. Geometry that is common to both the selected view and the layers is loaded into the drawing. Any information that is currently loaded into the file cannot be unloaded.

Layer Name Displays the layer names in the selected drawing.
Load Geometry Specifies whether geometry from a layer is loaded into the drawing or not. If Load Geometry is selected, the geometry from the layer is loaded into the drawing. Any information that is currently loaded into the file cannot be unloaded.

Load All
Selects Load Geometry for all layers. You can also right-click and choose Load All.

\section*{Clear All}

Specifies that no geometry be loaded into the drawing. It is recommended that you load geometry from at least one layer into the drawing. If you do not select any layers to load, no geometry is loaded at all, including geometry from the selected view. You can also right-click and choose Clear All.

\section*{Index Status}

Indicates whether the selected drawing file contains a spatial or layer index. INDEXCTL controls whether layer and spatial indexes are saved with the drawing file. A spatial index organizes objects based on their location in space. A layer index is a list showing which objects are on which layers.

\section*{-PARTIALOAD}

\section*{Quick Reference}

\section*{See also:}

■ Open Part of a Large Drawing (Partial Load)

\section*{List of Prompts}

The following prompts are displayed.
Specify first corner on page 1417 or [View on page 1417]: Specify a point or enter v First Corner
Specifies the first corner of a user-defined view.
Geometry from the defined view is loaded into the partially open drawing.
Layers to Load Loads geometry from the selected layers into the current drawing, including both model space and paper space geometry. To load geometry from multiple layers into the drawing, use a comma between layer names. If no layer geometry is specified, no layer geometry is loaded into the drawing, including geometry specified to load from a view.

Yes Does not load any external references into the drawing.
No Loads all external references into the drawing.
? Displays a list of layer names available in the current drawing. Enter one or more layer names. If no layer geometry is specified, no layer geometry is loaded into the drawing, including geometry specified to load from a view.

View
Loads the geometry from the specified view into the current drawing.

\section*{View:View to Load}

Loads the geometry from the specified view into the partially open drawing.
Layers to Load Loads geometry from the layer or layers into the current drawing. To load geometry from multiple layers into the drawing, use a comma between layer names. If no layer geometry is specified, no layer geometry is loaded into the drawing, including geometry specified to load from a view.
?-List Layers Displays a list of layer names available in the current drawing. Enter one or more layer names. If no layer geometry is specified, no layer
geometry is loaded into the drawing, including geometry specified to load from a view.

\section*{View: ?-List Views}

Displays a list of model space views available in the selected drawing. Enter a view name.

Layers to Load Loads geometry from one or more layers into the current drawing. To load geometry from multiple layers into the drawing, use a comma between layer names. If no layer geometry is specified, no layer geometry is loaded into the drawing, including geometry specified to load from a view.
?-List Layers A list of layer names available in the current drawing is displayed. Enter one or more layer names. If no layer geometry is specified, no layer geometry is loaded into the drawing, including geometry specified to load from a view.

\section*{PARTIALOPEN}

\section*{Quick Reference}

\section*{See also:}
- Open Part of a Large Drawing (Partial Load)

Loads geometry and named objects from a selected view or layer into a drawing.

\section*{Summary}

NOTE It is recommended that you partially open a drawing by using OPEN and choosing Partial Open in the Select File dialog box to display the Partial Open dialog box.

When you are running a script and using PARTIALOPEN, FILEDIA can be set to 0 or 1 . When FILEDIA is set to 0 and you enter partialopen or -partialopen at the Command prompt, the following prompts are displayed.

\section*{List of Prompts}

The following prompts are displayed.
Enter name of drawing to open: Enter a drawing name and press Enter

Enter ~ (tilde) at the prompt to ignore FILEDIA and display the Select File dialog box. In the Select File dialog box, select a file and choose Partial Open to display the Partial Open dialog box. If you enter a file name at the Command prompt, additional prompts are displayed.

Enter view to load on page 1419 or [? on page 1419] <*Extents*>: Enter a view name, enter?, or press Enter to load the Extents view

\section*{View to Load}

Opens the drawing with the geometry from the selected view loaded.

\section*{Layers to Load}

Loads geometry from one or more layers into the current drawing. To load geometry from multiple layers, use a comma between layer names. If no layer geometry is specified, no layer geometry is loaded into the drawing, including geometry specified to load from a view.

Yes Does not load any external references into the drawing.
No Loads all external references into the drawing.

\section*{?-List Layers}

Displays a list of layers available in the selected drawing. Enter one or more layer names. To enter multiple layers, separate the layer names with a comma.
- Yes on page 1419

■ No on page 1419

\section*{?-List Views}

Displays a list of model space views available in the selected drawing. Enter a view name.

\section*{Layers to Load}

Loads geometry from one or more layers into the current drawing. To load geometry from multiple layers, use a comma between layer names. If no layer geometry is specified, no layer geometry is loaded into the drawing, including geometry specified to load from a view.
- Yes on page 1419
- No on page 1419

\section*{?-List Layers}

Displays a list of layers available in the selected drawing. Enter one or more layer names. To enter multiple layers, separate the layer names with a comma.
- Yes on page 1419

\section*{PASTEASHYPERLINK}

\section*{Quick Reference}

See also:
- Add Hyperlinks to a Drawing

Creates a hyperlink to a file, and associates it with a selected object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Clipboard panel \(>\) Paste as Hyperlink
\(\$\) Menu: Edit \(>\) Paste as Hyperlink

\section*{Summary}

First, select a document, such as a text, spreadsheet, drawing, or image file, and copy it to the Clipboard. Then, use this command to associate a hyperlink to that document with any selected object.

\section*{PASTEBLOCK}

\section*{Quick Reference}

See also:
- Use Windows Cut, Copy, and Paste

Pastes objects from the Clipboard into the current drawing as a block.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Clipboard panel \(>\) Paste as Block
\(\$\) Menu: Edit \(>\) Paste as Block
Shortcut menu: End any active commands, right-click in the drawing area, and choose Paste as Block from Clipboard.

\section*{Summary}

The objects copied to the Clipboard are pasted into the drawing as a block at the specified insertion point. The block is given a random name.

\section*{PASTECLIP}

\section*{Quick Reference}

\section*{See also:}

■ Use Windows Cut, Copy, and Paste

Pastes objects from the Clipboard into the current drawing.

\section*{Access Methods}


Button

8 Ribbon: Home tab \(>\) Clipboard panel \(>\) Paste
\(\$\) Menu: Edit \(>\) Paste

8 Toolbar: Standard


Shortcut menu: End any active commands, right-click in the drawing area, and choose Paste from Clipboard.

\section*{Summary}

If the Clipboard contains ASCII text, the text is inserted as a multiline text (mtext) object using the MTEXT defaults. A spreadsheet is inserted as a table object.
All other objects, except AutoCAD objects, are inserted as embedded or linked (OLE) objects. You can edit these OLE objects by double-clicking them in the drawing to open the application in which they were created.

When you copy objects to the Clipboard, information is stored in all available formats. When you paste the Clipboard contents into a drawing, the format that retains the most information is used. You can also use Copy and Paste to transfer objects between drawings.

NOTE You can also use Ctrl+V to run PASTECLIP. If the cursor is in the drawing area, PASTECLIP behaves as described. If the cursor is at the Command prompt, text from the Clipboard is pasted at the current prompt.

\section*{PASTEORIG}

\section*{Quick Reference}

See also:
- Use Windows Cut, Copy, and Paste

Pastes objects from the Clipboard into the current drawing using the original coordinates.

\section*{Access Methods}


\section*{Button}
\(\$\) Ribbon: Home tab \(>\) Clipboard panel \(>\) Paste to Original Coordinates
\(\$\) Menu: Edit \(>\) Paste to Original Coordinates
Shortcut menu: End any active commands, right-click in the drawing area, and choose Paste to Original Coordinates from Clipboard.

\section*{Summary}

The objects copied to the Clipboard are pasted into the current drawing at the same coordinates used in the original drawing.

This command functions only when the Clipboard contains AutoCAD data from a drawing other than the current drawing.

\section*{PASTESPEC}

\section*{Quick Reference}

\section*{See also:}
- Use Windows Cut, Copy, and Paste

Pastes objects from the Clipboard into the current drawing and controls the format of the data.

\section*{Access Methods}


Button

8 Ribbon: Home tab \(>\) Utilities panel \(>\) Paste Special
\(\$\) Menu: Edit \(>\) Paste Special
Summary
The Paste Special dialog box is displayed.

\section*{Paste Special Dialog Box}

\section*{Quick Reference}

See also:
■ Use Windows Cut, Copy, and Paste

Sets file formats and linking options for data pasted from the Clipboard.


\section*{Access Methods}


\section*{Button}
\(\$\) Ribbon: Home tab \(\boldsymbol{>}\) Utilities panel \(>\) Paste Special
Menu: Edit \(>\) Paste Special
善 Command entry: pastespec

\section*{Summary}

You can either embed file data or link file data. Linked data is updated when you open the drawing.
When you copy objects to the Clipboard, information is stored in all available formats. When you paste the Clipboard contents into a drawing, you can choose from the available formats.

\section*{List of Options}

The following options are displayed.
Source Displays the name of the document that contains the information you copied. It may also show the specific section of the document you copied.

Paste Pastes the contents of the Clipboard into the current drawing as an embedded object.

Paste Link Pastes the contents of the Clipboard into the current drawing. If the source application supports an OLE or data link, a link is created to the original file.

As Displays applicable formats in which you can paste the contents of the Clipboard into the current drawing.
If you select the AutoCAD Entities option, the metafile graphics in the Clipboard are converted to AutoCAD objects. If the metafile graphics are not converted, the metafile is displayed as an OLE object.

Display as Icon Inserts a picture of the application icon instead of the data. To view or edit the data, double-click the icon.

\section*{PCINWIZARD}

\section*{Quick Reference}

\section*{See also:}

■ Import PCP or PC2 Settings into a Layout

Displays a wizard to import PCP and PC2 configuration file plot settings into the Model tab or current layout.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Wizards \(>\) Import Plot Settings

\section*{Summary}

PCINWIZARD displays the Import PCP or PC2 Plot Settings wizard. Information that can be imported from PCP or PC2 files includes plot area, rotation, plot offset, plot optimization, plot to file, paper size, plot scale, and pen mapping.

The wizard prompts you for the name of the PCP or PC2 configuration file from which you want to import settings. You can view and modify the plot settings prior to importing them. The imported settings can be applied to the current Model tab or layout tab.

\section*{PDFADJUST}

\section*{Quick Reference}

\section*{See also:}
- Adjust Underlay Contrast, Fade, Monochrome, and Colors for the Background

Adjust the fade, contrast, and monochrome settings of a PDF underlay.

\section*{Access Methods}

母显
Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Adjust

\section*{Summary}

If you select a single PDF underlay, the default values for Fade, Contrast, and Monochrome are the current property settings of the selected underlay. If you select multiple underlays, the default values for Fade, Contrast, and Monochrome remain as they were set the last time the command was used.

You can also use the ADJUST on page 105 command to change an underlay's fade, contrast, and monochrome settings.

To adjust the colors for the background, open the underlay's Properties Palette.

\section*{List of Prompts}

The following prompts are displayed.
Fade Controls the fade effect of the underlay. Values range from 0 through 100. The greater the value, the lighter the linework in the underlay appears. Works indirectly with the contrast effect; a higher contrast value blends the underlay in the background when fade is set to a higher value.

Contrast Controls the contrast, and indirectly the fading effect, of the underlay. Values range from 0 through 100 . The greater the value, the more each pixel is forced to its primary or secondary color. Default=75.

Monochrome Controls the color saturation of all linework while maintaining the luminance. When turned on, the linework appears in varying shades of gray starting at black if the background color luminance is 50 percent or more. If the background color luminance is less than 50 percent, then the colors are inverted, with the darkest linework displaying in white, and the lightest linework displaying in black.

\section*{PDFATTACH}

\section*{Quick Reference}

\section*{See also:}
- Attach Files as Underlays

Insert a PDF file as an underlay into the current drawing.

\section*{Access Methods}


\section*{Button}
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Attach
8 Toolbar: Insert
\(\$\) Menu: Insert > PDF Underlay

\section*{Summary}

When you attach a PDF file as an underlay, you link that referenced file to the current drawing. Any changes to the referenced file are displayed in the current drawing when it is opened or reloaded.

The Select Reference File dialog box (a standard file selection dialog box) is displayed. Once you select a PDF file, the Attach PDF Underlay dialog box on page 1429 is displayed. After the file is attached, you can adjust and clip the underlay through the PDF Underlay Ribbon Contextual tab on page 1431.

NOTE If you plan to access PDF files from the Vault client server, the Vault file open dialog box supersedes the Select PDF File dialog box. Access to the Vault client server is only available to Autodesk Subscription customers.

\section*{-PDFATTACH}

\section*{Quick Reference}

\section*{See also:}
- Attach Files as Underlays

Attach a PDF underlay from the command line.

\section*{Summary}

When you attach a PDF file as an underlay, you link that referenced file to the current drawing. Any changes to the referenced file are displayed in the current drawing when it is opened or reloaded.

TIP You can drag a PDF file onto the drawing window to start the PDFATTACH command.

\section*{List of Prompts}

The following prompts are displayed.
Path to PDF File to Attach Enters the full path name to the PDF underlay file.
Entering a tilde ( \(\sim\) ) displays the Select PDF File dialog box (a standard file selection dialog box).
To avoid errors when entering a file name, it is recommended that you specify both the PDF file and path as follows:
path name\filename.dgn
or
"path name\filename.dgn"
If you enter a valid PDF file name without a file extension, the program adds the extension and searches for the file.

Enter Page Number Enter a page number. For a list of pages, enter ?.
Enter Page(s) to list <*> Lists the pages available in the PDF file in a separate text window.

Insertion Point Specifies the insertion point for the selected PDF file.

Scale Factor Specifies the scale factor of the selected PDF underlay and the scale factor units.
If INSUNITS is set to "unitless" or if the underlay does not contain resolution information, the scale factor becomes the underlay width in AutoCAD units. If INSUNITS has a value such as millimeters, centimeters, inches, or feet, and the underlay has resolution information, the scale factor is applied after the true width of the underlay in AutoCAD units is determined.

Rotation Specifies the rotation angle of the selected PDF underlay.

\section*{Attach PDF Underlay Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Attach Files as Underlays

Names, locates, and defines the insertion point, scale, and rotation of attached PDF underlays.

\section*{Access Methods}
\(\$\) Menu: Insert > PDF Underlay
\(\%\) Toolbar: Insert PDF
两 Command entry: pdfattach

\section*{List of Options}

The following options are displayed.
Name
Identifies the PDF file you have selected to attach.

\section*{Browse}

Opens the Select Reference File dialog (a standard file selection dialog box on page 1295).

\section*{Select one of more pages from the PDF file}

Displays all of the pages that are found in the PDF file. If the PDF file only contains a single page, that page is listed. You can select multiple pages by holding Shift or Ctrl and selecting the pages to attach.

\section*{Path Type}

Select the full (absolute) path, the relative path to the PDF file, or No Path, and the name of the PDF file. For the No Path option, the PDF file must be located in the same folder as the current drawing file.

\section*{Insertion Point}

Specifies the insertion point for the selected PDF file.

\section*{Specify On-Screen}

Directs input at the Command prompt or the pointing device.
X
Sets the \(X\) coordinate value.

Y

Sets the \(Y\) coordinate value.
Z
Sets the \(Z\) coordinate value.

\section*{Scale}

Specifies the scale factor of the selected PDF underlay.
If INSUNITS is set to "unitless" or if the underlay does not contain resolution information, the scale factor becomes the underlay width in AutoCAD units. If INSUNITS has a value such as millimeters, centimeters, inches, or feet, and the underlay has resolution information, the scale factor is applied after the true width of the underlay in AutoCAD units is determined.

\section*{Specify On-screen}

Inputs information at the Command prompt or with the pointing device. If Specify On-Screen is cleared, enter a value for the scale factor.

\section*{Scale Factor Field}

Enter a value for the scale factor.

\section*{Rotation}

Specifies the rotation angle of the selected DWF underlay.

Specify on-screen
If Specify On-Screen is selected, you may wait until you exit the dialog box to rotate the object with your pointing device or enter a rotation angle value at the Command prompt.

\section*{Angle}

If Specify On-Screen is cleared, enter the rotation angle value in the dialog box. The default rotation angle is 0 .

\section*{Show Details}

Found In Displays the path to the PDF file.
Saved Path Displays the path that is saved with the drawing when the PDF file is attached. The path is dependent upon the Path Type setting.

\section*{PDF Underlay Ribbon Contextual tab}

\section*{Quick Reference}

\section*{See also:}

■ Work with Underlays

Displays options for editing PDF underlays.


\section*{List of Options}

The following options are displayed.

\section*{Access Methods}

Insert tab > Reference panel > Attach
Insert > PDF Underlay
pdfattach

\section*{Summary}

When you select a PDF underlay, the PDF Contextual tab is displayed on the ribbon.

\section*{Adjust Panel}

Contrast Controls the contrast and the fading effect of the underlay.
Fade Controls the appearance of the linework. The greater the value, the lighter the linework in the underlay is displayed.

Display in Monochrome Displays the underlay in black and white.

\section*{Clipping Panel}

Create Clipping Boundary Deletes the old clipping boundary (if one exists) and create a new one.

Remove Clipping Deletes the clipping boundary.

\section*{Options Panel}

Show Underlay Hides or displays the underlay.
Enable Snap Determines whether object snapping is active for geometry in the underlay.

External References (EXTERNALREFERENCES on page 771) Opens the External References palette.

PDF Layers Panel
Edit Layers (ULAYERS on page 1992) Controls the display of layers in a DWF, DWFx, PDF, or DGN underlay.

\section*{PDFCLIP}

\section*{Quick Reference}

\section*{See also:}
- Clip Underlays

Crops the display of a selected PDF underlay to a specified boundary.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Clip.
Shortcut menu: Select a PDF underlay to clip, right-click and click PDF Clip.

\section*{Summary}

The clipping boundary determines the portion of an image outside the boundary that is hidden. The visibility of the clipping boundary is controlled by the FRAME system variable.
The boundary you specify must be in a plane parallel to the PDF underlay.
TIP Use the generic CLIP on page 332 command to clip images, external references, viewports, and underlays.

\section*{List of Prompts}

The following prompts are displayed.

\section*{On}

Turns on clipping and displays the PDF underlay clipped to the previously defined boundary.

Off
Turns off clipping and displays the entire PDF underlay and frame.
If you re-clip the PDF underlay while clipping is turned off, clipping is automatically turned back on. You are prompted to delete the old boundary even when clipping is turned off and the clipping boundary is not visible.

\section*{Delete}

Removes a predefined clipping boundary and displays the full original underlay.

\section*{New Boundary}

Defines a rectangular or polygonal clipping boundary, or generates a polygonal clipping boundary from a polyline.

Select Polyline Defines the boundary with the selected polyline. The polyline can be open but must consist of straight line segments and cannot intersect itself.

Polygonal Defines a polygonal clipping boundary with three or more points that you specify for the vertices of a polygon.

Rectangular Defines a rectangular boundary with the points that you specify for opposite corners.

Invert Clip Inverts the mode of the clipping boundary: objects are clipped either outside the boundary or inside the boundary.

NOTE You can only create a new clipping boundary for a selected PDF underlay when the old boundary is deleted.

\section*{PDFLAYERS}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Layers in an Underlay

Controls the display of layers in a PDF underlay.

\section*{Access Methods}


Button

Shortcut menu: Select a PDF underlay, right-click in the drawing area, and click PDF Layers.

\section*{Summary}

When you select a PDF underlay, the PDF Underlay ribbon contextual tab on page 1431 displays. From the contextual tab, you can click Edit Layers or enter PDFLAYERS. The Underlay Layers dialog box on page 1992 displays.
The ULAYERS on page 1992 command manages the layers of all underlays in the current document regardless of type: DWF, DWFx, PDF, and DGN.

\section*{PEDIT}

\section*{Quick Reference}

See also:
- Modify Polylines

Edits polylines and 3D polygon meshes.

\section*{Access Methods}
()

Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Edit Polyline
\(\$\) Menu: Modify \(>\) Object \(>\) Polyline
\$ Toolbar: Modify II \(\square\)
Shortcut menu: Select a polyline to edit, right-click in the drawing area, and choose Polyline Edit.

\section*{Summary}

Common uses for PEDIT include joining 2D polylines, converting lines and arcs into 2D polylines, and converting polylines into curves that approximate B-splines (spline-fit polylines).

\section*{List of Prompts}

The following prompts are displayed.
Select polyline or [MULTIPLE]: Use an object selection method or enter m
The remaining prompts depend on whether you have selected a 2D polyline, a 3D polyline, or 3D polygon mesh.
If the selected object is a line, arc, or a spline, the following prompt is displayed:

Object selected is not a polyline.
Do you want it to turn into one? <Y>: Enter y or n, or press Enter

If you enter \(\boldsymbol{y}\), the object is converted into a single-segment 2D polyline that you can edit. You can use this operation to join lines and arcs into a polyline.

Before the selected spline is converted to a polyline, the following prompt is displayed:

Specify a precision \(\langle 10\rangle\) : Enter a new precision value or press Enter
The precision value determines how accurately the resulting polyline is to fit to the source spline. Valid value is an integer between 0 and 99.

NOTE A high precision value may cause performance problems.
The PLINECONVERTMODE on page 2453 system variable determines whether the polylines are created with linear or arc segments. When the PEDITACCEPT on page 2447 system variable is set to 1 , this prompt is suppressed, and the selected object is automatically converted to a polyline.

The conversion in both PEDIT and SPLINEDIT will obey the DELOBJ on page 2216 system variable.

\section*{Multiple Selection (PEDIT)}

\section*{Quick Reference}

Enables selection for more than one object.
If the selection set includes lines, arcs, or splines, the following prompt is displayed:

\section*{List of Prompts}

The following prompts are displayed.
Convert Lines, Arcs and Splines to polylines [Yes/No]? <Y>: Entery or n or press Enter
Specify a precision for spline conversion <10>: Enter a new precision value or press Enter

The entered precision value affects all splines in the selection set. The precision value is an integer between 0 and 99.

\section*{2D Polyline Selection (PEDIT)}

\section*{Quick Reference}

If you select a 2 D polyline, the following prompt is displayed:

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [Close/Join/Width/Edit vertex/Fit/Spline/Decurve/Ltype gen/Reverse/Undo]: Enter an option or press Enter to end the command

NOTE You can select a single arc or line segment, also called a subobject, within a polyline by pressing the Ctrl key when you click over it.

If the polyline you select is a closed polyline, Open replaces the Close option in the prompt. You can edit a 2D polyline if its normal is parallel to and in the same direction as the \(Z\) axis of the current UCS.

\section*{Close}

Creates the closing segment of the polyline, connecting the last segment with the first. The polyline is considered open unless you close it using the Close option.


\section*{Open}

Removes the closing segment of the polyline. The polyline is considered closed unless you open it using the Open option.

\section*{Join}

Adds lines, arcs, or polylines to the end of an open polyline and removes the curve fitting from a curve-fit polyline. For objects to join the polyline, their endpoints must touch unless you use the Multiple option at the first PEDIT prompt. In this case, you can join polylines that do not touch if the fuzz distance is set to a value large enough to include the endpoints.

\section*{Jointype}

Sets the method of joining selected polylines.
Extend Joins the selected polylines by extending or trimming the segments to the nearest endpoints.

Add Joins the selected polylines by adding a straight segment between the nearest endpoints.

Both Joins the selected polylines by extending or trimming if possible. Otherwise joins the selected polylines by adding a straight segment between the nearest endpoints.


other objects selected

polyline and objects joined

\section*{Width}

Specifies a new uniform width for the entire polyline.
You can use the Width option of the Edit Vertex option to change the starting and ending widths of a segment.


\section*{Edit Vertex}

Marks the first vertex of the polyline by drawing an X on the screen. If you have specified a tangent direction for this vertex, an arrow is also drawn in that direction.


\section*{Next}

Moves the X marker to the next vertex. The marker does not wrap around from the end to the start of the polyline even if the polyline is closed.

\section*{Previous}

Moves the X marker to the previous vertex. The marker does not wrap around from the start to the end of the polyline even if the polyline is closed.

\section*{Break}

Saves the location of the marked vertex while you move the X marker to any other vertex.

If one of the specified vertices is at an end of the polyline, the result is one truncated polyline. If both specified vertices are at endpoints of the polyline, or if just one vertex is specified and it is at an endpoint, you cannot use Break.
- Next on page 1438
- Previous on page 1438

Go Deletes any segments and vertices between the two vertices you specify and returns to Edit Vertex mode.

segment deleted
Exit Exits Break and returns to Edit Vertex mode.

\section*{Insert}

Adds a new vertex to the polyline after the marked vertex.

before Insert

\section*{Move}

Moves the marked vertex.

after Insert

before Move

Regen
Regenerates the polyline.

after Move

before Regen

after Regen

\section*{Straighten}

Saves the location of the marked vertex while you move the X marker to any other vertex.

If you want to remove an arc segment that connects two straight segments of a polyline and then extend the straight segments until they intersect, use the FILLET command with a fillet radius of 0 .


Next Moves the X marker to the next vertex.
Previous Moves the X marker to the previous vertex.
Go Deletes any segments and vertices between the two vertices you select, replaces them with single straight line segments, and returns to Edit Vertex mode. If you specify only one vertex by entering go without moving the X marker, the segment following that vertex is straightened if it is an arc.

Exit Exits Straighten and returns to Edit Vertex mode.

\section*{Tangent}


Attaches a tangent direction to the marked vertex for use later in curve fitting.
Width
Changes the starting and ending widths for the segment that immediately follows the marked vertex.

You must regenerate the polyline to display the new width.


\section*{Exit}

Exits Edit Vertex mode.
Fit
Creates an arc-fit polyline, a smooth curve consisting of arcs joining each pair of vertices. The curve passes through all vertices of the polyline and uses any tangent direction you specify.

original


Fit curve

\section*{Spline}

Uses the vertices of the selected polyline as the control points, or frame, of a curve approximating a B-spline. This curve, called a spline-fit polyline, passes through the first and last control points unless the original polyline was closed. The curve is pulled toward the other points but does not necessarily pass through them. The more control points you specify in a particular part of the frame, the more pull they exert on the curve. Quadratic and cubic spline-fit polylines can be generated.


Spline-fit polylines are very different from the curves produced by the Fit option. Fit constructs pairs of arcs that pass through every control point. Both of these curves are different from true B-splines produced with the SPLINE command.

If the original polyline included arc segments, they are straightened when the spline's frame is formed. If the frame has width, the resulting spline tapers smoothly from the width of the first vertex to the width of the last vertex. All intermediate width information is ignored. Once spline-fit, the frame, if displayed, is shown with zero width and CONTINUOUS linetype. Tangent specifications on control point vertices have no effect on spline-fitting.

When a spline-fit curve is fit to a polyline, the spline-fit curve's frame is stored so that it can be recalled by a subsequent decurving. You can turn a spline-fit curve back into its frame polyline by using the PEDIT Decurve option. This option works on fit curves in the same manner as it does on splines.

Most editing commands act the same when applied to spline-fit polylines or fit curves.
- MOVE, ERASE, COPY, MIRROR, ROTATE, and SCALE operate on both the spline curve and its frame, whether the frame is visible or not.

■ EXTEND changes the frame by adding a new vertex where the initial or final line of the frame intersects the boundary geometry.
- BREAK and TRIM generate a polyline with only the fit spline, which is consistent with fit curves, where the curve fitting is permanent.

■ EXPLODE deletes the frame and generates lines and arcs to approximate the spline-fit polyline.
- OFFSET generates a polyline with only the fit spline, which is consistent with its behavior with fit curves.
- DIVIDE, MEASURE, and the Object option of AREA and HATCH see only the fit spline, not the frame.
- STRETCH refits the spline to the stretched frame after a spline is stretched.

The Join option of PEDIT decurves the spline and discards the spline information of the original and any added polylines. Once the Join operation is complete, you can fit a new spline to the resulting polyline.

The Edit Vertex options of PEDIT have the following effect:
- The Next and Previous options move the X marker only to points on the frame of the spline, whether visible or not.
- The Break option discards the spline.
- The Insert, Move, Straighten, and Width options automatically refit the spline.
- The Tangent option has no effect on splines.

Object snap uses only the spline-fit curve itself, not the frame. If you want to snap to the frame control points, use PEDIT to recall the polyline frame first.

The SPLINETYPE system variable controls the type of spline curve approximated. Setting SPLINETYPE to 5 approximates a quadratic B-spline. Setting SPLINETYPE to 6 approximates a cubic B-spline.

quadratic B-spline

cubic B-spline

You can examine or change the fineness or coarseness of the spline approximation with the SPLINESEGS system variable, or you can use AutoLISP \({ }^{\circledR}\). The default value is 8 . If you set the value higher, a greater number of line segments are drawn and the approximation to the ideal spline becomes more precise. The generated spline occupies more space in the drawing file and takes longer to generate.

If you set SPLINESEGS to a negative value, the program generates segments using the absolute value of the setting and then applies a fit-type curve to those segments. Fit-type curves use arcs as the approximating segments. Using arcs yields a smoother generated curve when few segments are specified, but the curve can take longer to generate.


SPLINESEGS set to 1


SPLINESEGS set to 10

To change the number of segments used to fit an existing spline, change SPLINESEGS and respline the curve. You do not have to decurve it first.

\section*{Decurve}

Removes extra vertices inserted by a fit or spline curve and straightens all segments of the polyline. Retains tangent information assigned to the polyline vertices for use in subsequent fit curve requests. If you edit a spline-fit polyline with a command such as BREAK or TRIM, you cannot use the Decurve option.

\section*{Ltype Gen}

Generates the linetype in a continuous pattern through the vertices of the polyline. When turned off, this option generates the linetype starting and ending with a dash at each vertex. Ltype Gen does not apply to polylines with tapered segments.


\section*{Reverse}

Reverses the order of vertices of the polyline. Use this option to reverse the direction of objects that use linetypes with included text. For example, depending on the direction in which a polyline was created, the text in the linetype might be displayed upside down.

\section*{Undo}

Reverses operations as far back as the beginning of the PEDIT session.

\section*{3D Polyline Selection (PEDIT)}

\section*{Quick Reference}

If you select a 3D polyline, the following prompt is displayed:

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [Close/Join/Edit vertex/Spline curve/Decurve/Reverse/Undo]: Enter an option or press Enter
If the polyline you select is closed, Open replaces the Close option in the prompt.

\section*{Close}

Creates the closing segment of the polyline, connecting the last segment with the first. The polyline is considered open unless you close it with Close.

\section*{Open}

Removes the closing segment of the polyline. The polyline is considered closed unless you open it with Open.

\section*{Join}

Joins an open curve to the 3D polyline. The curve can be on a different plane, but must be contiguous with the 3D polyline.

\section*{Edit Vertex}

Performs various editing tasks on one vertex of the polyline and segments that follow it.

\section*{Next}

Moves the X marker to the next vertex. The marker does not wrap around from the end to the start of the polyline, even if the polyline is closed.

\section*{Previous}

Moves the X marker to the previous vertex. The marker does not wrap around from the start to the end of the polyline, even if the polyline is closed.

\section*{Break}

Saves the location of the marked vertex while you move the X marker to any other vertex.
- Previous on page 1445

■ Previous on page 1438

Go Deletes any segments and vertices between the two vertices you specify and returns to Edit Vertex mode.

Exit Exits Break and returns to Edit Vertex mode.
If one of the specified vertices is at an end of the polyline, the polyline is truncated. If both specified vertices are at endpoints of the polyline, or if just one vertex is specified and it is at an endpoint, you cannot use Break mode.

\section*{Insert}

Adds a new vertex to the polyline after the marked vertex.

\section*{Move}

Moves the marked vertex.
Regen
Regenerates the polyline.

\section*{Straighten}

Saves the location of the marked vertex while you move the X marker to any other vertex.

Next Moves the X marker to the next vertex.
Previous Moves the X marker to the previous vertex.
Go Deletes any segments and vertices between the two vertices you select, replaces them with single straight line segments, and returns to Edit Vertex
mode. If you specify only one vertex by entering go without moving the X marker, the segment following that vertex is made straight if it is an arc.

Exit Exits Straighten and returns to Edit Vertex mode.
To remove an arc segment that connects two straight segments of a polyline and then to extend the straight segments until they intersect, use the FILLET command with a fillet radius of 0 .

\section*{Exit}

Exits Edit Vertex mode.

\section*{Spline Curve}

Fits a 3D B-spline curve to its control points. The SPLFRAME system variable controls the accuracy and display of the control points for the 3D B-spline, whose curves can be approximated only by line segments. Negative values for spline segments are ignored.

original 3D polyline


3D polyline after curve-fitting

\section*{Decurve}

Removes extra vertices inserted by a fit or spline curve and straightens all segments of the polyline. Retains tangent information assigned to the polyline vertices for use in subsequent fit curve requests. If you edit a spline-fit polyline with a command such as BREAK or TRIM, you cannot use the Decurve option.

\section*{Reverse}

Reverses the order of vertices of the polyline. Use this option to reverse the direction of objects that use linetypes with included text. For example, depending on the direction in which a polyline was created, the text in the linetype might be displayed upside down.

\section*{Undo}

Reverses operations as far back as the beginning of the PEDIT session.

\section*{3D Polygon Mesh Selection (PEDIT)}

\section*{Quick Reference}

If you select a polygon mesh, the following prompt is displayed:

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [Edit vertex/Smooth surface/Desmooth/Mclose/Nclose/Undo]: Enter an option or press Enter to end the command
Mclose and Nclose are replaced by Mopen and Nopen if the polygon mesh is currently closed in the \(M\) or \(N\) direction.

\section*{Edit Vertex}

Edits individual vertices of a polygon mesh that can be seen as a rectangular \(M\) by \(N\) array, where \(M\) and \(N\) are the dimensions specified in 3DMESH. The SURFTAB1 and SURFTAB2 system variables store \(M\) and \(N\) values for RULESURF, TABSURF, REVSURF, and EDGESURF.

Pressing Enter accepts the current default, which is either Next or Previous.

\(M=\) up/down

repositioned in 3D space

Next Moves the X marker to the next vertex. The marker does not wrap around from the end to the start of the mesh, even if the mesh is closed.

Previous Moves the X marker to the previous vertex. The marker does not wrap around from the start to the end of the mesh, even if the mesh is closed.

Left Moves the X marker to the previous vertex in the \(N\) direction. The marker does not wrap around from the start to the end of the mesh, even if the mesh is closed.

Right Moves the X marker to the next vertex in the \(N\) direction. The marker does not wrap around from the end to the start of the mesh, even if the mesh is closed.

Up Moves the \(X\) marker to the next vertex in the \(M\) direction. The marker does not wrap around from the end to the start of the mesh, even if the mesh is closed.

Down Moves the \(X\) marker to the previous vertex in the \(M\) direction. The marker does not wrap around from the start to the end of the mesh, even if the mesh is closed.

Move Repositions the vertex and moves the editing mark.
Regen Regenerates the polygon mesh.
Exit Exits Edit Vertex mode.

\section*{Smooth Surface}

Fits a smooth surface. The SURFTYPE system variable controls the type of surface this option fits. The types of surfaces include quadratic B-spline, cubic B-spline, and Bezier.


\section*{Desmooth}

Restores the original control-point polygon mesh.

\section*{Mclose}

Closes the \(M\)-direction polylines if the polygon mesh is open in the \(M\) direction.


\section*{Mopen}

Opens the \(M\)-direction polylines if the polygon mesh is closed in the \(M\) direction.

Nclose
Closes the \(N\)-direction polylines if the polygon mesh is open in the \(N\) direction.
closed N direction

\section*{Nopen}

Opens the \(N\)-direction polylines if the polygon mesh is closed in the \(N\) direction.

\section*{Undo}

Reverses operations as far back as the beginning of the PEDIT session.

\section*{PFACE}

\section*{Quick Reference}

\section*{See also:}
- Create Custom Mesh (Legacy)

Creates a 3D polyface mesh vertex by vertex.

\section*{List of Prompts}

The following prompts are displayed.
Specify location for vertex on page 1449 1: Specify a point
Specify location for vertex 2 or <define faces on page 1449>: Specify a point or press Enter
Specify location for vertex \(n\) or <define faces>: Specify a point or press Enter

\section*{Vertex Location}

You specify all vertices used in the mesh. The vertex numbers displayed in the prompts are the numbers used to reference each vertex. The prompt is repeated until you press Enter. If you press Enter on a blank line, you are prompted for the vertices to be assigned to each face.

\section*{Define Faces}

Vertex Number You define each face by entering vertex numbers for all the vertices of that face. The mesh is drawn after you have defined the last face and pressed Enter after the prompt.

To make an edge invisible, you can enter a negative vertex number for the beginning vertex of the edge.
You can create polygons with any number of edges. PFACE automatically breaks them into multiple face objects with the appropriate invisible edges. Faces with one or two vertices behave like point or line objects without the special properties of Point Display modes or linetypes. You can use them to embed wireframe images within a mesh. Use Endpoint object snap to snap to a face composed of one or two vertices. All object snap modes that apply to line objects work with visible edges of polyface meshes. You cannot use PEDIT to edit polyface meshes.

Color Faces created with PFACE adopt the current layer and color. Unlike polyline vertices, polyface mesh faces can be created with layer and color properties different from their parent object.
You can enter a color from the AutoCAD Color Index (a color name or number), a true color, or a color from a color book.

Layer Faces created with PFACE adopt the current layer and color. Unlike polyline vertices, polyface mesh faces can be created with layer and color properties different from their parent object. Layer visibility behaves normally on faces of a polyface mesh. However, if you create a polyface mesh on a frozen layer, the program does not generate any of its faces, including those on non-frozen layers.

\section*{PLAN}

\section*{Quick Reference}

\section*{See also:}
- Change to a View of the XY Plane

Displays an orthographic view of the XY plane of a specified user coordinate system.

Access Methods
\$ Menu: View > 3D Views > Plan View

current display

\section*{List of Options}

The following options are displayed.
Current UCS Regenerates a plan view of the display so that the drawing extents fit in the current viewport of the current UCS.


UCS Changes to a plan view of a previously saved UCS and regenerates the display.
Enter name of UCS or [?]: Enter a name or enter? to list all UCSs in the drawing If you enter? at the prompt, the following prompt is displayed:
Enter UCS name(s) to list <*>: Enter a name or enter* to list all UCSs in the drawing


UCS

World Regenerates a plan view of the display so that the drawing extents fit on the screen of the world coordinate system.


\section*{PLANESURF}

\section*{Quick Reference}

See also:
- Overview of Creating Surfaces

■ Convert Objects to Procedural Surfaces

Creates a planar surface.

\section*{Access Methods}


Button
\(\$\) Ribbon: Surface tab \(>\) Create panel \(>\) Planar
\(\$\) Menu: Draw \(>\) Modeling \(>\) Planar Surface
\(\%\) Toolbar: Modeling

\section*{Summary}

You can create a planar surface by selecting closed objects or by specifying the opposite corners of a rectangular surface. Supports pick-first selection and generates a planar surface out of a closed profile. When you specify the corners
of the surface through the command, the surface is created parallel to the workplane.

The SURFU and SURFV system variables control the number of lines displayed on the surface.

\section*{List of Prompts}

The following prompts are displayed.
Specify first corner or [Object]: Specify the first point for the planar surface Specify other corner: Specify second point (other corner) for the planar surface Object
Creates a planar or trimmed surface by object selection. You can select one closed object or multiple objects that form a closed area.
Similar to the REGION command, valid objects include: line, circle, arc, ellipse, elliptical arc, 2D polyline, planar 3D polyline, and planar spline.
The DELOBJ system variable controls whether the object(s) you select are automatically deleted when the surface is created or whether you are prompted to delete the object(s).

\section*{PLINE}

\section*{Quick Reference}

\section*{See also:}
- Draw Polylines

Creates a 2D polyline.

\section*{Access Methods}


Button
\(\otimes\) Ribbon: Home tab \(\boldsymbol{>}\) Draw panel \(\boldsymbol{>}\) Polyline
\(\%\) Menu: Draw \(>\) Polyline

Toolbar: Draw

\section*{Summary}

A 2D polyline is a connected sequence of segments created as a single planar object. You can create straight line segments, arc segments, or a combination of the two.

NOTE At least two points must be specified to use the Close option.
The PLINEGEN system variable controls the linetype pattern display around and the smoothness of the vertices of a 2D polyline. Setting PLINEGEN to 1 generates new polylines in a continuous pattern around the vertices of the completed polyline. Setting PLINEGEN to 0 starts and ends the polyline with a dash at each vertex. PLINEGEN does not apply to polylines with tapered segments.



\section*{List of Prompts}

The following prompts are displayed.
Specify start point: Specify a point
Current line-width is <current>
Specify next point on page 1453 or [Arc on page 1454/Close on page 1458/Halfwidth
on page 1458 /Length on page \(1459 /\) Undo on page \(1459 /\) Width on page 1459]: Specify
a point or enter an option
Next Point
Draws a line segment. The previous prompt is repeated.

\section*{Arc}

Adds arc segments to the polyline.
Specify endpoint of arc or
[Angle/CEnter/CLose/Direction/Halfwidth/Line/Radius/Second pt/Undo/Width]: Specify a point (2) or enter an option

NOTE For the Center option of the PLINE command, enter ce; for the Center object snap, enter cen or center.


\section*{Endpoint of Arc}

Draws an arc segment. The arc segment is tangent to the previous segment of the polyline. The previous prompt is repeated.

\section*{Angle}

Specifies the included angle of the arc segment from the start point.
Specify included angle:


Entering a positive number creates counterclockwise arc segments. Entering a negative number creates clockwise arc segments.

Specify endpoint of arc or [Center/Radius]: Specify a point or enter an option
Endpoint of Arc Specifies the endpoint and draws the arc segment.
Center Specifies the center of the arc segment.
Specify center point of arc:
Radius Specifies the radius of the arc segment.
Specify radius of arc: Specify a distance
Specify direction of chord for arc <current>: Specify a point or press ENTER

\section*{Center}

Specifies the center of the arc segment.
Specify center point of arc: Specify a point (2)
Specify endpoint of arc or [Angle/Length]: Specify a point (3) or enter an option
\[
(2 \times)^{3}
\]

Endpoint of Arc Specifies the endpoint and draws the arc segment.
Angle Specifies the included angle of the arc segment from the start point. Specify included angle:

Length Specifies the chord length of the arc segment. If the previous segment is an arc, the new arc segment is drawn tangent to the previous arc segment. Specify length of chord:

\section*{Close}

Draws an arc segment from the last point specified to the starting point, creating a closed polyline. At least two points must be specified to use this option.


\section*{Direction}

Specifies a starting direction for the arc segment.
Specify the tangent direction from the start point of arc: Specify a point (2)
Specify endpoint of arc: Specify a point (3)


\section*{Halfwidth}

Specifies the width from the center of a wide polyline segment to one of its edges.

Specify starting half-width <current>: Enter a value or press ENTER
Specify ending half-width <starting width>: Enter a value or press ENTER

The starting half-width becomes the default ending half-width. The ending half-width becomes the uniform half-width for all subsequent segments until you change the half-width again. The starting and ending points of wide line segments are at the center of the line.
half-width


Typically, the intersections of adjacent wide polyline segments are beveled. No beveling is performed for nontangent arc segments or very acute angles or when a dot-dash linetype is used.

\section*{Line}

Exits the Arc option and returns to the initial PLINE command prompts.
Radius
Specifies the radius of the arc segment.
Specify radius of arc: Specify a distance
Specify endpoint of arc or [Angle]: Specify a point or enter a


Endpoint of Arc Specifies the endpoint and draws the arc segment.
Angle Specifies the included angle for the arc segment.
Specify included angle:
Specify direction of chord for arc <current>: Specify an angle or press ENTER

\section*{Second Pt}

Specifies the second point and endpoint of a three-point arc.
Specify second point on arc: Specify a point (2)
Specify end point of arc: Specify a point (3)


\section*{Undo}

Removes the most recent arc segment added to the polyline.

\section*{Width}

Specifies the width of the next arc segment.
Specify starting width <current>: Enter a value or press ENTER
Specify ending width <starting width>: Enter a value or press ENTER


The starting width becomes the default ending width. The ending width becomes the uniform width for all subsequent segments until you change the width again. The starting and ending points of wide line segments are at the center of the line.

Typically, the intersections of adjacent wide polyline segments are beveled. No beveling is performed for nontangent arc segments, very acute angles, or when a dot-dash linetype is used.

\section*{Close}

Draws a line segment from the last point specified to the starting point, creating a closed polyline. At least two points must be specified to use this option.


\section*{Halfwidth}

Specifies the width from the center of a wide polyline line segment to one of its edges.

Specify starting half-width <current>: Enter a value or press ENTER
Specify ending half-width <current>: Enter a value or press ENTER
The starting half-width becomes the default ending half-width. The ending half-width becomes the uniform half-width for all subsequent segments until you change the half-width again. The starting and ending points of wide line segments are at the center of the line.


Typically, the intersections of adjacent wide polyline segments are beveled. No beveling is performed for nontangent arc segments or very acute angles or when a dot-dash linetype is used.

\section*{Length}

Draws a line segment of a specified length at the same angle as the previous segment. If the previous segment is an arc, the new line segment is drawn tangent to that arc segment.
Specify length of line: Specify a distance


\section*{Undo}

Removes the most recent line segment added to the polyline.

\section*{Width}

Specifies the width of the next line segment.
Specify starting width <current>: Enter a value or press ENTER
Specify ending width <starting width>: Enter a value or press ENTER


The starting width becomes the default ending width. The ending width becomes the uniform width for all subsequent segments until you change the width again. The starting and ending points of wide line segments are at the center of the line.

Typically, the intersections of adjacent wide polyline segments are beveled. No beveling is performed for nontangent arc segments or very acute angles or when a dot-dash linetype is used.

\section*{PLOT}

\section*{Quick Reference}

See also:
- Overview of Plotting

Plots a drawing to a plotter, printer, or file.

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Plot
\(\$\) Menu: Application menu \(>\) Print \(>\) Plot
\(\$\) Toolbar: Standard
Shortcut menu: Right-click the Model tab or a layout tab and click Plot.

\section*{Summary}

The Plot dialog box is displayed. Click OK to begin plotting with the current settings.

If you enter -plot at the Command prompt, options are displayed.
NOTE When Texture Compression is turned on, there is a reduction in the quality of the images in the drawing when they are plotted. Texture Compression does not affect viewports that are rendered. To identify if Texture Compression is enabled, enter 3dconfig, and click Manual Tune. Look at the Hardware Effects List in the Manual Performance Tuning dialog box.

\section*{Plot Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Plotting

Specifies device and media settings, and plots your drawing.

\section*{Access Methods}


\section*{Button}
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Plot

\(\$\) Toolbar: Standard
Shortcut menu: Right-click the Model tab or a layout tab and click Plot.

\section*{Summary}

The title of the Plot dialog box indicates the name of the current layout.


You can display more options in the Plot dialog box by clicking the More Options button. (c)


\section*{List of Options}

The following options are displayed.

\section*{Page Setup}

Displays a list of any named and saved page setups in the drawing. You can base the current page setup on a named page setup saved in the drawing, or you can create a new named page setup based on the current settings in the Plot dialog box by clicking Add.

\section*{Name}

Displays the name of the current page setup.
Add
Displays the Add Page Setup dialog box, in which you can save the current settings in the Plot dialog box to a named page setup. You can modify this page setup through the Page Setup Manager.

\section*{Printer/Plotter}

Specifies a configured plotting device to use when plotting layouts.
If the selected plotter doesn't support the layout's selected paper size, a warning is displayed and you can select the plotter's default paper size or a custom paper size.

\section*{Name}

Lists the available PC3 files or system printers from which you can select to plot the current layout. An icon in front of the device name identifies it as a PC3 file or a system printer.

■ PC3 file icon: Indicates a PC3 file.

\section*{■ System printer icon: Indicates a system printer.}

\section*{Properties}

Displays the Plotter Configuration Editor (PC3 editor), in which you can view or modify the current plotter configuration, ports, device, and media settings.
If you make changes to the PC3 file using the Plotter Configuration Editor, the Changes to a Printer Configuration File dialog box is displayed.

\section*{Plotter}

Displays the plot device specified in the currently selected page setup.

\section*{Where}

Displays the physical location of the output device specified in the currently selected page setup.

\section*{Description}

Displays descriptive text about the output device specified in the currently selected page setup. You can edit this text in the Plotter Configuration Editor.

\section*{Plot to File}

Plots output to a file rather than to a plotter or printer. The default location for plot files is specified in the Options dialog box, Plot and Publish tab, under Default Location for Plot-to-File Operations.

If the Plot to File option is turned on, when you click OK in the Plot dialog box, the Plot to File dialog box (a standard file navigation dialog box) is displayed.

\section*{Partial Preview}

Shows an accurate representation of the effective plot area relative to the paper size and printable area. The tooltip displays the paper size and printable area.


\section*{Paper Size}

Displays standard paper sizes that are available for the selected plotting device. If no plotter is selected, the full standard paper size list is displayed and available for selection.

If the selected plotter doesn't support the layout's selected paper size, a warning is displayed, and you can select the plotter's default paper size or a custom paper size.

A default paper size is set for the plotting device when you create a PC3 file with the Add-a-Plotter wizard. For information about this wizard, see "Set Up Plotters and Printers" in the Driver and Peripheral Guide. The paper size that you
select in the Page Setup dialog box is saved with the layout and overrides the PC3 file settings.

The actual printable area of the page, which is determined by the selected plotting device and paper size, is indicated in the layout by a dashed line.
If you are plotting a raster image, such as a BMP or TIFF file, the size of the plot is specified in pixels, not in inches or millimeters.

\section*{Number of Copies}

Specifies the number of copies to plot. This option is not available when you plot to file.

\section*{Plot Area}

Specifies the portion of the drawing to be plotted. Under What to Plot, you can select an area of the drawing to be plotted.

Layout/Limits When plotting a layout, plots everything within the printable area of the specified paper size, with the origin calculated from 0,0 in the layout.
When plotting from the Model tab, plots the entire drawing area that is defined by the grid limits. If the current viewport does not display a plan view, this option has the same effect as the Extents option.

Extents Plots the portion of the current space of the drawing that contains objects. All geometry in the current space is plotted. The drawing may be regenerated to recalculate the extents before plotting.

Display Plots the view in the current viewport in the selected Model tab or the current paper space view in the layout.

View Plots a view that was previously saved with the VIEW command. You can select a named view from the list. If there are no saved views in the drawing, this option is unavailable.
When the View option is selected, a View list is displayed that lists the named views that are saved in the current drawing. You can select a view from this list to plot.

\section*{Window}

Plots any portion of the drawing that you specify. When you select Window, the Window button becomes available. Click the Window button to use the pointing device to specify the two corners of the area to be plotted, or enter coordinate values.

Specify first corner: Specify a point

Specify other corner: Specify a point

\section*{Plot Offset}

Specifies an offset of the plot area relative to the lower-left corner of the printable area or to the edge of the paper, depending on the setting made in the Specify Plot Offset Relative To option (Options dialog box, Plot and Publish tab). The Plot Offset area of the Plot dialog box displays the specified plot offset option in parentheses.

The printable area of a drawing sheet is defined by the selected output device and is represented by a dashed line in a layout. When you change to another output device, the printable area may change.

You can offset the geometry on the paper by entering a positive or negative value in the X and Y offset boxes. The plotter unit values are in inches or millimeters on the paper.

\section*{Center the Plot}

Automatically calculates the \(X\) and \(Y\) offset values to center the plot on the paper. This option is not available when Plot Area is set to Layout.

X
Specifies the plot origin in the \(X\) direction relative to the setting of the Plot Offset Definition option.

Y
Specifies the plot origin in the \(Y\) direction relative to the setting of the Plot Offset Definition option.

\section*{Plot Scale}

Controls the relative size of drawing units to plotted units. The default scale setting is \(1: 1\) when plotting a layout. The default setting is Fit to Paper when plotting from the Model tab.

\section*{Fit to Paper}

Scales the plot to fit within the selected paper size and displays the custom scale factor in the Scale, Inch =, and Units boxes.

\section*{Scale}

Defines the exact scale for the plot. Custom defines a user-defined scale. You can create a custom scale by entering the number of inches (or millimeters) equal to the number of drawing units.

NOTE You can modify the list of scales with SCALELISTEDIT.
\(\operatorname{Inch}(\mathrm{es})=/ \mathrm{mm}=/ \operatorname{Pixel}(\mathbf{s})=\)
Specifies the number of inches, millimeters, or pixels equal to the specified number of units.

\section*{Inch/mm/pixel}

Specifies inches or mm for display of units in the Plot dialog box. The default is based on the paper size and changes each time a new paper size is selected. Pixel is available only when a raster output is selected.

\section*{Units}

Specifies the number of units equal to the specified number of inches, millimeters, or pixels.

\section*{Scale Lineweights}

Scales lineweights in proportion to the plot scale. Lineweights normally specify the linewidth of plotted objects and are plotted with the linewidth size regardless of the plot scale.

\section*{Preview}

Displays the drawing as it will appear when plotted on paper by executing the PREVIEW command. To exit the print preview and return to the Plot dialog box, press ESC, press ENTER, or right-click and then click Exit on the shortcut menu.

\section*{Apply to Layout}

Saves the current Plot dialog box settings to the current layout.

\section*{More Options}

Controls display of additional options in the Plot dialog box.

\section*{(7)}
- Plot Style Table (Pen Assignments)
- Shaded Viewport Options
- Plot Options
- Drawing Orientation

\section*{Plot Style Table (Pen Assignments)}

Sets the plot style table, edits the plot style table, or creates a new plot style table.

\section*{Name (Unlabeled)}

Displays the plot style table that is assigned to the current Model tab or layout tab and provides a list of the currently available plot style tables.

If you select New, the Add Plot Style Table wizard is displayed, which you can use to create a new plot style table. The wizard that is displayed is determined by whether the current drawing is in color-dependent or named mode.

\section*{Edit}

Displays the Plot Style Table Editor, in which you can view or modify plot styles for the currently assigned plot style table.


\section*{Shaded Viewport Options}

Specifies how shaded and rendered viewports are plotted and determines their resolution level and dots per inch (dpi).

NOTE When hardware acceleration is disabled or is enabled, but does not support Shadows, it is possible to plot a drawing that contains shaded viewports with unsupported hardware effects by the graphics card through software emulation. To enable the software emulation of hardware effects that are not supported by your graphics card, enter 3dconfig, and click Manual Tune. In the Manual Performance Tuning dialog box, click Emulate unsupported hardware effects in software when plotting. The unsupported effects will not appear in the viewport in real-time, but will appear in the hardcopy or electronic file that is created during the plot process.

\section*{Shade Plot}

Specifies how views are plotted. To specify this setting for a viewport on a layout tab, select the viewport and then, on the Tools menu, click Properties.

From the Model tab, you can select from the following options:
- As Displayed. Plots objects the way they are displayed on the screen.

■ Legacy Wireframe. Objects in wireframe regardless of the way they are displayed on the screen, using the legacy SHADEMODE on page 1733 command.
- Legacy Hidden. Objects with hidden lines removed regardless of the way the objects are displayed on the screen, using the legacy SHADEMODE on page 1733 command.
- Wireframe. Plots objects in wireframe regardless of the way they are displayed on the screen.
- Hidden. Plots objects with hidden lines removed regardless of the way the objects are displayed on the screen.
- Conceptual. Plots objects with the Conceptual visual style applied regardless of the way the objects are displayed on the screen.
- Realistic. Plots objects with the Realistic visual style applied regardless of the way the objects are displayed on the screen.
- Shades of Gray. Plots objects with Shades of Gray visual style applied regardless of the way the objects are displayed on the screen.
- Sketchy. Plots objects with Sketchy visual style applied regardless of the way the objects are displayed on the screen.
- X-ray. Plots objects with x-ray visual style applied regardless of the way the objects are displayed on the screen

■ Shaded with Edges. Plots objects with Shded with Edges visual style applied regardless of the way the objects are displayed on the screen

■ Shaded. Plots objects with Shaded visual style applied regardless of the way the objects are displayed on the screen
- Rendered. Plots objects as rendered regardless of the way they are displayed on the screen.
- Draft. Plots objects with the Draft render preset applied to produce very low quality rendering but in the fastest rendering speed.

■ Low. Plots objects with the Low render preset applied to produce better quality rendering than Draft.
- Medium. Plots objects with the Medium render preset applied which offers a good balance between quality and render speed.
- High. Plots objects with the High render preset applied.
- Presentation. Plots objects with the Presentation render preset applied for photo-realistic rendered images and takes the longest to process.

\section*{Quality}

Specifies the resolution at which shaded and rendered viewports are plotted.

You can select from the following options:
■ Draft: Sets rendered and shaded model space views to be plotted as wireframe.
- Preview: Sets rendered and shaded model space views to be plotted at one quarter of the current device resolution, to a maximum of 150 dpi .
- Normal: Sets rendered and shaded model space views to be plotted at one half of the current device resolution, to a maximum of 300 dpi .
- Presentation: Sets rendered and shaded model space views to be plotted at the current device resolution, to a maximum of 600 dpi .
- Maximum: Sets rendered and shaded model space views to be plotted at the current device resolution with no maximum.
- Custom: Sets rendered and shaded model space views to be plotted at the resolution setting that you specify in the DPI box, up to the current device resolution.

\section*{DPI}

Specifies the dots per inch for shaded and rendered views, up to the maximum resolution of the current plotting device. This option is available if you select Custom in the Quality box.

\section*{Plot Options}

Specifies options for lineweights, transparency, plot styles, shaded plots, and the order in which objects are plotted.

\section*{Plot in Background}

Specifies that the plot is processed in the background. (BACKGROUNDPLOT system variable)

\section*{Plot Object Lineweights}

Specifies whether lineweights assigned to objects and layers are plotted. This option is unavailable if Plot with Plot Styles is selected.

\section*{Plot Transparency}

Specifies whether object transparency is plotted. This option should only be used when plotting drawings with transparent objects.

IMPORTANT For perfomance reasons, plotting transparency is disabled by default. To plot transparent objects, check the Plot Transparency option. This setting can be overridden by the PLOTTRANSPARENCYOVERRIDE on page 2457 system variable.

By default, the system variable honors the setting in the Page Setup and the Plot dialog boxes.

\section*{Plot with Plot Styles}

Specifies whether plot styles applied to objects and layers are plotted. When you select this option, Plot Object Lineweights is automatically selected also.

\section*{Plot Paperspace Last}

Plots model space geometry first. Paper space geometry is usually plotted before model space geometry.

Hide Paperspace Objects
Specifies whether the HIDE operation applies to objects in the paper space viewport. This option is available only from a layout tab. The effect of this setting is reflected in the plot preview, but not in the layout.

\section*{Plot Stamp On}

Turns on plot stamping. Places a plot stamp on a specified corner of each drawing and/or logs it to a file.

Plot stamp settings are specified in the Plot Stamp dialog box, in which you can specify the information that you want applied to the plot stamp, such as drawing name, date and time, plot scale, and so on. To open the Plot Stamp dialog box, select the Plot Stamp On option, and then click the Plot Stamp Settings button that is displayed to the right of the option.
You can also open the Plot Stamp dialog box by clicking the Plot Stamp Settings button on the Plot and Publish tab of the Options dialog box.

\section*{Plot Stamp Settings button}

Displays the Plot Stamp dialog box when the Plot Stamp On option is selected in the Plot dialog box.


\section*{Save Changes to Layout}

Saves changes that you make in the Plot dialog box to the layout.

\section*{Drawing Orientation}

Specifies the orientation of the drawing on the paper for plotters that support landscape or portrait orientation. The paper icon represents the media orientation of the selected paper. The letter icon represents the orientation of the drawing on the page.

\section*{Portrait}

Orients and plots the drawing so that the short edge of the paper represents the top of the page.

\section*{Landscape}

Orients and plots the drawing so that the long edge of the paper represents the top of the page.

\section*{Plot Upside-Down}

Orients and plots the drawing upside down.
Icon
Indicates the media orientation of the selected paper and represents the orientation of the drawing on the page as a letter on the paper.

NOTE Drawing orientation is also affected by the PLOTROTMODE system variable.

\section*{Less Options}

Hides the following options in the Plot dialog box:


■ Plot Style Table (Pen Assignments)
- Shaded Viewport Options
- Plot Options
- Drawing Orientation

\section*{Add Page Setup Dialog Box}

\section*{Quick Reference}

See also:
- Overview of Plotting

Saves the current settings in the Plot dialog box to a named page setup.

\section*{Access Methods}
\(\$\) Toolbar: Standard
\(\%\) Menu: File > Plot
Shortcut menu: Right-click the Model tab or a layout tab and click Plot.
曼 Command entry: plot

\section*{Summary}

You can modify this page setup through the Page Setup Manager.

\section*{List of Options}

The following options are displayed.
New Page Setup Name
Specifies a name for the new page setup. You can modify the new named page setup later through the Page Setup Manager.

\section*{Changes to a Printer Configuration File Dialog Box}

\section*{Quick Reference}

\author{
See also: \\ ■ Overview of Plotting
}

Notifies you that you have made changes to an existing plotter configuration (PC3) file.

\section*{Access Methods}
\(\$\) Toolbar: Standard
\(\$\) Menu: File > Plot
Shortcut menu: Right-click the Model tab or a layout tab and click Plot.
䱂 Command entry: plot

\section*{List of Options}

The following options are displayed.
Apply Changes for the Current Plot Only

Uses the changes you've made to the PC3 file in the current plot but does not save them in the PC3 file.

Save Changes to the Following File
Specifies the path of the PC3 file that you have changed. To preserve the original PC3 file, specify a new file name.

\section*{Plot Job Progress Dialog Box}

\section*{Quick Reference}

See also:
- Overview of Plotting

Provides information about the status and progress of your plot job.

\section*{Access Methods}
\(\$\) Menu: File > Plot
Shortcut menu: Right-click the Model tab or a layout tab and choose Plot.
㛍 Command entry: plot

\section*{List of Options}

The following options are displayed.
Cancel Sheet Cancels the plot of the sheet currently being processed.
Cancel Job Cancels the plot job.

\section*{Update PC3 File with New Printer Dialog Box}

\section*{Quick Reference}

See also:
- Overview of Plotting

Displays the device driver name that is stored in the PC3 file.

\section*{Summary}

A device can be a plotter or printer. With this dialog box, you can select a valid plotter or printer and update the existing PC3 file; you can also save a modified copy as a new PC3 file.
The dialog box is displayed in the PLOT or PAGESETUP command in a layout configured for a PC3 file that contains an invalid or missing plotter or printer name.

\section*{List of Options}

The following options are displayed.

\section*{Device Needed}

Displays the device specified in the PC3 file that is configured for the current layout.

\section*{Printer Name}

Lists the available plotters, printers, and PC3 files. Select a plotter, printer, or PC3 file to be substituted for the missing printer specified in your PC3 file. Select None if you don't want to make any substitution.
If you select None, the other settings for the current layout remain unchanged. If you select a plotter or printer that uses a different driver than the one specified in the original PC3 file, the following configuration information may change when the PC3 file is saved:
- Plot quality
- Color depth
- Resolution
- Media source
- Media destination
- Media finishing options (such as folding or binding)
- Any custom settings of the previous device or driver

If the plotter or printer you select can't support the paper size specified in the layout, the default paper size is used. A warning is displayed that allows you to cancel this operation and return to the Plot or Page Setup dialog box with the None device selected.

Device For each selection you make under Printer Name, the corresponding device driver name is displayed in this column, as follows:
■ For a selected plotter or printer, this column displays the device driver name stored in the plotter or printer's PC3 file.
- For a selected PC3 file, this column displays the device driver name stored in the PC3 file.
- For a selection of None, this column displays no device name. No device will be substituted for the missing printer specified in the PC3 file.

\section*{Status Area}

Displays information about the selected plotter, printer, or PC3 file.

\section*{Update and Save PC3 File}

Displays the name of the PC3 file that you are modifying for the current layout. If you click OK without changing the name of the PC3 file, the existing PC3 file is updated with the new printer name. If you change the name of the PC3 file and click OK, a copy of the PC3 file is saved with the new printer information.

\section*{-PLOT}

\section*{Quick Reference}

\section*{See also:}
- Overview of Plotting

Plots a drawing to a plotter, printer, or file in the command line.
If you enter -plot at the Command prompt, the following prompts are displayed.

\section*{List of Prompts}

The following prompts are displayed.
Detailed plot configuration [Yes on page 1477/No on page 1476] <No>: Entery or n or press ENTER
No
Indicates that you do not want a detailed plot configuration for this plot.

Enter a layout name or [?] <current>:
Enter a page setup name < >:
Enter an output device name or [?] <current>:
Write the plot to a file [Yes/No] <current>:
Enter file name: <dwgname-layoutname.plt>:
Save changes to layout [Yes/No] <No>:
Proceed with Plot [Yes/No] <Y>:
For information about these prompts, see the description for Yes.

\section*{Yes}

Specifies detailed page settings for the Model tab or layout tab you are plotting.
Enter a layout name or [?] <current>: Specify the name of the layout tab you want to plot

Enter an output device name or [?] <current>: Specify the name of the output device to which you want to plot the Model tab or layout tab you selected

If you enter a new device name without an extension, the program assumes that the device is a PC3 file (Autodesk \({ }^{\circledR}\) HDI plotter configuration file). If no PC3 file is found, the program searches for a Windows system printer with that device name.

Enter paper size or [?] <current>: Specify the paper size to use for the plot or enter ? to view the actual list of paper sizes defined for the plotter driver
You must specify a paper size exactly as it is defined by the plotter driver.
Enter paper units [Inches/Millimeters] <current>:
The Enter Paper Units prompt is not displayed if you are plotting a raster image, such as a BMP or TIFF file, because the size of the plot is assumed to be in pixels.
Enter drawing orientation [Portrait/Landscape] <current>:
Portrait Orients and plots the drawing so that the short edge of the paper represents the top of the page.

Landscape Orients and plots the drawing so that the long edge of the paper represents the top of the page.

Plot upside down [Yes/No] <No>:
Orients and plots the drawing upside down.

Enter plot area [Display/Extents/Limits/Layout/View/Window] <current>:
Display Plots the view in the current viewport on the Model tab or the current view in the layout, depending on which tab you select to plot.

Extents Plots all of the objects in the current viewport, except objects on frozen layers. From a layout tab, plots all the geometry in paper space. The drawing may be regenerated to recalculate the extents before plotting.
If you plot the drawing's extents with a perspective view active and the camera position is within the drawing extents, this option has the same effect as the Display option.

Limits Plots the drawing area defined by the grid limits. Available only when the Model tab is selected.

Layout Plots everything within the printable area of the specified paper size, with the origin calculated from 0,0 in the layout. Available only when a layout tab is selected.

View Plots a view saved previously with the VIEW command. You can select a named view from the list provided. If there are no saved views in the drawing, this option is unavailable.

Window Plots any portion of the drawing you specify. This option prompts you to specify the corners of the window.
Enter lower left corner of window: Specify a point
Enter upper right corner of window: Specify a point
Enter plot scale (Plotted Inches = Drawing Units) or [Fit] <current>: Specify the scale of the plot

Plotted Inches = Drawing Units Calculates the plot scale based on the inches or millimeters to drawing units that you specify. You can also enter a real number as a fraction (for example, you can enter \(\mathbf{1 = 2}\) or \(\mathbf{. 5}\) ).

Fit Calculates the scale to fit the area on the sheet of paper.
The default scale setting is \(1: 1\) when you are plotting a layout, unless you modified and saved the setting. The default setting is Fit when plotting a Model tab.

Enter plot offset ( \(\mathrm{x}, \mathrm{y}\) ) or [Center] <current>: Specify the plot offset in either the \(X\) or \(Y\) direction, or enter \(\mathbf{c}\) to center the plot on the paper

Plot with plot styles [Yes/No] <current>: Specify whether to plot using the plot styles applied to objects and defined in the plot style table

If you specify Yes to plot with plot styles, the following prompt is displayed:

Enter plot style table name or [?] (enter . for none) <current>: Enter a plot style table name, ? to view plot style tables, or . (period) for none

All style definitions with different property characteristics are stored in the current plot style table and can be attached to the geometry. This setting replaces pen mapping in earlier versions of the program.

Plot with lineweights [Yes/No] <current>:
Scale lineweights with plot scale [Yes/No] <current>:
NOTE The Scale Lineweights with Plot Scale prompt is displayed only when you plot from a layout tab. Settings for the shaded plotting type are available only when you plot from the Model tab. To control shaded plotting settings of viewports in a layout tab, use the Shadeplot option of the -vports command when you create a viewport.

Enter shade plot setting [As displayed/Wireframe/Hidden/Visual styles/Rendered] <As displayed>: Enter a shade plot option

Specifies how model space views are plotted.
As Displayed Specifies that a model space view is plotted the same way it is displayed.

Wireframe Specifies that a model space view is plotted in wireframe regardless of display.

Hidden Specifies that a model space view is plotted with hidden lines removed regardless of display.

Visual Styles Plots a model space view with the specified visual style applied regardless of the current display in the viewport.
If you specify Visual Styles, the following prompt is displayed:
Enter an option [Wireframe/Hidden/Realistic/Conceptual/Shaded/shaded with Edges/shades of Gray/SKetchy/X-ray/Other] <Realistic>:
These options are the same as the options in VSCURRENT on page 2077.
Rendered Specifies that model space view plots are rendered regardless of display.

Write the plot to a file [Yes/No] <current>: Entery if you want to write the plotted drawing to a file, or press ENTER to plot to an output device

If you specify Yes, the following prompt is displayed:
Enter file name: <dwgname-layoutname.plt>: Enter a file name
Save changes to page setup? Or set shade plot quality? [Yes/No/Quality] <No>:

If you enter \(\mathbf{y}\), the current settings in the Page Setup dialog box are saved. If you enter \(\mathbf{q}\), you are prompted for the shaded plotting quality and are given the option of providing a custom dpi. Then you are prompted to save the page setup with the added quality settings.
Enter shade plot quality
[Draft/Preview/Normal/pResentation/Maximum/Custom] <Normal>: Enter c
if you want to specify a dpi, or to use a preset dpi, specify a different quality option
Enter custom dpi <150>:
Save changes to page setup [Yes/No]? <No>:
Plot paper space first [Yes/No] <current>:
Paper space geometry is usually plotted before model space geometry. If you enter \(\mathbf{n}\), the model space geometry is plotted first, and paper space geometry is plotted last. This option is available only if you are plotting from a layout tab.

Hide paperspace objects? [Yes/No] <No>:
Specifies whether the Hide operation applies to objects in the paper space viewport. This option is available only from a layout tab.

Proceed with plot [Yes/No] <Y>:

\section*{PLOTSTAMP}

\section*{Quick Reference}

\section*{See also:}

■ Set Options for Plotted Objects

Places a plot stamp on a specified corner of each drawing and logs it to a file.

\section*{Summary}

The Plot Stamp dialog box is displayed.
NOTE Plot stamp will always be drawn with pen number 7, or the highest numbered available pen if the plotter doesn't hold seven pens. You must install a suitable pen in that position. If you are using a non-pen (raster) device, color 7 is always used for plot stamping.

If you enter -plotstamp at the Command prompt, options are displayed.

\section*{Plot Stamp Dialog Box}

\section*{Quick Reference}

See also:
- Set Options for Plotted Objects

Specifies the information for the plot stamp.

\section*{Access Methods}

锉 Command entry: plotstamp

\section*{List of Options}

The following options are displayed.

\section*{Plot Stamp Fields}

Specifies the drawing information you want applied to the plot stamp. The selected fields are separated by commas and a space.

Drawing Name
Includes the drawing name and path in the plot stamp information.

\section*{Layout Name}

Includes the name of the layout in the plot stamp information.
Date and Time
Includes the date and time in the plot stamp information.
NOTE The date and time format is determined by the Regional Settings dialog box in the Windows Control Panel. Plot stamping uses the short date style for dates.

Login Name
Includes the Windows login name in the plot stamp information.
The Windows login name is contained in the LOGINNAME system variable.
Device Name

Includes the current plotting device name in the plot stamp information.

\section*{Paper Size}

Includes the paper size for the currently configured plotting device in the plot stamp information.

\section*{Plot Scale}

Includes the plot scale in the plot stamp information.

\section*{Preview}

Provides a visual display of the plot stamp location based on the location and rotation values you have specified in the Advanced Options dialog box. You cannot preview the plot stamp any other way. This is not a preview of the plot stamp contents.

\section*{User Defined Fields}

Provides text that can optionally be plotted, logged, or both plotted and logged at plot time. The selected value in each user-defined list will be plotted.

For example, you might populate one list with media types or prices and the other with job names. If the user-defined value is set to <none>, then no user-defined information is plotted

\section*{Add/Edit}

Displays the User Defined Fields dialog box, where you can add, edit, or delete user-defined fields.

\section*{Plot Stamp Parameter File}

Stores plot stamp information in a file with a .pss extension. Multiple users can access the same file and stamp their plots based on company standard settings.

Two PSS files are provided, Mm.pss and Inches.pss, which are located in the Support folder. The initial default plot stamp parameter file name is determined by the regional settings of the operating system when the program is installed.

\section*{Path}

Specifies the location of the plot stamp parameter file.

\section*{Load}

Displays the Plotstamp Parameter File Name dialog box (a standard file selection dialog box) in which you can specify the location of the parameter file you want to use.

Save As
Saves the current plot stamp settings in a new parameter file.

\section*{Advanced}

Displays the Advanced Options dialog box, in which you can set the location, text properties, and units of the plot stamp. You can also create a log file, and set its location.

\section*{User Defined Fields Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Set Options for Plotted Objects

\section*{Access Methods}

㗀 Command entry: plotstamp

\section*{Summary}

User-defined fields are created and edited using the User Defined Fields dialog box, which is displayed when you choose the Add/Edit button in the Plot Stamp dialog box.

\section*{List of Options}

The following options are displayed.
Name
Lists the available user-defined fields.
Add
Adds an editable user-defined field.
Edit
Allows editing of the selected user-defined field.
Delete
Deletes the selected user-defined field.

\section*{Advanced Options Dialog Box}

\section*{Quick Reference}

See also:
- Set Options for Plotted Objects

Determines the location, text properties, and units of the plot stamp.

\section*{Access Methods}

Command entry: plotstamp

\section*{Summary}

You can also create a log file and set its location. The dialog box is displayed when you choose the Advanced button in the Plot Stamp dialog box.

\section*{List of Options}

The following options are displayed.

\section*{Location and Offset}

Determines the plot stamp location, the orientation of the plot stamp, and the offset you want to apply relative to either the printable area or the paper border.

\section*{Location}

Indicates the area where you want to place the plot stamp. Selections include Top Left, Bottom Left (default), Bottom Right, and Top Right. The location is relative to the image orientation of the drawing on the page.

\section*{Orientation}

Indicates the rotation of the plot stamp in relation to the specified page. The options are Horizontal and Vertical for each of the locations (for example, Top Left Horizontal and Top Left Vertical).

Stamp Upside Down
Rotates the plot stamp upside down.
X Offset

Determines the \(X\) offset value that is calculated from either the corner of the paper or the corner of the printable area, depending on which setting you specify. If you specify Offset Relative to Paper Border, the offset value is calculated so that the plot stamp information fits within the designated paper size. If the offset value positions the plot stamp information beyond the printable area, the plot stamp text is cut off.

\section*{Y Offset}

Determines the \(Y\) offset value that is calculated from either the corner of the paper or the corner of the printable area, depending on which setting you specify. If you specify Offset Relative to Paper Border, the offset value is calculated so that the plot stamp information fits within the designated paper size. If the offset value positions the plot stamp information beyond the printable area, the plot stamp text is cut off.

\section*{Offset Relative to Printable Area}

Calculates the offset values that you specify from the corner of the printable area of the paper (not the corner of the paper).

\section*{Offset Relative to Paper Border}

Calculates the offset values that you specify from the corner of the paper (not the corner of the printable area of the paper).

\section*{Text Properties}

Determines the font, height, and number of lines you want to apply to the plot stamp text.

\section*{Font}

Specifies the TrueType font you want to apply to the text used for the plot stamp information.

\section*{Height}

Specifies the text height you want to apply to the plot stamp information.

\section*{Single Line Plot Stamp}

If selected, places the plot stamp information in a single line of text. The plot stamp information can consist of up to two lines of text, but the placement and offset values you specify must accommodate text wrapping and text height. If the plot stamp contains text that is longer than the printable area, the plot stamp text will be cut off. If this option is cleared, plot stamp text is wrapped after the third field.

\section*{Plot Stamp Units}

Specifies the units used to measure \(X\) offset, \(Y\) offset, and height. You can define units using inches, millimeters, or pixels.

Two sets of values for the plot stamp size and location are saved in the PSS file: one for the dimensionless file formats and the other for dimensional file formats. If the units you select in the dialog box are dimensional, then the dimensional values are displayed and modified. To access the dimensionless values, you need to select pixels as the unit of measurement. Regardless of the units selected in the dialog box, the correct set of values is applied at plot time. In other words, changing the unit of measurement does not cause the values to be recalculated.

\section*{Log File Location}

Writes the plot stamp information to a log file instead of, or in addition to, stamping the current plot. If plot stamping is turned off, the log file can still be created.

\section*{Create a Log File}

Writes the plot stamp information to a log file. The default log file is plot.log, and it is located in the main application folder. You can specify a different file name and path. After the initial plot.log file is created, the plot stamp information in each succeeding plotted drawing is added to this file. Each drawing's plot stamp information is a single line of text. The plot stamp log file can be placed on a network drive and shared by multiple users. Plot stamp information from each user is appended to the plot.log file.

\section*{Log File Name}

Specifies the file name for the log file you are creating. Enter a new file name if you do not want to use the default file name, plot.log.

\section*{Browse}

Lists the currently saved plot stamp log files. You can choose to overwrite an existing plot stamp log file with the currently specified plot stamp information, and then to save this file.

\section*{-PLOTSTAMP}

\section*{Quick Reference}

\section*{See also:}
- Set Options for Plotted Objects

If you enter -plotstamp at the Command prompt, the following prompts are displayed. The settings in the PSS file are displayed as defaults for each prompt.

You can use -PLOTSTAMP as part of a plotting script to modify plot stamp information for a drawing.

\section*{LIst of Prompts}

The following prompts are displayed.
Enter an option [On/OFF/Fields/User fields/Log file/LOCation/Text properties/UNits]:
On Turns on the plot stamp for the current drawing.
OFF Turns off the plot stamp for the current drawing.
Fields Specifies the plot stamp field information you want to apply to the current plot stamp.
Stamp drawing name? [Yes/No] <Yes>:
Stamp layout name? [Yes/No] <Yes>:
Stamp date and time? [Yes/No] <Yes>:
Stamp login name? [Yes/No] <Yes>:
Stamp plot device name? [Yes/No] <Yes>:
Stamp paper size? [Yes/No] <Yes>:
Stamp plot scale? [Yes/No] <Yes>:
User Fields Specifies the user-defined fields you want to apply to the current plot stamp.
Enter User field 1 <>: Enter any user-defined field
Enter User field 2 <>: Enter any user-defined field
Log File Specifies writing the current plot stamp information to a log file rather than applying this information to the current plotted drawing. The default log file is plot.log, unless you specify another file path.

Write plot stamp to log file? [Yes/No] <Yes>:
Enter \(\log\) file path <plot.log>:
Location Determines the location of the plot stamp on the page based on offset, orientation, and relationship to either the printable area or the border of the paper.
Location selections include and are relative to the printable area or the border of the paper, depending on what you specify at the prompt.
Enter stamp location [TL/TR/BL/BR] <BL>:
- TL: Top Left
- TR: Top Right
- BL: Bottom Left
- BR: Bottom Right

Text orientation indicates the rotation angle of the plot stamp in relation to the page.
Enter text orientation [Horizontal/Vertical] <Horizontal>:
■ Horizontal: Plot stamp will be horizontal relative to the page.
- Vertical: Plot stamp will be vertical relative to the page.

Stamp upside-down [Yes/No] <No>:
Specify plot stamp offset \(<0.1000,0.1000>\) :
Specifying an offset relative to the paper border calculates the offset values that you specify from the corner of the paper. Specifying an offset relative to the printable area calculates the offset values that you specify from the corner of the printable area.
Specify offset relative to [paper Border/printable Area] <printable Area>:
Text Properties Determines the font name and text height for the current plot stamp text. You can also specify to place the text on one line or to wrap the text to two lines. The placement and offset values you specify for this plot stamp must accommodate the text wrapping and the text height.
Enter font name <>: Enter a font name
Enter text height <0.1500>: Enter a value
Place plot stamp on single line? [Yes/No] <No >:
Units Specifies the units used to measure \(X\) offset, \(Y\) offset, and height. You can define units using inches, millimeters, or pixels.

Enter measurement units [Inches/Millimeters/Pixels] <Inches>:

\section*{PLOTSTYLE}

\section*{Quick Reference}

\section*{See also:}

■ Use Plot Styles to Control Plotted Objects

Controls the named plot styles that are attached to the current layout and can be assigned to objects.

\section*{Access Methods}


Bution
\(\$\) Menu: Application menu \(>\) Print \(>\) Edit Plot Style Tables

\section*{Summary}

To use the PLOTSTYLE command, the drawing must be configured to use named plot styles.

■ If a drawing is in Color-Dependent mode, you can convert it to use named plot styles using the CONVERTPSTYLES command.

■ To configure a new drawing to use named plot styles, set PSTYLEPOLICY to 0 before creating the new drawing.

If no selection set exists, the Current Plot Style dialog box is displayed. If a selection set exists, the Select Plot Style dialog box is displayed.

If you enter -plotstyle at the Command prompt, options are displayed on page 1493.

\section*{Current Plot Style Dialog Box}

\section*{Quick Reference}

See also:
- Use Plot Styles to Control Plotted Objects

Specifies the plot style for new objects.


\section*{Access Methods}


Button

\section*{List of Options}

The following options are displayed.

\section*{Current Plot Style}

Displays the current plot style.
Plot Style List

Displays the available plot styles that can be assigned to an object, including the default plot style, NORMAL. A plot style is a collection of overrides for color, dithering, gray scale, pen assignments, screening, linetype, lineweight, end styles, join styles, and fill styles.

\section*{Active Plot Style Table}

Sets the plot style table attached to the current layout. A plot style table is a collection of plot style definitions.

Editor
Displays the Plot Style Table Editor, in which you modify the plot styles in the plot style table.

Attached To
Displays the tab (Model tab or layout tab) that the plot style table is attached to.

\section*{Select Plot Style Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Use Plot Styles to Control Plotted Objects

Specifies the plot style to be assigned.


\section*{Access Methods}


\section*{List of Options}

The following options are displayed.

\section*{Plot Styles}

Displays the available plot styles, including the default plot style, NORMAL. A plot style is a collection of property settings used in plotting.

\section*{Original}

Displays the originally assigned plot style.

\section*{New}

Displays the new plot style to be assigned.

\section*{Active Plot Style Table}

Sets the plot style table attached to the current drawing. A plot style table defines plot styles.

\section*{Editor}

Displays the Plot Style Table Editor.
Attached To
Displays the tab (Model tab or layout tab) that the plot style table is attached to.

\section*{-PLOTSTYLE}

\section*{Quick Reference}

\section*{See also:}

■ Use Plot Styles to Control Plotted Objects

\section*{List of Prompts}

The following prompts are displayed.
Current plot style is "current"
Enter an option [?/Current]:
?-List Plot Styles Lists the plot styles in the attached plot style table.
Current Specifies the plot style to use for new objects.

\section*{PLOTTERMANAGER}

\section*{Quick Reference}

See also:
- Overview of Plotting

Displays the Plotter Manager, where you can add or edit a plotter configuration.

\section*{Access Methods}


Button

Ribbon: Output tab \(>\) Plot panel \(>\) Manage Plotters
Menu: Application menu \(>\) Print \(>\) Manage Plotters

\section*{Summary}

In the folder, you can start the Add-a-Plotter wizard, or double-click a PC3 file to open the Plotter Configuration Editor.

■ Double-click the Add-a-Plotter wizard to add and configure plotters and printers.

■ Double-click a plotter configuration (PC3 file) to start the Plotter Configuration Editor.

\section*{Add-a-Plotter Wizard}

\section*{Quick Reference}

See also:
- Overview of Plotting

Adds new plotters and printers. The wizard produces a PC3 file that you can edit in the Plotter Configuration Editor. Your configurations are stored in the Plotters folder.
Add Plotter - Introduction Page
This wizard provides you with the ability to configure either an existing Windows
system plotter, or a new non-Windows system plotter. The configuration information
wilb be saved in a PC file. The PCC file will be added as a plotter icon that can be
selected from the Autodesk Plotter Manager.
You can choose to import configuration information from a PCP or PC2 file, then add
that infomation to the new plotter configuration file you are creating.

\section*{Access Methods}
\(\$\) Menu: File > Plotter Manager
锉 Command entry: plottermanager

\section*{Plotter Configuration Editor}

\section*{Quick Reference}

See also:
■ Overview of Plotting

Modifies a PC3 file's plotter port connections and output settings, including media, graphics, physical pen configuration, custom properties, initialization strings, calibration, and user-defined paper sizes. You can drag these configuration options from one PC3 file to another.

\section*{Access Methods}
\(\$\) Menu: File > Plotter Manager
菐 Command entry: plottermanager

\section*{Summary}

You can start the Plotter Configuration Editor with any of the following methods:
- Double-click a PC3 file in Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR}\) Explorer or right-click the PC3 file and click Open. (By default, PC3 files are stored in the Plotters folder. To find the location of your plotter files, on the Tools menu, click Options. In the Options dialog box, Files tab, click the plus sign to the left of Printer Support File Path. Click the plus sign to the left of the Printer Configuration Search Path file. Under Printer Configuration Search Path, click the path name to view the location of your plotter files.)

■ Choose Edit Plotter Configuration from within the Add-a-Plotter wizard.
- Choose Properties in the Page Setup dialog box.

■ Choose Properties in the Plot dialog box.

Depending on your configured plotting device, additional options may be available on the Device and Document Settings tab. For example, when you configure a nonsystem plotter, you can modify the pen characteristics.
- General
- Ports on page 1497

■ Device and Document Settings on page 1499

\section*{General Tab (Plotter Configuration Editor)}

\section*{Quick Reference}

See also:
- Overview of Plotting

Contains basic information about the plotter configuration (PC3) file. You can add or modify the information in the Description area. The remainder of the tab is read-only.


\section*{List of Options}

The following options are displayed.
Plotter Configuration File Name Displays the file name you assigned in the Add-a-Plotter wizard.

\section*{Description}

Displays information you want to include about the plotter.
Driver Information Displays the following information:
■ Plotter driver type (system or nonsystem), name, model, and location
- HDI driver file version number (AutoCAD specialized driver files)
- UNC name of the network server (if the plotter is connected to a network server)
- I/O port (if the plotter is connected locally)
- Name of the system printer (if the configured plotter is the system printer)
- PMP (Plot Model Parameters) file name and location (if a PMP file is attached to the PC3 file)

\section*{Ports Tab (Plotter Configuration Editor)}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Plotting

Changes communication settings between the configured plotter and your computer or network system. You can specify whether you want to plot through a port, plot to a file, or use AutoSpool. See "Use AutoSpool" in the Driver and Peripheral Guide.

If you plot through a parallel port, you can specify the timeout value. If you plot through a serial port, you can change the baud rate, protocol, flow control, and input and output timeout values.


\section*{List of Options}

The following options are displayed.
Plot to the Following Port
Sends the drawing to the plotter through the selected port.

\section*{Plot to File}

Sends the drawing to the file specified in the Plot dialog box.

\section*{AutoSpool}

Uses the AutoSpool utility to plot the drawing. AutoSpool is specified on the Files tab in the Options dialog box.

\section*{Port List}

Displays a list and description of available ports, both local and network. If the port is a network port, the name of the network printer is also displayed.

\section*{Show All Ports}

Shows all available ports on the computer regardless of the ports available on the plotter.

\section*{Browse Network}

Displays the network choices so you can connect to another instance of a nonsystem plotter.

\section*{Configure Port}

Displays either the Configure LPT Port dialog box or the Settings for COM Port dialog box.

\section*{Device and Document Settings Tab (Plotter Configuration Editor)}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Plotting

Controls many of the settings in the PC3 file. Click the icon for any of the nodes to view and change the specific settings. When you change a setting, your changes appear in angle brackets ( \(<>\) ) next to the setting name. A check mark is also displayed over the icon of the node with a changed value.


NOTE Only the settings available for the configured device are displayed in the tree view. In addition, you might not be able to edit some settings if the device handles the setting through Custom Properties or doesn't support the capability.

\section*{List of Options}

The following options are displayed.

\section*{Media Node}

Specifies a paper source, size, type, and destination. Available settings depend on the supported features of your configured plotter. For Windows system printers, you must configure the media settings using the Custom Properties node.

\section*{Source and Size}

Specifies the paper source and size.
■ Source: Specifies the paper source; for example, sheet-fed or roll-fed. If you specify a tray, you can select the type of tray.

■ Width: Specifies the width of the paper roll for a roll-fed source.
- Automatic: Enables the printer to specify the appropriate paper source.
- Size: Displays a list of available paper sources and both standard and custom paper sizes.
- Printable Bounds: Displays the print boundaries.

\section*{Media Type}

Displays a list of the media types supported by the plotter configuration.

\section*{Duplex Printing}

Determines double-sided printing and binding margin. Binding margin options are available only for plotters that support duplex printing.
- None: Indicates no double-sided printing.

■ Short Side: Places the binding margin on the short side of the paper.
- Long Side: Places the binding margin on the long side of the paper.

\section*{Media Destination}

Displays a list of available media destinations for the configured plotter, such as collating, cutting, and stapling. These options are available only for plotters that support this function.

\section*{Physical Pen Configuration Node (for Pen Plotters Only)}

Controls the specific pens in the pen plotter. The lower pane of the Device and Document Settings tab displays a table used to describe the color, width, and speed of each pen in the plotter.

NOTE The physical pen information cannot be detected automatically; you must provide this information for your pen plotter under Physical Pen Characteristics.

Pen Configuration Specifies settings for pen plotters.
- Prompt for Pen Swapping: Use more than one pen while plotting on a single-pen plotter. Under Physical Pen Characteristics, you can specify settings for as many pens as you want. You are prompted when you need to change pens.
- Area Fill Correction: Enables the program to compensate for pen widths when plotting filled areas and wide polylines. Each polygon is shrunk by half of the width of the pen used to draw it. This option prevents the plotter from oversizing the filled area when using a wide pen and ensures precision. Use this option if the plot must be accurate to half the pen width, such as in printed circuit artwork.
- Pen Optimization Level: Reduces plot time and increases the efficiency of the pens by optimizing the pen motion. For example, you can prevent pens from retracing duplicate lines. If your drawing uses many colors or widths, you can reduce the time needed to change pens by selecting Adds Pen Sorting. Every object that uses a particular pen will be plotted before switching to another pen. Each method in the list includes the optimization methods preceding it in the list (except for No Optimization).

Physical Pen Characteristics To plot your drawing correctly on a pen plotter, you need to provide information about the pens in your plotter. For each pen in your plotter, specify a color and width. To optimize pen performance, you can specify a speed.
NOTE This information is required; the physical pen information cannot be detected automatically.
- Color: Specifies the colors of the pens in your plotter. The pen color that closely matches the object's color is selected. You can assign colors to your pens that correspond to each object's color. Use the Color list to select one of the following settings: No Pen, Red, Yellow, Green, Cyan, Blue, Magenta,

Black, or Other. If you choose Other, the Select Color dialog box is displayed, providing access to the full color palette. Use No Pen to indicate that there is no pen in a particular position.
- Speed: Adjusts pen speed on a pen-by-pen basis. This feature is useful, for example, for slowing down pens that are skipping. Each pen manufacturer recommends a pen speed for each type of media. For best results, use those values. You can specify a pen speed in millimeters or inches per second.

■ Width: Specifies the width of your pens so the program can determine if multiple pen strokes are needed to draw wide lines. You can specify the pen width in inches or millimeters. Be sure to select the pen width to match the actual width of the pen. The list provides a set of common pen widths.

Specifying pen characteristics here doesn't replace the pen tables you might have imported from PCP, PC2, or CFG files from AutoCAD Release 14, AutoCAD \(\mathrm{LT}^{\circledR} 98\), or earlier releases. For more information about importing these settings, see "Change Plot Style Settings" in the User's Guide.

\section*{Graphics Node}

Specifies settings for printing vector graphics, raster graphics, and TrueType text. Depending on the capabilities of the plotter, you can modify color depth, resolution, and dithering. You can select either color or monochrome output for vector drawings. When printing raster images on a plotter with limited memory, you can improve performance by making some changes to the quality of the printed output. If you use a nonsystem plotter that supports varying amounts of installed RAM, you can provide that information to improve performance.

\section*{Installed Memory}

Provides the program with the amount of total memory (RAM) installed on a nonsystem plotter. This option is only available for nonWindows system printers that accept optional memory. If your plotter has extra memory, specify the total amount of memory.

■ Total Installed Memory: Specifies the total installed memory in megabytes. The plotter driver uses the memory information to determine whether banding or image quality degradation is required to prevent the system from running out of memory.

\section*{Vector Graphics}

Provides options for specifying the color depth, resolution, and dithering of vector output. Some of the Vector Graphics options are closely interrelated; changing an option can affect other available options.
- Color Depth: Displays a list for choosing color depth for the configured plotter. The color depth options change as you change the resolution and dithering values. More color depth uses more memory and takes longer to plot. You can specify either color or monochrome output.
- Resolution: Adjusts the DPI (dots per inch) resolution of the configured plotter. Changing the DPI resolution changes the options available in the Dithering list. A higher resolution setting uses more memory and takes longer to plot than a lower resolution setting.
- Dithering: Specifies a dithering choice for non-pen-based plotters. Some dithering choices cause slower plotting.

\section*{Raster Graphics (Non-Pen Plotters Only)}

Specifies trade-offs between plotting speed and output quality when plotting raster objects. If you reduce the image quality, you increase output speed. If your system resources are limited, reducing image quality can reduce the chance of running out of memory while plotting. These options are available only for raster devices, not pen plotters.
- Raster and Shaded/Rendered Viewports: Specifies a position on the slider that balances output quality with memory and plotting speed when plotting raster images and shaded/rendered viewports. Position the slider at None to disable raster image printing. Degrading the image quality lets you plot in less time. Position the slider at Best for the best output at the expense of memory and plotting speed.
- OLE: Specifies a position on the slider that balances output quality with memory use and plotting speed when plotting OLE objects. Position the slider at None to disable OLE object printing. Degrading the image quality lets you plot in less time. Position the slider at Best for the best output at the expense of memory and plotting speed.
- Trade-off: Specifies where to compromise quality if you can't output at the highest quality. Move the slider to diminish resolution and color.

\section*{TrueType Text}

On Windows system printers, specifies whether to plot TrueType text as a graphic image or as text. Plotting as a graphic guarantees that the text is printed as displayed, at the expense of slowing down the plotter and using more
memory. Plotting as TrueType text prints faster and uses less memory; the plotter may use a different font for printing.

■ TrueType as Text: Plots TrueType text as text.
- TrueType as Graphics: Plots TrueType text as graphics.

\section*{Merge Control}

On raster plotters, controls the appearance of lines that cross. Merge control is not effective if your plotter is configured to plot everything as black or if you are using PostScript language.
- Lines Overwrite: Uses the last plotted line to obscure the lines under it. Only the topmost line is visible at the intersection.

■ Lines Merge: Merges the colors of crossing lines.

NOTE Merge control may appear as an option for system printers that do not actually support the feature. Please check your printer's documentation to determine if merge control is supported.

\section*{Custom Properties Node}

Modifies the device-specific properties for the plotter configuration. The settings for each plotter vary. If the plotter manufacturer has not included a Custom Properties dialog box for the device driver, the Custom Properties option is disabled. For some drivers, such as ePlot, this is the only tree view option that is displayed. For Windows system printers, most of the device-specific settings are made in this dialog box. For more information about the custom properties settings for your device, choose Help in the Custom Properties dialog box.

Initialization Strings Node (for Non-System Plotters Only)
Sets pre-initialization, post-initialization, and termination ASCII text plotter strings, which send commands to a plotting device before and after the program initializes the device and after plotting is complete.

If you are plotting to an unsupported plotter in emulation mode, you can specify ASCII text initialization strings that prepare the plotter for printing, set device-specific options, and restore the plotter to its original state. You can also use initialization strings to turn on or off a plotting device feature that is not supported by the program.

The text string is sent literally, except for a back slash ( \(\backslash\) ). Use a back slash followed by a three-digit number (taken from the ASCII table), for example, \(\backslash 027\), to specify binary (unprintable) characters such as the escape character.
\(\backslash 027\) is interpreted and sent as a single character whose value is 27 . The number 27 is the escape character. For example, \(\backslash 27 \%\) - 12345 X PJL ENTER LANGUAGE \(=\) PostScript \(\backslash 10\) sends an HP PJL command to a dual-language laser printer before it's initialized and switches the printer into PostScript mode. The \(\backslash 027\) sends an escape character and the \(\backslash 010\) sends a line feed character. The remainder of the text string is sent literally. It is best to use three decimal digits for binary characters, so you'll need to add leading zeros as necessary.

Initialization strings should be used by advanced users only.

\section*{Pre-Initialization}

Forces a plotter to emulate another plotter by sending a pre-initialization ASCII text string to the plotter before it is initialized. Use a back slash followed by a three-digit number (taken from the ASCII table), for example, \(\backslash 027\), to specify binary (unprintable) characters such as the escape character.

\section*{Post-Initialization}

Sets a device-specific option that is not supported elsewhere in the program. Specify a post-initialization ASCII text string that is sent to the plotter after it is initialized. Use a back slash followed by a three-digit number (taken from the ASCII table), for example, \(\backslash 027\), to specify binary (unprintable) characters such as the escape character.

\section*{Termination}

Restores the printer to its original state after plotting. Specify a termination ASCII text string that is sent to the plotter after plotting is complete. Use a back slash followed by a three-digit number (taken from the ASCII table), for example, \(\backslash 027\), to specify binary (unprintable) characters such as the escape character.

\section*{User-Defined Paper Sizes \& Calibration Node}

Attaches a PMP file to the PC3 file, calibrates the plotter, and adds, deletes, revises, or filters custom paper sizes. You can also modify standard paper sizes. This node accesses the Plotter Calibration and Custom Paper Size wizards. If the plotter you are using has been calibrated, a Plotter Model Parameter (PMP) file contains that calibration information. If the PMP file is not already attached to the PC3 file you are editing, you must create that association so you can use the PMP file. If the plotter was calibrated from within the Add-a-Plotter wizard while creating the current PC3 file, the PMP file is already attached. Use the PMP File Name option under User-defined Paper Sizes \& Calibration to attach a PMP file to, or detach the PMP file from, the PC3 file you are editing.
Custom Paper Sizes (Nonsystem Printers Only)

Creates a customized paper size or changes the printable area of a standard or nonstandard paper size. With the Custom Paper Size wizard you can create a new paper size, or select from a list of available paper sizes (from a PMP file) if the plotter is not a Windows system printer. If the plotter is a Windows system printer, use Custom Properties. You can add, delete, and edit your paper size.

Each plotter has a maximum printable area determined by where it grips the paper and how far the pen shuttle can reach. If you are creating a paper size that is larger than the paper sizes offered in the Plotter Configuration Editor, verify that the plotter is capable of plotting the new dimensions.
■ Add: Starts the Custom Paper Size wizard. When you add a paper size, you can either create a new paper size from scratch or create a new one based on the listing of available paper sizes for the selected configured plotter. The new paper size is a user-defined size, not a standard size.

■ Delete: Deletes the selected custom paper size from the list.
■ Edit: Starts the Custom Paper Size wizard, where you can modify the selected paper size. You can change any of the custom paper size settings.

NOTE For Windows system printers, you can change the paper size settings and create custom paper sizes only in the Custom Properties dialog box.

\section*{Modify Standard Paper Sizes}

Adjusts the printable area for standard paper sizes to match the printer's capabilities. (You can't create custom paper sizes for Windows system printers using the Plotter Configuration Editor.)
- List of Standard Paper Sizes: Displays the available set of standard paper sizes.
- Modify: Starts the Custom Paper Size wizard. You can modify Printable Area and File Name. The new paper size is a user-defined size, not a standard size.

\section*{Filter Paper Sizes}

Filters the list of paper sizes displayed for the plotting device selected in the Plot and Page Setup dialog boxes. The list of paper sizes is displayed on the Plot Settings tab in the Plot dialog box and on the Layout Settings tab in the Page Setup dialog box. Select the paper sizes you want to display for this device.
- Check All: Hides all the paper sizes for the device.

■ Uncheck All: Displays all the paper sizes for the device.

\section*{Plotter Calibration}

Starts the Plotter Calibration wizard. If you need to correct scaling discrepancies, you can adjust the plotter calibration using the Plotter Calibration wizard. See "Calibrate Plotters and Work with Custom Paper Sizes" in the Driver and Peripheral Guide.

NOTE You should perform a plotter calibration only if your drawings must be exactly to scale and your plotter or printer produces inaccurate plots. Plotter Calibration causes the program to rescale all plots sent to your plotter. If your plotter provides a calibration utility, it is recommended that you use it instead of the utility supplied with this program.

PMP File Attaches a PMP file to or detaches a PMP file from the PC3 file you are editing. Use the Detach button to break the association between the PMP file and the PC3 file.
- Attach: Attaches a PMP file to the PC3 file. You can reuse calibration and custom paper size data stored in the PMP file.

■ Save PMP: Saves a PMP file to a new file in the AutoCAD \(2011 \backslash d r v\) folder.
■ Detach: Detaches the PMP file associated with the PC3 file you are editing.

\section*{Import}

Imports file information from earlier versions of the program. If you have a PCP or PC2 file from an earlier version, you can import some of the information in those files into a PC3 file. PC3 files store plotter name, port information, pen optimization level, paper size, and resolution.

\section*{Save As}

Saves a PC3 File to a new file name.

\section*{Defaults}

Restores the settings on the Device and Document Settings tab back to the default settings.

\section*{Configure LPT Port Dialog Box}

\section*{Quick Reference}

See also:
- Overview of Plotting

Specifies the time that the program waits for the plotter buffer to empty before sending more data.

\section*{Access Methods}

Menu: File > Plotter Manager
锉 Command entry: plottermanager

\section*{Summary}

You specify how much time you want to elapse before you are prompted to cancel the plot. If your drawings are complex or your pen speed is very slow, set the timeout value higher than the default ( 30 seconds). If you begin to receive numerous timeout prompts, your timeout setting is probably too low.

\section*{List of Options}

The following options are displayed.
Timeout
Specifies an amount of time to wait before retrying.

\section*{Transmission Retry}

Specifies the timeout value in milliseconds.

\section*{Settings for COM Port Dialog Box}

\section*{Quick Reference}

See also:
- Overview of Plotting

Specifies the baud rate, protocol, flow control, and hardware handshaking for serial ports on plotters that support these settings.

NOTE The settings on your plotter must match the settings in the program or you cannot plot.

\section*{Access Methods}
\(\$\) Menu: File > Plotter Manager
业 Command entry: plottermanager

\section*{List of Options}

The following options are displayed.

\section*{Baud Rate}

Specifies the baud rate. Use the fastest available baud rate.

\section*{Protocol}

Displays the protocol settings available for your plotter. Use the protocol recommended by your device manufacturer. For more information see the documentation for your device.

\section*{Flow Control}

Sets the flow control for your plotter. The default flow control setting is XON/XOFF (software handshaking) for compatibility with previous versions of the program. If you select Hardware handshaking, you can specify additional settings in the Advanced Settings for COM Port dialog box that correspond to different pins on the RS232 connector.

\section*{Advanced Settings for COM Port Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Overview of Plotting

Specifies additional hardware handshaking settings for serial ports.

\section*{Access Methods}
\(\$\) Menu: File > Plotter Manager
锉 Command entry: plottermanager

\section*{List of Options}

The following options are displayed.

\section*{CTS}

Enables Clear To Send handshaking. This monitors pin 5 of a 25 -pin serial port or pin 8 of a 9-pin serial port. CTS is an input bit, monitored for an output from the plotter or printer.

\section*{DSR}

Enables Data Set Ready handshaking. This monitors pin 6 of a 25 -pin serial port, or pin 6 of a 9-pin serial port. DSR is an input bit, monitored for an output from the printer or plotter.

\section*{RLSD}

Enables Received Line Signal Detector handshaking. This is sometimes called DCD or Data Carrier Detect. It is an input pin that can be monitored for an output from the plotter. It is on pin 8 of a 25 -pin serial port and on pin 1 of a 9-pin serial port.

\section*{RTS}

Controls the Request To Send output bit. This sends a signal to the printer or plotter on pin 4 of a 25 -pin serial port or on pin 7 of a 9 -pin serial port.

Disabled
Disables the RTS line when the device is opened.

\section*{Enabled}

Enables the RTS line when the device is opened.

\section*{Handshake}

Enables RTS handshaking. The driver raises the RTS line when the input buffer is less than one-half full and lowers the RTS line when the buffer is more than three-quarters full.

\section*{Toggle}

Specifies that the RTS line is high if bytes are available for transmission. After all buffered bytes have been sent, the RTS line is low.

\section*{DTR}

Controls the Data Terminal Ready output pin. This sends a signal to the printer or plotter on pin 20 of a 25 -pin serial port or on pin 4 of a 9 -pin serial port.

Disabled
Disables the DTR line when the device is opened.
Enabled
Enables the DTR line when the device is opened.

\section*{Handshake}

Enables DTR handshaking.

\section*{PNGOUT}

\section*{Quick Reference}

See also:
- Export Raster Files

Saves selected objects to a file in a Portable Network Graphics format.

\section*{Summary}

The Create Raster File dialog box (a standard file selection dialog box) is displayed. Enter the file name in the dialog box.

\section*{List of Prompts}

The following prompts are displayed.
Select objects or <all objects and viewports>: Press ENTER to select all objects and viewports or use an object selection method and press ENTER

A Portable Network Graphics file is created that contains the objects you select. The file reflects what is displayed on the screen. Light glyphs that are displayed in the drawing appear in the new file, even if the Plot Glyph property of the lights is set to No.

NOTE When the FILEDIA system variable is set to 0 (Off), prompts are displayed at the Command prompt.

\section*{POINT}

\section*{Quick Reference}

\section*{See also:}

■ Draw Reference Points

Creates a point object.

\section*{Access Methods}
-

\section*{Button}
\(\$\) Ribbon: Home tab > Draw panel > Multiple Points
\(\$\) Toolbar: Draw
Menu: Draw \(>\) Point

\section*{Summary}

Points can act as nodes to which you can snap objects. You can specify a full three-dimensional location for a point. The current elevation is assumed if you omit the \(Z\) coordinate value.

The PDMODE and PDSIZE system variables control the appearance of point objects. PDMODE values \(0,2,3\), and 4 specify a figure to draw through the point. A value of 1 specifies that nothing is displayed.


Specifying the value 32,64 , or 96 selects a shape to draw around the point, in addition to the figure drawn through it:


PDSIZE controls the size of the point figures, except for PDMODE values 0 and 1 . A setting of 0 generates the point at 5 percent of the drawing area height. A positive PDSIZE value specifies an absolute size for the point figures. A negative value is interpreted as a percentage of the viewport size.

After you change PDMODE and PDSIZE, the appearance of existing points changes the next time the drawing is regenerated.

You can use MEASURE and DIVIDE to create points along an object. Use DDPTYPE to specify point size and styles easily.


List of Prompts
Specify a point:

\section*{POINTCLOUD}

\section*{Quick Reference}

\section*{See also:}

■ Import 3D Point Cloud Files

Provides options to create and attach an indexed point cloud file.

\section*{Summary}

The options in this command are the same options provided by the following commands and system variables:
- POINTCLOUDATTACH on page 1514

■ POINTCLOUDINDEX on page 1518
■ POINTCLOUDDENSITY on page 2459
■ POINTCLOUDLOCK on page 2459

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [Attach on page 1514/Index on page 1514/Density on page 1514/Lock on page 1514]:
Attach Inserts an indexed point cloud (PCG or ISD) file into the current drawing.

Index Creates an indexed point cloud (PCG or ISD) file from a scan file.
Density Controls the number of points displayed at once for all point clouds in the drawing view.

Lock Controls whether an attached point cloud can be manipulated, moved, or rotated.

\section*{POINTCLOUDATTACH}

\section*{Quick Reference}

See also:
- Import 3D Point Cloud Files

Inserts an indexed point cloud (PCG or ISD) file into the current drawing.

\section*{Access Methods}

EU
Button
\(\$\) Ribbon: Insert tab \(>\) Point Cloud panel \(>\) Attach Point Cloud
\(\$\) Menu: Insert \(>\) Point Cloud \(>\) Attach
\(\$\) Toolbar: Insert

Summary
Opens the Select Point Cloud File dialog box, a standard file selection dialog box on page 1295. After you select a file and click OK, the Attach Point Cloud dialog box on page 1515 is displayed.

\section*{Attach Point Cloud Dialog Box}

\section*{Quick Reference}

\author{
See also: \\ ■ Import 3D Point Cloud Files
}

Specifies insertion options, such as scale, rotation, and geographic location information.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Point Cloud panel \(>\) Attach Point Cloud
\(\$\) Menu: Insert > Point Cloud > Attach
\(\$\) Toolbar: Insert
㟇 Command entry: pointcloud, pointcloudattach

\section*{Summary}

Specifies the insertion point for the point cloud. The point cloud is inserted at the specified coordinates, based on the location of the Insertion object snap. If geographic location information exists in both the current drawing and the point cloud file, then you can insert the file based on that data.

\section*{List of Options}

The following options are displayed.
Name
Identifies the point cloud file attach.

\section*{Browse}

Opens the Select Point Cloud dialog box, a standard file selection dialog box on page 1295.

\section*{Path Type}

Full Path Uses the full path of the specified file, including the root folder and all subfolders that contain the point cloud file.

Relative Path Uses the file path relative to the current drawing file to reference the point cloud file. To use the relative path, the point cloud file must first be saved.

No Path Uses only the file name of the point cloud file for referencing. The file must be located in the same folder as the current drawing file.

\section*{Insertion Point}

Specifies the insertion point (or base point) of the point cloud.

\section*{Scale}

Specifies the scale for the inserted point cloud.

\section*{Specify On-Screen}

Specifies the scale using the pointing device.

\section*{Rotation}

Specifies the rotation angle for the inserted point cloud in the current UCS.

\section*{Specify On-Screen}

Specifies the rotation angle using the pointing device.
Use Geographic Location

Inserts the point cloud based on the geographic data in the point cloud file and the drawing file.

Lock Point Cloud
Controls whether an attached point cloud can be moved or rotated. (POINTCLOUDLOCK on page 2459 system variable)

\section*{-POINTCLOUDATTACH}

\section*{Quick Reference}

\section*{See also:}

■ Import 3D Point Cloud Files

Inserts an indexed point cloud (PCG or ISD) file into the current drawing from the Command prompt.

\section*{List of Prompts}

The following prompts are displayed.
Enter File Name of Point Cloud Specifies the full or relative path to the PCG or ISD file, or the file name only. If you specify the file only, it must be located in the same folder as the current drawing file.
Entering a tilde (~) displays the Select Point Cloud File dialog box, a standard file selection dialog box on page 1295.

Insertion Point Specifies the insertion point (or base point) of the point cloud.

Scale Factor Specifies the scale for the inserted point cloud.
Rotation Angle Specifies the rotation angle for the inserted point cloud in the current UCS.

\section*{POINTCLOUDINDEX}

\section*{Quick Reference}

See also:
- Import 3D Point Cloud Files

Creates an indexed point cloud (PCG or ISD) file from a scan file.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Point Cloud panel \(>\) Index Point Cloud
\(\$\) Menu: Insert \(>\) Point Cloud \(>\) Index
\(\$\) Toolbar: Insert

\section*{Summary}

Displays the Select Data File and Create Indexed Point Cloud File dialog boxes, which are standard file selection dialog boxes on page 1295.

Create an indexed point cloud file from scan files created by a LiDAR scanner (LAS file) or smaller 3D scanner (XYB, LAS, FLS, or FWS file).

\section*{POINTLIGHT}

\section*{Quick Reference}

See also:
■ Use Point Lights

Creates a point light that radiates light in all directions from its location.

\section*{Access Methods}


Button

Ribbon: Render tab \(>\) Lights panel \(>\) Point
\(\%\) Menu: View \(>\) Render \(>\) Light \(>\) New Point Light
\(\$\) Toolbar: Lights

\section*{Summary}

Use point lights for general lighting effects.

\section*{List of Prompts}

The following prompts are displayed.
Specify source location \(\langle 0,0,0\rangle\) : Enter coordinate values or use the pointing device
If the LIGHTINGUNITS system variable is set to 0 , the following prompt is displayed:

Enter an option to change [Name on page 1519/Intensity on page 1520/Status on page 1520 /shadoW on page 1521 /Attenuation on page 1521 /Color on page 1522 /eXit on page 1523] <eXit>:
If the LIGHTINGUNITS system variable is set to 1 or 2 , the following prompt is displayed:

Enter an option to change [Name on page 1519/Intensity factor on page 1520/Status on page 1520/"Photometry"/shadoW on page 1521/Attenuation on page 1521/filterColor on page 1522/eXit on page 1523] <eXit>:

NOTE When the LIGHTINGUNITS system variable is set to 1 or 2 , the Attenuation option has no affect on the creation of the light. It is only maintained for scripting compatibility.

\section*{Name}

Specifies the name of the light. You can use uppercase and lowercase letters, numbers, spaces, hyphens (-), and underscores (_) in the name. The maximum length is 256 characters.

Enter light name:

\section*{Intensity/Intensity Factor}

Sets the intensity or brightness of the light. The range is 0.00 to the maximum value that is supported by your system.

Enter intensity (0.00-max float) \(<1.0000>\) :

\section*{Status}

Turns the light on and off. If lighting is not enabled in the drawing, this setting has no effect

Enter status [oN/oFf] <On>:

\section*{Photometry}

Photometry is available when the LIGHTINGUNITS system variable is set to 1 or 2 . Photometry is the measurement of the luminous intensities of visible light sources.

In photometry, luminous intensity is a measure of the perceived power emitted by a light source in a particular direction. Luminous flux is the perceived power per unit of solid angle. The total luminous flux for a is the perceived power emitted in all directions. Luminance is the total luminous flux incident on a surface, per unit area.

Enter a photometric option to change [Intensity/Color/eXit] <I>:
Intensity Enter intensity (Cd) or enter an option [Flux/Illuminance] <1500.0000>:
Enter an intensity value in candelas, the perceived power in a luminous flux value, or illuminance value for the total luminous flux incident on a surface.
- Candela (symbol: cd) is the SI unit of luminous intensity (perceived power emitted by a light source in a particular direction). \(\mathrm{Cd} / \mathrm{Sr}\)

■ Lux (symbol: lx) is the SI unit of illuminance. Lm/m^2
■ Foot-candle (symbol: fc) is the American unit of illuminance. \(\mathrm{Lm} / \mathrm{ft} \wedge 2\)

Enter \(\mathbf{f}\) to specify the perceived power in a luminous flux value.
Enter Flux (Lm) <18849.5556>:
If you enter \(\mathbf{i}\), you can specify the intensity of the light based on an illuminance value.
Enter Illuminance ("Lx"I"Fc") or enter an option [Distance] <1500.0000>:
The illuminance value can be specified in either lux or foot-candles. Enter d to specify a distance to use to calculate illuminance.
Enter Distance <1.0000>:
Color Enter color name or enter an option [?/Kelvin] <D65White>:

Specify the color of the light based on a color name or a Kelvin temperature. Enter? to display a list of color names.
Enter color name(s) to list <*>:
Enter a text string using wild card characters to display a partial listing of color names, or an asterisk (*) to display all the possible choices.
If you enter \(\mathbf{k}\), you can specify the color of the light based on a Kelvin temperature value.
Enter Kelvin temperature <3600.0000>:
Exit Exits the command option.

\section*{Shadow}

Makes the light cast shadows.
Enter shadow settings [Off/Sharp/soFtmapped/softsAmpled] <Sharp>:
Off Turns off display and calculation of shadows for the light. Turning shadows off increases performance.

Sharp Displays shadows with sharp edges. Use this option to increase performance.

Soft Mapped Displays realistic shadows with soft edges.
Enter map size [64/128/256/512/1024/2048/4096] <256>:
Specifies the amount of memory to use to calculate the shadow map.
Enter softness (1-10) <1>:
Specifies the softness to use to calculate the shadow map.
Soft Sampled Displays realistic shadows with softer shadows (penumbra) based on extended light sources.
Enter an option to change [Shape/sAmples/Visible/eXit]<eXit> :
Specify the shape of the shadow by entering \(s\) and then the dimensions of the shape. (For example, the radius of the sphere or the length and width of a rectangle.)
Enter shape [Linear, Disk, Rect, Sphere,Cylinder] <Sphere>:
Specify the sample size by entering a.
Enter Shadow Sample <16.0000>:
Specify the visibility of the shape by for the shadow by entering \(\mathbf{v}\).
Enter Shape Visibility [Yes/No]<No>:

\section*{Attenuation}

Enter an option to change [attenuation Type/Use limits/attenuation start Limit/attenuation End limit/eXit]<eXit>:

Attenuation Type Controls how light diminishes over distance. The farther away an object is from a point light, the darker the object appears. Attenuation is also known as decay.
Enter attenuation type [None/Inverse linear/inverse Squared] <Inverse linear>:
■ None. Sets no attenuation. Objects far from the point light are as bright as objects close to the light.
- Inverse Linear. Sets attenuation to be the inverse of the linear distance from the light. For example, at a distance of 2 units, light is half as strong as at the point light; at a distance of 4 units, light is one quarter as strong. The default value for inverse linear is half the maximum intensity.
- Inverse Squared. Sets attenuation to be the inverse of the square of the distance from the light. For example, at a distance of 2 units, light is one quarter as strong as at the point light; at a distance of 4 units, light is one sixteenth as strong.

Use Limits Specifies whether to use limits or not.
Limits [oN/oFf] <Off>:
Attenuation Start Limit Specifies the point where light starts as an offset from the center of the light. The default is 0 .
Specify start limit offset <1.0000>:
Attenuation End Limit Specifies the point where light ends as an offset from the center of the light. No light is cast beyond this point. Setting an end limit increases performance where the effect of lighting is so minimal that the calculations are wasted processing time.
Specify end limit offset \(<10.0000>\) :

\section*{Color/Filter Color}

Controls the color of the light.
Enter true color (R,G,B) or enter an option [Index color/Hsl/colorBook]<255,255,255>:

True Color Specifies a True Color. Enter in the format R,G,B (red, green, blue).
Index Specifies an ACI (AutoCAD Color Index) color.
Enter color name or number (1-255):
HSL Specifies an HSL (hue, saturation, luminance) color.
Enter HSL color (H,S,L) <0,0,100>:
Color Book Specifies a color from a color book.

Enter Color Book name:

\section*{Exit}

Exits the command.

\section*{POLYGON}

\section*{Quick Reference}

See also:
- Draw Rectangles and Polygons

Creates an equilateral closed polyline.

\section*{Access Methods}


Button

8 Ribbon: Home tab \(>\) Draw panel \(>\) Polygon
\(\$\) Menu: Draw \(>\) Polygon
\(\$\) Toolbar: Draw

\section*{List of Prompts}

The following prompts are displayed.
Enter number of sides <current>: Enter a value between 3 and 1024 or press ENTER Specify center of polygon on page 1524 or [Edge on page 1524]: Specify a point (1) or enter \(\mathbf{e}\)

polygons

\section*{Center of Polygon}

Defines the center of the polygon.
Enter an option [Inscribed in circle/Circumscribed about circle] <current>: Enter i or cor press ENTER

Inscribed in Circle Specifies the radius of a circle on which all vertices of the polygon lie.
Specify radius of circle: Specify a point (2) or enter a value


Specifying the radius with your pointing device determines the rotation and size of the polygon. Specifying the radius with a value draws the bottom edge of the polygon at the current snap rotation angle.

Circumscribed about Circle Specifies the distance from the center of the polygon to the midpoints of the edges of the polygon.
Specify radius of circle: Specify a distance


Specifying the radius with your pointing device determines the rotation and size of the polygon. Specifying the radius with a value draws the bottom edge of the polygon at the current snap rotation angle.

\section*{Edge}

Defines a polygon by specifying the endpoints of the first edge.
Specify first endpoint of edge: Specify a point (1)
Specify second endpoint of edge: Specify a point (2)


You can specify the different parameters of the polygon including the number of sides. The difference between the inscribed and circumscribed options is shown.


\section*{POLYSOLID}

\section*{Quick Reference}

See also:
- Create a Polysolid

Creates a 3D wall-like polysolid.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modeling panel \(>\) Polysolid
\(\$\) Menu: Draw \(>\) Modeling \(>\) Polysolid
\(\$\) Toolbar: Modeling

\section*{Summary}

You can create walls with straight and curved segments of constant height and width.


With the POLYSOLID command, you can convert an existing line, 2D polyline, arc, or circle to a solid with a rectangular profile. A polysolid can have curved segments, but the profile is always rectangular by default.


You can draw a solid with POLYSOLID just as you would a polyline. The PSOLWIDTH system variable sets the default width for the solid. The PSOLHEIGHT system variable sets the default height for the solid.

\section*{List of Prompts}

The following prompts are displayed.
Specify start point or [Object on page \(1526 /\) Height on page \(1527 /\) Width on page \(1527 / J u s t i f y\) on page 1527] <Object>: Specify a start point for the profile of the solid, press ENTER to specify an object to convert to a solid, or enter an option
Specify the next point on page 1527 or [Arc on page 1528/Undo on page 1528]: Specify
the next point for the profile of the solid, or enter an option

\section*{Object}

Specifies an object to convert to a solid. You can convert:
■ Line
- Arc
- 2D polyline
- Circle

Select object: Select an object to convert to a solid

\section*{Height}

Specifies the height of the solid. The default height is set to the current PSOLHEIGHT setting.

Specify height <default>: Specify a value for the height, or press ENTER to specify the default value

The specified height value will update the PSOLHEIGHT setting.

\section*{Width}

Specifies the width of the solid. The default width is set to the current PSOLWIDTH setting.

Specify width <current>: Specify a value for the width by entering a value or specifying two points, or press ENTER to specify the current width value

The specified width value will update the PSOLWIDTH setting.

\section*{Justify}

Sets the width and height as the solid to be left, right, or center justified when defining the profile with the command. The justification is based on the starting direction of the first segment of the profile.
Enter justification [Left/Center/Right] <Center>: Enter an option for the justification or press ENTER to specify center justification

\section*{Next Point}

Specify the next point or [Arc/Close/Undo]: Specify the next point for the profile of the solid, enter an option, or press ENTER to end the command
Arc Adds an arc segment to the solid. The default starting direction of the arc is tangent to the last drawn segment. You can specify a different starting direction with the Direction option.
Specify endpoint of arc or [Close/Direction/Line/Second point/Undo]: Specify an endpoint or enter an option
- Close. Closes the solid by creating a line or arc segment from the last point specified to the starting point of the solid. At least two points must be specified to use this option.
- Direction. Specifies a starting direction for the arc segment. Specify the tangent direction from the start point of arc: Specify a point Specify endpoint of arc: Specify a point
- Line. Exits the Arc option and returns to the initial POLYSOLID command prompts.
- Second Point. Specifies the second point and endpoint of a three-point arc segment.

Specify second point on arc: Specify a point Specify end point of arc: Specify a point
- Undo. Removes the most recent arc segment added to the solid.

Close Closes the solid by creating a line or arc segment from the last point specified to the starting point of the solid. At least three points must be specified to use this option.

Undo Removes the most recent arc segment added to the solid.

\section*{Arc}

Adds an arc segment to the solid. The default starting direction of the arc is tangent to the last drawn segment. You can specify a different starting direction with the Direction option.

Specify endpoint of arc or [Close/Direction/Line/Second point/Undo]: Specify an endpoint or enter an option

Close Closes the solid by creating a linear or arc segment from the last vertex to the start of the solid.

Direction Specifies a starting direction for the arc segment.
Specify the tangent direction from the start point of arc: Specify a point Specify endpoint of arc: Specify a point

Line Exits the Arc option and returns to the initial POLYSOLID command prompts.

Second Point Specifies the second point and endpoint of a three-point arc segment.
Specify second point on arc: Specify a point
Specify end point of arc: Specify a point
Undo Removes the most recent arc segment added to the solid.

\section*{Undo}

Removes the most recent segment added to the solid.

\section*{PRESSPULL}

\section*{Quick Reference}

\section*{See also:}
- Press or Pull Bounded Areas

Presses or pulls bounded areas.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modeling panel \(>\) Press/Pull
\(\$\) Toolbar: Modeling

\section*{Summary}

Press or pull a bounded area by clicking inside the area. Then drag or enter a value to indicate the amount of extrusion. As you move the cursor, the extrusion changes dynamically. You can also press Ctrl+Shift+E and click inside an area to initiate the press or pull activity.


You can press or pull any of the following types of bounded areas:
Bounded areas that can be pressed or pulled
Areas that can be hatched by picking a point (with zero gap tolerance)
Areas enclosed by crossing coplanar, linear geometry, including edges and geometry in blocks

Closed polylines, regions, 3D faces, and faces of 2D solids that have coplanar vertices
Areas enclosed by geometry (including 2D objects and edges of faces) that is coplanar to the face of a 3D solid.

\section*{List of Prompts}

The following prompts are displayed.
Click inside bounded areas to press or pull Specifies which closed area you want to modify. Click and drag to set the distance you want to press or pull. You can also enter a value.

\section*{PREVIEW}

\section*{Quick Reference}

See also:
■ Preview a Plot

Displays the drawing as it will be plotted.

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Preview
Menu: Application menu \(>\) Print \(>\) Plot Preview
Toolbar: Standard

\section*{Summary}

The preview is based on the current plot configuration, as defined by the settings in the Page Setup or Plot dialog box. It shows exactly how the drawing will look when plotted, including lineweights, fill patterns, and other plot style options.

The cursor changes to a magnifying glass with plus (+) and minus (-) signs. Dragging the cursor toward the top of the screen while holding down the pick button enlarges the preview image. Dragging toward the bottom of the screen reduces the preview image.


\section*{3D Graphics System Configuration Settings}

Two settings for your graphics system configuration will affect the preview. To access these settings, enter 3dconfig, and click Manual Tune to display the Manual Performance Tuning dialog box.
- Texture Compression. When Texture Compression is turned on, there is a reduction in the quality of the images in the drawing when they are
previewed. Texture Compression does not affect viewports that are rendered. To identify whether Texture Compression is turned on, look at the Hardware Effects List in the Manual Performance Tuning dialog box.
- Hardware Acceleration. When hardware acceleration is turned on or off, but does not support shadows, it is possible to preview a drawing that contains shaded viewports with unsupported hardware effects by the graphics card through software emulation. To enable the software emulation of hardware effects that are not supported by your graphics card, in the Manual Performance Tuning dialog box, click Emulate unsupported hardware effects in software when plotting. The unsupported effects will not appear in the viewport in real-time, but will appear when previewing the drawing.

\section*{Preview Window Toolbar}

Provides options in the Preview window.
Plot Plots the drawing as it is displayed in the full-sheet preview, and then exits Plot Preview.


Pan Displays the pan cursor, a hand cursor that you can use to pan the preview image. Hold down the pick button and drag the cursor in any direction. The pan cursor stays active until you click another button.


Zoom Displays the zoom cursor, a magnifying-glass cursor that you can use to enlarge or reduce the preview image. To enlarge the image, hold down the pick button and drag the cursor toward the top of the screen. To reduce the image, hold down the pick button and drag the cursor toward the bottom of the screen.


Zoom Window Zooms to display a specified window. Zoom Window works with both the zoom cursor and the pan cursor.


Zoom Original Restores the initial full-sheet preview. Zoom Original works with both the zoom cursor and the pan cursor.


Close Preview Window Closes the Preview window.


\section*{PROJECTGEOMETRY}

\section*{Quick Reference}

\section*{See also:}

■ Trim and Untrim Surfaces

Projects points, lines, or curves onto a 3D solid or surface from different directions.

\section*{Access Methods}


Button
\(\$\) Ribbon: Surface tab \(>\) Project Geometry panel

\section*{Summary}

By projecting geometry you can do on of the following:
- Project points or curves onto a 3D solid or surface.
- Project and trim a selected 3D solid or surface.

To trim the surface, set the SURFACEAUTOTRIM on page 2538 system variable to 1 .

You can project any curve (line, arc, circle, ellipse, 2D polyline, 2D spline-fit polyline, 2D curve-fit polyline, 3D polyline, 3D spline-fit polyline, spline, or helix) onto any type of surface or solid.

\section*{List of Prompts}

The following prompts are displayed.
Project to UCS Surface Modeling tab \(>\) Project Geometry panel \(>\) Project to UCS

Projects the geometry along the positive or negative \(Z\) axis of the current UCS.

Project to View Surface tab > Project Geometry panel > Project to View Projects the geometry based on the current view.

Project to Two Points Surface tab \(>\) Project Geometry panel \(>\) Project to Vector

Projects the geometry along a path between two points.


\section*{PROPERTIES}

\section*{Quick Reference}

See also:
■ Display and Change the Properties of Objects

Controls properties of existing objects.

\section*{Access Methods}


Button

\title{
8 Ribbon: View tab \(>\) Palettes panel \(>\) Properties \\ \(\$\) Menu: Modify \(>\) Properties \\ \(\$\) Toolbar: Standard \\ Shortcut menu: Select the objects whose properties you want to view or modify, right-click in the drawing area, and click Properties.
}

\section*{Summary}

When more than one object is selected, only those properties common to all selected objects are displayed.

When no objects are selected, only the current settings of general properties are displayed.
The Properties palette is displayed. The Properties palette lists properties of the selected object or set of objects.

You can also view or modify properties of third-party application objects that are based on AutoCAD application programming interface (API) standards.

There are several general properties common to all objects. All other object properties are specific to the type of object.

\section*{Properties Palette}

\section*{Quick Reference}

\section*{See also:}

■ Display and Change the Properties of Objects

Displays the properties of the selected object or set of objects.


\section*{Access Methods}


Button

Ribbon: View tab \(>\) Palettes panel \(>\) Properties
Menu: Modify \(>\) Properties
Toolbar: Standard
Shortcut menu: Select the objects whose properties you want to view or modify, right-click in the drawing area, and click Properties.

\section*{业 Command entry: properties}

\section*{Summary}

When more than one object is selected, only those properties common to all selected objects are displayed. When no objects are selected, only the current settings of general properties are displayed.
You can specify a new value to modify any property that can be changed. Click the value and use one of the following methods:

■ Enter a new value.
■ Click the down arrow a the right and select a value from the list.
- Click the Pick Point button to use the pointing device to change a coordinate value.

■ Click the QuickCalc calculator button to calculate a new value.
- Click the left or right arrow to increase or decrease the value.

■ Click the \(\{\ldots\}\) button and change the property value in a dialog box.

\section*{List of Options}

The following options are displayed.
Object Type Displays the type of object that is selected.
Toggle Value of PICKADD Sysvar Turns the PICKADD system variable on (1) and off (0). When PICKADD is on, each object selected, either individually or by windowing, is added to the current selection set. When PICKADD is off, selected objects replace the current selection set.

Select Objects Selects desired objects using any selection method. The properties common to the selected objects are displayed in the Properties palette. You can then modify the properties of the selected objects in the Properties palette, or you can make other changes to the selected objects by entering an editing command.

Quick Select Displays the Quick Select dialog box . Use Quick Select to create selection sets based on filtering criteria.

\section*{Shortcut Menu}

The following shortcut menu options are available when you right-click the title bar.

Move Displays a four-headed arrow cursor that you can use to move the palette. The palette does not dock.

Size Displays a four-headed arrow cursor that you can use to drag an edge or a corner to make the palette smaller or larger.

Close Closes the Properties palette.
Allow Docking Toggles the ability to dock or anchor palette windows. If this option is selected, a window can be docked when you drag it over a docking area at the side of a drawing. A docked window adheres to the side of the application window and causes the drawing area to be resized. Selecting this option also makes Anchor Right and Anchor Left available.

Anchor Right/ Anchor Left Attaches the Properties palette to an anchor tab base at the right or left side of the drawing area. The palette rolls open and closed as the cursor moves across it. When an anchored palette is open, its content overlaps the drawing area. An anchored palette cannot be set to stay open.

Auto-hide Causes a floating palette to roll open and closed as the cursor moves across it. When this option is cleared, the palette stays open.

Transparency Displays the Transparency dialog box on page 1373.

\section*{General Properties of Objects}

\section*{Quick Reference}

\section*{See also:}

■ Display and Change the Properties of Objects

\section*{Summary}

The following general properties are common to most objects and custom objects (third-party application objects based on AutoCAD API standards).

NOTE In the Properties palette, layers or objects that are assigned property overrides in viewports display a ByLayer (VP) value and a background color for applicable properties.

\section*{List of Options}

The following options are displayed.
Color Specifies the color for objects. Selecting Select Color in the color list displays the Select Color dialog box (see COLOR).
You can use the Select Color dialog box to define the color of objects by selecting from the 255 AutoCAD Color Index (ACI) colors, true colors, and color book colors.

Layer Specifies the current layer of the object. The list shows all layers in the current drawing (see LAYER).

Linetype Specifies the current linetype of the object. The list shows all linetypes in the current drawing (see LINETYPE).


Linetype Scale Specifies the linetype scale factor of the object (see LTSCALE).
Plot Style Lists NORMAL, BYLAYER, BYBLOCK, plus any plot styles contained in the current plot style table (see PLOTSTYLE).

Lineweight Specifies the lineweight of the object. The list shows all available lineweights in the current drawing (see LWEIGHT).

Hyperlink Attaches a hyperlink to a graphical object. If a description has been assigned to the hyperlink, the description is displayed. If no description has been assigned, the URL is displayed (see HYPERLINK).

Thickness Sets the current 3D thickness. This property does not apply to all objects (see CHPROP).


\section*{Cell Border Properties Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Display and Change the Properties of Objects

Sets the properties of the borders of table cells.

\section*{Access Methods}

Pointing device: With a table cell selected and the Properties palette open, click in the value cell for Border Lineweight or Border Color, and click the [...] button.

\section*{List of Options}

The following options are displayed.

\section*{Border Properties}

Controls the properties of the borders of the selected table cells.

\section*{Lineweight}

Sets the lineweight to be used for borders that are displayed. If you use a heavy lineweight, you may have to change the cell margins.

\section*{Linetype}

Sets the linetype to be used for borders that are displayed.

\section*{Color}

Sets the color to be used for borders that are displayed.

\section*{Double Line}

When checked, a double line border will be added to the selected cells.

\section*{Spacing}

Determines the spacing of double-line borders. The default value is .1800 .

\section*{Preview}

Specifies which borders of the selected table cell have the Border Properties settings applied, and displays the results of the current settings. Click a gridline in the preview to apply properties to it.

NOTE Linetypes will not display in the preview window.

\section*{All Borders}

Applies the border properties settings to all borders of the selected table cells.

\section*{Outside Borders}

Applies the border properties settings to the outside borders of the selected table cells.

\section*{Inside Borders}

Applies the border properties settings to the inside borders of the selected table cells.

\section*{No Borders}

Applies the border properties settings to none of the borders of the selected table cells.

Top Border Applies the border properties setting to the top borders of the selected table cells.

Inside Horizontal Border Applies the border properties setting to the inside horizontal borders of the selected table cells.

Bottom Border Applies the border properties setting to the bottom borders of the selected table cells.

Left Border Applies the border properties setting to the left borders of the selected table cells.

Inside Vertical Border Applies the border properties setting to the inside vertical border of the selected table cells.

Right Border Applies the border properties setting to the right border of the selected table cells.

\section*{Add Distance or Angle Value Dialog Box}

\section*{Quick Reference}

See also:
- Display and Change the Properties of Objects

Adds distance or angle values to a parameter's value set in a dynamic block definition.

\section*{List of Options}

The following options are displayed.
Distances or Angle to Add
Specifies values (separated by commas) to add to the value set.
Distances or Angles List (Unlabeled)
Lists the distances or angles defined for the value set.
Add
Adds the values specified in the Distances or Angle to Add box.
Delete
Deletes the selected value.

\section*{Lighting Properties}

\section*{Quick Reference}

\section*{See also:}
- Control Light Properties

Sets the properties of the lights.

\section*{Summary}

Different properties area available depending on the lighting units (standard or photometric) and lighting type (Spotlight on page 1839, Pointlight on page 1518, or Weblight on page 2090). Other lighting types such as Freespot on page 817, Targetpoint on page 1928, and Freeweb on page 820 display similar properties. By right-clicking on a light and clicking Properties, the Lighting Properties palette is displayed.

\section*{List of Options}

The following options are displayed.

\section*{General Properties}

Under the General panel, the following property settings are available:
Name Specifies the name of the light.
Type (Light Distribution) Specifies the type of light. Determines the distribution of light from the. The type of lighting can be changed after the light has been added to the drawings.
■ Spotlight - Default value for Spotlight and Freespot lights.
- Point - Default for Pointlight and Targetpoint lights.
- Web - Default for Weblight and Freeweb lights.

On/Off Status Indicates whether the light is on or off.
Shadows Indicates if the light is casting a shadow.
Hotspot Angle (Spotlight and Freespot only) Specifies the angle of the brightest cone of light. Settings can be calculated by using the QuickCalc Calculator on page 1589.

Falloff angle (Spotlight and Freespot only) Specifies the outer extremity of the light, where it meets the darkness.

Intensity Factor Magnifies the effect of the skylight.
Filter Color Specifies the secondary color of the light. Represents the color of a physical filter over the lamp. Default color is white.
When lighting is set to photometric units this represents a secondary color filter on the light. When lighting is set to generic lighting this represents the total color of the light.

Plot Glyph Allows the ability to plot the drawing with the glyphs on.

\section*{Photometric Properties}

Under the Photometric Properties panel, the following property settings are available:

Lamp Intensity Specifies the inherent brightness of the light. Specifies the intensity, flux, or illuminance of the lamp. Default units are candela. Activates the Lamp Intensity dialog box, on page 1546 where units can be modified.

Resulting Intensity Reports the final brightness of the light. This is determined by the product of the Lamp Intensity and the Intensity factor. This value is calculated in the Lamp Intensity Dialog box on page 1546. (Read-only)

Lamp Color Specifies the inherent color of the light in Kelvin temperature or standard. The button activates the Lamp Color dialog box on page 1548.

Resulting Color Reports the final color of the light. This is determined by a combination of the Lamp Color and the Filter Color. (Read-only)

Photometric Web
Under the Photometric Web panel, the following property settings are available under the Weblight and Freeweb types of lights:
Web File Specifies the data file describing the intensity distribution of the light.

Web Preview Displays a 2D slice through goniometric data.

\section*{Web Offsets}

Under the Web offsets panel, the following property settings are available under the Weblight and Freeweb types of lights:

Rotation X Specifies a rotational offset of the web about the optical X axis. Settings can be calculated by using the QuickCalc Calculator on page 1589 or by selecting a point.

Rotation Y Specifies a rotational offset of the web about the optical Y axis. Settings can be calculated by using the QuickCalc Calculator on page 1589 or by selecting a point.

Rotation Z Specifies a rotational offset of the web about the optical Z axis. Settings can be calculated by using the QuickCalc Calculator on page 1589 or by selecting a point.

\section*{Geometry}

Under the Geometry panel, the following property settings are available:
Position X Specifies the X coordinate position of the light. Settings can be calculated by using the QuickCalc Calculator on page 1589 or by selecting a point.

Position Y Specifies the Y coordinate position of the light. Settings can be calculated by using the QuickCalc Calculator on page 1589 or by selecting a point.

Position Z Specifies the Z coordinate position of the light. Settings can be calculated by using the QuickCalc Calculator on page 1589 or by selecting a point.

Target X (Spotlight, Targetpoint, and Weblight only) Specifies the X coordinate target position of the light. Settings can be calculated by using the QuickCalc Calculator on page 1589 or by selecting a point.

Target Y (Spotlight, Targetpoint, and Weblight only) Specifies the Y coordinate target position of the light. Settings can be calculated by using the QuickCalc Calculator on page 1589 or by selecting a point.

Target Z (Spotlight, Targetpoint, and Weblight only) Specifies the Z coordinate target position of the light. Settings can be calculated by using the QuickCalc Calculator on page 1589 or by selecting a point.

Targeted Specifies if the light displays a target grip for orienting the light. No is the default for Freespot, Pointlight, and Freeweb. Yes is the default for Spotlight, Targetpoint, and Weblight.

\section*{Attenuation}

In the real world, the intensity of light diminishes over distance. Objects far from the light source appear darker than objects near the source. This effect is known as attenuation. Attenuation is available under standard lighting workflow only. Under the Attenuation panel the following property settings are available:

Type Controls how light diminishes over distance. The farther away an object is from a spotlight, the darker the object appears. Attenuation is also known as decay.
■ Inverse Linear (Standard lights only). Sets attenuation to be the inverse of the linear distance from the light. For example, at a distance of 2 units, light is half as strong as at the point light; at a distance of 4 units, light is one quarter as strong. The default value for inverse linear is half the maximum intensity.

■ Inverse Square (Photometric lights). Sets attenuation to be the inverse of the square of the distance from the light. For example, at a distance of 2 units, light is one quarter as strong as at the spotlight; at a distance of 4 units, light is one sixteenth as strong.
- None (Standard lights only). Sets no attenuation. Objects far from the point light are as bright as objects close to the light.

Use Limits (Standard lights only) Specifies whether to use limits. The default is No.

Start Limit Offset (Standard lights only) Specifies the point where light starts as an offset from the center of the light. The default is 1 .

End Limit Offset (Standard lights only) Specifies the point where light ends as an offset from the center of the light. No light is cast beyond this point.

\section*{Rendered Shadow Details}

Under the Rendered Shadow Details panel, the following property settings are available:

Type Specifies the type of shadow cast by the light.
■ Soft (shadow map). Sets the type to Soft. This selection activates additional options for Map size and Softness.

■ Sharp (default). Sets the rendered shadow to sharp.

■ Soft (sampled). Sets attenuation to be the inverse of the square of the distance from the light. For example, at a distance of 2 units, light is one quarter as strong as at the spotlight; at a distance of 4 units, light is one sixteenth as strong.

Map Size (Soft shadow map type only) Specifies the size of the shadow map.
Softness (Soft shadow map type only) Specifies the softness or fuzziness of the shadow-mapped shadow.

Samples (Soft sampled type only) Specifies the number of shadow rays for the light. Settings can be calculated by using the QuickCalc Calculator on page 1589.

Visible Render (Soft sampled type only) Specifies whether the light shape is actually rendered. The default is No.

Shape (Soft sampled type only) Specifies the shape of the lamp bulb. For the Spotlight distribution type selection under the General panel, options are Rectangle (default) and Disk. For Point and Web types the options are Linear, Rectangle, Disk, Cylinder and Sphere (default).

Length (Soft sampled type only) Specifies spacial dimension of shadow shape for the length of the shadow. Settings can be calculated by using the QuickCalc Calculator on page 1589.

Width (Soft sampled type only) Specifies spacial dimension of shape for the width of the shadow. Settings can be calculated by using the QuickCalc Calculator on page 1589.
Radius (Soft sampled type only) Specifies spacial radius dimension of the shape selection of disk, cylinder, or sphere. Settings can be calculated by using the QuickCalc Calculator on page 1589.

\section*{Lamp Intensity Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Control Light Properties

Modifies the brightness of a lamp.


\section*{Summary}

Dialog box for setting the Lamp Intensity for a photometric light.

\section*{List of Options}

The following options are displayed.
Lamp Intensity Represents the brightness of a lamp. More specifically, it represents the luminous intensity, or power in a particular direction. It is specified in candela by default (in both the SI and American units systems). Must select from one of the following radial buttons:
- Intensity (Candela). Specifies the number of candelas (cd) is the SI unit of luminous intensity (perceived power emitted by a light source in a particular direction).
- Flux (Lumen). Represents the rate of total energy leaving the lamp. It is specified in lumens (SI and American). Mathematically, the flux is the integral of the luminous intensity over the sphere. The calculation of flux depends on the distribution of intensities. For a point light with constant intensity, the flux is simply the product of the intensity and the solid angle of a sphere: 4 Pi * Intensity. For a spot light, the flux is the product of the intensity and the solid angle of the hotspot cone, plus the incremental solid angle of the fall-off region. For a weblight, there isn't any analytical formula. The flux is obtained by numerically integrating the intensities provided in the web file.

■ Illuminance (Foot-candles). Represents the energy per area arriving at a surface (Area-flux-density). It is specified in lux (SI) and foot-candles (American). For a near light, because the light rays are diverging, you have
to talk about the illuminance at a specific distance from the lamp. So this requires an extra control to specify this distance and an additional affordance in the viewport to show the distance.

Intensity Input Control Controls the intensity value.
Distance When Illuminance is selected, displays the lux as a distance glyph in the viewport for the given light. Note: the text for the illuminance radio button will depend on the current lighting units. For the SI system, this will be "Illuminance (Lux)," and for the American system, it will be "Illuminance (Footcandles)." The distance field represents a world distance and should be formatted in the current length unit corresponding to the current lighting units. The distance field represents a world distance and should be formatted in the current length unit corresponding to the current insertion units controlled by the INSUNITS systems variable.

Resulting Intensity Specifies the type of light. Determines the distribution of light from the lamp. The type of lighting can be changed after the light has been added to the drawings.
■ Intensity Factor. Specifies the intensity factor.
- Resulting Intensity.Displays the resulting intensity of a light as the product of the Lamp Intensity value and the Intensity Factor. The value is read-only.

\section*{Lamp Color Dialog Box}

\section*{Quick Reference}

See also:
- Control Light Properties

Provides settings for the lamp color.


\section*{Summary}

Dialog box for setting the Lamp Color for a photometric light.

\section*{List of Options}

The following options are displayed.
Color Type In photometric mode specifies lamp color either as a CIE standard illuminant (D65 standard daylight) or as a Kelvin color temperature.
■ Standard Colors. Provides a fixed list of standard colors (spectra).
- Kelvin Colors. Specifies a single temperature value for the color. (The color corresponds to the glow of an ideal blackbody at that temperature.) Kelvin temperature is a number in the range of 1000-20000.

Resulting Color Shows the result of modulating the lamp color by the Filter color. A text field displays the RGB component values of the resulting color.
- Filter Color. Provides a drop-down list for selecting a standard color or launching a standard color selection dialog box.
- Resulting Color. Shows the resulting color of a light that is the product of the lamp color and the filter color.

\section*{PROPERTIESCLOSE}

\section*{Quick Reference}

\section*{See also:}

■ Display and Change the Properties of Objects

Closes the Properties palette.

\section*{Summary}

The Properties palette closes.

\section*{PSETUPIN}

\section*{Quick Reference}

\section*{See also:}
- Specify Page Setup Settings

Imports a user-defined page setup into a new drawing layout.

\section*{Summary}

The Select Page Setup From File dialog box (a standard file selection dialog box) is displayed in which you can select the drawing (. \(d w g\) ), template (. \(d w t\) ), or drawing interchange format (. \(d x f\) ) file whose page setups you want to import.

If FILEDIA is set to 0 (zero) and you enter -psetupin at the Command prompt, PSETUPIN displays command prompts.

When you select the drawing file that you want to use, the Import Page Setups dialog box is displayed.

\section*{-PSETUPIN}

\section*{Quick Reference}

See also:
- Specify Page Setup Settings

If you enter -psetupin at the Command prompt, the following prompts are displayed.

Enter file name:
Enter user defined page setup to import or [?]:

\section*{PSPACE}

\section*{Quick Reference}

\section*{See also:}

■ Work on the Model Tab

In a layout, switches from model space in a viewport to paper space.

\section*{Summary}

The program switches from model space to paper space when you are working on a layout tab.

paper space

model space

On the layout tab, use paper space to create a finished layout of a drawing for printing. As part of designing your layout, you create layout viewports, which are windows containing different views of the model. By switching from paper
space to model space (see MSPACE), you can edit the model and views within the current layout viewport.
You can make a viewport current by double-clicking inside it. You can switch to paper space by double-clicking an area of the paper space layout that is not within a viewport.

When in paper space, you can also switch to model space by clicking Model on the status bar. If you are in model space, you can switch to the last paper space b clicking Paper on the status bar.

You can also switch between layout and model tabs at the end of the drawing area.

NOTE The layout and Model tabs are only displayed if you have selected the Display Layout and Model Tabs in the Display Tab (Options Dialog Box) on page 1321.

\section*{PUBLISH}

\section*{Quick Reference}

\section*{See also:}
- Publish Drawings

Publishes drawings to DWF, DWFx, and PDF files, or to plotters.
Access Methods


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Batch Plot
\(\$\) Menu: File \(>\) Publish
\(\$\) Toolbar: Standard

\section*{Summary}

You can assemble a collection of drawings and create a paper or an electronic drawing set. Electronic drawing sets are saved as DWF, DWFx, and PDF files.

DWF and DWFx files can be viewed or plotted using Autodesk Design Review. PDF files can be viewed with a PDF viewer.

\section*{Select an Exising Drawing Set Description}

If you enter +publish at the Command prompt, you can select an existing Drawing Set Descriptions (DSD) file from the Select List of Sheets dialog box (a standard file selection dialog box on page 1295). The Publish dialog box opens and displays the drawing set saved in the DSD file under Sheets to Publish.

With the FILEDIA system variable set to 0 , if you enter -publish at the Command prompt, options are displayed.

\section*{Publish Dialog Box}

\section*{Quick Reference}

See also:
- Overview of Publishing

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Batch Plot
\(\$\) Menu: File \(>\) Publish
座 Command entry: publish

\section*{Summary}

Specifies drawing sheets that you can assemble, reorder, rename, copy, and save for publishing as a multi-sheet drawing set. You can publish the drawing set to a DWF, DWFx, or PDF file or send it to the plotter named in the page setup for hardcopy output or as a plot file. You can save this list of drawing sheets as a DSD (Drawing Set Descriptions) file. Saved drawing sets can replace or be appended to the current list for republishing.

Specifies drawing sheets that you can assemble, reorder, rename, copy, and save for publishing as a multisheet drawing set. You can publish the drawing
set to a DWF, DWFx, or PDF file or sent it to the plotter named in the page setup for hardcopy output or as a plot file.

\section*{List of Options}

The following options are displayed.

\section*{Sheet List}

Displays the current drawing set (DSD) or batch plot (BP3) file.

\section*{Load Sheet List Button}

Displays the Load Sheet List dialog box (a standard file selection dialog box on page 1295), in which you can select a DSD file or a BP3 (Batch Plot) file to load. Displays the Replace or Append dialog box if a list of drawing sheets is present in the Publish Drawing Sheets dialog box. You can either replace the existing list of drawing sheets with the new sheets or append the new sheets to the current list.

\section*{Save Sheet List Button}

Displays the Save List As dialog box (a standard file selection dialog box on page 1295), in which you can save the current list of drawings as a DSD file. DSD files are used to describe lists of drawing files and selected lists of layouts within those drawing files.

\section*{Publish To:}

Defines how to publish the list of sheets. You can publish to either a multi-sheet DWF, DWFx, or PDF file (an electronic drawing set) or to the plotter specified in the page setup (a paper drawing set or a set of plot files).

\section*{Plotter Named in Page Setup}

Indicates that the output devices given for each drawing sheet in the page setup will be used.

\section*{DWF, DWFx, and PDF}

Selects the output file format: DWF, DWFx, or PDF.

\section*{Automatically Load All Open Drawings}

When selected, the contents of all open documents (layouts and/or model space) are automatically loaded in the publish list. When not selected, only the current document's contents are loaded in the publish list.

\section*{List of Sheets Buttons}

\section*{Add Sheets Button}

Displays the Select Drawings dialog box (a standard file selection dialog box on page 1295), in which you can select drawings to add to the list of drawing sheets. The layout names from those files are extracted, and one sheet is added to the list of drawing sheets for each layout and model.
The initial drawing sheet names are constructed from the base drawing name and the layout name or the word Model separated by a dash (-).

\section*{Remove Sheets Button}

Deletes the selected drawing sheets from the list of sheets.

\section*{Move Sheet Up Button}

Moves the selected drawing sheets up one position in the list.

\section*{Move Sheet Down Button}

Moves the selected drawing sheets down one position in the list.

\section*{Preview Button}

Displays the drawing as it will appear when plotted on paper by executing the PREVIEW command. To exit the print preview and return to the Publish dialog box, press ESC, press ENTER, or right-click and then click Exit on the shortcut menu.

NOTE The Preview button is inactive when a sheet has a 3D DWF page setup.

\section*{Sheets to Publish}

Contains the list of drawing sheets to be included for publishing. Click the page setup column to change the sheet's settings. Use the shortcut menu to add sheets or make other changes to the list.

Sheet Name Combines the drawing name and the layout name with a dash (-). Includes the Model tab only if the Include Model When Adding Sheets option is selected. You can copy sheets by clicking Copy Selected Sheets on the shortcut menu. You can change the name shown in Sheet Name by clicking Rename Sheet on the shortcut menu. Drawing sheet names must be unique within a single DWF, DWFx, or PDF file. The shortcut menu also provides an option for removing all the sheets from the list.
NOTE The drawing sheets that populate the Sheets to Publish list are controlled by the PUBLISHALLSHEETS system variable.

Page Setup / 3D DWF Displays the named page setup for the sheet. You can change the page setup by clicking the page setup name and selecting another page setup from the list. Only Model tab page setups can be applied to Model tab sheets, and only paper space page setups can be applied to paper space
layouts. Select Import to import page setups from another DWG file through the Import Page Setups for Publishing dialog box (a standard file selection dialog box).
You have the option to set the page setup for model space sheets to 3D DWF or 3D DWFx. The 3D DWF option is not available for layout entries in the sheet list.

Status Displays the status of the sheet when it is loaded to the list of sheets.

\section*{Show Details}

Displays and hides the Selected Sheet Information and Selected Page Setup Information areas.

\section*{Selected Sheet Details}

Displays the following information about the selected page setup: plot device, plot size, plot scale, and details.

\section*{Publish Options Information}

\section*{Publish Options}

Opens the Publish Options dialog box, in which you can specify options for publishing.

\section*{Publish Output \\ Number of Copies}

Specifies the number of copies to publish. If the Publish to DWF, DWFx, or PDF option is selected, the Number of Copies setting defaults to 1 and cannot be changed. If a sheet's page setup specifies to plot to file, then the number set in this option is ignored and a single plot file is created.

Precision Optimizes the dpi of DWF, DWFx, and PDF files for your field: manufacturing, architecture or civil engineering. Or you can configure a custom precision preset in the Precision Presets Manager on page 755.
This setting overrides the dpi setting in the .PC3 driver. This option is grayed out if no file type is selected in the Publish to: drop-down list.

NOTE The precision override is applied to all sheets in the list except model sheets that are exported to 3D DWF.

\section*{Include Plot Stamp}

Places a plot stamp on a specified corner of each drawing and logs it to a file. The plot stamp data is specified in the Plot Stamp Dialog Box on page 1481.

While this check box remains active for sheets that are set for 3D DWF publishing, no plot stamp is added to 3D DWF or 3D DWFx files even if the check box is checked.

Plot Stamp Settings Displays the Plot Stamp Dialog Box on page 1481, in which you can specify the information, such as drawing name and plot scale, that you want applied to the plot stamp

\section*{Publish in Background}

Toggles background publishing for the selected sheet/s.
You can also set the background publishing in the Plot and Publish tab (Tools menu > Options). Select the Publishing checkbox in the Background processing options group.

Send the Sheets to the Plotter in Reverse Order When selected, sends sheets to the plotter in reverse of default order. This option is available only if the Plotter Named in Page Setup option is selected.

Open in Viewer when Done When publishing completes, the DWF, DWFx or PDF file will open in a viewer application.

\section*{Publish}

Starts the publishing operation. Creates one or more single-sheet DWF, DWFx, or PDF files or a single multi-sheet DWF, DWFx, or PDF file, or plots to a device or file, depending on the option selected in the Publish To area and the options selected in the Publish Options dialog box.
To display information about the published drawing set, including any errors or warnings, click the Plotting Details Report Available icon in the status tray on the right side of the status bar. Clicking this icon displays the Plot and Publish Details dialog box, which provides information about your completed plot and publish jobs. This information is also saved to the Plot and Publish \(\log\) file. The shortcut menu for this icon also provides an option to view the most recently published DWF, DWFx, or PDF file.

\section*{Publish Options Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Publishing

Specifies options for publishing.

\section*{Access Methods}


Button

8 Ribbon: Output tab \(>\) Plot panel \(>\) Batch Plot
\(\$\) Menu: File \(>\) Publish
並 Command entry: publish

\section*{Summary}

Specifies general options for the published DWF, DWFx, or PDF file such as the file name, the save location, and layer information.

\section*{List of Options}

Default Output Location (Plot to File)
Specifies the output folder location where DWF, DWFx, PDF, and plot files are saved when you publish drawing sheets.

\section*{General DFW/PDF Options}

Specifies options for creating a single-sheet DWF or DWFx file.
Type Specifies that a single-sheet DWF, DWFx, or PDF file or a single multi-sheet DWF, DWFx, or PDF file is generated for all the sheets listed in the Publish Dialog Box on page 1553.

\section*{Naming}
- Prompt for Name - Indicates that you will be prompted for a name and location to publish the multi-sheet DWF, DWFx, or PDF files.
- Specify Name - Prompts you for a name and location to publish the multi-sheet DWF, DWFx, or PDF files.

Name Enables you to specify the data that you can optionally include in the DWF, DWFx or PDF file.

Layer Information Specifies whether layer information is included in the published DWF, DWFx or PDF file.
NOTE Layer information for 3D DWF or 3D DWFx entries does not get published.

Merge Control Specifies whether overlapping lines merge (the colors of the lines blend together into a third color) or overwrite (the last plotted line obscures the line beneath it).

\section*{DWF Data Options}

Lists and enables you to specify the data that you can optionally include in the DWF or DWFx file.

Password Protection Specifies the following options for protecting DWF or DWFx files with passwords:
- DisabledSpecifies that no password is required.
- Prompt for Password - Displays the DWF Password Dialog Box on page 1562 when you click Publish.

■ Specify Password - Specifies that the password in the password box is applied to the DWF or DWFx file. When you select this option, the Password box becomes available, and you must enter a password.
NOTE If you lose or forget the password, it cannot be recovered. Keep a list of passwords and their corresponding DWF or DWFx file names in a safe place.

Password Specifies that published DWF or DWFx files have a password applied to them. A recipient of a DWF or DWFx file that has a password applied to it must have the password to open the DWF or DWFx file.

Block Information Specifies whether block property and attribute information is included in the published DWF or DWFx files.

NOTE You must set block information to Include in order for block template file information to be available.

Block Template File Provides options for creating a new block template (DXE) file, editing an existing block template file, or using the settings of a previously created block template file.
Create opens the Publish Block Template dialog box on page 1560, in which you can create a new block template.
Edit opens the Select Block Template dialog box (a standard file selection dialog box on page 1295), in which you can select an existing block template to modify.
NOTE When only 3D DWF or 3D DWFx files are queued for publishing, Block Information and Block Template File are set to N/A and cannot be changed.

\section*{3D DWF Options}

Group By Xref Hierarchy Arranges objects by xref hierarchy in the viewer. If set to No, xrefs are listed in the viewer like any other objects. Default \(=\) No.

Publish With Materials Most materials you have assigned to your model will be published to the 3D DWF or 3D DWFx file. If your material contains texture mapping, only the Diffuse Map is published along with its scale and orientation data. Default \(=\) Yes.

NOTE When only 2D DWF files are queued for publishing, all of the 3D DWF Options are set to N/A and cannot be changed.

\section*{Publish Block Template Dialog Box (Publish)}

\section*{Quick Reference}

See also:
■ Overview of Publishing

Access Methods


Button

Ribbon: Output tab \(>\) Plot panel \(>\) Batch Plot
\(\$\) Menu: File \(>\) Publish
锉 Command entry: publish

\section*{Summary}

Specifies which blocks and their properties and attributes to include in the published DWF or DWFx file.

\section*{List of Options}

The following options are displayed.

\section*{Current Template}

Displays the name of the current block template.

\section*{Block Source Drawings}

Displays all block source drawings that have been loaded into the Publish Block Template dialog box.

\section*{Add}

Adds drawings to the list of block source drawings.

\section*{Remove}

Removes selected drawings from the list of block source drawings.

\section*{Scan for Blocks}

Scans block source drawings for unique definitions of blocks and their properties and attributes.

\section*{Block Data to Publish}

Displays block data to publish.
Unique Blocks from Source Drawings
Displays unique blocks found in block source drawings.

\section*{Check Blocks to Publish}

Displays all scanned blocks found in block source drawings.
Exclude Blocks Without Attributes
Excludes blocks without attributes defined.
Properties of Selected Blocks
Displays properties of selected blocks found in block source drawings.

\section*{Check Properties to Publish}

Displays the union of properties of the current selection of blocks.

\section*{Exclude General Block Properties}

Excludes all general block properties from the list display.

\section*{Options}

Opens the Block Template Options dialog box where you can specify additional settings.

\section*{Save}

Saves the block template file.

\section*{Block Template Options Dialog Box (Publish)}

\section*{Quick Reference}

See also:
■ Overview of Publishing

\section*{Access Methods}


Button

\section*{Summary}

Specifies optional settings to include blocks within blocks and to include blocks within xrefs in the published DWF or DWFx file.

\section*{List of Options}

The following options are displayed.
Include Nested Blocks Includes blocks within blocks in the published DWF or DWFx file.

Include Blocks in Xrefs Includes blocks within xrefs in the published DWF or DWFx file.

\section*{DWF Password Dialog Box}

\section*{Quick Reference}

See also:
■ Overview of Publishing

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Batch Plot
\(\$\) Menu: File \(>\) Publish
㟇 Command entry: publish

\section*{Summary}

Specifies the password to apply to the DWF or DWFx file. DWF or DWFx passwords are case sensitive. The password or phrase can be made up of letters, numbers, punctuation, or non-ASCII characters.

WARNING If you lose or forget the password, it cannot be recovered. Keep a list of passwords and their corresponding DWF or DWFx file names in a safe place.

When you enter a password and click OK, the Confirm DWF Password dialog box is displayed.

\section*{Confirm DWF Password Dialog Box}

\section*{Quick Reference}

\author{
See also: \\ ■ Overview of Publishing
}

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Batch Plot
\(\$\) Menu: File \(>\) Publish
挫 Command entry: publish

\section*{Summary}

Provides a space to confirm the password that you entered in the DWF Password dialog box. If the two passwords do not match, you must click Publish again to reenter the correct password.

\section*{Publish Job Progress Dialog Box}

\section*{Quick Reference}

See also:
■ Overview of Publishing

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) Batch Plot
\(\$\) Menu: File \(>\) Publish
㟇 Command entry: publish

\section*{Summary}

Displays information about the status and progress of your publish job if background publishing is turned off in the Options dialog box, Plot and Publish tab.

\section*{List of Options}

The following options are displayed.
Cancel Sheet Cancels publishing of the sheet currently being processed.
Cancel Job Cancels the publish job.

\section*{-PUBLISH}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Publishing

\section*{Access Method}

挫 Command entry: -publish

\section*{Summary}

The Command prompt version of PUBLISH provides an interface for publishing drawing sheets that can be controlled by a script. It also provides a simplified method for regenerating DWF or DWFx files or plotted output from existing DSD files.

With the FILEDIA system variable set to 0 (or if you are running a script or other automation), enter -publish or +publish at the Command prompt. The following prompt is displayed:

\section*{List of Prompts}

The following prompts are displayed.
Enter name of sheet list <path file name.dsd>: Press ENTER for the current drawing or enter the sheet list name

NOTE The bracketed text <DSD file name> contains the name of the DSD file used when this command was last run. The bracketed text area is blank if no previous name exists. If you enter a tilde \((\sim)\) for the file name, the standard file selection dialog box is displayed regardless of the FILEDEA setting.

The file name is validated and the list of sheets is loaded.
When -PLOT, PLOT, -PUBLISH, and PUBLISH are used in a script (SCR file), the BACKGROUNDPLOT system variable value is ignored, and -PLOT, PLOT, -PUBLISH, and PUBLISH are processed in the foreground.

Once the publish job starts, each drawing sheet name is listed along with an appropriate message. Drawing sheets not found or not initialized are indicated with an error message.

When the publish job is complete, the details can be viewed in the Plot and Publish Details dialog box.

A log file is written during the publish operation. The log file contains the drawing sheet name, layout name, full drawing name, path name, and status. The log file name is derived from the name of the sheet list file with CSV replacing the DSD file extension.

NOTE Any existing log file is overwritten by a new log file without any warning message being displayed.

\section*{PUBLISHTOWEB}

\section*{Quick Reference}

\section*{See also:}
- Use the Publish to Web Wizard to Create Web Pages

Creates HTML pages that include images of selected drawings.

\section*{Access Methods}


Button

Menu: File \(>\) Publish to Web

\section*{Summary}

The Publish to Web wizard is displayed.
This wizard provides a simplified interface for creating formatted web pages that include DWF, DWFx, JPEG, or PNG images of drawings. After creating a web page, you can post it to an Internet or intranet location.

\section*{Publish to Web Wizard}

\section*{Quick Reference}

See also:
■ Use the Publish to Web Wizard to Create Web Pages
Creates a formatted HTML page.

\section*{Access Methods}


Button
\(\$\) Menu: File \(>\) Publish to Web
䱂 Command entry: publishtoweb

\section*{Summary}

You can choose from a number of different formatting options that control the layout of your completed HTML page. After creating an HTML page, you can use the wizard to publish the page to an Internet or intranet location.

You can also use the wizard to modify existing HTML pages that were created using the PUBLISHTOWEB command.
You can customize the template you use for your web page. For information about customizing templates, see "Customize a Publish to Web Template" in the Customization Guide.

\section*{PURGE}

\section*{Quick Reference}

See also:
- Erase Objects

Removes unused items, such as block definitions and layers, from the drawing.

\section*{Access Methods}


Bution
\(\$\) Menu: Application menu


\section*{Summary}

The Purge dialog box is displayed.
If you enter -purge at the Command prompt, options are displayed.
Unused named items can be removed from the current drawing. These include include block definitions, dimension styles, layers, linetypes, and text styles. Zero-length geometry and empty text objects can also be removed.

NOTE The PURGE command will not remove unnamed objects (zero-length geometry or empty text and mtext objects) from blocks or locked layers.

\section*{Purge Dialog Box}

\section*{Quick Reference}

See also:
- Erase Objects

Removes unused items, such as block definitions and layers, from the drawing.

\section*{Access Methods}


Bution


\section*{Summary}

Displays items that can be purged.


\section*{List of Options}

The following options are displayed.

\section*{Named Objects}

View Items You Can Purge
Switches the tree view to display a summary of named objects in the current drawing that you can purge.

\section*{Items Not Used in Drawing}

Lists the named objects that are not used in the current drawing and that can be purged.

You can list the items for any object type by clicking the plus sign or by double-clicking the object type. You purge items by selecting the item to purge.

Purge Nested Items removes items only when you select one of the following options:
- All Items or Blocks in the tree view
- The Purge All button

\section*{View Items You Cannot Purge}

Switches the tree view to display a summary of named objects in the current drawing that you can't purge.

\section*{Items Currently Used in Drawing}

Lists named objects that cannot be removed from the drawing.
Most of these objects are currently used in the drawing or are default items that cannot be removed.
When you select individual named objects, information about why you can't purge the item is displayed below the tree view.

\section*{Confirm Each Item to Be Purged}

Displays the Confirm Purge dialog box when you purge an item.

\section*{Purge Nested Items}

Removes all unused named objects from the drawing even if they are contained within or referenced by other unused named objects.

The Confirm Purge dialog box is displayed, and you can cancel or confirm the items to be purged.

Tip
Displays information detailing why you can't purge the selected item.

\section*{Unnamed Objects}

Purge zero-length geometry and empty text objects
Deletes geometry of zero length (lines, arcs, polylines and so on) in non-block objects. Also deletes mtext and text that contains only spaces (no text) in non-block objects.

NOTE The PURGE command will not remove zero-length geometry or empty text and mtext objects from blocks or locked layers.

\section*{Purge}

Purges the selected items.

\section*{Purge All}

Purges all unused items.

\section*{-PURGE}

\section*{Quick Reference}

\section*{See also:}
- Erase Objects

Removes unused items, such as block definitions and layers, from the drawing.

\section*{Summary}

The -purge command provides the ability to remove unused items from a drawing through scripts. -PURGE removes only one level of reference. Repeat -PURGE until there are no unreferenced, named objects. You can use PURGE or -PURGE at any time during a drawing session.

NOTE The PURGE command will not remove unnamed objects (zero-length geometry or empty text and mtext objects) from blocks or locked layers.

\section*{List of Prompts}

The following prompts are displayed.
Type of Unused Objects to Purge
Deletes unused applications from blocks, dimension styles, layers, linetypes, materials, multileader styles, plot styles, shapes, text styles, multiline styles, table styles, visual styles, regapps, zero-length geometry, empty text objects, or all.

Enter Name (s) to Purge Enter an object name of * to list the objects.
Verify Each Name to Be Purged? Enter \(y\) to verify each name.

\section*{PYRAMID}

\section*{Quick Reference}

See also:
- Create a Solid Pyramid

Creates a 3D solid pyramid.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modeling panel \(>\) Pyramid
\(\$\) Menu: Draw \(>\) Modeling \(>\) Pyramid
Toolbar: Modeling

\section*{Summary}

By default, a pyramid is defined by the center of the base point, a point on the middle of the edge, and another point that determines the height.


Initially, the default base radius is not set to any value. During a drawing session, the default value for the base radius is always the previously entered base radius value for any solid primitive.

Use the Top Radius option to create a pyramid frustum.

\section*{List of Prompts}

The following prompts are displayed.
Edge Specifies the length of one edge of the base of the pyramid; you pick two points.
Specify first endpoint of edge: Specify a point
Specify second endpoint of edge: Specify a point
Sides Specifies the number of sides for the pyramid. You can enter a number from 3 to 32.
Specify number of sides <default>: Specify a diameter or press ENTER to specify the default value
Initially, the number of sides for the pyramid is set to 4 . During a drawing session, the default value for the number of sides is always the previously entered value for the number of sides.

Inscribed Specifies that the base of the pyramid is inscribed within (drawn within) the base radius of the pyramid.

Circumscribed Specifies that the pyramid is circumscribed around (drawn around) the base radius of the pyramid.

2Point Specifies that the height of the pyramid is the distance between two specified points.
Specify first point: Specify a point
Specify second point: Specify a point
Axis Endpoint Specifies the endpoint location for the pyramid axis. This endpoint is the top of the pyramid. The axis endpoint can be located anywhere in 3D space. The axis endpoint defines the length and orientation of the pyramid.
Specify axis endpoint: Specify a point
Top Radius Specifies the top radius of the pyramid, creating a pyramid frustum.
Specify top radius: Enter a value

Initially, the default top radius is not set to any value. During a drawing session, the default value for the top radius is always the previously entered top radius value for any solid primitive.
Specify height or [2Point (Two Points)/Axis Endpoint] <default>: Specify a height, enter an option, or press ENTER to specify the default height value
- 2Point. Specifies that the height of the pyramid is the distance between two specified points.
Specify first point: Specify a point
Specify second point: Specify a point
- Axis Endpoint. Specifies the endpoint location for the pyramid axis. This endpoint is the top of the pyramid. The axis endpoint can be located anywhere in 3D space. The axis endpoint defines the length and orientation of the pyramid.
Specify axis endpoint: Specify a point

\title{
Q Commands
}

\section*{17}

\section*{QCCLOSE}

\section*{Quick Reference}

See also:
- Overview of QuickCalc

Closes the QuickCalc calculator.

Summary
Closes the QuickCalc calculator.

\section*{QDIM}

\section*{Quick Reference}

See also:
- Overview of Dimensioning

Creates a series of dimensions quickly from selected objects.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Quick Dimension
\(\$\) Menu: Dimension \(>\) Quick Dimension
\(\$\) Toolbar: Dimension

\section*{Summary}

This command is particularly useful for creating a series of baseline or continued dimensions, or for dimensioning a series of circles and arcs.

\section*{List of Prompts}

The following prompts are displayed.
Select geometry to dimension: Select the objects you want to dimension or the dimensions you want to edit and press Enter
Specify dimension line position, or
[Continuous/Staggered/Baseline/Ordinate/Radius/Diameter/datumPoint/Edit/seTtings] <current>: Enter an option or press Enter
Continuous Creates a series of continued dimensions.
Staggered Creates a series of staggered dimensions.
Baseline Creates a series of baseline dimensions.
Ordinate Creates a series of ordinate dimensions.
Radius Creates a series of radial dimensions.
Diameter Creates a series of diameter dimensions.
Datum Point Sets a new datum point for baseline and ordinate dimensions.
Edit Edits a series of dimensions. You are prompted to add or remove points from existing dimensions.

Settings Sets the default object snap for specifying extension line origins.

\section*{QLEADER}

\section*{Quick Reference}

\section*{See also:}
- Create Leaders

Creates a leader and leader annotation.

\section*{Summary}

It is recommended that you use the workflow available through the MLEADER on page 1174 command to create leader objects. For more information about multileader objects, see Create and Modify Leaders.
You can use QLEADER to
- Specify leader annotation and annotation format
- Set the location where leaders attach to multiline text annotation
- Limit the number of leader points
- Constrain the angle of the first and second leader segments

You can use the Leader Settings dialog box to customize the command so that it prompts you for the number of leader points and the annotation type suited to your drawing needs.

If associative dimensioning is turned on with DIMASSOC, the leader start point can be associated with a location on an object. If the object is relocated, the arrowhead remains attached to the object and the leader line stretches, but the text or feature control frame remains in place.

\section*{List of Prompts}

The following prompts are displayed.
Specify "first leader point", or ["Settings"] <Settings>: Specify the first leader point, or press Enter to specify leader settings
First Leader Point
The Number of Points setting on the Leader Line \& Arrow tab of the Leader Settings dialog box determines the number of leader points you are prompted to specify.

Width If you set the text width value to 0.00 , the width of the multiline text is unlimited.

Tolerance If Tolerance is selected on the Annotation tab, the Geometric Tolerance dialog box is displayed. Use the dialog box to create the tolerance feature control frame.

Enter block name or [?]: Enter the name, or enter? to display a list of blocks defined in the drawing

Insertion Point For a description of the insertion options, see -INSERT on page 944.

Settings
Displays the Leader Settings dialog box.

\section*{Leader Settings Dialog Box}

\section*{Quick Reference}

See also:
- Create Leaders

\section*{Access Methods}

桽 Command entry: qleader

\section*{Summary}

Customizes the QLEADER command and sets properties for leaders and leader annotations.

\section*{List of Tabs}

The following tabs are displayed.

\section*{Annotation Tab (Leader Settings Dialog Box)}


\section*{Annotation Type}

Sets the leader annotation type. The type you select changes the QLEADER leader annotation prompt.

\section*{MText}

Prompts you to create multiline text (mtext) annotation.

\section*{Copy an Object}

Prompts you to copy a multiline text, single-line text, tolerance, or block reference object and connects the copy to the end of the leader line. The copy is associated with the leader line, meaning that if the copied object moves, the end of the leader line moves with it. The display of the hook line depends on the object copied.

\section*{Tolerance}

Displays the Tolerance dialog box, which you can use to create a feature control frame to attach to the leader.

\section*{Block Reference}

Prompts you to insert a block reference. The block reference is inserted at an offset from the end of the leader line and is associated to the leader line, meaning that if the block moves, the end of the leader line moves with it. No hook line is displayed.

None
Creates a leader with no annotation.

\section*{MText Options}

The options are available only when the multiline text annotation type is selected.

\section*{Prompt for Width}

Prompts you to specify the width of the multiline text annotation.

\section*{Always Left Justify}

Left-justifies the multiline text annotation, regardless of leader location.
Frame Text
Places a frame around multiline text annotation.

\section*{Annotation Reuse}

Sets options for reusing leader annotation.

\section*{None}

Does not reuse leader annotation.

\section*{Reuse Next}

Reuses the next annotation you create for all subsequent leaders.

\section*{Reuse Current}

Reuses current annotation. This option is automatically selected when you reuse annotation after selecting Reuse Next.
Leader Line \& Arrow Tab (Leader Settings Dialog Box)


\section*{Leader Line}

Sets the leader line format.

\section*{Straight}

Creates straight-line segments between the points you specify.
Spline
Creates a spline object using the leader points you specify as control points.

\section*{Arrowhead}

Defines the leader arrowhead. The arrowheads are also available for dimension lines (DIMSTYLE command). If you select User Arrow, a list of blocks in the drawing is displayed.

\section*{Number of Points}

Sets the number of leader points that QLEADER prompts you to specify before prompting for the leader annotation. For example, if you set the points to 3, QLEADER automatically prompts you to specify the annotation after you specify two leader points. Set the number to one more than the number of leader segments you want to create.

If you set the option to No Limit, QLEADER prompts for leader points until you press Enter.

\section*{Angle Constraints}

Sets angle constraints for the first and second leader lines.

\section*{First Segment}

Sets the angle of the first leader segment.

\section*{Second Segment}

Sets the angle of the second leader segment.

\section*{Attachment Tab (Leader Settings Dialog Box)}

Sets the attachment location for leader lines and multiline text annotation. This tab is available only when Mtext is selected on the Annotation tab.


Top of Top Line
Attaches the leader line at the top of the top multiline text line.
Middle of Top Line
Attaches the leader line at the middle of the top multiline text line.
Middle of Multiline Text
Attaches the leader line at the middle of the multiline text.
Middle of Bottom Line
Attaches the leader line at the middle of the bottom multiline text line.

\section*{Bottom of Bottom Line}

Attaches the leader line at the bottom of the bottom multiline text line.

\section*{Underline Bottom Line}

Underlines the bottom multiline text line.

\section*{QNEW}

\section*{Quick Reference}

\section*{See also:}

■ Use a Drawing Template File

Starts a new drawing from a selected drawing template file.

\section*{Access Methods}


\section*{Button}

\(\$\) Toolbar: Standard

\section*{Summary}

QNEW starts a new drawing from the current default drawing template file and folder path specified in the Options dialog box on the Files tab. You can set the default drawing template file to any drawing template file or to None.

When a default drawing template file is set to None or is not specified, QNEW displays the Select Template File dialog box (a standard file selection dialog box).
The behavior of the QNEW command is determined by the STARTUP system variable.

■ 1: Displays the Create New Drawing dialog box.
- 0: Displays the Select Template dialog box (a standard file selection dialog box) or starts the new drawing using the default drawing template file.

If the system variable, FILEDIA, is set to 0 instead of 1 , a Command prompt is displayed. If you set FILEDIA to 0 , this prompt is displayed regardless of the Startup setting.

\section*{QSAVE}

\section*{Quick Reference}

See also:
- Save a Drawing

Saves the current drawing using the file format specified in the Options dialog box.

\section*{Access Methods}

国
Button
\(\$\) Toolbar: Standard
\(\$\) Menu: File > Save

\section*{Summary}

The QSAVE command is equivalent to clicking Save on the File menu.
If the drawing is named, the program saves the drawing using the file format specified on the Open and Save tab of the Options dialog box and does not request a file name. If the drawing is unnamed, the Save Drawing As dialog box (see SAVEAS) is displayed and the drawing is saved with the file name and format you specify.

If the drawing is read-only, use the SAVEAS command to save the changed file under a different name.

\section*{QSELECT}

\section*{Quick Reference}

\section*{See also:}
- Select Objects by Properties

Creates a selection set based on filtering criteria.

\section*{Access Methods}


Button

Ribbon: Home tab \(>\) Utilities panel \(>\) Quick Select
\(\$\) Menu: Tools \(>\) Quick Select
Shortcut menu: End any active commands, right-click in the drawing area, and choose Quick Select.

\section*{Summary}

The Quick Select dialog box is displayed.
QSELECT filters selection sets by object type and property. For example, you can select all of the multiline text objects in a drawing that use a specified text style.

\section*{Quick Select Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Select Objects by Properties

Specifies the filtering criteria and how you want to create the selection set from that criteria.


\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab > Utilities panel \(>\) Quick Select
\(\$\) Menu: Tools \(>\) Quick Select
Shortcut menu: End any active commands, right-click in the drawing area, and choose Quick Select.
䱂 Command entry: qselect

\section*{List of Options}

The following options are displayed.

\section*{Apply To}

Applies the filtering criteria to the entire drawing or to the current selection set (if one exists).

If Append to Current Selection Set is selected, the filtering criteria is applied to the entire drawing.

\section*{Select Objects}

Temporarily closes the Quick Select dialog box so that you can select the objects to which you want to apply the filter criteria.

\section*{Object Type}

Specifies the type of objects to include in the filtering criteria. If the filtering criteria are being applied to the entire drawing, the Object Type list includes all object types, including custom. Otherwise, the list includes only the object types of the selected objects.
If an application such as AutoCAD \({ }^{\circledR}\) Map 3D was used to add a feature classification to an object, you can select a classification.

\section*{Properties}

Specifies the object property for the filter. This list includes all searchable properties for the selected object type. The property you select determines the options available in Operator and Value.
If an application such as AutoCAD \({ }^{\circledR}\) Map 3D was used to add a feature classification to an object, you can select a classification property.

\section*{Operator}

Controls the range of the filter. Depending on the selected property, options can include Equals, Not Equal To, Greater Than, Less Than, and *Wildcard Match. *Wildcard Match is available only for text fields that can be edited. Use the Select All option to ignore all properties filters.

For more information, see "Filter and Sort the List of Layers".
Value
Specifies the property value for the filter.

\section*{How to Apply}

Specifies whether you want the new selection set to include or exclude objects that match the specified filtering criteria. Select Include in New Selection Set to create a new selection set composed only of objects that match the filtering criteria. Select Exclude from New Selection Set to create a new selection set composed only of objects that do not match the filtering criteria.

\section*{Append to Current Selection Set}

Specifies whether the selection set created by QSELECT replaces or is appended to the current selection set.

NOTE QSELECT supports custom objects (objects created by another application) and their properties. If a custom object uses properties other than AutoCAD properties, the custom object's source application must be running in order for the properties to be available to QSELECT.

\section*{QTEXT}

\section*{Quick Reference}

See also:
- Control the Display of Polylines, Hatches, Gradient Fills, Lineweights, and Text

Controls the display and plotting of text and attribute objects.

\section*{Access Methods}

锉 Command entry: 'qtext for transparent use

\section*{Summary}

When QTEXT (Quick Text) is on, each text and attribute object is displayed as a bounding box around the text object. Turning QTEXT mode on reduces the time it takes the program to redraw and regenerate drawings that contain many text objects.


QTEXT off


QTEXT on

\section*{QUICKCALC}

\section*{Quick Reference}

See also:
■ Overview of QuickCalc

Opens the QuickCalc calculator.

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) QuickCalc
\(\$\) Menu: Tools \(>\) Palettes \(>\) QuickCalc
\(\$\) Toolbar: Standard
Shortcut menu: Right-click and click QuickCalc.

\section*{Summary}

The QuickCalc calculator performs a full range of mathematical, scientific, and geometric calculations, creates and uses variables, and converts units of measurement.

Displays the QuickCalc calculator on page 1589.

\section*{QuickCalc Calculator}

\section*{Quick Reference}

See also:
- Overview of QuickCalc

Performs a full range of mathematical, scientific, and geometric calculations, creates and uses variables, and converts units of measurement.

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) QuickCalc
\(\$\) Menu: Tools \(>\) Palettes \(>\) QuickCalc
8 Toolbar: Standard
Shortcut menu: Right-click and click QuickCalc.
並 Command entry: quickcalc

\section*{List of Options}

The following options are displayed.
Toolbar
Performs quick calculations of common functions.

Clear Clears the Input box.
Clear History Clears the history area.
Paste Value to Command Line Pastes the value in the Input box at the Command prompt. When QuickCalc is used transparently during a command, this button is replaced by the Apply button at the bottom of the calculator.

Get Coordinates Calculates the coordinates of a point.
Distance Between Two Points Calculates the distance between two points. The calculated distance always displays as a unitless decimal value.

Angle of Line Defined by Two Points Calculates the angle of two points.
Two Lines Defined by Four Points Calculates the intersection of four points.

\section*{History Area}

Displays a running list of previously evaluated expressions. The History area shortcut menu provides several options, including copying a selected expression to the Clipboard.

\section*{Input Box}

Provides a box where you enter and retrieve expressions.

\section*{More/Less Button}

Hides or Displays all QuickCalc function areas. Right-click to select individual function areas to hide or display.

\section*{Number Pad}

Provides a standard calculator keypad where you enter numbers and symbols for arithmetic expressions.

\section*{Scientific Area}

Evaluates trigonometric, logarithmic, exponential, and other expressions commonly associated with scientific and engineering applications.

\section*{Units Conversion Area}

Converts units of measurement from one unit type to another unit type. The units conversion area accepts only decimal values without units.

Units Type Select length, area, volume, and angular values from a list.
Convert From Lists the units of measurement from which to convert.
Convert To Lists the units of measurement to which to convert.
Value to Convert Provides a box to enter a value to convert.
Converted Value Converts the units entered and displays the converted value.
Calculator Icon Returns the converted value to the Input box.
Variables Area
Provides access to predefined constants and functions. You can use the Variables area to define and store additional constants and functions.

Variables Tree Stores predefined shortcut functions and user-defined variables.

Shortcut functions are common expressions that combine a function with an object snap. The following table describes the predefined shortcut functions in the list.
\begin{tabular}{lll}
\hline Shortcut Function & Shortcut For & Description \\
\hline dee & dist(end,end) & \begin{tabular}{l} 
Distance between two end- \\
points
\end{tabular} \\
\hline ille & ill(end,end,end,end) & \begin{tabular}{l} 
Intersection of two lines \\
defined by four endpoints
\end{tabular} \\
\hline mee & nor(end,end) & \begin{tabular}{l} 
Midpoint between two en- \\
dpoints
\end{tabular} \\
\hline nee & \begin{tabular}{l} 
Unit vector in the \(X Y\) plane \\
and normal to two end- \\
points
\end{tabular} \\
\hline rad & vec(end,end) & \begin{tabular}{l} 
Radius of a selected circle, \\
arc, or polyline arc
\end{tabular} \\
\hline vee & vec1(end,end) & \begin{tabular}{l} 
Vector from two endpoints
\end{tabular} \\
\hline vee1 & & \begin{tabular}{l} 
Unit vector from two end- \\
points
\end{tabular} \\
\hline
\end{tabular}

New Variable Button Opens the Variable Definition dialog box on page 1591.
Edit Variable Button Opens the Variable Definition dialog box on page 1591 so you can make changes to the selected variable.

Delete Variable Button Deletes the selected variable.
Calculator Button Returns the selected variable to the Input box.

\section*{Variable Definition Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Overview of QuickCalc

Defines a variable to store in the variables tree.

\section*{List of Options}

The following options are displayed.

\section*{Variable Type}

Specifies the type of variable.

\section*{Constant}

Stores the new variable as a constant.

\section*{Function}

Stores the new variable as a function.

\section*{Variable Properties}

Defines the properties of a new variable.

\section*{Name}

Stores the name of the variable. Names of constants cannot include spaces.

\section*{Group With}

Stores the named variable in the selected category. If New is selected, the Category Definition dialog box on page 1593 opens, where you can define a new category for the variable.

Value or Expression
Stores the value or expression for the variable.

\section*{Description}

Stores a description for the variable.
OK
Closes the dialog box and applies the current settings to the variable.

\section*{Cancel}

Closes the dialog box without applying the current settings.
Help
Displays Help.

\section*{Settings}

The following shortcut menu options are available when you right-click the title bar.

Move Displays a four-headed arrow cursor that you can use to move the dialog box. The dialog box does not dock.

Size Displays a four-headed arrow cursor that you can use to drag an edge or a corner to make the smaller or larger.

Close Closes the Markup Set Manager.
Allow Docking Toggles the ability to dock or anchor the calculator.
Anchor Right/ Anchor Left Attaches the QuickCalc calculator to an anchor tab base at the right or left side of the drawing area.

Auto-hide Causes a floating palette to roll open and closed as the cursor moves across it. When this option is cleared, the palette stays open.

Transparency Displays the Transparency dialog box on page 1373.

\section*{Category Definition Dialog Box}

\section*{Quick Reference}

See also:
- Overview of QuickCalc

Defines a category to organize the variables in the variables tree.

\section*{List of Options}

The following options are displayed.

\section*{Category Properties}

Defines the properties of the new category.
Name
Stores the name of the category.
Description
Stores a description for the category.

OK
Closes the dialog box and applies the current settings to the variable.
Cancel
Closes the dialog box without applying the current settings.
Help
Displays Help.

\section*{QUICKCUI}

\section*{Quick Reference}

See also:
- Create and Edit Toolbars

Displays the Customize User Interface Editor in a collapsed state.

\section*{Summary}

The Customize User Interface Editor on page 376 is displayed in a collapsed state. Only the Customizations In <filename> and Command List panes are displayed. The Customizations In <filename> pane is shown collapsed and the Command List pane is shown expanded.

For more information, see User Interface Customization.

\section*{QUIT}

\section*{Quick Reference}

See also:
- Start a Drawing

Exits the program.

\section*{Access Methods}
\(\$\) Menu: File > Exit

\section*{Summary}

Quits the program if there have been no changes since the drawing was last saved. If the drawing has been modified, you are prompted to save or discard the changes before quitting.

You can quit a file that has been opened in read-only mode if you have made no modifications or if you are willing to discard them. To save modifications to a read-only drawing, use the SAVEAS command to save the drawing under another name.

\section*{QVDRAWING}

\section*{Quick Reference}

\section*{See also:}

■ Switch Between Open Drawings

Displays open drawings and layouts in a drawing in preview images.

\section*{Access Methods}


Bton

Shortcut menu: Click on the status bar.

\section*{Summary}

Displays a two-level structure of preview images at the bottom of the application. The first level displays the images of open drawings and the second level displays the images for model space and layouts in a drawing.

\section*{QVDRAWINGCLOSE}

\section*{Quick Reference}

See also:
- Switch Between Open Drawings

Closes preview images of open drawings and layouts in a drawing.

\section*{Access Methods}

\section*{\(x\)}

Bllton

Shortcut menu: Click on the Quick View drawings toolbar.

Summary
Closes preview images of open drawings and layouts in a drawing.

\section*{QVLAYOUT}

\section*{Quick Reference}

See also:
- Switch Between Layouts in the Current Drawing

Displays preview images of model space and layouts in a drawing.

Access Methods
回
Bitn

Shortcut menu: Click on the status bar.

\section*{Summary}

Displays preview images of model space and layouts in a drawing in a row at the bottom of the application.

\section*{QVLAYOUTCLOSE}

\section*{Quick Reference}

See also:
- Switch Between Layouts in the Current Drawing

Closes preview images of model space and layouts in a drawing

\section*{Access Methods}


Button
Shortcut menu: Click on the Quick View drawings toolbar.
Summary
Closes preview images of model space and layouts in a drawings.

\section*{R Commands}


RAY

\section*{Quick Reference}

See also:
- Draw Construction Lines (and Rays)

Creates a line that starts at a point and continues to infinity.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Draw panel \(>\) Ray
\(\$\) Menu: Draw \(>\) Ray
Summary
The ray is extended to the edge of the display in the direction defined by the starting point and the through point. The prompt for a through point is redisplayed so you can create multiple rays. Press Enter to end the command.


Lines that extend to infinity in one direction, known as rays, can be used as references for creating other objects.


\section*{List of Prompts}

The following prompts are displayed.
Specify start point: Specify a point (1)
Specify through point: Specify a point for the ray to pass through (2)

\section*{RECOVER}

\section*{Quick Reference}

See also:
■ Repair a Damaged Drawing File

Repairs and then opens a damaged drawing file.

\section*{Access Methods}


Button

Menu: File \(>\) Drawing Utilities \(>\) Recover

\section*{Summary}

The program extracts as much material as it can from the damaged file. Files that can be recovered include DWG, DWT, and DWS files. Performing a recover on a DXF file will only open the file.
In the Select File dialog box (a standard file selection dialog box), enter the drawing file name or select the damaged drawing file. Results are displayed in the text window.

When FILEDIA is set to 0 (zero), RECOVER displays the following command prompt.

Enter ~ (tilde) at the prompt to ignore FILEDIA and display the Select File dialog box.

\section*{RECOVERALL}

\section*{Quick Reference}

\section*{See also:}
- Repair a Damaged Drawing File

Repairs a damaged drawing file along with all attached xrefs.

\section*{Access Methods}
\(\$\) Menu: File \(>\) Drawing Utilities \(>\) Recover Drawing and Xrefs

\section*{Summary}

In the Select File dialog box (a standard file selection dialog box), enter the drawing file name or select the damaged drawing file.

The selected drawing file and all attached xrefs, including all nested xrefs, are opened, repaired, resaved, and closed.
- Drawing files are saved in the current drawing file format.
- Copies of the original drawing files are saved as BAK files.
- If the object enabler is present, custom objects are updated.

Results are displayed in the Drawing Recovery Log window. Each drawing file checked includes a Drawing Recovery Log that can be expanded or collapsed. The entire log can be copied to the Windows clipboard with the Copy to Clipboard button.

When FILEDIA is set to 0 (zero), RECOVERALL displays the following command prompt.

Enter \(\sim\) (tilde) at the prompt to ignore FILEDIA and display the Select File dialog box.

NOTE The RECOVERALL command recovers or audits DWG, DWT, and DWS files.

\section*{RECTANG}

\section*{Quick Reference}

\section*{See also:}
- Draw Rectangles and Polygons

Creates a rectangular polyline.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Draw panel \(>\) Rectangle
\(\$\) Menu: Draw \(>\) Rectangle
\(\$\) Toolbar: Draw
柬 Command entry: rectangle

\section*{Summary}

With this command, you can specify the rectangle parameters (length, width, rotation) and control the type of corners (fillet, chamfer, or square).


\section*{List of Prompts}

The following prompts are displayed.
Current settings: Rotation \(=0\)
Specify "first corner point" or
["Chamfer"/"Elevation"/"Fillet"/"Thickness"/"Width"]: Specify a point or enter an option

\section*{First Corner Point}

Specifies a corner point of the rectangle.
Other Corner Point Creates a rectangle using the specified points as diagonally opposite corners.


Area Creates a rectangle using the area and either a length or a width. If the Chamfer or Fillet option is active, the area includes the effect of the chamfers or fillets on the corners of the rectangle.

Dimensions Creates a rectangle using length and width values.
Rotation Creates a rectangle at a specified rotation angle.

\section*{Chamfer}

Sets the chamfer distances for the rectangle.

\section*{Elevation}

Specifies the elevation of the rectangle.
Fillet
Specifies the fillet radius of the rectangle.

\section*{Thickness}

Specifies the thickness of the rectangle.

\section*{Width}

Specifies the polyline width of the rectangle to be drawn.

\section*{REDEFINE}

\section*{Quick Reference}

See also:
- Use Built-in Commands in Macros

Restores AutoCAD internal commands overridden by UNDEFINE.

\section*{Summary}

If a command has been undefined, you can still use it if you precede the command name with a period. Enter the name of an AutoCAD command turned off by the UNDEFINE command.

\section*{REDO}

\section*{Quick Reference}

See also:
■ Correct Mistakes

Reverses the effects of previous UNDO or U command.

\section*{Access Methods}
\(\rightarrow\)
Bution
\(\$\) Menu: Edit > Redo
\(\$\) Toolbar: Standard
Shortcut menu: With no commands active and no objects selected, right-click in the drawing area and choose Redo.

\section*{Summary}

REDO reverses the effects of a single UNDO or U command. REDO must immediately follow the U or UNDO command.

\section*{REDRAW}

\section*{Quick Reference}

See also:
- Erase Objects

Refreshes the display in the current viewport.

\section*{Access Methods}

亜 Command entry: 'redraw for transparent use

\section*{Summary}

When BLIPMODE is on, marker blips left by editing commands are removed from the current viewport.

before REDRAW

after REDRAW

\section*{REDRAWALL}

\section*{Quick Reference}

\section*{See also:}
- Erase Objects

Refreshes the display in all viewports.
Access Methods
\(\$\) Menu: View > Redraw
輋 Command entry: 'redrawall for transparent use

\section*{Summary}

When BLIPMODE is on, marker blips left by editing commands are removed from all viewports.

before REDRAWALL

after REDRAWALL

\section*{REFCLOSE}

\section*{Quick Reference}

\section*{See also:}

■ Save Back Edited Referenced Drawings and Blocks

Saves back or discards changes made during in-place editing of a reference, either an xref or a block definition.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Xref and Block In-Place Editing \(>\) Save Reference Edits, or Xref and Block In-Place Editing \(>\) Close Reference
Shortcut menu: With no objects selected during in-place reference editing, right-click in the drawing area and choose Close Refedit Session.

\section*{Summary}

If you save or discard changes with REFCLOSE, you can still use the UNDO command to return to the reference editing session. If you have made unwanted changes to an xref and already saved back the changes, use UNDO to undo the unwanted changes; then use REFCLOSE to save back changes and restore the xref to its original state.

NOTE When you edit and save xrefs in place in a drawing, the preview image for the original reference drawing is no longer available unless you open and save the drawing again.

\section*{List of Prompts}

The following prompts are displayed.
Enter option [Save/Discard reference changes] <Save>:


Saves back to the xref source drawing or to the block definition in the current drawing all changes made to objects in the working set. If you remove an object from the working set and save changes, the object is deleted from the reference and added to the current drawing. The Save Back Changes to Reference button on the Refedit toolbar automatically saves reference editing changes.

NOTE If the file format of the xref source drawing is AutoCAD Release 14 or earlier, the file is saved in AutoCAD 2010 file format. The file format is not changed for xref source drawings in AutoCAD 2000 and 2004 format.

Discard Reference Changes
 Discards the working set; the source drawing or block definition is returned to its original state. Any changes you make to objects in the current drawing (not in the xref or block) are not discarded. If you delete any object that is not in the working set, the object is not restored even if you choose to discard changes. The Discard Changes to Reference button on the Refedit toolbar automatically discards reference editing changes without using REFCLOSE.

\section*{REFEDIT}

\section*{Quick Reference}

\section*{See also:}
- Edit Selected Objects in Referenced Drawings and Blocks

Edits an xref or a block definition directly within the current drawing.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Edit Reference
\(\$\) Menu: Tools \(>\) Xref and Block In-place Editing \(>\) Edit Reference In-Place \(\$\) Toolbar: Refedit

\section*{Summary}

The objects that you select from the selected xref or block are temporarily extracted and made available for editing in the current drawing. The set of extracted objects is called the working set, which can be modified and then saved back to update the xref or block definition.

\section*{List of Prompts}

The following prompts are displayed.
Select reference: Select an xref or a block in the current drawing
If you edit an xref when the ribbon is active, the Edit Reference ribbon contextual tab displays.

If you enter -refedit at the Command prompt, options are displayed.

\section*{Edit Reference Ribbon Contextual Tab}

\section*{Quick Reference}

See also:
- Edit Selected Objects in Referenced Drawings and Blocks

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Edit Reference
\(\$\) Menu: Tools \(>\) Xref and Block In-place Editing \(>\) Edit Reference In-Place
Toolbar: Refedit
㟇 Command entry: refedit

\section*{Reference Editing Panel}

Save or Discard Changes (REFCLOSE on page 1606) Saves back or discards changes made during in-place editing of a reference, either an xref or a block definition.

Add to or Remove From Working Set (REFSET on page 1613) Adds or removes objects from a working set during in-place editing of a reference, either an xref or a block definition.

\section*{Reference Edit Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Edit Selected Objects in Referenced Drawings and Blocks

Specifies the reference to edit.

\section*{Access Methods}


\section*{Button}
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Edit Reference
\(\$\) Menu: Tools \(\boldsymbol{>}\) Xref and Block In-place Editing \(>\) Edit Reference In-Place \(\$\) Toolbar: Refedit
㗀 Command entry: refedit

\section*{Summary}

To select a reference to edit, select an object in the reference. If you select an object that is part of one or more nested references, the nested references are displayed in the dialog box.

\section*{List of Tabs}
- Identify Reference
- Settings

\section*{Identify Reference Tab (Reference Edit Dialog Box)}

Provides visual aids for identifying the reference to edit and controls how the reference is selected.


Reference Name
Displays the reference selected for in-place editing and any references nested within the selected reference.

Nested references are displayed only if the selected object is part of a nested reference. If multiple references are displayed, choose a specific xref or block to modify. Only one reference can be edited in place at a time.

\section*{Preview}

Displays a preview image of the currently selected reference.
The preview image displays the reference as it was last saved in the drawing. The reference preview image is not updated when changes are saved back to the reference.

\section*{Path}

Displays the file location of the selected reference. If the selected reference is a block, no path is displayed.

\section*{Automatically Select All Nested Objects}

Controls whether nested objects are included automatically in the reference editing session.

If this option is checked, all the objects in the selected reference will be automatically included in the reference editing session.

\section*{Prompt to Select Nested Objects}

Controls whether nested objects must be selected individually in the reference editing session.
If this option is checked, after you close the Reference Edit dialog box and enter the reference edit state, you are prompted to select the specific objects in the reference that you want to edit.
Select nested objects: Select objects within the reference that you want to edit

\section*{Settings Tab (Reference Edit Dialog Box)}

Provides options for editing references.
Create Unique Layer, Style, and Block Names
Controls whether layers and other named objects extracted from the reference are uniquely altered.

If selected, named objects in xrefs are altered (names are prefixed with \$\#\$), similar to the way they are altered when you bind xrefs. If cleared, the names of layers and other named objects remain the same as in the reference drawing. Named objects that are not altered to make them unique assume the properties of those in the current host drawing that share the same name.

\section*{Display Attribute Definitions for Editing}

Controls whether all variable attribute definitions in block references are extracted and displayed during reference editing.

If Display Attribute Definitions for Editing is selected, the attributes (except constant attributes) are made invisible, and the attribute definitions are available for editing along with the selected reference geometry. When changes are saved back to the block reference, the attributes of the original reference remain unchanged. The new or altered attribute definitions affect only subsequent insertions of the block; the attributes in existing block instances are not affected. Xrefs and block references without definitions are not affected by this option.

\section*{Lock Objects Not in Working Set}

Locks all objects not in the working set. This prevents you from accidentally selecting and editing objects in the host drawing while in a reference editing state.

The behavior of locked objects is similar to objects on a locked layer. If you try to edit locked objects, they are filtered from the selection set.

\section*{-REFEDIT}

\section*{Quick Reference}

\section*{See also:}

■ Edit Selected Objects in Referenced Drawings and Blocks

\section*{List of Prompts}

The following prompts are displayed.
Select reference: Select an xref or block in the current drawing
Select nesting level ["OK"/"Next"] <Next>: Enter an option or press Enter
OK
Accepts the currently highlighted reference for in-place reference editing.
If you are editing a block reference with attributes, you can enter \(\boldsymbol{y}\) to display the attribute definitions and make them available for editing. The attributes are made invisible, and the attribute definitions are available for editing along with the selected reference geometry. When changes are saved back to the block reference, the attributes of the original reference remain unchanged. The new or altered attribute definitions affect only subsequent insertions of the block; the attributes in existing block instances are not affected.

All Objects in the selected reference will be automatically included in the reference editing session.
Nested After you close the Reference Edit dialog box and enter the reference edit state, you are prompted to select the specific objects in the reference that you want to edit.

\section*{Next}

Advances through the reference and nested references available for selection. The currently selected reference is highlighted.

A working set is formed with the objects you have selected for editing. The working set includes objects that can be saved back to update the xref or block definition. When you save back changes, changes made to the objects in the reference file are saved without actually opening the reference drawing or recreating the block. The working set is visually distinct from the rest of the current drawing: all objects in the current drawing, except objects in the working set, appear faded. The XFADECTL system variable controls the fading of objects while you edit a reference in place.

You can select objects in xrefs for editing even if they are on a locked layer in the reference file. When a reference object is part of the working set, you can unlock the object's layer and make changes to the object. Only the changes made to the object are saved back to the reference file; the xref layer remains locked in the reference file.

NOTE Objects outside of the working set are not faded unless the visual style is set to 2D Wireframe during in-place reference editing.

\section*{REFSET}

\section*{Quick Reference}

\section*{See also:}

■ Use the Working Set to Edit Referenced Drawings and Blocks

Adds or removes objects from a working set during in-place editing of a reference, either an xref or a block definition.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Xref and Block In-place Editing \(>\) Add to Working Set, or Xref and Block In-Place Editing > Remove from Working Set

\section*{Summary}

Objects that are part of the working set are visually distinct from other objects in the current drawing. All objects in the current drawing, except objects in the working set, appear faded.

\section*{List of Prompts}

The following prompts are displayed.
Transfer objects between the Refedit working set and host drawing...
Enter an option [Add/Remove] <Add>: Enter an option or press Enter
Add Adds objects to the working set.
An object that is part of the working set is added to the reference when changes are saved back, and the object is removed from the current drawing. The Add to Working Set button on the Refedit toolbar prompts you to add objects to the working set without using REFCLOSE on page 1606.


Remove Removes objects from the working set.
An object that is removed from the working set is removed from the reference when changes are saved back; the object is also removed from the current drawing. The Remove from Working Set button on the Refedit toolbar prompts you to remove objects from the working set without using REFCLOSE.


\section*{REGEN}

\section*{Quick Reference}

See also:
- Control the Display of Polylines, Hatches, Gradient Fills, Lineweights, and Text

Regenerates the entire drawing from the current viewport.

\section*{Access Methods}
\(\$\) Menu: View > Regen

\section*{Summary}

REGEN regenerates the entire drawing and recomputes the screen coordinates for all objects in the current viewport. It also reindexes the drawing database for optimum display and object selection performance.

before REGEN

after REGEN

\section*{REGENALL}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Polylines, Hatches, Gradient Fills, Lineweights, and Text

Regenerates the drawing and refreshes all viewports.

\section*{Access Methods}

Menu: View \(>\) Regen All

\section*{Summary}

REGENALL regenerates the entire drawing and recomputes the screen coordinates for all objects in all viewports. It also reindexes the drawing database for optimum display and object selection performance.

before REGENALL

after REGENALL

\section*{REGENAUTO}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Polylines, Hatches, Gradient Fills, Lineweights, and Text

Controls automatic regeneration of a drawing.

\section*{Access Methods}

Command entry: 'regenauto for transparent use

\section*{List of Prompts}

The following prompts are displayed.
Enter mode [ON/OFF] <current>: Enter on or off, or press Enter
On Regenerates the drawing immediately if any suppressed regenerations exist in the queue and continues to regenerate automatically whenever you perform an action that requires regeneration.

Off Inhibits regeneration of the drawing until you use the REGEN or REGENALL command, or set REGENAUTO to on.

If you perform an action that requires a regeneration and that action is irrevocable (such as thawing layers), the following message is displayed:
Regen queued
If you perform an action that requires a regeneration and that action is revocable, the following message is displayed:
About to regen-proceed?
If you click OK, the drawing is regenerated. If you click Cancel, the last action is cancelled and the drawing is not regenerated.

\section*{REGION}

\section*{Quick Reference}

See also:
- Create and Combine Areas (Regions)

Converts an object that encloses an area into a region object.

\section*{Access Methods}


Button

Ribbon: Home tab \(\gg\) Draw panel \(>\) Region
\(\$\) Menu: Draw \(>\) Region
\(\$\) Toolbar: Draw

\section*{Summary}

Regions are two-dimensional areas you create from closed shapes or loops. Closed polylines, lines, and curves are valid selections. Curves include circular arcs, circles, elliptical arcs, ellipses, and splines.

You can combine several regions into a single, complex region.


Closed 2D and exploded planar 3D polylines in the selection set are converted to separate regions and then converts polylines, lines, and curves to form closed planar loops (outer boundaries and holes of a region). If more than two curves share an endpoint, the resulting region might be arbitrary.

The boundary of the region consists of end-connected curves where each point shares only two edges. All intersections and self-intersecting curves are rejected.

If a selected polyline has been smoothed by either the Spline or Fit option of PEDIT, the resulting region contains the line or arc geometry of the smoothed polyline. The polyline is not converted to a spline object.

REGION deletes the original objects after converting them to regions unless the system variable DELOBJ is set to 0. If the original objects were hatched, hatch associativity is lost. To restore associativity, rehatch the region.

\section*{REINIT}

\section*{Quick Reference}

\section*{See also:}
- Digitizing Tablets

Reinitializes the digitizer, digitizer input/output port, and program parameters file.

Summary
The Re-initialization dialog box is displayed.

\section*{Re-initialization Dialog Box}

\section*{Quick Reference}

See also:
- Digitizing Tablets

Defines the I/O port and the device file for reinitialization.


Access Methods
䱂 Command entry: reinit

\section*{List of Options}

The following options are displayed.
I/O Port Initialization Reinitializes the I/O port for the digitizer.
Device File Initialization Reinitializes the digitizer and the acad.pgp file.

\section*{RENAME}

\section*{Quick Reference}

See also:
- Resolve Name Conflicts in External References

Changes the names assigned to items such as layers and dimension styles.

\section*{Access Methods}
\(\square\)
Button
\(\$\) Menu: Format > Rename

\section*{Summary}

Named objects are categories of items such as layers, dimension styles, table styles, text styles, and so on. It is strongly recommended that you create standard naming conventions for them and save them in drawing template files.

The Rename dialog box is displayed.
If you enter -rename at the Command prompt, options are displayed.

\section*{Rename Dialog Box}

\section*{Quick Reference}

\begin{abstract}
See also:
■ Resolve Name Conflicts in External References
\end{abstract}

Changes the names assigned to items such as layers and dimension styles.


\section*{Access Methods}

Butlon

Menu: Format \(>\) Rename
幽 Command entry: rename

\section*{List of Options}

The following options are displayed.

\section*{Named Objects}

Lists named objects in a drawing by category.

\section*{Items}

Displays items of the type specified in Named Objects.

\section*{Old Name}

Specifies the item to be renamed. You can use the wild-card characters * and ? to rename groups of items. You can't rename some standard items, such as layer 0 and the CONTINUOUS linetype.

\section*{Rename To}

Specifies the new name you want to assign to the item.

\section*{-RENAME}

\section*{Quick Reference}

See also:
- Resolve Name Conflicts in External References

\section*{List of Prompts}

The following prompts are displayed.
Enter object type to rename
[Block/Dimstyle/LAyer/LType/Materia//multileadeRstyle/Plotstyle/textStyle/Tablestyle/Ucs/Vew/VPort]: Enter a named object type to rename an object
Enter old object name: Enter the old name
Enter new object name: Enter the new name

\section*{RENDER}

\section*{Quick Reference}

\section*{See also:}
- Use the Render Settings Palette

Creates a photorealistic or realistically shaded image of a 3D solid or surface model.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Render panel \(>\) Render
\(\$\) Toolbar: Render
\(\$\) Menu: View \(>\) Render \(>\) Render

\section*{Summary}


The RENDER command begins the rendering process and displays the rendered image in the Render Window on page 1622 or the viewport.
By default, all objects in the current view in the drawing are rendered. If a named view or a camera view is not specified, the current view is rendered.

If you enter -render at the Command prompt, options are displayed.

\section*{Render Window}

\section*{Quick Reference}

See also:
- Save a Rendered Image

Displays rendered output of the current model


\section*{Access Methods}


Button

Ribbon: Render tab \(>\) Render panel \(>\) Render
\(\$\) Menu: View \(>\) Render \(>\) Render
Toolbar: Render
锉 Command entry: render
Summary
The Render Window is divided into the following three panes:
- Image pane. Displays the rendered image.
- Statistics pane. On the right side; shows the current settings used for the rendering.

■ History pane. At the bottom; provides a recent history of images rendered from the current model and a progress meter to display rendering progress.

Separate render windows open for each drawing from which you are creating renderings. Rendering from any drawing always appears in its corresponding render window.

From the Render Window, you can
- Save the image to a file.
- Save a copy of the image to a file.
- Review the settings used for the current rendering.
- Track the rendering history of the model.
- Purge, delete, or purge and delete an image from the rendering history.
- Zoom into a section of the rendered image, pan around the image, and then zoom back out.

\section*{List of Options}

The following options are displayed.

\section*{File Menu}

Saves rendered images.
Save Saves an image to a bitmap file. For more information, see "Save and Redisplay Rendered Images".
You cannot use the SAVEIMG command when rendering to the Render Window. This command applies only when you are rendering to a viewport.

Save Copy Saves a copy of an image to a new location without affecting the location stored with the current entry.

Exit Closes the Render Window.
If you re-open the render window, the history of past renderings is retained.

\section*{View Menu}

Displays different elements that make up the Render Window.
Status Bar Displays the status bar below the History pane.
Statistics Pane Displays the entire Statistics pane.

\section*{Tools Menu}

Provides commands for zooming into and out of a rendered image.
Zoom + Zooms into the rendering in the Image pane. When zoomed in, you can pan around the image.

Zoom - Zooms out of the rendering in the Image pane.

\section*{Image Pane}

Primary output target of the renderer.
Zoom factor The zoom factor ranges from 1:64 to 64:1 in powers of two. You can change the zoom factor with the mouse wheel.

\section*{Progress Meter / Status Bar}

There are four phases that occur before an image is complete; translation, photon emission, final gather, and render. The progress meter is split to report two pieces of information.
- The top bar reports the progress within the current phase.

■ The bottom bar shows the progress made toward completion of the entire rendering.

The translation and render phases always occur. Photon emission and final gather phases only occur if those options have been enabled. Processing time is only spent for those phases that are active.

You can also cancel a rendering by clicking the X icon next to the progress meter, or by pressing Esc.

A status bar, at the lower lift corner of the Render Window, echoes the progress of the top bar on the progress meter.

\section*{History Pane}

The data stored in history entries includes
■ Output File Name. File name of the rendering and an indicator to tell you the type of rendering.
- Output Size.

■ View. View name that is being rendered. If no named view is used, the view is stored as current view.
- Render Time. Render time measured in hours : minutes : seconds.

■ Render Preset. Name of the render preset used for the rendering.

Any history entry that has a file name will be saved.
History Pane - Shortcut Menu
Right-clicking on a history entry displays a menu that contains the following options:

Render Again Restarts the renderer for the selected history entry.
Save Displays the Render Output File dialog box where you can save the image to disk. If you've selected a temporary entry, saving converts it to a normal entry.

Save Copy Saves the image to a new location without affecting the location stored in the entry. The Render Output File dialog box is displayed.

Make Render Settings Current Loads the render settings associated with the selected history entry if multiple history entries are present that use different render presets.

Remove From The List Removes the entry from the history while leaving any associated image files in place.

Delete Output File Removes the rendered image from the Image pane.

\section*{Statistics Pane}

This information is derived from settings made in the Render Presets Manager dialog box along with information that is generated at the time of the rendering.

\section*{Missing Texture Maps Dialog Box}

\section*{Quick Reference}

See also:
- Basics of Rendering


\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Render panel \(>\) Render
\(\$\) Menu: View \(>\) Render \(>\) Render
\(\$\) Toolbar: Render
巠 Command entry: render

\section*{Summary}

This dialog appears when you attempt to render a scene with texture maps whose path is no longer current. This can happen if the texture maps have been moved or deleted, or if the model has been placed on a system with a different drive mapping than the system on which it was created.

AutoCAD looks for texture maps in the folder where the drawing file is stored or in Texture Map Paths set on the Options dialog box.

\section*{List of Options}

The following options are displayed.
List of texture maps Lists the texture maps that cannot be located, along with their path names.

Don't show me this again Check this option to not display this message the next time texture maps cannot be found.

Continue Renders the model anyway, without loading the missing texture maps.

\section*{Render Output File Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Save a Rendered Image

\section*{Access Methods}

Button
\(\$\) Menu: View \(>\) Render \(>\) Advanced Render Settings
\(\$\) Toolbar: Render
锉 Command entry: rpref

\section*{Summary}

The Render Output File dialog box is a standard file selection dialog boxes. You specify the file name of the image you want to save and the output file format. In this dialog box, you can only choose from raster image output file formats.

The file formats for saving your rendered images to include the following:

\section*{List of Options}

The following options are displayed.
BMP (*.bmp) BMP files are still-image bitmap files in the Windows bitmap (.bmp) format.

Clicking Save after choosing this format displays the BMP Image Options dialog box.

PCX (*.pcx) PCX files are relatively simple files that provide minimum compression using run length encoding (RLE).
Clicking Save after choosing this format displays the PCX Image Options dialog box.

TGA (*.tga) The Targa (TGA) format supports up to 32-bit true color. This format is typically used as a true color format to render still images.

Clicking Save after choosing this format displays the Targa Image Options dialog box.

TIF (*.tif) TIF (Tagged Image File) format is a multiplatform bitmap format. TIF is a common choice if you plan to send your output to a print service bureau or import the image into a page-layout program.
Clicking Save after choosing this format displays the TIFF Image Options dialog box.

JPEG (*.jpg) JPEG (.jpeg or .jpg) files follow the standards set by the Joint Photography Experts Group. These files use a variable compression method that is called lossy compression because of the loss of image quality as you increase the compression. However, the JPEG compression scheme is extremely good and you can sometimes compress the file up to 200:1 without severe loss of image quality. JPEG is consequently a popular format for posting image files on the Internet for minimum file size and minimum download time.
Clicking Save after choosing this format displays the JPEG Image Options dialog box.

PNG (*.png) PNG (Portable Network Graphics) is a still-image file format developed for use with the Internet and World Wide Web. PNG is a format that generates a compressed image without any loss of quality, unlike the loss of quality found in JPEG files.
Clicking Save after choosing this format displays the PNG Image Options dialog box.

\section*{BMP Image Options Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Save a Rendered Image


\section*{Access Methods}

Button

Menu: View > Render > Advanced Render Settings
Toolbar: Render
Command entry: rpref

\section*{Summary}

When BMP is chosen as the output format, the BMP Image Options dialog box is displayed.

\section*{List of Options}

The following options are displayed.
Color
Monochrome Creates a 2-bit black and white image.
8 Bits (256 Grayscale) Creates an 8-bit grayscale image using 256 shades of gray.

8 Bits (256 Colors) Renders a smaller, 8-bit color image from a palette of 256 colors.

24 Bits (16.7 Million Colors) Renders a larger, true color (24-bit) file.

\section*{PCX Image Options Dialog Box}

\section*{Quick Reference}

See also:
- Save a Rendered Image


\section*{Access Methods}


Bution
\(\$\) Menu: View \(>\) Render \(>\) Advanced Render Settings
\(\$\) Toolbar: Render
锉 Command entry: rpref
Summary
When PCX is chosen as the output format, the PCX Image Options dialog box is displayed.

\section*{List of Options}

The following options are displayed.
Color
Monochrome Creates a 2-bit black and white image.
8 Bits (256 Grayscale) Creates an 8-bit grayscale image using 256 shades of gray.

8 Bits (256 Colors) Renders a smaller, 8-bit color image from a palette of 256 colors.

\section*{Targa Image Options Dialog Box}

\section*{Quick Reference}

See also:
- Save a Rendered Image


\section*{Access Methods}

Button

Menu: View \(>\) Render \(>\) Advanced Render Settings
Toolbar: Render
Command entry: rpref

\section*{Summary}

When TGA is chosen as the output format, the Targa Image Options dialog box is displayed.

\section*{List of Options}

The following options are displayed.

\section*{Color}

8 Bits (256 Grayscale) Creates an 8-bit grayscale image using 256 shades of gray.

8 Bits (256 Colors) Renders a smaller, 8-bit color image from a palette of 256 colors.

24 Bits (16.7 Million Colors) Creates a 24 bit color image that uses a 16.7 million color palette.

32 Bits (24 Bits + Alpha) Creates a 24 bit color image that includes an 8 bit alpha channel. Alpha is a type of data, found in 32-bit image files, that assigns transparency to the pixels in the image.

\section*{Bottom Up}

Saves the image from bottom to top.

\section*{TIFF Image Options Dialog Box}

\section*{Quick Reference}

See also:
- Save a Rendered Image


\section*{Access Methods}

Bulton
\(\$\) Menu: View \(>\) Render \(>\) Advanced Render Settings
\(\$\) Toolbar: Render
锉 Command entry: rpref

\section*{Summary}

When TIF is chosen as the output format, the TIFF Image Options dialog box is displayed.

\section*{List of Options}

The following options are displayed.

\section*{Color}

Monochrome Creates a 2-bit black and white image.
8 Bits (256 Grayscale) Creates an 8-bit grayscale image using 256 shades of gray.

8 Bits (256 Colors) Renders a smaller, 8-bit color image from a palette of 256 colors.

24 Bits (16.7 Million Colors) Creates a 24 bit color image that uses a 16.7 million color palette.
32 Bits ( 24 Bits + Alpha) Creates a 24 bit color image that includes an 8 bit alpha channel. Alpha is a type of data, found in 32-bit image files, that assigns transparency to the pixels in the image.

\section*{Compressed}

Applies lossless compression to the file.
Dots Per Inch
Sets the dots per inch (dpi) for the saved image. This setting does not change the resolution of the final image, but can affect the way it prints in documents.

\section*{JPEG Image Options Dialog Box}

\section*{Quick Reference}

See also:
■ Save a Rendered Image


\section*{Access Methods}

Butlon

Menu: View \(>\) Render \(>\) Advanced Render Settings

8 Toolbar: Render
夎 Command entry: rpref

\section*{Summary}

When JPG is chosen as the output format, the JPEG Image Options dialog box is displayed.

\section*{List of Options}

The following options are displayed.

\section*{Image Control}

Quality Sets the level of quality: the higher the quality, the larger the file size. In general, files compressed with the slider set to Best have compression ratios between 5:1 and 15:1.

File Size Sets the size of file you want: the larger the file, the higher the quality.

\section*{PNG Image Options Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Save a Rendered Image


\section*{Access Methods}

Butlon

\title{
8 Menu: View \(>\) Render \(>\) Advanced Render Settings \\ \(\$\) Toolbar: Render \\ 锉 Command entry: rpref
}

\section*{Summary}

When PNG is chosen as the output format, the PNG Image Options dialog box is displayed.

\section*{List of Options}

The following options are displayed.

\section*{Color}

Monochrome Creates a 2-bit black and white image.
8 Bits (256 Grayscale) Creates an 8-bit grayscale image using 256 shades of gray.

8 Bits (256 Colors) Renders a smaller, 8-bit color image from a palette of 256 colors.

16 Bits (65,536 Grayscale) Creates a grayscale 16-bit image that uses 65,536 shades of gray.

24 Bits (16.7 Million Colors) Creates a larger, true color (24-bit) file.
32 Bits (24 Bits + Alpha) Creates a 24 bit color image that includes an 8 bit alpha channel. Alpha is a type of data, found in 32-bit image files, that assigns transparency to the pixels in the image.

Progressive
Provides faster display in Web browsers.

\section*{Dots Per Inch}

Sets the dots per inch (dpi) for the saved image. This setting does not change the resolution of the final image, but can affect the way it prints in documents.

\section*{-RENDER}

\section*{Quick Reference}

See also:
■ Render Views, Selected Objects, or Cropped Content

\section*{List of Prompts}

The following prompts are displayed.
Specify render preset [Draft/Low/Medium/High/Presentation/Other] <Medium>: Enter an option or press Enter
Specify render destination [Render Window/Viewport] <Render Window>:
Enter an option or press Enter
Draft


Draft is the lowest level standard render preset. This setting is intended for very fast, test renderings where anti-aliasing is bypassed and sample filtering is very low.

This render preset produces very low quality rendering, but results in the fastest rendering speed.

\section*{Low}


The Low render preset provides better quality than the Draft preset. Anti-aliasing is bypassed but sample filtering is improved. Raytracing is also active, by default, so better quality shading occurs.
This preset is best used for test rendering that requires better quality than Draft.

\section*{Medium}


You can expect much better sample filtering and anti-aliasing is active when you use the Medium render preset. Raytracing is active with increased reflection depth settings when compared to the Low render preset.

This preset offers a good balance between quality and render speed.

\section*{High}


The High we preset matches the Medium preset settings with regards to anti-aliasing, but sample filtering and raytracing is improved.

Due to the improved sample filtering and raytracing, rendered images take longer to process, but the image quality is much better.

\section*{Presentation}


The Presentation render preset is used for high quality, photo-realistic rendered images and takes the longest to process. Sample filtering and raytracing is further improved.
Since this preset is used for final renderings, global illumination settings are commonly used in conjunction.

\section*{Other}

The Other option allows you to specify a custom render preset if one or more are present.
?-List Custom Render Presets Lists all the custom render presets that are stored with the model. Only custom render presets are listed.

\section*{Render Window}

The image will be displayed in the render window when processing in complete.

Output Width/Height The output width and height values designate how wide and how tall the rendered image is going to be. Both values are measured in pixels.

Save rendering to a file You can save the image to one of the following file formats: BMP, TGA, TIF, PCX, JPG, or PNG.
If you accept the default value of No, the Render Window is displayed and the image is rendered. Answering Yes results in another prompt:

\section*{Viewport}

If you choose Viewport, anything that is currently displayed in the viewport gets rendered.

\section*{RENDERCROP}

\section*{Quick Reference}

See also:
■ Render Views, Selected Objects, or Cropped Content

Renders a specified rectangular area, called a crop window, within a viewport.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Render panel \(>\) Render Region

\section*{Summary}

Renders what is inside a specified rectangular region within the viewport, and leaves the remainder of the render window intact.

Use this command when you need to render a part of the model for testing settings and effects.

\section*{List of Prompts}

The following prompts are displayed.
Pick crop window to render: Select the first corner of the region you want to render Please enter the second point: Select the opposite corner of the region you want to render


The current render destination and rendering procedure is ignored. After the second corner of the render region is selected, the rendering task proceeds and displays a viewport rendering with cropping.

\section*{RENDERENVIRONMENT}

\section*{Quick Reference}

See also:
- Control the Rendering Environment

Controls visual cues for the apparent distance of objects.

\section*{Access Methods}

Button

Ribbon: Render tab \(>\) Render panel \(\boldsymbol{>}\) Environment
\(\$\) Menu: View \(>\) Render \(>\) Render Environment
Toolbar: Render

\section*{Summary}

The Render Environment dialog box is displayed.

\section*{Render Environment Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Control the Rendering Environment

Defines the cues for distance between objects and the current viewing direction.


\section*{Access Methods}

Butlon
\(\$\) Ribbon: Render tab \(>\) Render panel \(>\) Environment
\(\$\) Menu: View \(>\) Render \(>\) Render Environment
\(\$\) Toolbar: Render
锉 Command entry: renderenvironment

\section*{Summary}

Fog and depth cueing are atmospheric effects that cause objects to appear to fade as they increase in distance from the camera. Fog uses a white color while depth cueing uses black.

\section*{List of Options}

The following options are displayed.
Fog and Depth Cue
Enable Fog Turns fog on and off without affecting the other settings in the dialog box.

Color Specifies the color of the fog.
Fog Background Applies fog to the background as well as to the geometry.
Near Distance Specifies the distance from the camera where the fog begins. It is specified as a percentage of the distance to the far clipping plane. The Near Distance setting cannot be greater than the Far Distance setting.

Far Distance Specifies the distance from the camera where the fog ends.
It is specified as a percentage of the distance to the far clipping plane. The Far Distance setting cannot be less than the Near Distance setting.

Near Fog Percentage Specifies the opacity of the fog at the near distance.
Far Fog Percentage Specifies the opacity of the fog at the far distance.

\section*{RENDEREXPOSURE}

\section*{Quick Reference}

See also:
- Control the Rendering Environment

Provides settings to adjust the global lighting for the most recently rendered output.

\section*{Access Methods}


Button

Ribbon: Render tab \(\boldsymbol{>}\) Render panel \(\boldsymbol{>}\) Adjust Exposure

\section*{Summary}

The Adjust Rendered Exposure dialog box is displayed.
When the LIGHTINGUNITS system variable is set to 0, the Adjust Render Exposure dialog box is not available because the exposure control is not turned on.

\section*{Adjust Rendered Exposure Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Standard and Photometric Lighting Workflow

Defines the brightness, contrast, mid tones, and exterior daylight for the current viewport when rendering.


\section*{Access Methods}

Button
\(\$\) Ribbon: Render tab \(>\) Render panel \(>\) Adjust Exposure
亜 Command entry: renderexposure

\section*{Summary}

Adjusts the render exposure settings for the current viewport using the most recent rendered output as a reference, without the need to wait for a new rendering.

\section*{List of Options}

The following options are displayed.

\section*{Adjust Render Exposure}

Brightness Controls the brightness level of the viewport when using photometric lighting.
(LOGEXPBRIGHTNESS on page 2397 system variable)
Contrast Controls the contrast level of the viewport when using photometric lighting.
(LOGEXPCONTRAST on page 2397 system variable)
Mid tones Controls the mid tones level of the viewport when using photometric lighting.
(LOGEXPMIDTONES on page 2398 system variable)
Exterior Daylight Controls if the exterior daylight flag is enabled when using photometric lighting.
(LOGEXPDAYLIGHT on page 2398 system variable)
Process Background Specifies if the background should be processed by exposure control at render time.

\section*{RENDERPRESETS}

\section*{Quick Reference}

\section*{See also:}
- Create Custom Render Presets

Specifies render presets, reusable rendering parameters, for rendering an image.
Access Methods


Button
\(\$\) Ribbon: Render tab > Render panel > Render Presets
\(\%\) Toolbar: Render

Summary
The Render Presets Manager is displayed.

\section*{Render Presets Manager}

Quick Reference
See also:
- Create Custom Render Presets


\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Render \(>\) Render Presets
\(\%\) Toolbar: Render
巢 Command entry: renderpresets

\section*{Summary}

Reusable rendering parameters are stored as render presets. You can choose from among a set of installed render presets or you can create your own custom render presets. Render presets are normally tailored for relatively quick, preview renderings. Others might be created for slower but higher quality renderings.

\section*{List of Options}

The following options are displayed.

\section*{Render Presets List}

Displays a tree view listing of all the presets stored with the current drawing. There are two types of render presets: Standard and Custom.

The Standard and Custom Render Presets trees can be re-ordered by dragging. Likewise, if you have multiple custom presets, you can re-order them in the same way. You cannot re-order the Standard presets inside the Standard Render Presets list.

\section*{Property Panel}

Provides settings that are similar to the properties on the Advanced Render Settings palette.

Preset Info
Name Specifies the name of the selected render preset. You can also rename a custom preset. Standard presets cannot be renamed.

Description Displays a description of the selected preset.
Thumbnail Image Lists the name of a still image that is associated with the select preset. This gives you a visual idea of how the render settings will affect the rendered image.
Click [...] to open the Specify An Image dialog box (a standard file selection dialog box) where you can browse to and select a thumbnail image for presets you create.

\section*{Materials}

Apply Materials Applies the surface materials that you define and apply to an object. If Apply Materials is not selected, all objects in the drawing assume the color, ambient, diffuse, reflection, roughness, transparency, refraction, and bump map attribute values defined for the GLOBAL material. For more information, see MATERIALS on page 1106.

Texture Filtering Specifies if texture maps are filtered.
Force 2-Sided Controls if both sides of faces are rendered.

\section*{Sampling}

Controls how the renderer performs sampling.
Min Samples Sets the minimum sample rate. The value represents the number of samples per pixel. A value greater than or equal to 1 indicates that one or more samples are computed per pixel. A fractional value indicates that one sample is computed for every N pixels (for example, \(1 / 4\) computes a minimum of one sample for every four pixels). Default=1/4.

Max Samples Sets the maximum sample rate. If neighboring samples find a difference in contrast that exceeds the contrast limit, the area containing the contrast is subdivided to the depth specified. Default=1.

The values of the Min Samples and Max Samples lists are "locked" together so that the value of Min Samples can't exceed the value of Max Samples. An error dialog box is displayed if the Min Samples value is greater than the Max Samples value.

Filter Type Determines how multiple samples are combined into a single pixel value. The filter types are:
- Box. Sums all samples in the filter area with equal weight. This is the quickest sampling method.

■ Gauss. Weights the samples using a Gauss (bell) curve centered on the pixel.

■ Triangle. Weights the samples using a pyramid centered on the pixel.
- Mitchell. Weights the samples using a curve (steeper than Gauss) centered on the pixel.
- Lanczos. Weights the samples using a curve (steeper than Gauss) centered on the pixel, diminishing the effect of samples at the edge of the filter area.

Filter Width and Height Specifies the size of the filtered area. Increasing the value of Filter Width and Filter Height can soften the image; however, it will increase rendering time.

Contrast Color Clicking [...] opens the Select Color dialog box where you interactively specify the R,G,B threshold values.

Contrast Red, Blue, Green Specifies the threshold values for the red, blue, and green components of samples. These values are normalized, and range from 0.0 to 1.0 , where 0.0 indicates the color component is fully unsaturated (black, or 0 in eight-bit encoding) and 1.0 indicates the color component is fully saturated (white, or 255 in eight-bit encoding).

Contrast Alpha Specifies the threshold value for the alpha component of samples. This value is normalized, and ranges from 0.0 (fully transparent, or 0 in eight-bit encoding) to 1.0 (fully opaque, or 255 in eight-bit encoding).

\section*{Shadows}

Contains settings that affect how shadows appear in the rendered image.
Enable Specifies if shadows are computed during rendering.
Mode The shadow mode can be Simple, Sort, or Segments.
- Simple. Generates shadow shaders in a random order.
- Sort. Generates shadow shaders in order, from the object to the light.
- Segments. Generates shadow shaders in order along the light ray from the volume shaders to the segments of the light ray between the object and the light.

Shadow Map Controls if shadow mapping is used to render shadows. When on, the renderer renders shadow-mapped shadows. When off, all shadows are ray-traced.

Sampling Multiplier Globally limits shadow sampling for area lights. This is part of the rendering preset data. This allows draft and low quality presets to reduce area light sampling. It's effect is to modulate the inherent sampling frequency specified for each light. The default value \(=1\) for new presets. Values are \(0,1 / 8,1 / 4,1 / 2,1,2\). Draft: 0; Low:1/4; Med:1/2; High:1; Presentation:1.

\section*{Ray Tracing}

Enable Specifies if ray tracing should be performed when shading.
Max Depth Limits the combination of reflection and refraction. Tracing of a ray stops when the total number of reflections and refractions reaches the maximum depth. For example, if Max Depth equals 3 and the two trace depths each equal the default value of 2 , a ray can be reflected twice and refracted once, or vice versa, but it cannot be reflected and refracted four times.

Max Reflections Sets the number of times a ray can be reflected. At 0, no reflection occurs. At 1, the ray can be reflected once only. At 2 , the ray can be reflected twice, and so on.

Max Refractions Sets the number of times a ray can be refracted. At 0, no refraction occurs. At 1, the ray can be refracted once only. At 2, the ray can be refracted twice, and so on.

\section*{Global Illumination}

Enable Specifies if global illumination should be calculated for the scene.
Photons/Samples Sets how many photons are used to compute the intensity of the global illumination. Increasing this value makes global illumination less noisy but also more blurry. Decreasing this value makes global illumination more noisy but less blurry. The larger the Samples value, the greater the rendering time.

Use Radius Determines the size of photons. When on, the spinner value sets the size of photons. When off, each photon is calculated to be \(1 / 10\) of the radius of the full scene.

Radius Specifies the area within which photons will be used when illuminance is computed.

Max Depth Limits the combination of reflection and refraction. Reflection and refraction of a photon stop when the total number of both equals the Max Depth setting. For example, if Max Depth equals 3 and the trace depths each equal 2 , a photon can be reflected twice and refracted once, or vice versa, but it can't be reflected and refracted four times.

Max Reflections Sets the number of times a photon can be reflected. At 0, no reflection occurs. At 1, the photon can be reflected once only. At 2, the photon can be reflected twice, and so on.

Max Refractions Sets the number of times a photon can be refracted. At 0, no refraction occurs. At 1, the photon can be refracted once only. At 2, the photon can be refracted twice, and so on.

\section*{Final Gather}

Calculates global illumination further.
Mode Controls the final gathering dynamic settings.
- On.Turns on the global illumination in final gather.

■ Off.Turns off the calculation of global illumination in final gather.
- Auto. Indicates that the final gather should be dynamically enabled or disable at render time based on the skylight status.

Enable Specifies if gathering should be used to compute the final shading.
Rays Sets how many rays are used to compute indirect illumination in a final gather. Increasing this value makes global illumination less noisy, but also increases rendering time.

Radius Mode Determines the radius mode for final gather processing. Settings are On, Off, or View.
- On. Specifies that the setting means the Max Radius setting is used for final gather processing. The radius is specified in world units, and defaults to 10 percent of the maximum circumference of the model.
- Off. Specifies the maximum radius is the default value of 10 percent of the maximum model radius, in world units.

■ View. Specifies the Max Radius setting in pixels instead of world units and is used for final gather processing.

Max Radius Sets the maximum radius within which final gathering is used. Reducing this value can improve quality at a cost of increased rendering time.

Use Min Controls whether the Min Radius setting is used during final gather processing. When on, the minimum radius setting is used for final gather processing. When off, the minimum radius is not used.

Min Radius Sets the minimum radius within which final gathering is used. Increasing this value can improve quality but increase rendering time.

\section*{Light Properties}

Affects how lights behave when calculating indirect illumination. By default, the energy and photon settings apply to all lights in a scene.

Photons/Light Sets the number of photons emitted by each light for use in global illumination. Increasing this value increases the accuracy of global illumination, but also increases the amount of memory used and the length of render time. Decreasing this value improves memory usage and render time, and can be useful for previewing global-illumination effects.

Energy Multiplier Multiplies the global illumination, indirect light, intensity of the rendered image.

\section*{Visual}

Helps you understand why the renderer is behaving in a certain way.
Grid Renders an image that shows the coordinate space of objects, the world, or camera.
- Object. Shows local coordinates (UVW). Each object has its own coordinate space.
- World. Shows world coordinates (XYZ). The same coordinate system applies to all objects.

■ Camera. Shows camera coordinates, which appear as a rectangular grid superimposed on the view.

Grid Size Sets the size of the grid.
Photon Renders the effect of a photon map. This requires that a photon map be present. If no photon map is present, the Photon rendering looks just like the nondiagnostic rendering of the scene: the renderer first renders the shaded scene, then replaces it with the pseudocolor image.
- Density. Renders the photon map as it is projected into the scene. High density is displayed in red, and lower values render in increasingly cooler colors.

■ Irradiance. Similar to the Density rendering, but shades the photons based on their irradiance. The maximum irradiance is rendered in red, and lower values render in increasingly cooler colors.

BSP Renders a visualization of the parameters used by the tree in the BSP raytrace acceleration method. If a message from the renderer reports excessively large depth or size values, or if rendering seems unusually slow, this can help you locate the problem.
■ Depth. Shows the depth of the tree, with top faces in bright red, and increasingly deep faces in increasingly cool colors.
- Size. Shows the size of leaves in the tree, with differently sized leaves indicated by different colors.

\section*{Processing}

Tile Size Determines the tile size for rendering. To render the scene, the image is subdivided into tiles. The smaller the tile size, the more image updates are generated during rendering. When the tile size is reduced, the number of image updates increases, meaning that a rendering take longer to complete. If the tile size is increased, fewer image updates occur and the rendering takes less time to complete.

Tile Order Specifies the method used (render order) for tiles as an image is rendered. You can choose a method based on how you prefer to see the image appear as it renders in the Render Window.
- Hilbert. Next tile to be rendered is based on the cost of switching to the next one.
- Spiral. Tiles are rendered beginning at the center of the image, and spiral outward.
- Left to Right. Tiles are rendered in columns, from bottom to top, left to right.
- Right to Left. Tiles are rendered in columns, from bottom to top, right to left.
- Top to Bottom. Tiles are rendered in rows, from right to left, top to bottom.
- Bottom to Top. Tiles are rendered in rows, from right to left, bottom to top.

Memory Limit Determines the memory limit for rendering. The renderer keeps a count of the memory it uses at render time. If the memory limit is
reached, the geometry for some objects is discarded in order to allocate memory for other objects.

\section*{Set Current}

Sets the selected render preset as the preset to be used by the renderer.

\section*{Create Copy}

Copies a preset. The Copy Render Preset dialog box is displayed.

\section*{Delete}

Deletes the selected custom render preset. Standard presets cannot be deleted.

\section*{Thumbnail Viewer}

Displays a thumbnail image that is associated with the selected render preset. If the thumbnail image is not shown, you can select one from the Thumbnail Image setting under Preset Info.

\section*{Copy Render Preset Dialog Box}

\section*{Quick Reference}

See also:
- Create Custom Render Presets


\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Render \(>\) Render Presets

\title{
Toolbar: Render \\ 㟇 Command entry: renderpresets
}

\section*{Summary}

You can define your own custom presets by creating a copy based upon an existing render preset. You can specify a name and description of the copied preset. The new preset shows up as one of your Custom Render Presets in the Render Presets list in the Render Presets Manager.

\section*{List of Options}

The following options are displayed.
Name
Give the copied preset a name. Preset names must be unique.

\section*{Description}

Add a description of the custom preset.
Describe the rendering effect that will be produced when the custom preset is used. This description can be more detailed than the name of the preset.

After you define your new render preset, you can select it in the Render Presets list and alter the rendering settings you want stored with that preset.

\section*{RENDERWIN}

\section*{Quick Reference}

\section*{See also:}
- Set the Render Destination

Displays the Render window without starting a rendering operation.

\section*{Access Methods}


Button

Ribbon: Render tab \(>\) Render panel \(>\) Render Window
Summary
The Render Window is displayed, but a rendering of the current drawing is not initiated.

If the drawing has a render history, you can view images that were previously rendered.

\section*{RESETBLOCK}

\section*{Quick Reference}

\section*{See also:}

■ Work with Dynamic Blocks in Drawings

Resets one or more dynamic block references to the default values of the block definition.

\section*{Access Methods}

Shortcut menu: Select a dynamic block reference in a drawing. Right-click in the drawing area. Click Reset Block.

\section*{RESUME}

\section*{Quick Reference}

See also:
- Run Slide Shows from Scripts

Continues an interrupted script.

\section*{Access Methods}

䱂 Command entry: 'resume for transparent use

\section*{Summary}

You can interrupt a macro script that is running by pressing Esc or Backspace. Any error encountered while processing input from a script file causes the script to be suspended. If a script is suspended while the program is active, you can use RESUME to continue the script.

\section*{REVCLOUD}

\section*{Quick Reference}

See also:
■ Create Revision Clouds

Creates a revision cloud using a polyline.

\section*{Access Methods}


Button

Ribbon: Home tab \(\boldsymbol{>}\) Draw panel \(\boldsymbol{>}\) Revision Cloud
\(\$\) Menu: Draw \(>\) Revision Cloud
Toolbar: Draw

Summary


NOTE REVCLOUD stores the last used arc length in the system registry. This value is multiplied by DIMSCALE to provide consistency when the program is used with drawings that have different scale factors.

You can create a new revision cloud by dragging your cursor, or you can convert a closed object such as an ellipse or polyline into a revision cloud. Use revision clouds to highlight parts of a drawing that are being reviewed.

The resulting object is a polyline.

\section*{List of Prompts}

The following prompts are displayed.
Minimum arc length: 0.5000 Maximum arc length: 0.5000
Specify start point or ["Arc length"/"Object"/"Style"] <Object>: Drag to draw the revision cloud, enter an option, or press Enter
Arc Length Specifies the length of the arcs in a revision cloud.
The maximum arc length cannot be set to more than three times the minimum arc length.

Object Specifies an object to be converted to a revision cloud.
Style Specifies the style of the revision cloud.

\section*{REVERSE}

\section*{Quick Reference}

\section*{See also:}
- Modify Polylines

Reverses the vertices of selected lines, polylines, splines, and helixes, which is useful for linetypes with included text, or wide polylines with differing beginning and ending widths.

\section*{Access Methods \\ \(\rightleftarrows\) \\ Button}
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Reverse

\section*{Summary}

For example, when a linetype with text is specified with relative rotation in a LIN file, the text in the linetype might be displayed upside down. Reversing the vertices of the object changes the orientation of the text. The REVERSE command does not change the orientation of text where rotation is specified as upright


For more information, see Text in Custom Linetypes.

\section*{REVOLVE}

\section*{Quick Reference}

See also:
■ Create a Solid or Surface by Revolving

Creates a 3D solid or surface by sweeping an object around an axis.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modeling panel \(>\) Revolve
\(\$\) Menu: Draw \(>\) Modeling \(>\) Revolve
\(\$\) Toolbar: Modeling

\section*{Summary}

When the Solid tab is active, the REVOLVE command creates a solid. Conversely, when the Surface tab is active, it creates a surface (either procedural or NURBS depending on how the SURFACEMODELINGMODE on page 2539 system variable is set).


Revolve path and profile curves can be:
- Open or closed
- Planar or non-planar
- Solid and surface edges
- A single object (to extrude multiple lines, convert them to a single object with the JOIN on page 959 command)
- A single region (to extrude multiple regions, convert them to a single object with the REGION command)

To automatically delete the profile, use the DELOBJ system variable. If associativity on page 2537 is on, the DELOBJ system variable is ignored and the originating geometry is not deleted.

\section*{Objects That Can Be Revolved}
\begin{tabular}{lll}
\hline Surfaces & Elliptical arcs & 2D solids \\
\hline Solids & 2D and 3D splines & Traces \\
\hline Arcs & 2D and 3D polylines & Ellipses \\
\hline Circles & Regions & \\
\hline
\end{tabular}

NOTE Select face and edge subobjects by pressing Ctrl while you select them.
You cannot revolve objects contained within a block or objects that will self-intersect. REVOLVE ignores the width of a polyline and revolves from the center of the path of the polyline.
The right-hand rule determines the positive direction of rotation. For more information, see Control the User Coordinate System in 3D.

\section*{List of Prompts}

The following prompts are displayed.
Objects to Revolve Specifies the objects to be revolved about an axis.
Mode Controls whether the revolve action creates a solid or a surface. Surfaces are extended as either NURBS surfaces or procedural surfaces, depending on the SURFACEMODELINGMODE on page 2539 system variable.

Axis Start Point Specifies the first point of the axis of revolution. The positive axis direction is from the first to the second point.

Axis Endpoint Sets the endpoint for the axis of revolution.
Start Angle Specifies an offset for the revolution from the plane of the object being revolved.
Drag your cursor to specify and preview the start angle of the object.
Angle of Revolution Specifies how far the selected object revolves about the axis.
A positive angle revolves the objects in a counterclockwise direction. A negative angle revolves the objects in a clockwise direction. You can also drag the cursor to specify and preview the angle of revolution.


Object Specifies an existing object to be used as an axis. The positive axis direction is from the closest to the farthest endpoint of this object.

selected axis

full circle

specified angle

You can use lines, linear polyline segments, and linear edges of solids or surfaces as an axis.

NOTE Select an edge subobject by pressing Ctrl while you select an edge.
X (Axis) Sets the positive \(X\) axis of the current UCS as the positive axis direction.


Y (Axis) Sets the positive \(Y\) axis of the current UCS as the positive axis direction.


Y axis

full circle

specified angle

Z (Axis) Sets the positive \(Z\) axis of the current UCS as the positive axis direction.

Reverse Changes the direction of the revolve; similar to entering a - (minus) angle value. The revolved object on the right shows a spline revolved at the same angle as the object on the left, but using the reverse option.


Expression Enter a formula or equation to specify the revolve angle. See Constrain a Design with Formulas and Equations.

\section*{REVSURF}

\section*{Quick Reference}

See also:
- Construct Meshes from Other Objects

Creates a mesh by revolving a profile about an axis.

\section*{Access Methods}


Button
\(\$\) Ribbon: Mesh Modeling tab \(>\) Primitives panel \(>\) Modeling, Meshes, Revolved Surface

Menu: Draw \(>\) Modeling \(>\) Meshes \(>\) Revolved Meshes

\section*{Summary}

Select a line, arc, circle, or 2D or 3D polyline to sweep in a circular path around a selected axis.


The MESHTYPE system variable sets which type of mesh is created. Mesh objects are created by default. Set the variable to 0 to create legacy polyface or polygon mesh.

The density of the generated mesh is controlled by the SURFTAB1 and SURFTAB2 system variables. SURFTAB1 specifies the number of tabulation lines that are drawn in the direction of revolution. If the path curve is a line, arc, circle, or spline-fit polyline, SURFTAB2 specifies the number of tabulation lines that are drawn to divide it into equal-sized intervals. If the path curve is a polyline that has not been spline fit, tabulation lines are drawn at the ends of straight segments, and each arc segment is divided into the number of intervals specified by SURFTAB2.


\section*{List of Prompts}

The following prompts are displayed.
Current wire frame density: SURFTAB1=current: SURFTAB2=current Object to revolve Select a line, arc, circle, or 2D or 3D polyline.

Object that defines axis of revolution Select a line or open 2D or 3D polyline. The axis direction cannot be parallel to the plane of the original object.


The path curve is swept about the selected axis to define the mesh. The path curve defines the \(N\) direction of the mesh. Selecting a circle or a closed polyline as the path curve closes the mesh in the \(N\) direction.


The vector from the first to the last vertex of the polyline determines the rotation axis. Any intermediate vertices are ignored. The axis of revolution determines the \(M\) direction of the mesh.

Start Angle If set to a nonzero value, starts the mesh of revolution at an offset from the generating path curve.
Specifying a start angle starts the mesh of revolution at an offset from the generating path curve.

Included Angle Specifies how far about the axis of revolution the mesh extends. The included angle is the distance through which the path curve is swept.

Entering an included angle that is less than a full circle prevents the circle from closing.

direction of generation

direction of generation

The point you use to select the axis of revolution affects the direction of revolution. The mesh in the following example was created by specifying a start angle of 0 degrees and an included angle of 90 degrees.

circle path curve divided into equally sized intervals

\section*{RIBBON}

\section*{Quick Reference}

See also:
■ Organize the Ribbon

Opens the ribbon window.

\section*{RIBBONCLOSE}

\section*{Quick Reference}

\author{
See also: \\ ■ Organize the Ribbon
}

Closes the ribbon window.

\section*{ROTATE}

\section*{Quick Reference}

See also:
- Rotate Objects

Rotates objects around a base point.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Rotate
\(\$\) Menu: Modify \(>\) Rotate
\(\%\) Toolbar: Modify
Shortcut menu: Select the objects to rotate, and right-click in the drawing area. Click Rotate.

\section*{Summary}

You can rotate selected objects around a base point to an absolute angle.


\section*{List of Prompts}

The following prompts are displayed.
Current positive angle in UCS: ANGDIR=current ANGBASE=current Select objects: Use an object selection method and press Enter when you finish Specify base point: Specify a point
Specify rotation angle or [Copy/Reference]: Enter an angle, specify a point, enter c, or enter \(\mathbf{r}\)
Rotation Angle Determines how far an object rotates around the base point.

The axis of rotation passes through the specified base point and is parallel to the \(Z\) axis of the current UCS.

Copy Creates a copy of the selected objects for rotation.
Reference Rotates objects from a specified angle to a new, absolute angle.
When you rotate a viewport object, the borders of the viewport remain parallel to the edges of the drawing area.

\section*{ROTATE3D}

\section*{Quick Reference}

See also:
- Rotate Objects

Moves objects about a 3D axis.

\section*{Summary}

It is recommended that you use the gizmos available through the 3DMOVE and 3DROTATE commands to manipulate 3D objects. For more information about using gizmos, see Use Gizmos to Modify Objects.

\section*{List of Prompts}

The following prompts are displayed.
Select objects: Use an object selection method and press Enter when you finish Specify first point on axis or define axis by
["Object"/"Last"/"View"/"Xaxis/Yaxis/Zaxis"/"2points"]: Specify a point, enter an option, or press Enter


\section*{Object}

Aligns the axis of rotation with an existing object.

\section*{Line}

Aligns the axis of rotation with the line selected.
Rotation Angle Rotates the object about the selected axis the specified amount from the current orientation.

Reference Specifies the reference angle and the new angle.
The difference between the starting angle and the ending angle is the computed rotation angle.

\section*{Circle}

Aligns the axis of rotation with the 3D axis of the circle (perpendicular to the plane of the circle and passing through the center of the circle).
- Rotation Angle on page 1668

■ Reference on page 1668

object selected

\section*{Arc}

Aligns the axis of rotation with the 3D axis of the arc (perpendicular to the plane of the arc and passing through the center of the arc).
- Rotation Angle on page 1668

■ Reference on page 1668

\section*{2D Polyline Segment}

Aligns the axis of rotation with a segment of the polyline. Treats a straight segment as a line segment. Treats an arc segment as an arc.
- Rotation Angle on page 1668

■ Reference on page 1668

\section*{Last}

Uses the last axis of rotation.
- Rotation Angle on page 1668

■ Reference on page 1668

\section*{View}

Aligns the axis of rotation with the viewing direction of the current viewport that passes through the selected point.
- Rotation Angle on page 1668

■ Reference on page 1668

\section*{X Axis, Y Axis, Z Axis}

Aligns the axis of rotation with one of the axes ( \(X, Y\), or \(Z\) ) that pass through the selected point.
- Rotation Angle on page 1668

■ Reference on page 1668

\section*{2 Points}

Uses two points to define the axis of rotation.

- Rotation Angle on page 1668

■ Reference on page 1668

\section*{RPREF}

\section*{Quick Reference}

See also:
- Use the Render Settings Palette

Displays or hides the Advanced Render Settings palette for access to advanced rendering settings.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Render panel \(\ggg\) Advanced Render Settings
\(\$\) Menu: View \(>\) Render \(>\) Advanced Render Settings
\(\$\) Menu: Tools \(>\) Palettes \(>\) Advanced Render Settings
\(\$\) Toolbar: Render

\section*{Summary}

The Advanced Render Settings palette contains all of the primary controls for the renderer. You can choose from predefined render settings or specify custom settings.

\section*{Advanced Render Settings Palette}

\section*{Quick Reference}

See also:
■ Use the Render Settings Palette


\section*{Access Methods}

Bution
\(\$\) Ribbon: Render tab \(>\) Render panel \(\ggg\) Advanced Render Settings \(\$\) Menu: View > Render > Advanced Render Settings

\section*{Summary}

You use the Advanced Render Settings palette to make rendering settings. You can also access the Render Presets Manager from the Render Settings palette.

\section*{List of Options}

The following options are displayed.

\section*{Render Preset List / Select Render Preset}

Lists standard render presets ranging from lowest to highest quality, up to four custom render presets and allows access to the Render Presets Manager.

\section*{Render Context}

Contains settings that affect how your model gets rendered.
Save File Determines if the rendered image is written to a file.
Rendering Procedure Controls the model content that gets processed during rendering.
■ View. Renders the current view without displaying the Render dialog box.
- Crop. Creates a render area at render time. When you click the Render button with Crop Window selected, you are prompted to specify an area in the drawing before rendering proceeds. This option is available only when Viewport is selected under Destination.
- Selected. Displays a prompt to select objects to render.

Destination Determines the output site that the renderer uses to display the rendered image.
■ Window. Renders to the Render Window.
- Viewport. Renders to a viewport.

Output File Name Specifies a file name and location where the rendered image will be stored.
■ BMP (*.bmp). Still-image bitmap file in the Windows bitmap (.bmp) format.
■ PCX (*.pcx). Simple format that provides a minimum of compression.
■ TGA (*.tga). File format that supports 32-bit true color; that is, 24-bit color plus an alpha channel, and is typically used as a true color format.

■ TIF (*.tif). Multiplatform bitmap format.
- JPEG (*.jpg). Popular format for posting image files on the Internet for minimum file size and minimum download time.

■ PNG (*.png). Still-image file format developed for use with the Internet and World Wide Web.

Output Size Shows the current output resolution setting for the rendered image. Opening the Output Size list displays the following:
- Up to four custom size settings.

NOTE Custom output sizes are not stored with the drawing and they are not retained between drawing sessions.

■ Four of the most commonly used output resolutions.
- Access to the Output Size dialog box.

Exposure Type Controls the tone operator setting. This does not need to be stored in the named render preset. Rather it can be stored per drawing in the render context.
■ Automatic. Indicates that the tone operator used should be chosen to match the current viewport tone operator strategy.
- Logarithmic. Indicates that the log exposure control should be used.

Physical Scale Specifies the physical scale. Default \(=1500\).

\section*{Render}

Renders the model directly from the Advanced Render Settings palette.
Materials
Contains settings that affect how materials are handled by the renderer.
Apply Materials Applies the surface materials that you define and attach to an object in the drawing. If Apply Materials is not selected, all objects in the drawing assume the color, ambient, diffuse, reflection, roughness, transparency, refraction, and bump map attribute values defined for the GLOBAL material. For more information, see MATERIALS on page 1106.

Texture Filtering Specifies how texture maps are filtered.
Force 2-Sided Controls if both sides of faces are rendered.

\section*{Sampling}

Controls how the renderer performs sampling.

Min Samples Sets the minimum sample rate. The value represents the number of samples per pixel. A value greater than or equal to 1 indicates that one or more samples are computed per pixel. A fractional value indicates that one sample is computed for every N pixels (for example, \(1 / 4\) computes a minimum of one sample for every four pixels). Default=1/4.

Max Samples Sets the maximum sample rate. If neighboring samples find a difference in contrast that exceeds the contrast limit, the area containing the contrast is subdivided to the depth specified by Maximum. Default=1.
The values of the Min Samples and Max Samples lists are "locked" together so that the value of Min Samples can't exceed the value of Max Samples.

Filter Type Determines how multiple samples are combined into a single pixel value.

■ Box. Sums all samples in the filter area with equal weight. This is the quickest sampling method.

■ Gauss. Weights the samples using a Gauss (bell) curve centered on the pixel.
- Triangle. Weights the samples using a pyramid centered on the pixel.

■ Mitchell. Weights the samples using a curve (steeper than Gauss) centered on the pixel.

■ Lanczos. Weights the samples using a curve (steeper than Gauss) centered on the pixel, diminishing the effect of samples at the edge of the filter area.

Filter Width and Filter Height Specifies the size of the filtered area. Increasing the value of Filter Width and Filter Height can soften the image; however, it will increase rendering time.

Contrast Color Clicking [...] opens the Select Color dialog box where you interactively specify the R,G,B threshold values.

Contrast Red, Blue, Green Specifies the threshold values for the red, blue, and green components of samples. These values are normalized, and range from 0.0 to 1.0 , where 0.0 indicates the color component is fully unsaturated (black, or 0 in eight-bit encoding) and 1.0 indicates the color component is fully saturated (white, or 255 in eight-bit encoding).

Contrast Alpha Specifies the threshold value for the alpha component of samples. This value is normalized, and ranges from 0.0 (fully transparent, or 0 in eight-bit encoding) to 1.0 (fully opaque, or 255 in eight-bit encoding).

\section*{Shadows}

Contains settings that affect how shadows appear in the rendered image.
Enable Specifies if shadows are computed during rendering.
Mode
- Simple. Generates shadow shaders in a random order.
- Sort. Generates shadow shaders in order, from the object to the light.

■ Segments. Generates shadow shaders in order along the light ray from the volume shaders to the segments of the light ray between the object and the light.

Shadow Map Controls if shadow mapping is used to render shadows. When on, the renderer renders shadow-mapped shadows. When off, all shadows are ray-traced.

Sampling Multiplier Globally limits shadow sampling for area lights. This is part of the rendering preset data. This allows draft and low quality presets to reduce area light sampling. It's effect is to modulate the inherent sampling frequency specified for each light. The default value \(=1\) for new presets. Values are 0, 1/8, 1/4, 1/2, 1, 2. Draft: 0; Low:1/4; Med:1/2; High:1; Presentation:1.

\section*{Ray Tracing}

Contains settings that affect the shading of a rendered image.
Enable Specifies if ray tracing should be performed when shading.
Max Depth Limits the combination of reflection and refraction. Tracing of a ray stops when the total number of reflections and refractions reaches the maximum depth. For example, if Max Depth equals 3 and the two trace depths each equal the default value of 2 , a ray can be reflected twice and refracted once, or vice versa, but it cannot be reflected and refracted four times.

Max Reflections Sets the number of times a ray can be reflected. At 0, no reflection occurs. At 1 , the ray can be reflected once only. At 2 , the ray can be reflected twice, and so on.

Max Refractions Sets the number of times a ray can be refracted. At 0, no refraction occurs. At 1, the ray can be refracted once only. At 2 , the ray can be refracted twice, and so on.

\section*{Global Illumination}

Affects how your scene is illuminated.
Enable Specifies if lights should cast indirect light into the scene.

Photons/Samples Sets how many photons are used to compute the intensity of the global illumination. Increasing this value makes global illumination less noisy but also more blurry. Decreasing this value makes global illumination more noisy but less blurry. The larger the Samples value, the greater the rendering time.

Use Radius Determines the size of photons. When on, the spinner value sets the size of photons. When off, each photon is calculated to be \(1 / 10\) of the radius of the full scene.

Radius Specifies the area within which photons will be used when illuminance is computed.

Max Depth Limits the combination of reflection and refraction. Reflection and refraction of a photon stop when the total number of both equals the Max Depth setting. For example, if Max Depth equals 3 and the trace depths each equal 2 , a photon can be reflected twice and refracted once, or vice versa, but it can't be reflected and refracted four times.

Max Reflections Sets the number of times a photon can be reflected. At 0, no reflection occurs. At 1, the photon can be reflected once only. At 2, the photon can be reflected twice, and so on.

Max Refractions Sets the number of times a photon can be refracted. At 0, no refraction occurs. At 1, the photon can be refracted once only. At 2, the photon can be refracted twice, and so on.

\section*{Final Gather}

Calculates global illumination.
Mode Controls the final gathering dynamic settings.
- On. Turns on the global illumination in final gather.

■ Off. Turns off the calculation of global illumination in final gather.
■ Auto. Indicates that the final gather should be dynamically enabled or disable at render time based on the skylight status.

Rays Sets how many rays are used to compute indirect illumination in a final gather. Increasing this value makes global illumination less noisy, but also increases rendering time.

Radius Mode Determines the radius mode for final gather processing. Settings are On, Off, or View.
- On. Specifies that the setting means the Max Radius setting is used for final gather processing. The radius is specified in world units, and defaults to 10 percent of the maximum circumference of the model.

■ Off. Specifies the maximum radius is the default value of 10 percent of the maximum model radius, in world units.
- View. Specifies the Max Radius setting in pixels instead of world units and is used for final gather processing.

Max Radius Sets the maximum radius within which final gathering is processed. Reducing this value can improve quality at a cost of increased rendering time.

Use Min Controls whether the Min Radius setting is used during final gather processing. When on, the minimum radius setting is used for final gather processing. When off, the minimum radius is not used.
Min Radius Sets the minimum radius within which final gathering is processed. Increasing this value can improve quality but increase rendering time.

\section*{Light Properties}

Affects how lights behave when calculating indirect illumination. By default, the energy and photon settings apply to all lights in a scene.
Photons/Light Sets the number of photons emitted by each light for use in global illumination. Increasing this value increases the accuracy of global illumination, but also increases the amount of memory used and the length of render time. Decreasing this value improves memory usage and render time, and can be useful for previewing global-illumination effects.

Energy Multiplier Multiplies the global illumination, indirect light, intensity of the rendered image.

\section*{Visual}

Helps you understand why the renderer is behaving in a certain way.
Grid Renders an image that shows the coordinate space of objects, the world, or camera.
■ Object. Shows local coordinates (UVW). Each object has its own coordinate space.

■ World. Shows world coordinates (XYZ). The same coordinate system applies to all objects.

■ Camera. Shows camera coordinates, which appear as a rectangular grid superimposed on the view.

Grid Size Sets the size of the grid.

Photon Renders the effect of a photon map. This requires that a photon map be present. If no photon map is present, the Photon rendering looks just like the nondiagnostic rendering of the scene: the renderer first renders the shaded scene, then replaces it with the pseudocolor image.
■ Density. Renders the photon map as it is projected into the scene. High density is displayed in red, and lower values render in increasingly cooler colors.
- Irradiance. Similar to the Density rendering, but shades the photons based on their irradiance. The maximum irradiance is rendered in red, and lower values render in increasingly cooler colors.

BSP Renders a visualization of the parameters used by the tree in the BSP ray-trace acceleration method. If a message from the renderer reports excessively large depth or size values, or if rendering seems unusually slow, this can help you locate the problem.
- Depth. Shows the depth of the tree, with top faces in bright red, and increasingly deep faces in increasingly cool colors.
- Size. Shows the size of leaves in the tree, with differently sized leaves indicated by different colors.

\section*{Processing}

Tile Size Determines the tile size for rendering. To render the scene, the image is subdivided into tiles. The smaller the tile size, the more image updates are generated during rendering. When the tile size is reduced, the number of image updates increases, meaning that a rendering take longer to complete. If the tile size is increased, fewer image updates occur and the rendering takes less time to complete.

Tile Order Specifies the method used (render order) for tiles as an image is rendered. You can choose a method based on how you prefer to see the image appear as it renders in the Render Window.
■ Hilbert. Next tile to be rendered is based on the cost of switching to the next one.
- Spiral. Tiles are rendered beginning at the center of the image, and spiral outward.
- Left to Right. Tiles are rendered in columns, from bottom to top, left to right.
- Right to Left. Tiles are rendered in columns, from bottom to top, right to left.

■ Top to Bottom. Tiles are rendered in rows, from right to left, top to bottom.
- Bottom to Top. Tiles are rendered in rows, from right to left, bottom to top.

Memory Limit Determines the memory limit for rendering. The renderer keeps a count of the memory it uses at render time. If the memory limit is reached, the geometry for some objects is discarded in order to allocate memory for other objects.

\section*{Output Size Dialog Box}

\section*{Quick Reference}

See also:
- Use the Render Settings Palette


\section*{Access Methods}

Bution

\footnotetext{
\(\$\) Ribbon: Render tab \(>\) Render panel \(\ggg\) Advanced Render Settings
\(\$\) Menu: View \(>\) Render \(>\) Advanced Render Settings
\(\$\) Menu: Tools \(>\) Palettes \(>\) Advanced Render Settings
Toolbar: Render
輋 Command entry: rpref
}

\section*{Summary}

The Output Size dialog box is displayed when you choose Specify Output Size from the Output Size list. From the dialog box, you set the output resolution of the rendered image.
When you set a unique output size, it gets added to the Output Size list of the Render Settings palette. Four unique output sizes can populate the output size list, but they do not get saved with the current drawing and they are not maintained from one drawing session to the next.

\section*{List of Options}

The following options are displayed.

\section*{Width}

Sets the width resolution of the output image, in pixels.
You can set the width anywhere from 8 to 4096.

\section*{Height}

Sets the height resolution of the output image, in pixels.
You can set the height anywhere from 8 to 4096.

\section*{Image Aspect}

Sets the aspect ratio, the ratio of width to height, of the rendered image.
Changing this value changes the Height value to maintain the correct dimensions for the active resolution. The image aspect value is always expressed as a multiplier value.

\section*{Lock/Unlock Image Aspect}

Locks the aspect ratio when using a custom output resolution.
When it is locked, the Width and Height spinners are locked to each other; adjusting one alters the other to maintain the aspect-ratio value. When unlocked, changes to either Width or Height affects only the Image Aspect setting.

NOTE In viewports, the camera's frustum changes to reflect the image aspect ratio you set in the Output Resolution dialog box. This change takes place when you exit the dialog box.

\section*{Preset Resolution Buttons}

Sets one of four most commonly used output resolutions.

\section*{RPREFCLOSE}

\section*{Quick Reference}

See also:
- Use the Render Settings Palette

Closes the Render Settings palette.

\section*{Summary}

The RPREFCLOSE command closes the Render Settings palette. If the Render Settings palette is currently displayed, either in an auto-hidden state or open state, it is closed.

\section*{RSCRIPT}

\section*{Quick Reference}

\section*{See also:}
- Run Slide Shows from Scripts

Repeats a script file.

\section*{Summary}

RSCRIPT is useful for demonstrations that repeat a script; for example, a script that must run over and over during a trade show or in a showroom.

If RSCRIPT is the last line in a script file, the file runs continuously until interrupted by Esc.

NOTE Consider turning off UNDO and any log files if you anticipate running the script over a long period; otherwise, these log files continue to grow and take up increasing amounts of disk space.

\section*{RULESURF}

\section*{Quick Reference}

\section*{See also:}

■ Construct Meshes from Other Objects

Creates a mesh that represents the surface between two lines or curves.

\section*{Access Methods}


Button
\(\$\) Ribbon: Mesh Modeling tab \(>\) Primitives panel \(>\) Modeling, Meshes, Ruled Surface
\(\$\) Menu: Draw \(>\) Modeling \(>\) Meshes \(>\) Ruled Mesh

\section*{Summary}

Select two edges that define the mesh. The edges can be lines, arcs, splines, circles, or polylines. If one of the edges is closed, then the other edge must also be closed. You can also use a point as one edge for either an open or a closed curve.


The MESHTYPE system variable sets which type of mesh is created. Mesh objects are created by default. Set the variable to 0 to create legacy polyface or polygon mesh.

For closed curves, the selection does not matter. If the curve is a circle, the ruled mesh begins at the 0 -degree quadrant point, as determined by the current
\(X\) axis plus the current value of the SNAPANG system variable. For closed polylines, the ruled mesh starts at the last vertex and proceeds backward along the segments of the polyline. Creating a ruled mesh between a circle and a closed polyline can be confusing. Substituting a closed semicircular polyline for the circle might be preferable.


The ruled mesh is constructed as a 2 by \(N\) polygon mesh. RULESURF places half the mesh vertices at equal intervals along one defining curve, and the other half at equal intervals along the other curve. The number of intervals is specified by the SURFTAB1 system variable. It is the same for each curve; therefore, the distance between the vertices along the two curves differs if the curves are of different lengths.

The \(N\) direction of the mesh is along the boundary curves. If both boundaries are closed, or if one is closed and the other is a point, the resulting polygon mesh is closed in the \(N\) direction and \(N\) equals SURFTAB1. If both boundaries are open, \(N\) equals SURFTAB1 +1 , because division of a curve into \(n\) parts requires \(n+1\) tabulations.

The 0,0 vertex of the mesh is the endpoint of the first selected curve nearest the point you used to select that curve.

Selecting objects at the same ends creates a polygon mesh.


Selecting objects at opposite ends creates a self-intersecting polygon mesh.


\section*{List of Prompts}

The following prompts are displayed.

First defining curve Specifies an object and start point for the new mesh object.

Second defining curve Specifies an object and start point for the sweep of the new mesh object.

\section*{S Commands}


SAVE

\section*{Quick Reference}

See also:
■ Save a Drawing
Saves the drawing under the current file name or a specified name.

\section*{Summary}

The Save Drawing As dialog box (a standard file selection dialog box) is displayed. Save the drawing under the current file name, or enter a different file name to save a copy of the drawing under that name.

\section*{SAVEAS}

\section*{Quick Reference}

See also:
- Save a Drawing

Saves a copy of the current drawing under a new file name.

\section*{Access Methods}

Menu: File \(>\) Save As

\section*{Summary}

The Save Drawing As standard file selection dialog box is displayed. Enter a file name and type. Saving a drawing to any \(\mathrm{DXF}^{\text {TM }}\) format affects performance.

See Save Drawings to Previous Drawing File Formats for a description of the limitations that result from saving to an earlier version.

In the Save Drawing As dialog box, Tools \(>\) Options displays the Saveas Options dialog box, which controls various DWG and DXF settings.

The file is saved with the specified file name. If the drawing is already named, the drawing is saved with the new file name. If you save the file as a drawing template, the Template Options dialog box is displayed, where you can provide a description for the template and set the units of measurement.

When FILEDIA is set to 0 (zero), SAVEAS displays command prompts.

\section*{Template Options Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Save a Drawing

Sets drawing template options.


\section*{Access Methods}
\(\$\) Menu: File > Save As
善 Command entry: saveas

\section*{Summary}

The Template Options dialog box displays automatically after you specify the files of type as *.dwt, enter the template file name, and click Save.

\section*{List of Options}

The following options are displayed.

\section*{Description}

Specifies a description for the drawing template. This description is displayed when you choose the template in the Startup dialog box or in the Create New Drawing dialog box.

\section*{Measurement}

Specifies whether the drawing template uses English or metric units.

\section*{New Layer Notification \\ Save All Layers As Unreconciled}

Saves the template file with its layers set as unreconciled, which means a layer baseline is not created. (See Reconcile New Layers for more information about unreconciled layers.) This option is checked by default.

\section*{Save All Layers As Reconciled}

Saves the template file with its layers set as reconciled, which results in creating a layer baseline. (See Reconcile New Layers for more information about reconciled layers).

\section*{Saveas Options Dialog Box}

\section*{Quick Reference}

\author{
See also: \\ - Save a Drawing
}

Sets options for DWG files and for drawing interchange file output.

\section*{Access Methods}
\(\$\) Menu: File \(>\) Save As
㟇 Command entry: saveas

\section*{List of Options}

The following options are displayed.
- DWG Options
- DXF Options

\section*{DWG Options Tab (Saveas Options Dialog Box)}

Controls the drawing index and display of custom objects and specifies the default file format for saving drawings.


\section*{Save Proxy Images of Custom Objects}

If you save to an earlier drawing file type, or the drawing contains custom objects from another application, you can select Save Proxy Images of Custom Objects to save images of the custom objects in the drawing file. If you do not choose this option, a frame is saved for each custom object in the drawing file. (PROXYGRAPHICS system variable)

NOTE If you are saving a drawing file that contains DWF references to an earlier drawing format, this switch has no effect on DWF underlays as they will not appear as proxy objects or as a frame.

\section*{Index Type}

Determines whether layer or spatial indexes are created when you save a drawing. The indexes are used to improve performance during demand loading. Using indexes may slightly increase the time required to save a drawing.

None Creates neither layer nor spatial indexes when you save a drawing.

Layer Loads only layers that are on and thawed.
Spatial Loads only the portion of the drawing within a clipped boundary.
Layer \& Spatial Optimizes performance by specifying that the program loads only layers that are on, thawed, and within a clipped boundary area.

\section*{Save All Drawings As}

Specifies the default file format that drawings are saved to. If you change the specified value, all subsequent uses of SAVE and QSAVE save the drawing to the new file format. You can also set this option on the Open and Save tab in the Options dialog box (see OPTIONS). Set the Save As option to AutoCAD 2007 Drawing to optimize performance while saving.

\section*{DXF Options Tab (Saveas Options Dialog Box)}

Sets drawing interchange file output options.


\section*{Format}

Specifies whether the program creates an ASCII or a binary DXF file.
ASCII-format DXF files can be read with a text editor and are compatible with a wider range of applications. Binary-format DXF files contain all of the information of an ASCII DXF file but in a more compact form. You can read and write to binary-format files faster than to ASCII-format files.

For more information about DXF files, see the DXF Reference in the Help system.

\section*{Select Objects}

Controls whether the DXF file consists of selected objects or the entire drawing. When you select this option, the output file includes only selected objects and the block reference portions of any included blocks. The output file does not include the block definition tables.

\section*{Save Thumbnail Preview Image}

Specifies whether an image of the drawing is displayed in the Preview area of the Select File dialog box (RASTERPREVIEW system variable).

\section*{Decimal Places of Accuracy}

Saves the file using the specified number of bits of precision. The default precision is adequate in most cases; however, you might need to increase this value for certain drawings and for certain applications. If you encounter problems loading a DXF file you create, try increasing the precision. The only disadvantage of higher precision is increased file size.

\section*{SAVEAS Command Prompts}

\section*{Quick Reference}

See also:
- Save a Drawing

\section*{List of Prompts}

The following prompts are displayed.
Current file format: current
Enter file format
[R14(LT98\&LT97)/2000(LT2000)/2004(LT2004)2007(LT2007)/2010(LT2010)/Standards/DXF/Template] <2010>:
Enter an option or press Enter
Save drawing as <current>: Enter a name or press Enter

\section*{SAVEIMG}

\section*{Quick Reference}

See also:
- Save a Rendered Image

Saves a rendered image to a file.

\section*{Access Methods}
```

Ribbon: Output tab > Render panel > Save.
$\$$ Menu: Tools $>$ Display Image $>$ Save

```

\section*{Summary}

The Save Rendered Image dialog box is displayed.
NOTE SAVEIMG is not available if the current rendering device does not support scan-line images.

\section*{SCALE}

\section*{Quick Reference}

\section*{See also:}

■ Resize or Reshape Objects

Enlarges or reduces selected objects, keeping the proportions of the object the same after scaling.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Scale
\(\%\) Menu: Modify \(>\) Scale
\(\$\) Toolbar: Modify
Shortcut menu: Select the objects to scale, and right-click in the drawing area. Click Scale.

\section*{Summary}

To scale an object, specify a base point and a scale factor. The base point acts as the center of the scaling operation and remains stationary. A scale factor
greater than 1 enlarges the object. A scale factor between 0 and 1 shrinks the object.


\section*{List of Prompts}

The following prompts are displayed.
Select objects: Use an object selection method and press Enter when you finish Specify base point: Specify a point

The base point you specify identifies the point that remains in the same location as the selected objects change size (and thus move away from the stationary base point).

NOTE When you use the SCALE command with objects, the position or location of the object is scaled relative to the base point of the scale operation, but the size of the object is not changed.

Specify scale factor or [Copy/Reference]: Specify a scale, enter \(\mathbf{c}\), or enter \(\mathbf{r}\) Scale Factor Multiplies the dimensions of the selected objects by the specified scale. A scale factor greater than 1 enlarges the objects. A scale factor between 0 and 1 shrinks the objects. You can also drag the cursor to make the object larger or smaller.

Copy Creates a copy of the selected objects for scaling.
Reference Scales the selected objects based on a reference length and a specified new length.

\section*{SCALELISTEDIT}

\section*{Quick Reference}

See also:
- Scale Views in Layout Viewports

Controls the list of scales available for layout viewports, page layouts, and plotting.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Annotation Scaling panel \(>\) Scale List
\(\%\) Menu: Format \(>\) Scale List
䱂 Command entry: 'scalelistedit for transparent use

\section*{Summary}

A list of predefined scales are displayed in the Properties palette, the status bar, and other locations within the program. This list can be easily modified to display only the scales you need.

The Edit Scale List dialog box is displayed.
If you enter -scalelistedit at the Command prompt, options are displayed.

\section*{Edit Drawing Scales Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Scale Views in Layout Viewports

Controls the list of scales available for layout viewports, page layouts, and plotting.


\section*{Access Methods}


Button

Ribbon: Annotate tab \(>\) Annotation Scaling panel \(>\) Scale List
\(\%\) Menu: Format \(>\) Scale List
曼 Command entry: scalelistedit (or 'scalelistedit for transparent use)

\section*{List of Options}

The following options are displayed.
Scale List Displays the list of currently defined scales. Also displays temporary scales that are imported when xrefs are attached. If a scale name is duplicated, but has a different value, a number is appended to the name.

Add Displays the Add Scale dialog box.
Edit Displays the Edit Scale dialog box.
NOTE You cannot edit temporary scales.
Move Up Moves the currently selected scale in the scale list up one position.
Move Down Moves the currently selected scale in the scale list down one position.

Delete Removes all unreferenced scales from the scale list and leaves the referenced scale when multiple scales are selected.

NOTE You cannot delete a scale that is referenced by an object.
Reset Deletes all custom scales and unused scales and restores the default list of scales defined in the Default Scale List dialog box on page 1375.

\section*{Add Scale Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Scale Views in Layout Viewports

Adds a new scale to the scale list.


\section*{Access Methods}


Button

8 Ribbon: Annotate tab \(>\) Annotation Scaling panel \(>\) Scale List
\(\$\) Menu: Format \(>\) Scale List
业 Command entry: scalelistedit (or 'scalelistedit for transparent use)

\section*{List of Options}

The following options are displayed.
Scale Name
Name Appearing in Scale List Specifies the scale name to add to the scale list.

\section*{Scale Properties}

Sets the ratio of paper units to drawing units.
Paper Units When combined with the value of the drawing units, determines the ratio that defines the scale for viewing or plotting.

Drawing Units When combined with the value of the paper units, determines the ratio that defines the scale for viewing or plotting.

\section*{Edit Scale Dialog Box}

\section*{Quick Reference}

See also:
- Scale Views in Layout Viewports

Changes the existing scales listed in the Scale List area.


\section*{Access Methods}


Button

1696 | Chapter 19 S Commands

8 Ribbon: Annotate tab \(>\) Annotation Scaling panel \(>\) Scale List
\(\$\) Menu: Format \(>\) Scale List
嵫 Command entry: scalelistedit (or 'scalelistedit for transparent use)

\section*{List of Options}

The following options are displayed.

\section*{Scale Name}

Lists the name of the currently selected scale in the Scale List area.
NOTE You cannot change the name of a scale that is referenced by an xref.
Name Appearing in Scale List Enter a descriptive or numeric name. For example, in an architectural drawing that uses a typical imperial scale, you can enter either \(1^{\prime \prime}=4\) ' or 1:48.

\section*{Scale Properties}

Modifies the ratio of paper units to drawing units.
NOTE You cannot change the scale properties of a scale that is referenced by an object in the drawing.

Paper Units When combined with the value of the drawing units, determines the ratio that defines the scale for viewing or plotting.

Drawing Units When combined with the value of the paper units, determines the ratio that defines the scale for viewing or plotting.

\section*{-SCALELISTEDIT}

\section*{Quick Reference}

\section*{See also:}
- Scale Views in Layout Viewports

\section*{List of Prompts}

The following prompts are displayed.
Enter option [?/Add/Delete/Reset/Exit] <Add>: Enter an option or press Enter ? Displays a list of defined scales.

Add Adds a new scale to the scale list. Enter a ratio in the format n:m, where \(\mathbf{n}\) is the number of paper units and \(\boldsymbol{m}\) is the number of drawing units

Delete Removes a specified scale. If a scale is current or supported by an object, it cannot be deleted.

Reset Deletes all custom scales as a result and restores the default list of scales.

\section*{SCALETEXT}

\section*{Quick Reference}

\section*{See also:}

■ Change Text Scale and Justification

Enlarges or reduces selected text objects without changing their locations.

\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Text panel \(>\) Scale
\(\$\) Menu: Modify \(>\) Object \(>\) Text \(>\) Scale
\(\$\) Toolbar: Text

\section*{List of Prompts}

The following prompts are displayed.
Select objects: Use an object selection method, and press Enter when you finish Enter a base point option for scaling [Existing/Left/Center/Middle/Right/TL/TC/TR/ML/MC/MR/BL/BC/BR]<Existing>: Specify a location to serve as a base point for resizing or scaling

The base point is a location relative to a text object that serves as a fixed point for the resizing or scaling operation, which is applied individually to each selected text object.

Specifying a base point for the operation does not change the insertion point relative to the text.

The base point options shown above are described in the TEXT command. The base point options for single line text are similar to those for multiline text except that the Align, Fit, and Left text options are equivalent to the bottom left (BL) multiline text attachment point.

Specify new model height or ["Paper height"/"Match object"/"Scale factor"]<0.5000>: Specify a text height or enter an option

NOTE You can only specify a model height for non- objects.

\section*{Paper Height}

Scales the text height depending on the annotative property.
NOTE You can only specify a paper height for annotative objects.

\section*{Match Object}

Scales the text objects that you originally selected to match the size of a selected text object.

NOTE This option only affects like objects (annotative or nonannotative).

\section*{Scale Factor}

Scales the selected text objects based on a reference length and a specified new length.

Reference Scales the selected text objects relative to a reference length and a new length.
The selected text is scaled by a ratio of the values that you entered for the new length and the reference length. If the new length is less than the reference length, the selected text objects are reduced in size.

\section*{SCRIPT}

\section*{Quick Reference}

\section*{See also:}
- Overview of Command Scripts

Executes a sequence of commands from a script file.

\section*{Access Methods}

\section*{3}

Button

Ribbon: Manage tab \(>\) Applications panel \(>\) Run Script
Menu: Tools \(>\) Run Script
亜 Command entry: 'script for transparent use

\section*{Summary}

A script is a text file with an .scr file extension. Each line of the script file contains a command that can be completed at the Command prompt, including alternative versions of commands that normally display dialog boxes.

The Select Script File dialog box (a standard file selection dialog box) is displayed. Enter the file name of a script to run that script.

When FILEDIA is set to 0 (zero), SCRIPT displays the following command prompt.

\section*{SECTION}

\section*{Quick Reference}

See also:
- Create Section Objects

Uses the intersection of a plane and solids, surfaces, or mesh to create a region.

\section*{Summary}

The SECTION command creates a region object that represents a 2D cross section of 3D objects, including 3D solids, surfaces, and meshes.

This method does not have the live sectioning capabilities that are available for section plane objects that are created using the SECTIONPLANE command.

\section*{List of Prompts}

The following prompts are displayed.


Select objects Selects one or more 3D objects. Selecting several objects creates separate regions for each object.
Specify the first point on the sectioning plane using one of the following methods:
- Object

■ Z Axis
■ View
- XY

■ YZ
■ ZX
- 3points

Object Aligns the sectioning plane with a circle, ellipse, circular or elliptical arc, 2D spline, or 2D polyline segment.


Z Axis Defines the sectioning plane by specifying a point on the sectioning plane and another point on the \(Z\) axis, or normal, of the plane.

- Point on the section plane. Sets the first point on the plane.
- Point on the Z-axis (normal) of the plane. Specifies a point that defines the axis that is perpendicular to the plane.

View Aligns the sectioning plane with the viewing plane of the current view.


XY Aligns the sectioning plane with the \(X Y\) plane of the current UCS.


YZ Aligns the sectioning plane with the \(Y Z\) plane of the current UCS.


ZX Aligns the sectioning plane with the \(Z X\) plane of the current UCS.


3points Uses three points to define the sectioning plane:
1



\section*{SECTIONPLANE}

\section*{Quick Reference}

See also:
- Create Section Objects

Creates a section object that acts as a cutting plane through 3D objects.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Section panel \(>\) Section Plane
\(\%\) Menu: Draw \(>\) Modeling \(>\) Section Plane

\section*{Summary}

Section plane objects create sections of 3D solids, surfaces, and meshes. Use live sectioning with section plane objects to analyze a model, and save sections as blocks for use in layouts.


\section*{List of Options}

The following options are displayed.
Face or Any Point to Locate Section Line Specifies a face to establish the plane of the section object.

Alternatively, you can select any point on the screen that is not on a face to create a section object independent of the solid or surface. The first point establishes a point around which the section object rotates.
- Through point. Sets a second point that defines the plane of the section object.

Draw section Defines the section object with multiple points to create a section line with jogs.
This option creates a section object in the Section Boundary state with live sectioning turned off.

Orthographic Aligns the section object to an orthographic orientation relative to the UCS.


A section object that contains all 3D objects is created with the specified orientation relative to the UCS (not the current view). This option creates a section object in the Section Plane state with live sectioning turned on.
- Align section to. Sets the position of the section object to align with one of the following UCS orientations that you specify:
- Front
- Back
- Top
- Bottom
- Left
- Right

\section*{Section Plane Ribbon Contextual Panel}

\section*{Quick Reference}

See also:
■ Modify a Section View

Provides ribbon access to tools that modify section plane objects.

\section*{Access Methods}

Pointing device: Select a section line

\section*{Section Panel}


Live Section (LIVESECTION command) Turns on live sectioning for a selected section object.

Add Jog (SECTIONPLANEJOG command) Adds a jogged segment to a section object.

Generate Section (SECTIONPLANETOBLOCK command) Saves selected section planes as 2D or 3D blocks.

Section Plane Settings (SECTIONPLANESETTINGS) Sets display options for the selected section plane.

\section*{SECTIONPLANEJOG}

\section*{Quick Reference}

See also:
- Add Jogs to a Section

Adds a jogged segment to a section object.

\section*{Access Methods}


Button
\(\$\) Ribbon: Mesh Modeling tab \(>\) Section panel \(>\) Section Plane Jog
Shortcut menu: Right-click a section line \(>\) Add Jog to Section

\section*{Summary}

You can insert a jog, or angle, into a section object as you create it. The jog is created on the section line. The jogged segment is created at a 90-degree angle to the section line.


NOTE The SECTIONPLANEJOG command was previously called JOGSECTION. Entering jogsection at the Command prompt runs SECTIONPLANE JOG.

\section*{List of Prompts}

The following prompts are displayed.
Select section object Specifies which section line to modify.
Point on the section line to add jog Specifies the location of the jog.

\section*{SECTIONPLANESETTINGS}

\section*{Quick Reference}

See also:
■ Set Section Object States and Properties

Sets display options for the selected section plane.

\section*{Access Methods}
\(\$\) Ribbon: Home tab \(>\) Section panel \(\ggg\) Section Plane Settings
Shortcut menu: Right-click a section line. Click Live Section Settings.

Summary
The Section Settings dialog box is displayed

\section*{Section Settings Dialog Box}

\section*{Quick Reference}

See also:
- Set Section Object States and Properties

Sets display options for section planes.


\section*{Access Methods}
\(\otimes\) Ribbon: Home tab \(>\) Section panel \(\ggg\) Section Plane Settings Shortcut menu: Right-click a section line. Click Live Section Settings.
业 Command entry: sectionplanesettings

\section*{Summary}

The Section Settings dialog box contains display settings for creating 2D and 3D sections from the Generate Section / Elevation dialog box and for live sectioning. All settings are stored with the section object.

\section*{List of Options}

The following options are displayed.

\section*{Section Plane}

If a section plane has not been selected, specifies a selection plane to be modified.

Select Section Plane Temporarily closes the Section Settings dialog box so that you can select a section object in the drawing area.

Setting type
Specifies which setting types are displayed in the properties list.
2D Section / Elevation Block Creation Settings
Determines how a 2D section from a 3D object is displayed when generated.

\section*{3D Section Block Creation Settings}

Determines how a 3D object is displayed when generated.

\section*{Live Section Settings}

Determines how sectioned objects are displayed in the drawing when live sectioning is turned on.

\section*{Activate Live Section}

Turns on live sectioning for the selected section object.

\section*{Properties}

Sets the properties to be applied to the new section block.
Intersection Boundary Sets the appearance of line segments that outline the intersection surface of the section object plane.
- Color. Sets the color of the intersection boundary.
- Layer. (2D and 3D section blocks only.) Sets the layer. Select an existing layer, or select <Component_Name>*LayerByObject* to split the block component onto a separate layer. If you want to add a customized prefix or suffix to the *LayerByObject* name, click New Layer Name Settings to open the New Layer Name dialog box.
- Linetype. Sets the linetype to be ByLayer, ByBlock, or a type that you specify.
- Linetype Scale. Sets the scale of the linetype.
- Plot Style. (2D and 3D section blocks only.) Displays the current plot style.

■ Lineweight. Sets whether the lineweight is ByLayer, ByBlock, matches the default, or has a unique value.
- Division Lines. (2D section blocks only.) Sets whether division lines are displayed.
- Show. (Available for 3D section blocks only.) Sets whether the intersection boundary is displayed.

Intersection Fill Sets the optional fill that is displayed inside the boundary area of the cut surface where the section object intersects the 3D object.
■ Show. Sets whether the intersection fill is displayed.
■ Face Hatch. Sets the hatch pattern to be used for the face of the cut surface. To select a pattern from a list, click Select Hatch Pattern Type.
- Angle. Sets the hatch angle.
- Hatch Scale. Sets the hatch scale.
- Hatch Spacing. Sets the distance between hatch lines.

■ Color. Sets the color of the intersection fill.
■ Layer. (2D and 3D section blocks only.) Sets the layer. Select an existing layer, or select <Component_Name>*LayerByObject* to split the block component onto a separate layer. If you want to add a customized prefix or suffix to the *LayerByObject* name, click New Layer Name Settings to open the New Layer Name dialog box.
- Lineweight. Sets whether the lineweight is ByLayer, ByBlock, matches the default, or has a unique value.
- Linetype Scale. Sets the scale of the linetype.
- Plot Style. (2D and 3D section blocks only.) Displays the current plot style.
- Lineweight. Sets whether the lineweight is ByLayer, ByBlock, matches the default, or has a unique value.

■ Surface Transparency. (Available for Live Section only.) Sets the percentage of transparency for the intersection fill.

Background Lines (2D and 3D section blocks only.) Controls the display of background lines.
■ Show. (2D section blocks only.) Sets whether the component is displayed.
■ Hidden Line. (2D section blocks only.) Sets whether hidden lines (lines that are behind other lines in the 3D view) are displayed.
- Color. Sets the color of the component.
- Layer. Sets the layer of the component. Select an existing layer, or select <Component_Name>*LayerByObject* to split the block component onto a separate layer. If you want to add a customized prefix or suffix to the *LayerByObject* name, click New Layer Name Settings to open the New Layer Name dialog box.

■ Linetype. Sets the linetype to be ByLayer, ByBlock, or Continuous.
- Linetype Scale. Sets the scale of the linetype.
- Plot Style. (Available for 2D and 3D section blocks only.) Displays the current plot style.
- Lineweight. Sets whether the lineweight is ByLayer, ByBlock, matches the default, or has a unique value.

Curve Tangency Lines (2D section blocks only.) Controls the inclusion of curved lines that are tangent to the section plane.
- Show. Sets whether the curve tangency lines are displayed.
- Color. Sets the color of the curve tangency lines.

■ Layer. Sets the layer of the curve tangency lines. Select an existing layer, or select <Component_Name>*LayerByObject* to split the block component onto a separate layer. If you want to add a customized prefix or suffix to the *LayerByObject* name, click New Layer Name Settings to open the New Layer Name dialog box.
- Linetype. Sets the linetype to be ByLayer, ByBlock, or Continuous.

■ Linetype Scale. Sets the scale of the linetype.
■ Lineweight. Sets whether the lineweight is ByLayer, ByBlock, matches the default, or has a unique value.

Cut-away Geometry Sets properties for the cut-away objects.
■ Show. Sets whether the component is displayed.
- Color. (3D section blocks and live section only.) Sets the color of the cutaway geometry.

■ Layer. (2D and 3D section blocks only.) Sets the layer of the cutaway geometry. Select an existing layer, or select
<Component_Name>*LayerByObject* to split the block component onto a separate layer. If you want to add a customized prefix or suffix to the
*LayerByObject* name, click New Layer Name Settings to open the New Layer Name dialog box.

■ Linetype. Sets the linetype to be ByLayer, ByBlock, or Continuous.
■ Linetype Scale. Sets the scale of the linetype.
- Lineweight. Sets whether the lineweight is ByLayer, ByBlock, matches the default, or has a unique value.
- Face Transparency. (Live Section only.) Sets the percentage of transparency of the face created where the live section object interfaces with the 3D objects.
- Edge Transparency. (Live Section only.) Sets the percentage of transparency of the edges of the foreground lines

\section*{Apply Settings to All Section Objects}

When selected, applies all the settings to all section objects in the drawing. When cleared, applies settings to the current section object only.

\section*{Reset}

Resets all settings in the dialog box to their default values.

\section*{New Layer Name Dialog Box}

\section*{Quick Reference}

See also:
- Set Section Object States and Properties

Adds a custom prefix or suffix to layer names to help organize components of a section block


\section*{Access Methods}

Pointing device: In the Section Settings dialog box, Layer list, click New Layer Name Settings.

\section*{Summary}

By default, all section block geometry is placed on Layer 0 (zero). However, you can specify suffix or prefix labels to help organize section block components, such as intersection boundaries and fill. When the section block is inserted, the section block components are placed on new layers whose name combines the name of the layer that contains the sectioned object and the prefix or suffix you specify. If the section plane includes objects on two or more layers, two or more new object layers are created.

For example, suppose you create a suffix called "_kitchen" and then select *ObjectByLayer*_kitchen in the Section Settings dialog box, under Intersection Boundary. If you create a section block that bisects objects on the Walls and Cabinetry layers, two new layers are created to contain the block geometry for intersection boundaries: Walls_kitchen and Cabinetry_kitchen.

You can then easily modify the appearance of a set of block components by changing their properties. If a property such as Color is set as an object override in the Section Settings dialog box, you can change the property in that location. If the property is set to ByLayer, you can change it in the Layer Properties Manager.

\section*{List of Options}

The following options are displayed.

Added Text Type Specifies whether or how identifying text is added to the layer name for the section block component.
■ None. No additional text is added to the layer name. The section block geometry is placed on the same layer as the original geometry.
- Prefix. If the Layer property is specified as *ObjectByLayer* in the Section Settings dialog box, the label is added in front of the layer name.
- Suffix. If the Layer property is specified as *ObjectByLayer* in the Section Settings dialog box, the label is added to the end of the layer name.

\section*{Text Added to the Existing Layer Name}

Specifies identifying text to be added to the name of the layer that contains the component geometry when the section block is inserted.

\section*{SECTIONPLANETOBLOCK}

\section*{Quick Reference}

\section*{See also:}

■ Save Sections as Blocks, Drawings, or Tools

Saves selected section planes as 2D or 3D blocks.

\section*{Access Methods}

1
Button
\(\$\) Ribbon: Mesh Modeling \(>\) Section \(>\) Generate Section
Shortcut menu: Right-click a section line. Click Generate 2D/3D Section.

\section*{Summary}

The Generate Section / Elevation dialog box is displayed.

\section*{Generate Section / Elevation Dialog Box}

Quick Reference
See also:
- Create Section Objects

Saves 2D and 3D sections as blocks,


Access Methods


Button
\(\$\) Ribbon: Mesh Modeling \(>\) Section \(>\) Generate Section
Shortcut menu: Right-click a section line. Click Generate 2D/3D Section.
㟇 Command entry: sectionplanetoblock

\section*{Summary}

Specify the display settings for the cross sections that you save and reuse.

\section*{List of Options}

The following options are displayed.

\section*{Section Plane}

Select Section Plane Closes the dialog box so that you can select a section plane to modify or save as a block.

2D/3D
2D Section/Elevation
Creates and saves or inserts a block that represents a 2D cross section.

\section*{3D Section}

Creates and saves or inserts a cutaway 3D block.

\section*{Source Geometry}

Include All Objects
Includes all 3D objects (3D solids, surfaces, and regions) in the drawing, including objects in xrefs and blocks.

Select Objects to Include
Specifies that you will manually select the 3D objects (3D solids, surfaces, meshes, and regions) from which to generate a section.

\section*{Select Objects}

Closes the dialog box temporarily while you select the objects for the section. When you finish selecting objects, press Enter to redisplay the Generate Section/Elevation dialog box.

Objects Selected
Indicates the number of objects selected.

\section*{Destination}

Insert as New Block Inserts the generated section as a block in the current drawing.

Replace Existing Block Replaces an existing block in the drawing with the newly generated section.

\section*{Select Block}

Closes the dialog box temporarily while you select the block to be replaced in the drawing. When you finish selecting the block, press Enter to redisplay the Generate Section/Elevation dialog box.

Export to a File Saves the section to an external file.

\section*{Filename and Path}

Specifies a file name and path where the section will be saved.

\section*{Buttons}

Section Settings
Opens the Section Settings Dialog Box.

\section*{Create}

Creates the section.

\section*{SECURITYOPTIONS}

\section*{Quick Reference}

\section*{See also:}
- Protect and Sign Drawings

Specifies password or digital signature options for a drawing file.

\section*{Summary}

The Security Options dialog box is displayed. You can add security settings that are applied when you save the drawing.

\section*{Security Options Dialog Box}

\section*{Quick Reference}

See also:
- Protect and Sign Drawings

Specifies security settings to be used when your drawing is saved.

\section*{Access Methods}

巠 Command entry: securityoptions

\section*{List of Options}

The following options are displayed.

\section*{Password Tab (Security Options Dialog Box)}

Adds a password to a drawing when the drawing is saved.
Password or Phrase to Open This Drawing
Adds, changes, or removes a password the next time the drawing is saved.
If you add or change the password, the Confirm Password dialog box on page 1720 is displayed. If you lose the password, it is not recoverable. Before you add a password, you should create a backup copy that is not protected with a password.

\section*{Encrypt Drawing Properties}

Encrypts drawing properties, so a password is required to view them. Drawing properties are details that help you identify the drawing, including title, author, subject, keywords that identify the model, or other important information.

Current Encryption Type Specifies the default encryption level supplied by your operating system, unless you choose an advanced level by clicking the Advanced Options button.

\section*{Advanced Options}

Opens the Advanced Options dialog box on page 1721, where you can choose an encryption provider and key length.

\section*{Digital Signature Tab (Security Options Dialog Box)}

Adds a digital signature to a drawing when the drawing is saved.

Attach Digital Signatures After Saving Drawing Attaches a digital signature to a drawing when the drawing is saved.

Select a Digital ID (Certificate) Displays a list of digital IDs that you can use to sign files. Includes information about the organization or individual to whom the digital ID was issued, the digital ID vendor who issued the digital ID, and when the digital ID expires.

Signature Information Provides a list of time services you can use to add a time stamp to your digital signature, the status of the time server connection, and a Comments area (to include information relevant to the digital signature or to the files you are signing).

Get Time Stamp From Provides a list of time servers you can use to time stamp your digital signature.
NOTE The timesrvr.txt file contains the time servers that you can choose from.
Time Service Status Displays the connection status (Successfully Contacted Time Server or Could Not Contact Time Server) of the time service.

Comment Provides a place for comments about the digital signature or the files you are signing.

\section*{Confirm Password Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Protect Drawings with Encryption

Confirms the password entered in the Security Options dialog box that is added or changed the next time the drawing is saved.

\section*{Access Methods}

㟇 Command entry: securityoptions

\section*{Summary}

If you lose the password, it is not recoverable. Before you add a password, you should create a backup that is not protected with a password.

\section*{Advanced Options Dialog Box}

\section*{Quick Reference}

See also:
- Protect Drawings with Encryption

Selects an encryption provider and key length for drawings that you protect with a password.

\section*{Access Methods}

並 Command entry: securityoptions

\section*{List of Options}

The following options are displayed.
Choose an Encryption Provider
Sets a level of encryption for a drawing. You can choose from encryption providers supplied by your operating system.

\section*{Choose a Key Length}

Sets a key length. The higher the key length, the higher the level of protection for your drawing.

\section*{SEEK}

\section*{Quick Reference}

See also:
■ Use Autodesk Seek to Add and Share Drawings

Opens a web browser and displays the Autodesk Seek home page.

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Content panel \(>\) Seek Design Content.
Shortcut menu: Right-click on the Tool palette, or a block, and click Seek Design Content.

\section*{Summary}

Product design information that is available on Autodesk Seek depends on what content providers, both corporate partners and individual contributors, publish to Autodesk Seek. Content could include 3D models and 2D drawings, specifications, brochures, or descriptions of products or components.

This service is the online source for product information directly accessible from your Autodesk software. From the Autodesk Seek search box, you can access 3D models, 2D drawings, and product specifications from product manufacturers, suppliers, and aggregators.

You can access SEEK also from the DesignCenter dialog box.
NOTE Autodesk Seek is currently available in US English only.

\section*{SELECT}

\section*{Quick Reference}

See also:
■ Select Objects Individually

Places selected objects in the Previous selection set.

\section*{Summary}

A small box, called the object selection target or pickbox, replaces the crosshairs on the graphics cursor.


At the Select Objects prompt in a subsequent command, use the Previous option to retrieve the previous selection set.

You can also press and hold the Ctrl key to select original individual forms that are part of composite solids or vertices, edges, and faces on 3D solids. You can select one of these subobjects, or create a selection set of more than one subobject. Your selection set can include more than one type of subobject.

To view all options, enter ? at the Command prompt.

\section*{List of Prompts}

The following prompts are displayed.
Select objects: Use an object selection method
Expects a point or

Select objects: Specify a point or enter an option
Window Selects all objects completely inside a rectangle defined by two points. Specifying the corners from left to right creates a window selection. (Specifying the corners from right to left creates a crossing selection.)


Last Selects the most recently created visible object. The object must be in the current space, that is, model space or paper space, and its layer must not be set to frozen or off.

Crossing Selects objects within and crossing an area defined by two points. A crossing selection is displayed as dashed or otherwise highlighted to differentiate it from window selection.


Box Selects all objects inside or crossing a rectangle specified by two points. If the rectangle's points are specified from right to left, Box is equivalent to Crossing. Otherwise, Box is equivalent to Window.
All Selects all objects in either model space or the current layout, except those objects on frozen or on locked layers.

select all
Fence Selects all objects crossing a selection fence. The Fence method is similar to CPolygon except that that the fence is not closed, and a fence can cross itself. Fence is not affected by the PICKADD system variable.


WPolygon Selects objects completely inside a polygon defined by points. The polygon can be any shape but cannot cross or touch itself. The last segment of the polygon is drawn so that it is closed at all times. WPolygon is not affected by the PICKADD system variable.


WPolygon selection
CPolygon Selects objects within and crossing a polygon defined by specifying points. The polygon can be any shape but cannot cross or touch itself. The last segment of the polygon is drawn so that it is closed at all times. CPolygon is not affected by the PICKADD system variable.


Group Selects all objects within a specified group.
Add Switches to the Add method: selected objects can be added to the selection set by using any of the object selection methods. Auto and Add are the default methods.


Remove Switches to the Remove method: objects can be removed from the current selection set using any object selection method. An alternative to Remove mode is to hold down Shift while selecting single objects or use the Automatic option.

Multiple Selects objects individually without highlighting them during object selection. This speeds up object selection for highly complex objects.

Previous Selects the most recent selection set. The Previous selection set is cleared by operations that delete objects from the drawing.

NOTE The Previous selection set is ignored if you switch spaces.
Undo Cancels the selection of the object most recently added to the selection set.

Auto Switches to automatic selection: pointing to an object selects the object. Pointing to a blank area inside or outside an object forms the first corner of a box defined by the Box method. Auto and Add are the default methods.

Single Switches to the Single method: selects the first object or set of objects designated rather than continuing to prompt for further selections.

Subobject Allows you to select original individual forms that are part of composite solids or vertices, edges, and faces on 3D solids. You can select one of these subobjects, or create a selection set of more than one subobject. Your selection set can include more than one type of subobject.
Pressing and holding the Ctrl key is the same as selecting the SELECT command's Subobject option.


Object Ends the ability to select subobjects. Allows you to use object selection methods.

\section*{SELECTSIMILAR}

\section*{Quick Reference}

\section*{See also:}
- Select Objects by Properties

Adds similar objects to the selection set based on selected objects.

\section*{Access Methods}

Shortcut menu: Select an object, right-click in the drawing area, and click Select Similar.
挫 Command entry: selectsimilar

\section*{Summary}

Selects similar objects of the same type based on specified matching properties, such as the color or block name.

\section*{List of Prompts}

The following prompt is displayed.
Select objects or [SEttings]: Use an object selection method and press Enter
The Settings option displays the Select Similar Settings dialog box.

\section*{Select Similar Settings Dialog Box}

\section*{Quick Reference}

See also:
- Select Objects by Properties

Controls which properties must match for an object of the same type to be selected.

\section*{Access Methods}

座 Command entry: selectsimilar

\section*{List of Options}

The following options are displayed.
Color Considers objects with matching colors to be similar.
Layer Considers objects on matching layers to be similar.
Linetype Considers objects with matching linetypes to be similar.
Linetype scale Considers objects with matching linetype scales to be similar.
Lineweight Considers objects with matching lineweights to be similar.

Plot style Considers objects with matching plot styles to be similar.
Object style Considers objects with matching styles (such as text styles, dimension styles, and table styles) to be similar.

Name Considers referenced objects (such as blocks, xrefs, and images) with matching names to be similar.

\section*{SETBYLAYER}

\section*{Quick Reference}

\section*{See also:}

■ Display and Change the Properties of Objects
Changes the property overrides of selected objects to ByLayer.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Set to ByLayer
\(\$\) Menu: Modify \(>\) Change to ByLayer

\section*{List of Prompts}

The following prompts are displayed.
Current active settings: Color Linetype Lineweight Transparency Material Plot Style
Select objects or [Settings]: Use an object selection method and press Enter when you finish

If Settings is selected, the SetByLayer Settings dialog box is displayed, in which you can specify which object properties are set to ByLayer.

If objects are selected, the Command prompt displays:
Change ByBlock to ByLayer? [Yes/No] <Yes>:
Include blocks? [Yes/No] <Yes>:

You can specify which properties are changed to ByLayer, including color, linetype, lineweight, and materials.

\section*{SetByLayer Settings Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Display and Change the Properties of Objects

Changes property overrides for color, linetype, lineweight, material, plot style, and transparency to ByLayer for selected objects and inserted blocks on unlocked layers.


\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Set to ByLayer
\(\$\) Menu: Modify \(>\) Change to ByLayer
㟇 Command entry: setbylayer

\section*{List of Options}

The following options are displayed.
Color

Changes the color of selected objects to ByLayer. (SETBYLAYERMODE=1)
Linetype
Changes the linetype of selected objects to ByLayer. (SETBYLAYERMODE=2)
Lineweight
Changes the lineweight of selected objects to ByLayer. (SETBYLAYERMODE=4)

\section*{Material}

Changes the material of selected objects to ByLayer. (SETBYLAYERMODE=8)

\section*{Plot Style}

Changes the plot style of selected objects to ByLayer. This option is available in named plot style drawings. (SETBYLAYERMODE=16)

Transparency
Changes the transparency value of selected objects to ByLayer.
(SETBYLAYERMODE=128)

\section*{SETIDROPHANDLER}

\section*{Quick Reference}

See also:
- Use i-drop

Specifies the default type of i-drop content for the current Autodesk application.

\section*{Summary}

The SETIDROPHANDLER command displays the Set Default i-drop Content Type dialog box, where you set the default type of i-drop content for the Autodesk application you are currently working in. This setting determines the type of content that is inserted into your drawing when you drag a representative i-drop content image from the Web into your drawing.

\title{
Set Default i-drop Content Type Dialog Box
}

\section*{Quick Reference}

See also:
- Use i-drop

\section*{Access Methods}

䀴 Command entry: setidrophandler

\section*{Summary}

Specifies the default type of i-drop content accepted by the current Autodesk application. The list contains the available content types for installed Autodesk products that provide this i-drop functionality.

The default content type determines the type of content that is inserted in your drawing. For example, if you select Block, when you drag a representative i-drop content image from a web page, the inserted content is an AutoCAD block.

\section*{i-drop Options Dialog Box}

\section*{Quick Reference}

See also:
- Use i-drop

\section*{Access Methods}

Shortcut menu: Right-click a representative i-drop content image and drag it from a web page into your current drawing, and then click Block.

\section*{Summary}

Displays the source URL, the log file name, and the file name for the i-drop content that is currently being inserted in the drawing, and allows you to specify the associated data files to be transferred and the location for the files.

\section*{List of Options}

The following options are displayed.

\section*{SETVAR}

\section*{Quick Reference}

\section*{See also:}
- Enter Commands on the Command Line

Lists or changes the values of system variables.

\section*{Access Methods}

Button

8 Menu: Tools \(>\) Inquiry \(>\) Set Variable
並 Command entry: 'setvar for transparent use

\section*{List of Prompts}

The following prompts are displayed.
Enter variable name or [?] <current>: Enter a variable name, enter?, or press Enter Variable Name Specifies the name of the system variable you want to set.
You can also change the value of system variables at the Command prompt by entering the name of the variable and its new value.
?-List Variables Lists all system variables in the drawing and their current settings.

\section*{SHADEMODE}

\section*{Quick Reference}

See also:

See also:
■ Use a Visual Style to Display Your Model

Starts the VSCURRENT command.

\section*{Summary}

Prompts for the VSCURRENT command are displayed.

\section*{-SHADEMODE}

\section*{Quick Reference}

\section*{See also:}

■ Use a Visual Style to Display Your Model

See also:

\section*{List of Prompts}

The following prompts are displayed.
Enter option [2D wireframe/3D
wireframe/Hidden/Flat/Gouraud/fLat+edges/gOuraud+edges] <current>: 2D Wireframe Displays the objects using lines and curves to represent the boundaries. Raster and OLE objects, linetypes, and lineweights are visible.

3D Wireframe Displays the objects using lines and curves to represent the boundaries. Material colors that you have applied to the objects are shown.

Hidden Displays the objects using 3D wireframe representation and hides lines representing back faces.

Flat Shaded Shades the objects between the polygon faces. The objects appear flatter and less smooth than Gouraud-shaded objects. Materials that you have applied to the objects show when the objects are flat shaded.

Gouraud Shaded Shades the objects and smooths the edges between polygon faces. This gives the objects a smooth, realistic appearance. Materials that you have applied to the objects show when the objects are Gouraud shaded.

Flat Shaded, Edges On Combines the Flat Shaded and Wireframe options. The objects are flat shaded with the wireframe showing through.

Gouraud Shaded, Edges On Combines the Gouraud Shaded and Wireframe options. The objects are Gouraud shaded with the wireframe showing through.

\section*{SHAPE}

\section*{Quick Reference}

See also:
■ Overview of Shape Files
Inserts a shape from a shape file that has been loaded using LOAD.

\section*{List of Prompts}

The following prompts are displayed.
Enter shape name or [?]: Enter a name, or enter?
Shape Name Loads the shape.
If a shape belongs to an external reference (xref) attached to the current drawing, the shape file is identified as externally dependent. Externally dependent shapes cannot be used in the current drawing unless they are reloaded.
?-List Shapes Lists shapes and the files in which the shapes are defined. If you enter an asterisk (*), the program lists shape names.

\section*{SHAREWITHSEEK}

\section*{Quick Reference}

See also:
- Use Autodesk Seek to Add and Share Drawings

Uploads blocks or drawings to the Autodesk Seek website.

\section*{Access Methods}

Button
\(\$\) Ribbon: Output tab \(>\) Autodesk Seek panel \(>\) Share with Autodesk Seek
\(\$\) Menu: File \(>\) Share with Autodesk Seek
Shortcut menu: Right-click on a block and click Share with Autodesk Seek

\section*{Summary}

Publish single blocks or entire drawings to Autodesk Seek.
Once you select a block or drawing to share with Seek it starts the upload process to the Autodesk Seek site. You must finish the upload process on the browser page. The upload process is not completed until you submit the block or file to the Autodesk Seek website. You must be a registered user on the Seek website to upload content. Currently, you can only upload a single drawing file at a time.

NOTE Autodesk Seek is currently available in US English only.

\section*{Share with Autodesk Seek Dialog Box}

\section*{Quick Reference}

See also:
■ Use Autodesk Seek to Add and Share Drawings

Uploads the chosen block or current drawing to the Autodesk Seek website. Drawings can include 3D models and 2D drawings.


\section*{Access Methods}

Button

Ribbon: Output tab \(>\) Autodesk Seek panel \(>\) Share with Autodesk Seek
\(\$\) Menu: File \(>\) Share with Autodesk Seek
Shortcut menu: Right-click on a block and click Share with Autodesk Seek並 Command entry: sharewithseek

\section*{List of Options}

The following options are displayed.

\section*{Share the Selected Block}

Select a block to upload to the Autodesk Seek website. A DWG file is created using the default Save as file format specified in the Options dialog.

List
Lists the blocks in the current drawing available for upload to the Autodesk Seek website.

\section*{Share the Current Drawing}

Selects the current drawing (not including external references) for upload to the Autodesk Seek website. If you choose to use the last saved version of the file, it uploads the file in its current file format.

\section*{Preview}

Displays a preview image of the selected block or the current drawing (if available).

\section*{SHEETSET}

\section*{Quick Reference}

\section*{See also:}
- Quick Start for Sheet Sets

Opens the Sheet Set Manager.

\section*{Access Methods}


\section*{Button}
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager

\section*{Summary}

Displays the Sheet Set Manager.
The Sheet Set Manager organizes, displays, and manages sheet sets, a named collection of drawing sheets. Each sheet in a sheet set is a layout in a drawing (DWG) file.

\section*{Sheet Set Manager}

\section*{Quick Reference}

See also:
■ Create a Sheet Set

Displays and organizes named collections of drawing sheets

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager

\section*{Summary}

The Sheet Set Manager is not fully functional if
■ The command is active;
- No drawing is open;
- The sheet set is locked by another user; or

■ A lock icon displayed in front of the sheet set name in the Sheet Set Manager indicates that the sheet set is locked. Hold your cursor over the lock icon to view a tooltip that shows who has the sheet set locked.

\section*{List of Tabs}
- Sheet List

■ Sheet Views
■ Model Views

\section*{Sheet List Control}

The Sheet List control displays the name of the current sheet set, or, if no sheet sets are open, the Open option. The Sheet List control provides the following options for all tabs:

Names of Open Sheet Sets Lists all open sheet sets, if any. A check is displayed next to the current sheet set.

Recent Displays a list of recently opened sheet sets.
New Sheet Set Starts the Create Sheet Set wizard.
Open Displays the Open Sheet Set standard file selection dialog box.

\section*{Sheet List Tab}

\section*{Quick Reference}

See also:
- Create and Modify Sheets

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager
菐 Command entry: sheetset

\section*{Summary}

The Sheet List tab displays an ordered list of sheets. You can organize these sheets under headings, called subsets, that you create.

\section*{List of Options}

This tab has the following buttons:

Publish to DWF Publishes selected sheets or a sheet set to a specified DWF file.

Publish to DWFx Publishes selected sheets or a sheet set to a specified DWFx file.

Publish to PDF Publishes selected sheets or a sheet set to a specified DWFx file.

Publish to Plotter Automatically publishes the selected sheets to the default plotter or printer.
Publish Using Page Setup Override Automatically publishes the selected sheets using the selected page setup override rather than the page setup specified in each drawing. The page setup overrides are stored in a drawing template (DWT) file designated to be the source of the page setup override information.

Publish Displays a list of Publish options. The description for each option is listed in alphabetical order under Shortcut Menu Options below.

Sheet Selections Displays a menu where you can save, manage, and restore sheet selections by name. This makes it easy to specify a group of sheets for a publish, transmit, or archive operation. The description for each option is listed in alphabetical order under Shortcut Menu Options below.

Details (at bottom of window) Displays basic information about the currently selected sheet or subset.

Preview (bottom of window) Displays a thumbnail preview of the currently selected sheet.

\section*{Shortcut Menu Options}

The following options are displayed on shortcut menus for the Sheet List tab. For easier access, they are listed in alphabetical order. The options displayed in each shortcut menu depend on context: in the tree view, if you right-click the name of the sheet set, a different shortcut menu will display than if you right-click the name of a subset or the name of a sheet.
Archive Displays the Archive a Sheet Set dialog box.
Close Sheet Set Closes the current sheet set, removing the sheet set information displayed in the Sheet Set Manager window.
eTransmit Displays the Create Transmittal dialog box.
Edit Subset and Sheet Publish Settings Displays thePublish Sheets dialog box.

Import Layout as Sheet Displays the Import Layouts as Sheets dialog box.
Include Plot Stamp Turns the plot stamp on or off for the selected sheet set, subset, or sheet.

Include for Publish Includes the sheet for publishing.
Insert Sheet List Table Displays the Insert Sheet List Table dialog box.
Manage Page Setups Displays the Page Setup Manager dialog box.
New Sheet Displays the New Sheet dialog box.
New Subset Displays the Subset Properties dialog box, where you can create a new sheet subset for organizing the sheets in a sheet set.

Open Opens the drawing file of the selected sheet and displays the layout.
Open Read-Only Opens the drawing file of the selected sheet in read-only mode and displays the layout. You cannot save changes to the file using the original file name.

Plot Stamp Settings Displays the Plot Stamp dialog box, in which you can specify the information, such as drawing name and plot scale, that you want applied to the plot stamp.

Properties (Sheet Set) When the sheet set node is selected, displays the Sheet Set Properties dialog box.

Properties (Subset) When a subset node is selected, displays the Subset Properties dialog box. See New Subset.

Properties (Sheet) When a sheet node is selected, displays the Sheet Properties dialog box.

Publish Displays the Publish dialog box.
Publish in Reverse Order When checked, sends sheets to the plotter in reverse of default order.

Publish Sheets in Subset Publishes the sheets in the subset.
When Do Not Publish Sheets is checked, all sheets in the subset is not published.
Suspends all sheets in the subset from being published.
Publish Using Page Setup Override Automatically publishes the selected sheets using the selected page setup override rather than the page setup specified in each drawing. The page setup overrides are stored in a drawing
template (DWT) file designated to be the source of the page setup override information.

Plot Stamp Settings Displays the Plot Stamp dialog box.
Publish to DWF Publishes the selected sheets or the sheet set to a specified DWF file.

Publish to Plotter Automatically publishes the selected sheets to the default plotter or printer.

Remove Subset Removes the currently selected subset from the organization of the sheet set.

Rename \& Renumber Displays the Rename \& Renumber Sheet dialog box.
Resave All Sheets Updates the sheet set information saved with each drawing in the current sheet set. Each drawing file in the current sheet set is opened and resaved. Any changes that were made are updated in the sheet set data (DST) file.
Drawing files saved in a previous DWG file format are resaved without changing format.
NOTE In a network environment, make sure that all drawing files in the current sheet set that are opened by other users are closed before performing this operation.

Remove Sheet Removes the currently selected sheet from the sheet set.
Save Sheet Selection Displays the New Sheet Selection dialog box.
Sheet Set Publish Options Displays the Sheet Set Publish Options dialog box. This is the same as the Publish Options dialog, but is specific to the current sheet set.

Transmittal Setups Displays the Transmittal Setups dialog box.

\section*{Sheet Views Tab}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Sheets

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager
㟇 Command entry: sheetset

\section*{Summary}

The Sheet Views tab displays an ordered list of views used in the current sheet set. You can organize these views under headings, called categories, that you create.

NOTE Only sheet views created in AutoCAD 2005 or later are listed on the Sheet Views tab.

\section*{List of Options}

This tab has the following buttons:
New View Category Button Displays the View Category dialog box.
View by Category Displays the views in the current sheet set organized by their categories.

View by Sheet Displays a list of views in the current sheet set organized by the sheet on which they are located.

\section*{Shortcut Menu Options}

The following options are displayed on shortcut menus for the Sheet Views tab.

Display Displays the selected view in the sheet in which it was created. Opens the drawing file containing the sheet, if the drawing file is not already open.

New View Category Displays the View Category dialog box, in which you can create a new view category to organize the views in a sheet set.

Place Callout Block Specifies and places a callout block onto a sheet.
Place View Label Specifies and places a view label block onto a sheet.
Properties (Sheet Set) Displays the Sheet Set Properties dialog box.

Properties (View Category) Displays the View Category dialog box.
Rename Renames the selected sheet view category.
Rename \& Renumber Displays the Rename and Renumber View dialog box where you can renumber and retitle the selected sheet view.

Set Category Reassigns the selected sheet view to a category that you specify.

\section*{Model Views Tab}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Sheets

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager
两 Command entry: sheetset

\section*{Summary}

The Model Views tab displays a list of folders, drawing files, and model space views available for the current sheet set. You can add and remove folder locations to control which drawing files are associated with the current sheet set.

NOTE After creating a named model space view, you must save the drawing to add the view to the Model Views tab.

\section*{List of Options}

Refresh Updates the list of drawing files listed in the tree view. The Refresh button updates all information stored in the sheet set data (DST) file, checks all folders in every resource location for new or removed drawing files, and
checks all drawing files that are expanded for new or removed model space views.

Add New Location Displays the Browse for Folder standard file selection dialog box, in which you can add a folder location to the sheet set.

\section*{Shortcut Menu Options}

Add New Location Displays the Browse for Folder standard file selection dialog box where you can add a folder location to the sheet set.
eTransmit Displays the Create Transmittal dialog box.
Open File Opens the selected drawing (DWG) file.
Place on Sheet Initiates a series of automated steps that creates and places a view of the selected model onto the current layout of the current drawing. These steps are
- You are prompted to place the view on the layout. Right-click to change the scale of the view before placement
- The selected model is attached as an xref in the current drawing
- A layout viewport is created on the current layout
- A sheet view is created that corresponds with the newly created layout viewport

Remove Location Removes the currently selected folder location from the sheet set.

See Model Space Views Expands a list of named model space views.

\section*{Subset Properties Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Organize a Sheet Set

Creates a new sheet subset in a sheet set.

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager㟇 Command entry: sheetset


\section*{Summary}

You can organize sheets by dragging them to different subsets.

\section*{List of Options}

The following options are displayed.
Subset Name

Specifies the name of this subset and the name of the sheet storage folder for this subset if Create Folders Relative to Parent Subset Storage Location is selected.

\section*{Publish Sheets in Subset}

Conforms to the current settings for sheet set publishing.

\section*{New Sheet Location}

Specifies the folder location for all new drawing (DWG) files containing sheets that are associated with this subset.

\section*{Sheet Creation Template}

Specifies the drawing template (DWT) file and layout name that is used to create new drawing files for this subset.

The syntax for this property is
layoutname [folderpath\]filename.dwt

\section*{Prompt for Template}

When Yes is selected, prompts you to specify a drawing template file rather than use the default drawing template file for creating new sheets.

\section*{Publish Sheets Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Publish, Transmit, and Archive Sheet Sets

Specifies the sheets to be included for publishing.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager
业 Command entry: sheetset

\section*{Summary}

When a sheet is selected, it is included for publishing.

\section*{Select Layout as Sheet Template Dialog Box}

\section*{Quick Reference}

See also:
■ Create and Modify Sheets

Specifies the folder path, drawing template (DWT) file, and layout name to be used for creating new sheets.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager

List of Options
The following options are displayed.
Drawing Template File Name
Specifies the drawing template file path and name to be used for creating new sheets.

\section*{Select a Layout to Create New Sheets}

Lists and specifies the name of the layout in the drawing template file to be used for new sheets.

\section*{New Sheet Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Sheets

Creates a new sheet in the current sheet set by creating a new drawing (DWG) file that includes a layout tab with the same name as the drawing.


\section*{Access Methods}


Button
```

 Ribbon: View tab > Palettes panel > Sheet Set Manager
 Toolbar: Standard
 Menu:Tools > Palettes > Sheet Set Manager
 Command entry: sheetset
    ```

\section*{List of Options}

The following options are displayed.

\section*{Number}

Specifies the sheet number. It is recommended that you do not fill in the sheet number when you first create a sheet. By default the drawing name and layout name of the new sheet will be the sheet number together with sheet title. You can remove the sheet number from the file name when you create the new sheet, but the sheet number will still be in the layout name.

\section*{Sheet Title}

Specifies the sheet title, which corresponds to an identically named layout tab in the new drawing.

\section*{File Name}

Specifies the name of the new drawing file containing the sheet. By default, the name of the drawing file is the sheet number combined with the sheet title. You can also change the drawing file name in this box.

\section*{Folder Path}

Displays the default folder for the new drawing file.
The default folder for a subset is specified in the Subset Properties dialog box; and the default folder for a sheet set is specified in the Sheet Set Properties dialog box.

\section*{Sheet Template}

Displays the default sheet template file used for creating the new drawing file.
The default template file used for creating new drawings in a subset is specified in the Subset Properties dialog box; the default template file for creating new drawings in a sheet set is specified in the Sheet Set Properties dialog box.

Open in Drawing Editor
When checked, allows you to open the drawing after creation and edit directly within the file.

\section*{Rename \& Renumber Sheet Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Sheets

Specifies a sheet number, sheet title, and other properties for a sheet in a sheet set.


\section*{Access Methods}


Button

\title{
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager \\ Toolbar: Standard \\ Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager \\ Command entry: sheetset
}

\section*{List of Options}

The following options are displayed.

\section*{Number}

Specifies the sheet number of the selected sheet.
Sheet Title
Specifies the sheet title of the selected sheet.
Layout Name
Specifies the name of the layout associated with the selected sheet.
File Name

Specifies the name of the drawing file associated with the selected sheet.
Folder Path
Displays the folder path for the drawing file.

\section*{Rename Layout to match Sheet Title}

When checked, changes the layout name to match the sheet title.

\section*{Prefix with Sheet Number}

When checked, changes the layout name to a new name formed by adding the sheet number to the beginning of the sheet title.

\section*{Rename Drawing File to match Sheet Title}

When checked, changes the drawing file name to match the sheet title.

\section*{Prefix with Sheet Number}

When checked, changes the drawing file name to a new name formed by adding the sheet number to the beginning of the sheet title.

Next
Loads the next sheet into this dialog box. This provides a convenient method for renumbering or retitling a series of sheets.

Previous
Loads the previous sheet into this dialog box.

\section*{Rename \& Renumber View Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Sheets

Specifies a sheet number and view title for a view in a sheet set.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager嵫 Command entry: sheetset

\section*{List of Options}

The following options are displayed.
Number
Specifies the sheet number of the selected view.
View Title
Specifies the view title of the selected view.

\section*{Previous}

Loads the previous view into this dialog box.
Next
Loads the next view into this dialog box.

\section*{Import Layouts as Sheets Dialog Box}

\section*{Quick Reference}

See also:
■ Create and Modify Sheets

Provides a method for quickly importing layouts into a sheet set, and specifying which layout tab is to be used as the sheet.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager
聯 Command entry: sheetset

\section*{Summary}

If a layout already belongs to a sheet set, you must create a copy of the drawing containing the layout to import it.

\section*{List of Options}

The following options are displayed.
Browse for Drawings
Displays the Select Drawing standard file selection dialog box.

\section*{List of Layouts in Selected Drawing}

Lists all available layouts in the specified drawing file. Click a check box to select a layout.

\section*{Prefix Sheet Titles with File Name}

When checked, automatically adds the drawing file name to the beginning of the sheet title.

Import Checked Imports a layout from the list only if it displays a check mark.

\section*{Insert Sheet List Table Dialog Box}

\section*{Quick Reference}

See also:
■ Create and Modify Sheets

Creates a table listing the sheets in the sheet set.

\section*{Access Methods}


Button
```

$\$$ Ribbon: View tab $>$ Palettes panel $>$ Sheet Set Manager
8 Toolbar: Standard
$\$$ Menu: Tools $>$ Palettes $>$ Sheet Set Manager
䱂 Command entry: sheetset

```

\section*{Summary}

This table can be added to any sheet in the current sheet set, but it is typically added to the title sheet.


NOTE Insert Sheet List Table on the sheet set shortcut menu is not available if the Model tab is active, or if the current layout is not a sheet in the current sheet set.

\section*{List of Tabs}

This dialog box contains the following tabs.
- Table Data Tab
- Subsets and Sheets Tab

\section*{List of Options}

The following options are displayed.
Table Style Name
Specifies the table style to be used for the table.

\section*{Table Style Preview}

Displays a preview of the currently selected table style.
Include Subsets as Headers in Output
When checked, displays the names of the subsets, dividing the sheet list table into sections.

Table Style Settings Displays options for the table style.

\section*{Table Data Tab}

\section*{Quick Reference}

See also:
- Create and Modify Sheets

Displays options for the table data.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools > Palettes > Sheet Set Manager
並 Command entry: sheetset

\section*{List of Options}

The following options are displayed.
Title Text
Specifies the name of the title of the sheet list table.

\section*{Column Settings Area}

Displays a list of the column definitions in the sheet list table. Each line in the list represents a column. The top-to-bottom order of the list represents how the columns will be displayed in the table (left to right).

Data Type Column Selecting a column definition and then clicking on an entry in the Data Type column displays a list. From this list, you can change the type of information that is going to be displayed in the columns of the sheet list table.

Heading Text Column Allows you to change the title text for each column in the sheet list table.

Add
Adds a sheet number column to the sheet list table.

\section*{Remove}

Removes the selected column from the sheet list table. If you accidentally remove a column, you can add a Number column and then change its data type from the data type list.

Move Up
Moves the selected column up in the column list and to the left in the sheet list table.

\section*{Move Down}

Moves the selected column down in the column list and to the right in the sheet list table.

\section*{Subsets and Sheets Tab}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Sheets

Displays options to control the sheet selection represented by the current sheet list table


\section*{Access Methods}


Button
```

Ribbon: View tab > Palettes panel > Sheet Set Manager
Toolbar: Standard
Menu: Tools > Palettes > Sheet Set Manager
柬 Command entry: sheetset

```

\section*{List of Options}

The following options are displayed.
Populate From Sheet Selection Drop-Down Menu Sets the check state of the items in the view based on a previous saved sheet selection.

Sheet Set Tree View Displays the sheet set subsets that are to be updated automatically.

\section*{Edit Sheet List Table Settings Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Sheets

Allows you to edit a sheet list table that exists in the current drawing.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{A Sheet List Table} & \(x^{2}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Table Style Settings \\
Table Style name:
\end{tabular}}} & \multicolumn{2}{|l|}{Table Data Subsets and Sheets} & \\
\hline & & \multicolumn{2}{|l|}{Title Text:} & \\
\hline \multicolumn{2}{|l|}{Standard \(\square^{\text {a }}\)} & \multicolumn{2}{|l|}{Sheet List Table} & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Sheet List Table}} & \multicolumn{2}{|l|}{Column Settings:} & \\
\hline & & Data type & Heading text & Add \\
\hline Sheet Number & Sheet Title & & & \\
\hline Data & Data & Sheet Number & Sheet Number & Remove \\
\hline Data & Data & Sheet Title & Sheet Title & \\
\hline Data & Data & & & Move Up \\
\hline Data & Data & & & Move Down \\
\hline Data & Data & & & \\
\hline \multicolumn{2}{|l|}{\(\square\) Show Subheader} & \(1 \square\) & \(\xrightarrow{\prime \prime}\) & \\
\hline & & & OK Cancel & Help \\
\hline
\end{tabular}

\section*{Access Methods}

Shortcut menu: Select any cell in Sheet List Table > Right-click to open the shortcut menu > Edit Sheet List Table Settings

\section*{Summary}

The Edit Sheet List Table Settings dialog box gives you access to all the settings found on the Insert Sheet List Table dialog box.

\section*{List of Options}

The following options are displayed.
Table Style Settings
Displays options for the table style.
Table Style Name

Specifies the table style to be used for the table. The Browse button displays the Table Style dialog box.

Table Style Sample Area
Displays a sample of the currently selected table style.

\section*{Show Subheader}

When checked, displays the names of the subsets, dividing the sheet list table into sections.

\section*{Table Data Settings}

Displays options for the table data.
Title Text
Specifies the name of the title of the sheet list table.

\section*{Column Settings Area}

Displays a list of the column definitions in the sheet list table. Each line in the list represents a column. The top-to-bottom order of the list represents how the columns will be displayed in the table (left to right).

Data Type Column Selecting a column definition and then clicking on an entry in the Data Type column displays a list. From the list, you can change the type of information that is going to be displayed in the columns of the sheet list table.

Heading Text Column Allows you to change the title text for each column in the sheet list table.

\section*{Add}

Adds a sheet number column to the sheet list table.

\section*{Remove}

Removes the selected column from the sheet list table. If you accidentally remove a column, you can add a new Sheet Number column and then change its data type from the data type list.

\section*{Move Up}

Moves the selected column up in the column list and to the left in the sheet list table.

\section*{Move Down}

Moves the selected column down in the column list and to the right in the sheet list table.

\section*{Sheet Set Properties Dialog Box}

\section*{Quick Reference}

See also:
- Create and Modify Sheets

Displays information that is specific to the selected sheet set.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager
亜 Command entry: sheetset

\section*{Summary}

You can click on each field to display a description at the bottom of the dialog box.

This includes information such as the path and file name of the sheet set data (DST) file, the paths of the folders that contain the drawing files associated with the sheet set, and any custom properties associated with the sheet set

\section*{List of Options}

The following options are displayed.
Name Displays the name of the sheet set.
Sheet Set Data File Displays the path and file name of the sheet set data (DST) file.

Description Displays a description of the sheet set.
Model View Displays the paths and names of folders that contain drawings used by the sheet set.

Label Block for Views Displays the path and file name of the DWT or DWG file that contains the label blocks for the sheet set.

Callout Blocks Displays the path and file name of the DWT or DWG file that contains the callout blocks for the sheet set.

Page Setup Overrides File Displays the path and file name for the drawing template (DWT) file containing the page setup overrides for the sheet set.

Project Control Displays several fields commonly used in projects including Project Number, Project Name, Project Phase, and Project Milestone.

Sheet Custom Properties Displays the user-defined custom properties associated with each sheet in the sheet set.

Sheet Storage Location Displays the path and name of the folder where new sheets are created.

Sheet Creation Template Displays the path and name of the DWG or DWT file to be used when creating new sheets for the sheet set.

Prompt for Template Controls whether you will be prompted for a sheet creation template every time you create a new sheet in a sheet set.

Sheet Set Custom Properties Displays the user-defined custom properties associated with the sheet set.

Edit Custom Properties
Displays the Sheet Set Custom Properties dialog box.

\section*{Sheet Set Custom Properties Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Include Information with Sheets and Sheet Sets

Lists the custom properties associated with the current sheet set.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager
㟇 Command entry: sheetset

\section*{List of Options}

The following options are displayed.
Add
Displays the Add Custom Property dialog box.

Delete
Removes the selected custom property from the sheet set.

\section*{Add Custom Property Dialog Box}

\section*{Quick Reference}

See also:
■ Include Information with Sheets and Sheet Sets

Creates a custom property to be associated with the current sheet set or with each sheet.


\section*{Access Methods}


Button

Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager
菐 Command entry: sheetset

\section*{Summary}

Custom properties can be used to store information such as a contract number, the name of the designer, and the release date.

\section*{List of Options}

The following options are displayed.
Name
Specifies the name of a new custom property.
Default Value
Specifies a value for the custom property.
Owner
Specifies whether the custom property belongs to the sheet set or to a sheet.

\section*{Resource Drawing Locations Dialog Box}

\section*{Quick Reference}

See also:
■ Organize a Sheet Set

Displays a list of folders that are available for the current sheet set.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager \(\$\) Toolbar: Standard

\title{
8 Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager㟇 Command entry: sheetset
}

\section*{Summary}

You can add and remove folder locations to control which drawing files are available for the current sheet set.

\section*{List of Options}

The following options are displayed.
Add
Displays the Browse for Folder standard file selection dialog box, in which you can add a folder location to the list.

Delete
Removes the selected folder from the list.

\section*{Sheet Properties Dialog Box}

\section*{Quick Reference}

See also:
- Create and Modify Sheets

Displays information that is specific to the selected sheet, such as the sheet title, sheet number, and whether it will be included in publishing operations. Also displays custom properties, if any.


\section*{Access Methods}


\section*{Button}
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager
曼 Command entry: sheetset

\section*{Summary}

You can enter a new value to modify any available sheet property.

\section*{List of Options}

The following options are displayed.
Sheet and Sheet Custom Properties Displays the properties of the selected sheet. Also displays custom properties, if any. You can enter a new value to modify any sheet property. The Expected Layout is the path and file name of the drawing where the sheet was saved. The Found Layout is the path and file name of the drawing where the sheet was found. If the paths are different,
you can modify the path and file name in Expected Layout. This operation reassociates the sheet with the sheet set.

Rename Options Displays the options for renaming the selected sheet. These settings are the same as those in Rename \& Renumber Sheet dialog box on page 1751.

\section*{New Sheet Selection Dialog Box}

\section*{Quick Reference}

See also:
- Publish, Transmit, and Archive Sheet Sets

Saves a named selection of sheets for future operations.


\section*{Access Methods}


Button

8 Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager
㟇 Command entry: sheetset

\section*{Summary}

After you select several sheets and then save the selection, you can restore the sheet selection by name. This makes it easy to specify a set of sheets for a publish, transmit, or archive operation.

\section*{List of Options}

The following options are displayed.
Enter the Sheet Selection Name
Specifies a name for the sheet selection.

\section*{Sheet Selections Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Publish, Transmit, and Archive Sheet Sets

Renames or deletes saved sheet selections.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
8 Toolbar: Standard
\(\$\) Menu: Tools > Palettes > Sheet Set Manager
菐 Command entry: sheetset

\section*{List of Options}

The following options are displayed.

\section*{Sheet Selections}

Specifies the sheet selection that you want to rename or delete.

\section*{Rename}

Renames the selected sheet selection.
Delete
Deletes the selected sheet selection.

\section*{View Category Dialog Box}

\section*{Quick Reference}

See also:
■ Organize a Sheet Set

Creates a new view category in a sheet set.


\section*{Access Methods}


Button

\title{
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager \\ \(\$\) Toolbar: Standard \\ \(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager \\ 菐 Command entry: sheetset
}

Summary
You can organize views by dragging them under different view categories.

\section*{List of Options}

The following options are displayed.
Category Name
Specifies the name of a new view category.

\section*{Select the Callout Blocks to be Used in this Category}

Provides a method for listing the callout blocks appropriate to the current view category.

Add Blocks
Displays the List of Blocks dialog box.

\section*{List of Blocks Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Sheets

Lists, adds, or deletes callout blocks for use in the current sheet set.


\section*{Access Methods}


Button
```

$\$$ Ribbon: View tab $>$ Palettes panel $>$ Sheet Set Manager
Toolbar: Standard
Menu: Tools $>$ Palettes $>$ Sheet Set Manager
Command entry: sheetset

```

\section*{Summary}

This dialog box is displayed by clicking the Add Blocks button in the View Category dialog box, or by clicking the [...] button next to Callout blocks in the Sheet Set Properties dialog box.

\section*{List of Options}

The following options are displayed.

\section*{List of Blocks}

Displays the list of blocks available for use with the current sheet set.
Add
Displays the Select Block dialog box.

\section*{Delete}

Removes the selected block from the list of callout blocks.
Preview area Displays a preview image when a single block is selected.

\section*{Select Block Dialog Box}

\section*{Quick Reference}

See also:
- Create and Modify Sheets

Adds a new label block or callout blocks for use in the current sheet set.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Palettes panel \(>\) Sheet Set Manager
\(\$\) Toolbar: Standard
\(\$\) Menu: Tools \(>\) Palettes \(>\) Sheet Set Manager
业 Command entry: sheetset

\section*{List of Options}

The following options are displayed.
Enter the Drawing File Name
Specifies the path and name of a drawing (DWG) file or the name and path of a drawing template (DWT) file to be used as the source of a block definition.

Select the Drawing File as a Block

Uses the entire specified drawing file or drawing template file as the block definition.

\section*{Choose Blocks in the Drawing File}

Uses a selected block definition from the specified drawing file or drawing template file.

\section*{Preview}

Displays a preview image when a single block is selected.

\section*{SHEETSETHIDE}

\section*{Quick Reference}

See also:
■ Create a Sheet Set

Closes the Sheet Set Manager.

\section*{SHELL}

\section*{Quick Reference}

See also:
■ Define External Commands

Accesses operating system commands.

\section*{Summary}

When SHELL prompts you for an OS command, you can enter most valid commands for your OS. When the command has been executed, SHELL returns you to the Command prompt.

Pressing Enter at the OS Command prompt displays the system prompt with an extra close angle bracket ( \(>\) ). You can enter operating system commands as if you were at the normal system prompt.

WARNING Do not use the SHELL command to delete lock files (file name extension .??k) or temporary files (file name extensions .ac\$ or . \(\$ a\) ). Do not use SHELL to run chkdsk, reset the serial I/O ports, or run external programs that require disk swapping while editing a drawing stored on a floppy disk. Load
Terminate-and-Stay-Resident programs into memory before starting this program.

\section*{SHOWPALETTES}

\section*{Quick Reference}

See also:
■ Specify the Behavior of Dockable Windows

Restores the display of hidden palettes.

\section*{Summary}

Restores the state of the display and position of palettes hidden by HIDEPALETTES. Press Ctrl+Shift+H to switch between HIDEPALETTES and SHOWPALETTES.

NOTE If a palette was manually turned back on, it is not affected by SHOWPALETTES (even if it was manually closed again)

\section*{SIGVALIDATE}

\section*{Quick Reference}

\section*{See also:}
- View Digital Signature Details

Displays information about the digital signature attached to a drawing file.

\section*{Summary}

The Validate Digital Signatures dialog box is displayed. Review the information displayed in the dialog box, and click Close to view the signed file.

\section*{Validate Digital Signatures Dialog Box}

\section*{Quick Reference}

See also:
■ View Digital Signature Details

Displays information about a digital signature.


\section*{Access Methods}

锉 Command entry: sigvalidate

\section*{Summary}

You can determine if a digital signature is valid and if the signed file has been modified since it was signed.

\section*{List of Options}

The following options are displayed.
Name
Displays the location and name of the file whose digital signature is being viewed.

\section*{Digital Signature Status}

Displays a Valid Signature icon if a digital signature is valid, and an Invalid Signature icon if the digital signature is not valid.

\section*{File Status}

Displays the status of the signed file.

\section*{View Base Signature}

Displays the Digital Signature Contents dialog box. This option is available only if the digital signature is valid and the file has not been modified since it was signed.

\section*{Xref Drawings}

Contains detailed information about any xrefs in the signed file.
View Xref Drawings
Displays the xref drawings contained in a file's base drawing.
View Xref List
Contains a list of the xref drawings in a signed file. This list is available only if the current file contains xrefs and View Xref Drawings is selected.

View Xref Signature
Displays the Digital Signatures Contents dialog box for the selected xref. This button is enabled only if the xref has a valid digital signature attached.

\section*{Digital Signature Contents Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ View Digital Signature Details

Displays information about a digital signature.

\section*{Access Methods}

並 Command entry: sigvalidate

\section*{Summary}

You can determine if a digital signature is valid and if the signed file has been modified since it was signed.

\section*{List of Options}

The following options are displayed.
Name
Displays the location and name of the file whose digital signature is being viewed.

\section*{Digital Signature Status}

Displays the status of the digital signature.

\section*{File Status}

Displays the status of the signed file.

\section*{Signed By}

Displays the name of the organization or individual who attached a digital signature to the current file.

\section*{Other Fields}

Displays the subject, issuer, valid from date, valid to date, or serial number in the Values box.

Subject Displays information about the organization or individual who owns the digital ID and attached the digital signature.

Issuer Displays the name of the certificate authority that originally issued the digital ID.

Valid From Displays the day, month, year, and exact time from which the digital ID can be first used and is considered valid.

Valid To Displays the day, month, year, and exact time at which the digital ID ceases to be valid.

Serial Number Displays the serial number assigned to the digital ID.
Values
Displays information about a digital signature based on the item you select in the Other Fields list.

\section*{Comment}

Displays any comments about the digital signature that is attached to the current file.

\section*{Signature Date and Time}

Displays the date and time that the digital signature was attached to the current file. The date and time are based on the time service used when the signature was attached.

\section*{Time Service Used}

Displays the time service used to add the time stamp to the current file.

\section*{Skip Xref Warnings}

Determines if the Digital Signature Contents dialog box is displayed for signed xrefs. This check box is displayed only in the Digital Signature Contents dialog box when a signed drawing is opened.

\section*{SKETCH}

\section*{Quick Reference}

\section*{See also:}

■ Draw Freehand Sketches

Creates a series of freehand line segments.

\section*{Access Methods}

Button

Ribbon: Surface Modeling tab \(>\) Curves panel \(\boldsymbol{>}\) Spline Freehand

\section*{Summary}

Sketching is useful for creating irregular boundaries or for tracing with a digitizer. Specify the object type (line, polyline, or spline), increment, and tolerance before sketching.


\section*{List of Prompts}

The following prompts are displayed.
Sketch on page 1782 or [Type on page 1782/Increment on page 1782 /toLerance on page 1782]:
Sketch Creates a sketch.
Type Specifies the object type for the sketch line. (SKPOLY on page 2514 system variable)
- Line on page 1041
- Polyline on page 1453
- Spline on page 1828

Increment Defines the length of each freehand line segment. You must move the pointing device a distance greater than the increment value to generate a line. (SKETCHINC on page 2513 system variable)

Tolerance For Splines, specifies how closely the spline's curve fits to the freehand sketch. (SKTOLERANCE on page 2514 system variable)

\section*{SLICE}

\section*{Quick Reference}

\section*{See also:}
- Create 3D Solids by Slicing

Creates new 3D solids and surfaces by slicing, or dividing, existing objects.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Solid Editing panel \(>\) Slice
\(\$\) Menu: Modify \(>\) 3D Operations \(>\) Slice

\section*{Summary}

The cutting plane is defined with 2 or 3 points, by specifying a major plane of the UCS, or by selecting a surface object (but not a mesh). Either one or both sides of the sliced 3D solids can be retained.


The sliced objects retain the layer and color properties of the original solids. However, the resulting solid or surface objects do not retain a history of the original objects.

\section*{Objects that Can Be Used in a Slice Operation}

Objects that can be sliced Objects that can be used as cutting planes
\begin{tabular}{ll}
\hline 3D solids & Surfaces \\
\hline Surfaces & Circles
\end{tabular}
\begin{tabular}{ll}
\hline Objects that can be sliced & Objects that can be used as cutting planes \\
\hline & Ellipses \\
\hline & Circular or elliptical arcs \\
\hline & 2D splines \\
\hline 3D polyline segments \\
\hline
\end{tabular}

\section*{List of Prompts}

The following prompts are displayed.
Objects to slice Specifies the 3D solid or surface object that you want to slice. If you select a mesh object, you can choose to convert it to a 3D solid or surface before completing the slice operation.
- Start point of slicing plane
- Planar object
- Surface

■ Z axis
■ View
■ XY
■ YZ
■ ZX
- 3points

Start point of slicing plane Sets the first of two points that define the angle of the slicing plane. The slicing plane is perpendicular to the \(X Y\) plane of the current UCS.
- Second point on plane. Sets the second of two points on the slicing plane.

■ Point on desired side
■ Keep both sides

Planar object Aligns the cutting plane with a plane that contains a selected circle, ellipse, circular or elliptical arc, 2D spline, or 2D polyline segment.


■ Select a circle, ellipse, arc, 2D-spline, or 2D-polyline. Specifies the object to use for alignment.

Surface Aligns the cutting plane with a surface.


■ Select a surface. Specifies a surface to be used for alignment.
NOTE You cannot select meshes created with the EDGESURF, REVSURF, RULESURF, and TABSURF commands.

■ Point on desired side
- Keep both sides

Z axis Defines the cutting plane by specifying a point on the plane and another point on the \(Z\) axis (normal) of the plane.

- Specify a point on the section plane. Sets a point on the slicing plane.
- Specify a point on the Z-axis (normal) of the plane. Specifies a point that defines the axis that is perpendicular to the slicing plane.
- Point on desired side

■ Keep both sides

View Aligns the cutting plane with the current viewport's viewing plane. Specifying a point defines the location of the cutting plane.

- Specify a point on the current view plane. Sets a point on the object to start the slice.

■ Point on desired side
■ Keep both sides

XY Aligns the cutting plane with the \(X Y\) plane of the current user coordinate system (UCS). Specifying a point defines the location of the cutting plane.


■ Point on the XY-plane. Sets the location of the slice.

■ Point on desired side
■ Keep both sides

YZ Aligns the cutting plane with the \(Y Z\) plane of the current UCS. Specifying a point defines the location of the cutting plane.


■ Point on the YZ-plane. Sets the location of the slice.

ZX Aligns the cutting plane with the ZX plane of the current UCS. Specifying a point defines the location of the cutting plane.
■ Point on the ZX-plane. Sets the location of the slice.
If a single object is sliced into more than two objects, one solid or surface is created from the objects on one side of the plane and another solid or surface is created from the objects on the other side.


3points Defines the cutting plane using three points.


Point on desired side Uses a point to determine which side of the sliced solids your drawing retains. The point cannot lie on the cutting plane.


Keep both sides Retains both sides of the sliced solids. Slicing a single solid into two pieces creates two solids from the pieces on either side of the plane. SLICE never creates more than two new composite solids for each selected solid.


\section*{SNAP}

\section*{Quick Reference}

\section*{See also:}
- Adjust Grid and Grid Snap

Restricts cursor movement to specified intervals.

\section*{Access Methods}
\(\square\)
Bto
\(\$\) Toolbar: Status bar \(>\) Snap
锉 Command entry: snap or 'snap for transparent use

\section*{List of Prompts}

The following prompts are displayed.
Specify snap spacing on page 1789 or [ON on page \(1789 /\) OFF on page 1790 /Aspect on page 1790/Style on page 1790/Type on page 1791] <current>: Specify a distance, enter an option, or press Enter

\section*{Snap Spacing}

Activates Snap mode with the value you specify.
On
Activates Snap mode using the current settings of the snap grid.


\section*{Off}

Turns off Snap mode but retains the current settings.
Aspect
Specifies different spacing in the \(X\) and \(Y\) directions.


\section*{Style}

Specifies the format of the snap grid, which is Standard or Isometric.

\section*{Standard}

Sets a rectangular snap grid that is parallel to the \(X Y\) plane of the current UCS. \(X\) and \(Y\) spacing may differ.
Spacing Specifies the overall spacing of the snap grid.
Aspect Specifies the horizontal and vertical spacing of the snap grid separately.

\section*{Isometric}

Sets an isometric snap grid, in which the snap locations are initially at 30 -degree and 150-degree angles. Isometric snap cannot have different Aspect values. The lined grid does not follow the isometric snap grid.

left isoplane

top isoplane

right isoplane

ISOPLANE determines whether the crosshairs lie in the top isometric plane (30- and 150-degree angles), the left isoplane (90- and 150-degree angles), or the right isoplane (30- and 90-degree angles).

\section*{Type}

Specifies the snap type, polar or rectangular. This setting is also controlled by the SNAPTYPE system variable.

Polar Sets the polar angle increment.
(POLARANG system variable)
Grid Sets the snap to Grid. When you specify points, the cursor snaps along vertical or horizontal grid points.

\section*{SOLDRAW}

\section*{Quick Reference}

See also:
■ Create a Flattened View

Generates profiles and sections in layout viewports created with SOLVIEW.

\section*{Access Methods}


Button
\(\$\) Menu: Draw \(>\) Modeling \(>\) Setup \(>\) Drawing

\section*{Summary}

After using SOLVIEW, visible and hidden lines representing the silhouette and edges of solids in the viewport are created and then projected to a plane perpendicular to the viewing direction.

\section*{List of Prompts}

The following prompts are displayed.
Select viewports to draw ...

Select objects: Select the viewports to be drawn
SOLDRAW can only be used in viewports that have been created with SOLVIEW.

Visible and hidden lines representing the silhouette and edges of solids in the viewport are created and then projected to a plane perpendicular to the viewing direction. Silhouettes and edges are generated for all solids and portions of solids behind the cutting plane. For sectional views, cross-hatching is created using the current values of the HPNAME, HPSCALE, and HPANG system variables.

Any existing profiles and sections in the selected viewport are deleted, and new ones are generated. All layers, except those required to display the profile or section, are frozen in each viewport.

WARNING Do not place permanent drawing information on the view name-VIS, view name-HID, and view name-HAT layers. The information stored on these layers is deleted and updated when SOLDRAW is run.

To undo a viewport drawn by SOLDRAW, you must use the Back option of UNDO.

NOTE SOLDRAW is defined by the acsolids.arx application and is intended to be used only interactively. For more information, see Externally Defined Commands.

\section*{SOLID}

\section*{Quick Reference}

\section*{See also:}
- Modify Hatch Properties

Creates solid-filled triangles and quadrilaterals.

\section*{Summary}

2D solids are filled only when the FILLMODE system variable is on (1) and the viewing direction is orthogonal to the 2D solid.

\section*{List of Prompts}

The following prompts are displayed.
First point Sets the first point in the 2D solid.
Second point Sets the first edge of the 2D solid.
Third point Sets the corner that is opposite the second point.
Fourth point or <exit> The fourth point is diagonally opposite the first point. Pressing Enter at the Fourth Point prompt creates a filled triangle. Specifying a fifth point creates a quadrilateral area.


Specifying successive third and fourth points creates further connected triangles and four-sided polygons in a single solid object.


\section*{SOLIDEDIT}

\section*{Quick Reference}

\section*{See also:}
- Clean and Check 3D Solids

Edits faces and edges of 3D solid objects.

\section*{Access Methods}

Ribbon: Home tab \(>\) Solid Editing panel.

Menu: Modify \(>\) Solid Editing

\section*{Summary}

You can extrude, move, rotate, offset, taper, copy, delete, and assign colors and materials to faces. You can also copy and assign colors to edges. You can imprint, separate, shell, clean, and check the validity of the entire 3D solid object (body).
You cannot use SOLIDEDIT with mesh objects. However, if you select a closed mesh object, you will be prompted to convert it to a 3D solid.

\section*{List of Prompts}

The following prompts are displayed.
[Face/Edge/Body/Undo/eXit]

\section*{Face}

\section*{Face}

Edits selected 3D solid faces by extruding, moving, rotating, offsetting, tapering, deleting, copying, or changing their color.
[Extrude/Move/Rotate/Offset/Taper/Delete/Copy/coLor/mAterial/ Undo/eXit]

\section*{Face: Extrude}

Extrude Extends a 3D solid face in the \(X, Y\), or \(Z\) direction. You can change the shape of the object by moving its faces.

face selected

face extruded
- Select faces. Specifies which faces to modify.

■ Undo
- Remove

Remove Removes previously selected faces from the selection set.
■ Remove faces. Removes the selected face from the solid object.
- Undo

■ Add
- All

Undo Cancels the selection of the faces you added most recently to the selection set and redisplays the prompt.


Add Adds faces you select to the selection set.

selection set

face added to selection set
Undo
- Remove
- All

All Selects all faces and adds them to the selection set.


■ Select faces. Selects specific faces (instead of all of them).
- Undo

■ Remove

Height of extrusion Sets the direction and distance of the extrusion. Entering a positive value extrudes the face in the direction of its normal. Entering a negative value extrudes the face in the direction opposite to its normal.
- Angle of taper for extrusion. Specify an angle between -90 and +90 degrees.

face selected

positive angle extruded face

negative angle extruded face

Tapering the selected face with a positive angle tapers the face in, and a negative angle tapers the face out. The default angle, 0 , extrudes the face perpendicular to its plane. All selected faces in the selection set are tapered to the same value. If you specify a large taper angle or height, you can cause the face to taper to a point before it reaches the extrusion height.

Path Sets a path for the extrusion path based on a specified line or curve. All the profiles of the selected face are extruded along the chosen path to create the extrusion.

\section*{- Select an extrusion path.}


Lines, circles, arcs, ellipses, elliptical arcs, polylines, or splines can be paths. The path should not lie on the same plane as the face, nor should it have areas of high curvature.
The extruded face starts from the plane of the profile and ends on a plane perpendicular to the path at the path's endpoint. One of the endpoints of the path should be on the plane of the profile; if not, the path is moved to the center of the profile.
If the path is a spline, the path should be perpendicular to the plane of the profile and at one of the endpoints of the path. If not, the profile is rotated to be perpendicular to the spline path. If one of the endpoints of the spline is on the plane of the face, the face is rotated about the point; otherwise, the spline path is moved to the center of the profile and the profiles are rotated about its center.
If the path contains segments that are not tangent, the object is extruded along each segment and then the joint along the plane is mitered, bisecting the angle formed by the segments. If the path is closed, the profile lies on the miter plane. This allows the start and end sections of the solid to match up. If the profile is not on the miter plane, the path is rotated until it is on the miter plane.

\section*{Face: Move}

Move Moves the selected face on a 3D solid object to a specified height or distance. You can select multiple faces at one time.


You can change the shape of the object by moving its faces. This option is recommended for minor adjustments.


Select faces Specifies the face to be moved.
- Base point of displacement. Sets the base point for the move. If you specify a single point, usually entered as a coordinate, and then press Enter, the coordinate is used as the new location.
- Second point of displacement. Sets a displacement vector that indicates how far the selected face is moved and in what direction.

\section*{Face: Rotate}

Rotate Rotates one or more faces or a collection of features on a solid about a specified axis.

You can change the shape of the object by rotating its faces. This option is recommended for minor adjustments.
- Select faces (rotate)
- Undo. Cancels selection of the faces that you selected most recently.
- Remove
- All

Select faces (rotate) Rotates the face according to the specified angle and axis. In the drawing area, select one or more faces.
- Axis point
- Axis by object
- View
- Xaxis, Yaxis, Zaxis
- 2Point

Axis point, 2Point Sets two points to define the axis of rotation.


Pressing Enter at the main Rotate prompt displays the following prompts. Specifying a point at the main prompt skips the prompt for the first point:
- First point on the rotation axis. Sets the first point on the axis of revolution.
- Second point on the rotation axis. Sets the second point on the axis.
- Rotation angle

■ Reference

Axis by object Aligns the axis of rotation with an existing object. You can select the following objects:
■ Line: Aligns the axis with the selected line.
- Circle: Aligns with the 3D axis of the circle (perpendicular to the plane of the circle and passing through the center of the circle).
- Arc: Aligns with the 3D axis of the arc (perpendicular to the plane of the arc and passing through the center of the arc).
- Ellipse: Aligns with the 3D axis of the ellipse (perpendicular to the plane of the ellipse and passing through the center of the ellipse).
- 2D polyline: Aligns with the 3D axis formed by the polyline start points and endpoints.
- 3D polyline: Aligns with the 3D axis formed by the polyline start points and endpoints.
- Spline: Aligns with the 3D axis formed by the spline's start points and endpoints.

View Aligns the axis of rotation with the viewing direction of the current viewport that passes through the selected point.
- Origin of rotation
- Rotation angle
- Reference

Xaxis, Yaxis, Zaxis Aligns the axis of rotation with the axis \((X, Y\), or \(Z\) ) that passes through the selected point.
- Origin of rotation
- Rotation angle

■ Reference

Origin of rotation Sets the point of rotation.
- Rotation angle
- Reference

Rotation angle Rotates the object about the selected axis the specified amount from the current orientation.

Reference Specifies the reference angle and the new angle.
- Reference (starting) angle. Sets the start point for the angle.
- Ending angle. Sets the endpoint for the angle. The difference between the starting angle and the ending angle is the computed rotation angle.

\section*{Face: Offset}

Offset Offsets faces equally by a specified distance or through a specified point. A positive value increases the size or volume of the solid. A negative value decreases the size or volume of the solid.
■ Select faces (offset)
- Undo
- Remove
- All

Select faces (offset) Specifies the faces you want to offset.
NOTE The size of holes inside a solid object that is offset decreases as the volume of the solid increases.

face selected

face offset \(=1\)

face offset = - 1
- Specify the offset distance. Sets a positive value to increase the size of the solid or a negative value to decrease the size of the solid.

\section*{Face: Taper}

Taper Tapers faces on a 3D solid at a specified angle. The rotation of the taper angle is determined by the selection sequence of the base point and second point along the selected vector.


A positive angle tapers the face in, and a negative angle tapers the face out. The default angle, 0 , extrudes the face perpendicular to its plane. All selected faces in the selection set are tapered to the same value.

- Select faces (taper)
- Undo
- Remove

Select faces (taper) Specifies the faces to be tapered and then sets the slope of the taper.
- Base point. Sets the first point for determining the plane.
- Another point along the axis of tapering. Sets the orientation of the axis that determines the direction of the taper.
- Taper angle. Specify an angle between -90 and +90 degrees to set the slope of the taper from the axis.

\section*{Face: Delete}

Delete Deletes or removes faces, including fillets and chamfers.
Use this option to remove and later modify filleted and chamfered edges. The face is not deleted if the change results in a non-valid 3D solid.


\section*{- Select faces (copy)}

■ Undo. Cancels the selection of the faces that you selected most recently.
- Remove

■ All

Select faces (delete) Specifies the face to be removed. The face must be in a location that can be filled by surrounding faces after it is removed.

\section*{Face: Copy}

Copy Copies faces as a region or a body. If you specify two points, SOLIDEDIT uses the first point as a base point and places a single copy relative to the base point. If you specify a single point (usually entered as a coordinate) and then press Enter, SOLIDEDIT uses the coordinate as the new location.


Creates a new object with the original orientation and profile of the face. The result can be used as a reference to create a new 3D solid.
- Select faces (copy)

■ Undo. Cancels the selection of the faces that you selected most recently.
- Remove
- All

Select faces (copy) Specifies the face to be copied.
- Base point or displacement. Sets the first point to determine the distance and direction for the placement of the copied face (displacement).

■ Second point of displacement. Sets the second displacement point.

\section*{Face: Color}

Color Changes the color of faces.
Colored faces can be used to highlight details within a complex 3D solid model.
- Select faces (color)

■ Undo. Cancels the selection of the faces that you selected most recently.
- Remove
- All

Select faces (color) Specifies the faces to be modified. The Select Color dialog box is displayed.

\section*{Face: Material}

Material Assigns a material to selected faces.
- Select faces (material)

■ Undo. Cancels the selection of the faces that you selected most recently.
■ Remove
■ All

Select faces (material) Specifies the faces to be modified. The Select Color dialog box is displayed.
■ Enter new material name. Enter the name of the material to be assigned to the selected face. (The name of a material can be found by opening the Materials window and selecting the material swatch to display the name in the Name field.)
- ByLayer. Assigns the material based on the layer assignment.

\section*{Face: Undo}

Reverses actions as far back as the beginning of the SOLIDEDIT session.
Face: Exit
Exits the face-editing options and displays the Enter a Solids Editing Option prompt.

\section*{Edge}

\section*{Edge}

Edits 3D solid objects by changing the color of or copying individual edges.
[Copy/coLor/Undo/eXit]

\section*{Edge: Copy}

Copies selected edges on a 3D solid as 2D arcs, circles, ellipses, lines, or splines.

edge selected

base point and second point selected

edge copied

Retains the angle of the edge and allows you to make modifications and extensions, and create new geometry based on the extracted edge.
Provides a method for making modifications, extensions, and new 3D solids based on the extracted edge.

■ Select Edges (copy)
- Undo
- Remove

Select Edges (copy) Specifies the edges to copy. Press Ctrl+click to select the edge. Then set the displacement:
- Base point of displacement. Sets the first point for determining where the new object is placed.
- Second point of displacement. Sets the relative direction and distance for the new object.

Undo Cancels selection of the edges you added most recently to the selection set. The previous prompt is displayed. If all edges have been removed, the following prompt is displayed:

Remove Removes previously selected edges from the selection set. The prompt is redisplayed.
- Remove edges. Removes the edges you select from the current selection set.
- Undo

■ Add
Add Adds edges to the selection set.
- Select Edges (copy)
- Undo
- Remove

\section*{Edge: Color}

Changes the color of individual edges on a 3D solid object.
- Select edges (color)
- Undo

\section*{Select edges (color)}

Colored edges can be used to highlight intersections, interferences, or critical clearances.

Press Ctrl+click to select the edge.

\section*{Edge: Undo}

Reverses actions as far back as the beginning of the SOLIDEDIT session.

\section*{Edge: Exit}

Exits the face-editing options and displays the Enter a Solids Editing Option prompt.

\section*{Body}

\section*{Body}

Edits the entire solid object by imprinting other geometry on the solid, separating the solid into individual solid objects, shelling, cleaning, or checking the selected solid.

\section*{[Imprint/seParate solids/Shell/cLean/Check/Undo/eXit]}

\section*{Body: Imprint}

Imprints an object on the selected solid. The object to be imprinted must intersect one or more faces on the selected solid in order for imprinting to be successful. Imprinting is limited to the following objects: arcs, circles, lines, 2D and 3D polylines, ellipses, splines, regions, bodies, and 3D solids.


object selected

object imprinted on solid
- Select a 3D solid. Specifies the 3D solid to be imprinted.
- Select an object to imprint. Specifies an object that overlaps the first selection.

■ Delete the source object. Specifies whether the object to imprint is removed when the operation is complete.

\section*{Body: Separate Solids}

Separates 3D solid objects with disjointed volumes (sometimes called lumps) into independent 3D solid objects. Combining discrete solid objects using a union operation (UNION) can result in disjointed volumes.
A union or subtract operation can result in a single 3D solid that consists of more than one continuous volume. You can separate these volumes into independent 3D solids.


NOTE Separating solids does not separate Boolean objects that form a single volume.

Select a 3D solid Specifies the 3D solid object to separate. Press Ctrl+click to select the edge.

\section*{Body: Shell}

Shelling creates a hollow, thin wall with a specified thickness. You can specify a constant wall thickness for all the faces. You can also exclude faces from the shell by selecting them. A 3D solid can have only one shell. New faces are created by offsetting existing ones outside their original positions.

It is recommended that you create a copy of a 3D solid before converting it into a shell. That way if you need to make significant modification, use the original version and shell it again.


Select a 3D solid (shell) Specifies a 3D solid.
- Remove faces. Specifies the face subobjects to be removed when the object is shelled.

■ Undo. Reverses the last action.
- Add. Press Ctrl+click an edge to indicate which faces to retain.
- All. Temporarily selects all faces for removal. You can then use Add to add the faces you want to retain.

Enter the shell offset distance Sets the size of the offset. Specify a positive value to create a shell to the inside perimeter of the solid. Specify a negative value to create a shell on the outside perimeter of the solid.

\section*{Body: Clean}

Removes shared edges or vertices having the same surface or curve definition on either side of the edge or vertex. Removes all redundant edges, vertices, and unused geometry. Does not remove imprinted edges.

In unusual circumstances, this option removes shared edges or vertices having the same surface or curve definition on either side of the edge or vertex.


Select a 3D solid (clean) Specifies a 3D solid object that you want to clean.

\section*{Body: Check}

Validates the 3D solid object as a valid solid, independent of the SOLIDCHECK setting.

■ Select a 3D object (check). Specifies the 3D solid object to be validated. If the object is valid, the following prompt is displayed: This object is a valid ShapeManager solid.

This option is used as a debugging tool to compare stages in a highly complex 3D solid model.

\section*{Body: Undo}

Undoes the editing action.

\section*{Body: Exit}

Exits the face-editing options and displays the Enter a Solids Editing Option prompt.

\section*{Undo}

Undo
Undoes the editing action.

\section*{Exit}

Exit
Exits the SOLIDEDIT command.

\section*{SOLPROF}

\section*{Quick Reference}

\author{
See also: \\ ■ Create a Flattened View
}

Creates 2D profile images of 3D solids for display in a layout viewport.

\section*{Access Methods}


Button

Menu: Draw \(>\) Modeling \(>\) Setup \(>\) Profile

\section*{Summary}

The selected 3D solids are projected onto a 2D plane parallel with the current layout viewport. The resulting 2D objects are generated on separate layers for hidden and visible lines and are displayed only in that viewport.

\section*{List of Prompts}

The following prompts are displayed.
Select objects: Use an object selection method
Display hidden profile lines on separate layer? [Yes/No] <Y>: Entery or n, or press Enter
Yes Generates only two blocks: one for the visible lines and one for the hidden lines of the entire selection set. When you generate hidden lines, solids can partially or completely hide other solids. The visible profile block is drawn in the BYLAYER linetype, and the hidden profile block is drawn in the HIDDEN linetype (if loaded). The visible and hidden profile blocks are placed on uniquely named layers using the following naming conventions:
PV-viewport handle for the visible profile layer
PH-viewport handle for the hidden profile layer
For example, if you create a profile in a viewport whose handle is 4 B , the blocks containing the visible lines are inserted on layer PV-4B, and the block containing the hidden lines (if requested) is inserted on layer PH-4B. If these layers do not exist, the command creates them. If the layers do exist, the blocks are added to the information already on the layers.

NOTE To determine the handle of a viewport, select the viewport while in paper space and use the LIST command. Choose a layout tab to move from model space to paper space.

SOLPROF does not change the display of layers; if you want to view only the profile lines that you have created, turn off the layer containing the original solid (usually the current layer).

No Treats all profile lines as visible lines and creates a block for the profile lines of each selected solid. All profile lines for each solid in the selection set are generated, even if a solid is partially or completely obscured by another solid. The visible profile blocks are drawn in the same linetype as the original solid and placed on a uniquely named layer using the naming convention described under the Yes option.


NOTE Solids that overlap each other (share some common volume) produce dangling edges if you request hidden-line removal. This happens because the edges must be broken at the point where they enter another solid to separate them into visible and hidden portions. You can eliminate dangling edges by combining the overlapping solids (using UNION) before generating a profile.

Yes Creates the profile lines with 2D objects.
The 3D profile is projected onto a plane normal to the viewing direction and passing through the origin of the UCS. SOLPROF cleans up the 2D profile by eliminating lines that are parallel to the viewing direction and by converting arcs and circles that are viewed on edge into lines.

No Creates the profile lines with 3D objects.
The next prompt determines whether tangential edges are displayed. A tangential edge is the transition line between two tangent faces. It's the imaginary edge at which two faces meet and are tangent. For example, if you fillet the edge of a box, tangential edges are created where the cylindrical face of the fillet blends into the planar faces of the box. Tangential edges are not shown for most drafting applications.


profile with tangential edges retained

\section*{SOLVIEW}

\section*{Quick Reference}

See also:
■ Create a Flattened View

Creates orthographic views, layers, and layout viewports automatically for 3D solids.

\section*{Access Methods}


Butlon
\(\$\) Ribbon: Home tab \(>\) 3D Modeling panel \(>\) Solid View.
\(\$\) Menu: Draw \(>\) Modeling \(>\) Setup \(>\) View

\section*{Summary}

This command automates the manual process of creating views, layers, and layout viewports for 3D models. For ongoing work, it is recommended that you create drawing template (DWT) files customized for 3D.

NOTE SOLVIEW must be run on a layout tab. If the Model tab is current, the last active layout tab is made current.

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [Ucs on page 1814/Ortho on page 1815/Auxiliary on page 1816/Section on page 1816]: Enter an option or press Enter to exit the command

SOLVIEW places the viewport objects on the VPORTS layer, which it creates if it does not already exist. The view-specific information that is saved with each viewport you create is used by SOLDRAW to generate the final drawing view.

SOLVIEW creates layers that SOLDRAW uses to place the visible lines and hidden lines for each view, view name-VIS, view name-HID, view name-HAT,
and a layer where you can place dimensions that are visible in individual viewports, view name-DIM.

WARNING The information stored on these layers is deleted and updated when you run SOLDRAW. Do not place permanent drawing information on these layers.

NOTE SOLVIEW is defined by the acsolids.arx application and is intended to be used only interactively.

\section*{UCS}

Creates a profile view relative to a user coordinate system. If no viewports exist in your drawing, the UCS option is a good way to create an initial viewport from which other views can be created. All other SOLVIEW options require an existing viewport.

You have the option of using the current UCS or a previously saved one as the profile plane. The viewport projection is created parallel to the \(X Y\) plane of the UCS with the \(X\) axis facing right and the \(Y\) axis upward.


Named Uses the \(X Y\) plane of a named UCS to create a profile view.
Enter the name of the UCS you want to use and the scale of your view. Entering a scale is equivalent to zooming your viewport by a factor relative to paper space.
The center is based on the current model space extents.

World Uses the \(X Y\) plane of the WCS to create a profile view.
Enter the name of the UCS you want to use and the scale of your view. Entering a scale is equivalent to zooming your viewport by a factor relative to paper space.
The center is based on the current model space extents.
?-List Named UCSs Lists the names of existing user coordinate systems. The list is filtered using the wild-card combinations you enter (wild-card characters accepted by the UCS command are valid).

Current Uses the \(X Y\) plane of the current UCS to create a profile view.
Enter the name of the UCS you want to use and the scale of your view. Entering a scale is equivalent to zooming your viewport by a factor relative to paper space.
The center is based on the current model space extents.

\section*{Ortho}

Creates a folded orthographic view from an existing view.


Once you select the side of the viewport you want to use for projecting the new view, a rubber-band line perpendicular to the side of the viewport helps you locate the center of the new view.

\section*{Auxiliary}

Creates an auxiliary view from an existing view. An auxiliary view is one that is projected onto a plane perpendicular to one of the orthographic views and inclined in the adjacent view.


Two points define the inclined plane used for the auxiliary projection. Both points must be located in the same viewport.

A rubber-band line perpendicular to the inclined plane helps you select the center of the new viewport.

\section*{Section}

Creates a drafting sectional view of solids, complete with cross-hatching. When you use SOLDRAW on a sectional view created with this option, it creates a temporary copy of the solids and uses SLICE to perform the operation at the cutting plane that you define. SOLDRAW then generates a profile of the visible half of the solids and discards the original copy. Finally SOLDRAW sections the solids. Solids not crossing the cutting plane are generated as full profiles. Because drafting standards recommend not drawing hidden lines in sectional views, SOLVIEW freezes the View Name-HID layer.


In the original viewport, specify two points to define the sectioning plane.
Define the viewing side by specifying a point on one side of the cutting plane.
Enter the scale of the new view. Entering a scale is equivalent to zooming your viewport by a factor relative to paper space. The default value is a \(1: 1\) scale, which is equivalent to zoom 1.0xp.

At the next prompt, specify the center of the new viewport. If you accepted the default scale (by pressing Enter), a rubber-band line perpendicular to the sectioning plane helps you locate the center of the new view. Otherwise, you can place the view anywhere.

\section*{SPACETRANS}

\section*{Quick Reference}

\section*{See also:}

■ Change Text Scale and Justification

Calculates equivalent model space and paper space lengths in a layout.

\section*{Access Methods}

\section*{辟 \\ Button}
\(\$\) Toolbar: Text

\section*{List of Prompts}

In a layout, when in model space, the prompt is displayed as follows:
Specify paper space distance \(<1.000>\) : Enter a length in paper space to convert to the equivalent length in model space

In a layout, when in paper space, the prompt is displayed as follows:
Select a viewport: Pick a layout viewport object (this prompt is displayed when more than one viewport object is available in the layout)
Specify model space distance \(<1.000>\) : Enter a length in model space to convert to the equivalent length in paper space

SPACETRANS converts lengths, typically text heights, from either model space or paper space to its equivalent length in the other space. It is intended to be invoked transparently at a prompt for text height or other length value. When used at the Command prompt, SPACETRANS displays the computed length equivalent at the Command prompt.

NOTE This command is not available from the Model tab or in a perspective view.

\section*{SPELL}

\section*{Quick Reference}

See also:
- Check Spelling

Checks spelling in a drawing.

\section*{Access Methods}

\section*{\(A B C\) \\ Button}
\(\$\) Ribbon: Annotate tab \(>\) Text panel \(>\) Check Spelling
\(\$\) Menu: Tools \(>\) Spelling
\(\$\) Toolbar: Text
挫 Command entry: 'spell for transparent use

\section*{Summary}

When you enter spell at the Command prompt, the Check Spelling dialog box is displayed. Select the Start button to begin the spelling check.

If Check Spelling is set to Entire Drawing, spelling is checked on model space, then on layouts 1 and 2 in paper space. If a flagged word is identified, the drawing area highlights and zooms to that word.

NOTE Invisible text such as text on hidden layers, and hidden block attributes is not checked. Non-uniformly scaled blocks and objects not on the supported annotation scale are also not checked.

\section*{Check Spelling Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Check Spelling

Displays the spelling checker dialog box that picks and displays the wrongly spelt words and suggests alternate words.


\section*{Access Methods}

\section*{ABC}

Button
\(\$\) Ribbon: Annotate tab \(>\) Text panel \(>\) Check Spelling
\(\$\) Menu: Tools \(>\) Spelling
Toolbar: Text
並 Command entry: spell (or 'spell for transparent use)

\section*{Summary}

Checks the spelling in single-line text, multiline text, multileader text, text within block attributes, text within xrefs, and text added to dimensions.

In block attributes, only the attribute values are checked. The spelling in text objects within block references and nested block references is checked, but spell checking in block definitions is performed only if the associated block reference has been selected.

\section*{List of Options}

The following options are displayed.
Where to Check
Displays the areas you want checked for spelling.

\section*{Select Text Objects}

Limits the spelling check to the selected single-line text, multiline text, dimension text, multileader text, text within block attributes, and text within xrefs.

\section*{Not in Dictionary}

Displays the word identified as misspelled.

\section*{Suggestions}

Displays a list of suggested replacement words from the current dictionary.
You can select another replacement word from the list, or edit or enter a replacement word in the top Suggestions text area.

\section*{Main Dictionary}

Lists the main dictionary options. The default dictionary will depend on the language setting.

\section*{Start}

Starts checking text for spelling errors.
Ignore
Skips the current word.

\section*{Ignore All}

Skips all remaining words that match the current word.

\section*{Add to Dictionary}

Adds the current word to the current custom dictionary. The maximum word length is 63 characters.

\section*{Change}

Replaces the current word with the word in the Suggestions box.
Change All
Replaces the current word in all selected text objects in the spell check area.

\section*{Dictionaries}

Displays the Dictionaries dialog box.

\section*{Settings}

Displays the Check Spelling Settings dialog box.
Undo

Reverses the previous check spelling action or series of actions, including Ignore, Ignore All, Change, Change All, and Add to Dictionary.

\section*{Check Spelling Settings Dialog Box}

\section*{Quick Reference}

See also:
- Check Spelling

Provides options to change the way the default behavior of the spelling checker dialog box.
```

A. Check Spelling Settings
Include
V}\mathrm{ Dimension text
V Block attributes
External references
Options
\square Ignore capitalized words (Autodesk)
Ignore words with mixed cases (TrueType)
Ignore words in uppercase (DWG)
V Ignore words with numbers (ISO9000)
|}\mathrm{ Ignore words containing punctuation (A/3)
OK Cancel

```

\section*{Access Methods}

\section*{ABC}

Button
\(\$\) Ribbon: Annotate tab \(>\) Text panel \(>\) Check Spelling
\(\$\) Menu: Tools \(>\) Spelling
\(\$\) Toolbar: Text
並 Command entry: spell (or 'spell for transparent use)

\section*{Summary}

Specifies specific text options that will be checked in your drawing.

\section*{List of Options}

The following options are displayed.

\section*{Include}

Dimension Text
Searches dimension text.

\section*{Block Attributes}

Searches block attributes text for spelling errors.
External References
Specifies to search external references for spelling errors.
Options
Ignore Capitalized Words
Specifies to ignore capitalized words.
Ignore Words with Mix Cases
Specifies to ignore words that contain uppercase and lowercase letters.
Ignore Words in Uppercase
Specifies to ignore words that are in all uppercase.
Ignore Words with Numbers
Specifies to ignore words that include numbers.
Ignore Words Containing Punctuation
Specifies to ignore words that contain punctuation.

\section*{Dictionaries Dialog Box}

\section*{Quick Reference}

\section*{See also: \\ ■ Check Spelling}

Displays the installed dictionaries and allows you to edit the custom dictionary.


\section*{Access Methods}


Ribbon: Annotate tab \(>\) Text panel \(>\) Check Spelling
\(\$\) Menu: Tools \(>\) Spelling
\(\%\) Toolbar: Text
䱂 Command entry: spell (or 'spell for transparent use)

\section*{Summary}

Manages dictionaries. During a spelling check, the words in the drawing are matched to the words in the current main and current custom dictionaries. Any spelling exceptions that you identify with the Add option are stored in the custom dictionary you are currently using.

If you want to check spelling in another language, you can change to a different main dictionary. You can also create any number of custom dictionaries and switch between them as needed.

\section*{List of Options}

The following options are displayed.

\section*{Main Dictionary}

Displays a list of language-specific dictionaries from which you can choose a different main dictionary. This dictionary is used in conjunction with the custom dictionary.

\section*{Custom Dictionary}

Displays the name of the current custom dictionary. The .cus extension is used for an AutoCAD custom dictionary.

\section*{Current Custom Dictionary}

Displays the list from which you can select a custom dictionary file to use. The selected dictionary file is used until another file is selected. The list also includes a Manage custom dictionaries selection which brings up the Manage Custom Dictionaries dialog box.

\section*{Content}

Displays a list of the words that currently exist in the specified custom dictionary.

You can add words to or delete words from this list.

\section*{Add}

Adds the word that you enter in the box to the current custom dictionary. The maximum length is 63 characters.

\section*{Delete}

Deletes a word from current custom dictionary content.
Import
Imports words from another dictionary or word list into your current custom dictionary.

\title{
Manage Custom Dictionaries Dialog Box
}

\section*{Quick Reference}

\section*{See also:}
- Check Spelling

Manages your custom dictionaries allowing you to add or remove a dictionary.


\section*{Access Methods}


Ribbon: Annotate tab \(>\) Text panel \(\boldsymbol{>}\) Check Spelling
\(\$\) Menu: Tools \(>\) Spelling
Toolbar: Text
锉 Command entry: spell (or 'spell for transparent use)

\section*{List of Options}

The following options are displayed.

\section*{Custom Dictionaries List}

Displays the custom dictionaries list. Only one dictionary can be selected at a time.

New
Allows you to create a custom dictionary. The new dictionary is highlighted as the current one.

NOTE The filename for a custom dictionary cannot use any non-current code page characters in its name. If you are sharing a custom dictionary between different locals or languages do not use non-ASCII characters.

\section*{Add}

Allows you to add an existing custom dictionary from your file lists.

\section*{Remove}

Allows you to delete a custom dictionary file from your list.

\section*{SPHERE}

\section*{Quick Reference}

See also:
- Create a Solid Sphere

Creates a 3D solid sphere.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) 3D Modeling panel \(>\) Sphere
\(\$\) Menu: Draw \(>\) Modeling \(>\) Sphere
8 Toolbar: Modeling

\section*{Summary}

You can create a sphere by specifying a center point and a point on the radius. You can control the smoothness of curved 3D solids, such as a sphere, in a shaded or hidden visual style with the FACETRES system variable.


\section*{List of Prompts}

The following prompts are displayed.
Specify center point on page 1828 or [3P on page 1828/2P on page 1828/Ttr on page 1828]: Specify a point or enter an option

\section*{Center Point}

Specifies the center point of the sphere.
When you specify the center point, the sphere is positioned so that its central axis is parallel to the \(Z\) axis of the current user coordinate system (UCS). Latitudinal lines are parallel to the \(X Y\) plane.

Radius Defines the radius of the sphere.
Diameter Defines the diameter of the sphere.


\section*{3P (Three Points)}

Defines the circumference of the sphere by specifying three points anywhere in 3D space. The three specified points also define the plane of the circumference.

\section*{2P (Two Points)}

Defines the circumference of the sphere by specifying two points anywhere in 3D space. The plane of the circumference is defined by the \(Z\) value of the first point.

TTR (Tangent, Tangent, Radius)
Defines the sphere with a specified radius tangent to two objects. The specified tangency points are projected onto the current UCS.

\section*{SPLINE}

\section*{Quick Reference}

See also:
- Draw Splines

Creates a smooth curve that passes through fit points or near control vertices.

\section*{Access Methods}


Button

Ribbon: Home tab \(>\) Draw panel \(>\) Spline
Menu: Draw \(>\) Spline
Toolbar: Draw

\section*{Summary}

There are two methods for creating splines in AutoCAD: with fit points or with control vertices. Each method has different options.


Control the display of the control vertices with the CVSHOW on page 407 and CVHIDE on page 401 command.

\section*{List of Prompts}

The following prompts are displayed.
Specify first point or [Method on page 1830/Degree on page 1833/Object on page 1831]:

\section*{Method}

Controls whether the spline is created with fit points or control vertices. The options differ depending on whether you select Options for Splines with Fit Points on page 1832 or Options for Splines with Control Vertices on page 1833.
Fit Draw a spline by specifying fit points.
Changing the Method updates the SPLMETHOD on page 2525 system variable.


Control Points Draw a spline by specifying control vertices.
This is the preferred method if you are creating geometry to use with 3D NURBS surfaces. Changing the Method updates the SPLMETHOD on page 2525 system variable.


Object Converts 2D or 3D quadratic or cubic spline-fit polylines to equivalent splines and (depending on the setting of the DELOBJ system variable) deletes the polylines.

Next Point Enters additional curve segments until you press Enter.


Undo Removes the last specified point.
Close Closes the spline curve by defining the last point as coincident with the first and making it tangent to the joint.
Specify a point to define the tangent vector or use the Tangent and Perpendicular object snap modes to make the spline tangent or perpendicular to existing objects.

closed spline

\section*{Options for Splines with Fit Points}

Options specific to fit points are displayed when the Method option is set to Fit. (SPLMETHOD on page 2525 system variable)

Knots Specifies the knot parameterization which affects the shape of the curve as it passes through a fit point. (SPLKNOTS on page 2525 system variable)
- Chord - Numbers edit points with decimal values representing their location on the curve.

- Square Root - Numbers edit points based on the square root of the chordal length between consecutive knots.

■ Uniform - Numbers edit points with consecutive integers.
Start Tangency Creates splines based on tangent direction.


End Tangency Stops creating curves based on tangent direction. You can continue creating spline curves by specifying fit points.

When you choose End Tangency, you are prompted for the last tangent of the last entered fit point.

last tangent point

Tolerance Specifies the distance from specified fit points that the spline must pass through. Tolerance applies to all fit points except start and endpoints.
\(\bigwedge_{\text {zon wemene }}\)


Options for Splines with Control Vertices
Options specific to control vertices are displayed when the Method option is set to CV. (SPLMETHOD on page 2525 system variable)
Degree Sets the maximum number of "bends" you can get in each span; the degree can be 1,2 or 3 . There will be one more control vertex than the number of degrees, so a degree 3 spline has 4 control vertices.


degree 3
cubic Bezier, two bends

\section*{SPLINEDIT}

\section*{Quick Reference}

\section*{See also:}
- Modify Splines

Edits a spline or spline-fit polyline.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modify panel \(>\) Edit Spline
\(\$\) Menu: Modify \(>\) Objects \(>\) Spline
\(\$\) Toolbar: Modify II
Shortcut menu: Right-click a selected spline, and click Spline Edit.

\section*{Summary}

Modifies a spline's definition, such as the number and weight of control vertices, the fit tolerance, and the start and end tangents.

When you select a spline object or spline-fit polyline, grips appear at the control vertices.

Fit data consists of all fit points, the fit tolerance, and tangents associated with splines created with the SPLINE command.

A spline can lose its fit data if you
■ Use the Purge option while editing fit data
- Refine the spline by elevating the order, adding or deleting a control vertex, or changing the weight of a control vertex
- Change the fit tolerance
- Move a control vertex

■ Trim, break, stretch, or lengthen the spline

NOTE SPLINEDIT automatically converts spline-fit polylines to splines even if you immediately exit SPLINEDIT after selecting the spline-fit polyline.

\section*{List of Prompts}

The following prompts are displayed.
Select spline:
Enter an option [Close on page 1835/Join on page 1836/Fit data on page 1836/Edit Vertex on page 1837/convert to Polyline on page 1839/Reverse on page 1839/Undo on page 1839] <eXit>:

\section*{Close/Open}

Switches between Close and Open, depending on whether the selected spline is closed.

Close Closes an open spline and makes it tangentially continuous (smooth) at its endpoints. If the spline's start point and endpoint are the same, this option makes the spline tangentially continuous at both points.


Open Opens a closed spline. If the spline's start point and endpoint were the same before using the Close option, the spline is returned to its original state. The start point and endpoint remain the same but, lose their tangential continuity (smoothness).
If the spline was open (its start point and endpoint were not the same) before using the Close option the spline is returned to its original open state and tangential continuity is removed.


\section*{Join}

Selected splines, lines, and arcs are joined to existing splines at coincident endpoints. After a valid object is selected, it is joined to the current spline with a kink at the join point.

\section*{Fit Data}

Edits fit data using the following options:
Enter a fit data option: [Add on page 1836/Delete on page 1836/Kink on page \(1836 /\) Move on page \(1836 /\) Purge on page 1837/Tangents on page 1837/toLerance on page 1837/eXit on page 1837] <eXit>:

\section*{Add}

Adds fit points to a spline.
When you select a point, SPLINEDIT highlights it and the next point and interprets the new point to go between the highlighted points. Selecting the last point on an open spline highlights only that point, and SPLINEDIT adds the new point after the last. If you select the first point on an open spline, you have the option of placing the new point before or after the first point.
The point is added, and the spline is refitted through the new set of points.


\section*{Close}

Closes the spline

\section*{Delete}

Removes fit points from a spline and refits the spline through the remaining points.
Kink
Adds a knot and fit point at the selected point on the spline.

\section*{Move}

Moves fit points to a new location.
New Location Moves the selected point to the specified location.


Next Moves selection to the next point.
Previous Moves selection to the previous point.
Select Point Selects a point from the set of fit points.

\section*{Purge}

Removes a spline's fit data from the drawing database. After purging the spline's fit data, the main SPLINEDIT prompt is displayed without the Fit Data option.

\section*{Tangents}

Edits the start and end tangents of a spline.
If the spline is closed, the prompt becomes Specify Tangent or [System Default].

The System Default option calculates the default end tangents.
You can specify a point or use the Tangent or Perpendicular object snap mode to make the spline tangential or perpendicular to existing objects.

Tolerance
Refits the spline to the existing points with new tolerance values.


\section*{Exit}

Returns to the main SPLINEDIT prompt.

\section*{Edit Vertex}

Fine-tunes a spline definition. The following prompts display:
Enter a vertex editing option [Add on page 1837/Delete on page 1838/Elevate order on page 1838/Move on page 1838/Weight on page 1838/eXit on page 1839] <eXit>:

\section*{Add}

Increases the number of control vertices that control a portion of a spline.

SPLINEDIT adds a new control vertex close to the point you select, between the two control vertices affecting that portion of the spline.


Delete
Decreases the number of control vertices that define the spline.

\section*{Elevate Order}

Increases the number of control vertices on the spline.
Entering a value greater than the current value increases the number of control points uniformly across the spline for more localized control. The maximum value is 26 .

\section*{Move}

Relocates a spline's control vertices and purges the fit points.
■ New Location on page 1836
■ Next on page 1837
■ Previous on page 1837
■ Select Point on page 1837

\section*{Weight}

Changes the weight at various control vertices. A larger weight value pulls the spline closer to the control vertex.

New Weight Recalculates the spline based on the new weight value at the selected control point. The larger the integer value, the more the spline is pulled toward the control point.
- Next on page 1837
- Previous on page 1837
- Select Point on page 1837

\section*{Exit}

Returns to the main SPLINEDIT prompt.

\section*{Convert to Polyline}

Converts the spline to a polyline.
The precision value determines how accurately the resulting polyline is to fit to the source spline. Valid values are any integer between 0 and 99 .

NOTE A high precision value may cause performance problems.
The PLINECONVERTMODE system variable determines whether the polylines are created with linear or arc segments.
The conversion in both PEDIT and SPLINEDIT will obey the DELOBJ system variable.

\section*{Reverse}

Reverses the spline's direction. This option is intended primarily for third-party applications.

\section*{Undo}

Cancels the last editing action.

\section*{SPOTLIGHT}

\section*{Quick Reference}

See also:
■ Use Spotlights

Creates a spotlight that emits a directional cone of light.

\section*{Access Methods}


Button
\(\$\) Ribbon: Visualize tab \(>\) Lights panel \(>\) Spot
\(\$\) Menu: View \(>\) Render \(>\) Light \(>\) New Spotlight
\(\$\) Toolbar: Lights

\section*{Summary}

A spotlight distribution casts a focused beam of light like a flashlight, a follow spot in a theater, or a headlight.

\section*{List of Prompts}

The following prompts are displayed.
Specify source location \(\langle 0,0,0\rangle\) : Enter coordinate values or use the pointing device Specify target location \(<1,1,1>\) : Enter coordinate values or use the pointing device

If the LIGHTINGUNITS system variable is set to 0 , the following prompt is displayed:

Enter an option to change [Name on page 1840/Intensity on page 1840/Status on page 1841 /Hotspot on page 1840 /Falloff on page 1840 /shadoW on page 1841/Attenuation on page 1842/Color on page 1843/eXit on page 1843] <eXit>:

If the LIGHTINGUNITS system variable is set to 1 or 2 , the following prompt is displayed:

Enter an option to change [Name on page 1840/Intensity factor on page 1840/Photometry on page 1841/Status on page 1841/Hotspot on page 1840/Falloff on page 1840 /shadoW on page 1841 /Attenuation on page 1842/filterColor on page 1843/eXit on page 1843] <eXit>:

NOTE When the LIGHTINGUNITS system variable is set to 1 or 2 , the Attenuation option has no affect on the creation of the light. It is only maintained for scripting compatibility.

\section*{Name}

Specifies the name of the light. You can use uppercase and lowercase letters, numbers, spaces, hyphens (-), and underscores (_) in the name.

\section*{Intensity/Intensity Factor}

Sets the intensity or brightness of the light. The range is 0.00 to the maximum value that is supported by your system.

\section*{Hotspot}

Specifies the angle that defines the brightest cone of light, which is known to lighting designers as the beam angle. This value can range from 0 to 160 degrees or the equivalent values based on AUNITS.

\section*{Falloff}

Specifies the angle that defines the full cone of light, which is also known as the field angle. This value can range from 0 to 160 degrees. The default is 50
degrees or the equivalent values based onAUNITS. The falloff angle must be greater than or equal to the hotspot angle.

\section*{Status}

Turns the light on and off.

\section*{Photometry}

Photometry is the measurement of the luminous intensities of visible light sources. Photometry is available when the LIGHTINGUNITS system variable is set to 1 or 2 .

In photometry, luminous intensity is a measure of the perceived power emitted by a light source in a particular direction. Luminous flux is the perceived power per unit of solid angle. The total luminous flux for a lamp is the perceived power emitted in all directions. Luminance is the total luminous flux incident on a surface, per unit area.

Intensity Enter an intensity value in candelas, the perceived power in a luminous flux value, or illuminance value for the total luminous flux incident on a surface.
- Candela (symbol: cd) is the SI unit of luminous intensity (perceived power emitted by a light source in a particular direction). \(\mathrm{Cd} / \mathrm{Sr}\)
- Lux (symbol: lx) is the SI unit of illuminance. \(\mathrm{Lm} / \mathrm{m}^{\wedge} 2\)

■ Foot-candle (symbol: fc) is the American unit of illuminance. \(\mathrm{Lm} / \mathrm{ft}^{\wedge} 2\)

Enter \(\mathbf{f}\) to specify the perceived power in a luminous flux value.
If you enter \(\mathbf{i}\), you can specify the intensity of the light based on an illuminance value.
The illuminance value can be specified in either lux or foot-candles. Enter d to specify a distance to use to calculate illuminance.

Color Specify the color of the light based on a color name or a Kelvin temperature. Enter ? to display a list of color names.
Enter a text string using wild card characters to display a partial listing of color names, or an asterisk (*) to display all the possible choices.
If you enter \(\mathbf{k}\), you can specify the color of the light based on a Kelvin temperature value.

\section*{Shadow}

Makes the light cast shadows.
Off Turns off display and calculation of shadows for the light. Turning shadows off increases performance.

Sharp Displays shadows with sharp edges. Use this option to increase performance.

Soft Mapped Displays realistic shadows with soft edges.
■ Map Size. Specifies the amount of memory to use to calculate the shadow map.

■ Softness. Specifies the softness to use to calculate the shadow map.
Soft Sampled Displays realistic shadows with softer shadows (penumbra) based on extended light sources.
Specify the shape of the shadow by entering \(s\) and then the dimensions of the shape. (For example, the radius of the sphere or the length and width of a rectangle.)
Specify the sample size by entering \(\mathbf{a}\).
Specify the visibility of the shape by for the shadow by entering \(\mathbf{v}\).

\section*{Attenuation}

Attenuation Type Controls how light diminishes over distance. The farther away an object is from a spotlight, the darker the object appears. Attenuation is also known as decay.
- None. Sets no attenuation. Objects far from the spotlight are as bright as objects close to the light.
- Inverse Linear. Sets attenuation to be the inverse of the linear distance from the light. For example, at a distance of 2 units, light is half as strong as at the spotlight; at a distance of 4 units, light is one quarter as strong. The default value for inverse linear is half the maximum intensity.
- Inverse Squared. Sets attenuation to be the inverse of the square of the distance from the light. For example, at a distance of 2 units, light is one quarter as strong as at the spotlight; at a distance of 4 units, light is one sixteenth as strong.

Use Limits Specifies whether to use limits.
Attenuation Start Limit Specifies the point where light starts as an offset from the center of the light. The default is 0 .

Attenuation End Limit Specifies the point where light ends as an offset from the center of the light. No light is cast beyond this point. Setting an end limit increases performance where the effect of lighting is so minimal that the calculations are wasted processing time.

\section*{Color/Filter Color}

Controls the color of the light.
True Color Specifies a True Color. Enter in the format R,G,B (red, green, blue).
Index Specifies an ACI (AutoCAD Color Index) color.
HSL Specifies an HSL (hue, saturation, luminance) color.
Color Book Specifies a color from a color book.
Exit
Exits the command.

\section*{STANDARDS}

\section*{Quick Reference}

\section*{See also:}

■ Overview of CAD Standards

Manages the association of standards files with drawings.

\section*{Access Methods}


Button
\(\$\) Ribbon: Tools tab \(>\) Standards panel \(>\) Configure
\(\$\) Menu: Tools \(>\) CAD Standards \(>\) Configure
\(\$\) Toolbar: CAD Standards

\section*{Summary}

Associates the current drawing with one or more standards (DWS) files and lists the plug-ins used to check standards.

A standards plug-in is installed for each of the named objects for which standards can be defined: layers, dimension styles, linetypes, and text styles.

The Configure Standards dialog box is displayed.

\section*{Configure Standards Dialog Box}

\section*{Quick Reference}

See also:
- Define Standards

Associates the current drawing with one or more standards (DWS) files and lists plug-ins used to check standards.

\section*{Access Methods}


Button
\(\$\) Ribbon: Tools tab \(>\) Standards panel \(>\) Configure
\(\$\) Menu: Tools \(>\) CAD Standards \(>\) Configure
8 Toolbar: CAD Standards
两 Command entry: standards

\section*{List of Options}

The following options are displayed.

\section*{Check Standards}

Opens the Check Standards dialog box.

\section*{Settings}

Displays the CAD Standards Settings dialog box, which specifies additional settings for the Configure Standards and Check Standards dialog boxes.

The Configure Standards dialog box contains the following tabs:
- Standards
- Plug-ins

\section*{Standards Tab}

Displays information about the standards files that are associated with the current drawing.

1844 | Chapter 19 S Commands

\section*{Standards Files Associated with the Current Drawing}

Lists all standards (DWS) files that are associated with the current drawing. If conflicts arise between multiple standards in this list (for example, if two standards specify layers of the same name but with different properties), the standards file that is shown first in the list takes precedence.

You can use the shortcut menu to add, remove, or reorder files.

\section*{Add Standards File}

Associates a standards (DWS) file with the current drawing

\section*{Remove Standards File}

Removes a standards file from the list. (Removing a standards file does not delete it but simply dissociates it from the current drawing.)

\section*{Move Up}

Moves a standards file up one position in the list.

\section*{Move Down}

Moves a standards file down one position in the list.

\section*{Description}

Provides summary information about the standards file currently selected in the list. You can add comments and a title to the description by opening the DWS file and using the DWGPROPS command. In the Drawing Properties dialog box, click the Summary tab.

\section*{Plug-ins Tab}

A standards plug-in is installed for each of the named objects for which standards can be defined (layers, dimension styles, linetypes, and text styles).

Plug-ins Used When Checking Standards
Lists the standards plug-ins on the current system.

\section*{Description}

Provides summary information about the standards plug-in currently selected in the list.

\section*{CAD Standards Settings Dialog Box}

\section*{Quick Reference}

See also:
■ Define Standards

Specifies additional settings for the Configure Standards and Check Standards dialog boxes.

\section*{Access Methods}


Button
\(\$\) Ribbon: Tools tab \(>\) Standards panel \(>\) Configure
\(\$\) Menu: Tools \(>\) CAD Standards \(>\) Configure
8 Toolbar: CAD Standards
两 Command entry: standards

\section*{Summary}

Specifies additional settings for the Configure Standards dialog box and the Check Standards dialog box.

\section*{List of Options}

The following options are displayed.

\section*{Notification Settings}

Sets an option for notification about standards violations.

\section*{Disable Standards Notifications}

Turns off notifications for standards violations and for missing standards files.

\section*{Display Alert upon Standards Violation}

Turns on notification for standards violations in the current drawing. An alert is displayed when you commit a standards violation. The alert informs you of how many nonstandard objects you created or edited while making changes to the drawing. Once the alert is displayed, you can choose to fix or not fix
the standards violation. For drawings that use scripts and LISP routines, the alert is not displayed until the script or routine has been completed. (STANDARDSVIOLATION system variable)

\section*{Display Standards Status Bar Icon}

Displays an icon in the status bar when you open a file associated with a standards file and when you create or modify non-standard objects. (STANDARDSVIOLATION system variable)

\section*{Check Standards Settings}

Sets options for fixing violations and ignoring flagged problems.

\section*{Automatically Fix Non-standard Properties}

Sw itches between automatically fixing or not fixing nonstandard objects if a recommended fix is available. Recommended fixes are available only when a nonstandard object has a name that matches a standard object, but different properties. In this case, the properties of the standard object are applied to the nonstandard object. The Checking Complete alert summarizes the number of automatically fixed violations that occur after an audit.

This option is set for each system and applies to all drawings checked on a system.

\section*{Show Ignored Problems}

Switches between displaying or not displaying problems that have been flagged as ignored. If this option is checked, standards violations that have been flagged as ignored are displayed when an audit is performed on the current drawing.

\section*{Preferred Standards File to Use for Replacements}

Provides a list of standards files that control the default selection in the Replace With list in the Check Standards dialog box. Regardless of this setting, if a recommended replacement is found (this is the replacement preceded by a check mark), it is always the default selection. If no recommended replacement is found when a standards file (DWS) is selected in the CAD Standards Settings dialog box, the default selection in the Replace With list is the first replacement item from the selected standards file. If this setting is set to None, and no recommended replacement is found, no items will be selected in the Replace With list.

\section*{STATUS}

\section*{Quick Reference}

\section*{See also:}
- Obtain General Drawing Information

Displays drawing statistics, modes, and extents.

\section*{Access Methods}


Button
\(\$\) Menu: Tools \(>\) Inquiry \(>\) Status
曼 Command entry: 'status for transparent use

\section*{Summary}

All coordinates and distances are displayed by STATUS in the format specified by UNITS.

STATUS reports the number of objects in the current drawing. This includes graphical objects such as arcs and polylines, and nongraphical objects such as layers and linetypes, and block definitions.

In addition to overall drawing statistics and settings, the amount of installed memory free on your system, the amount of disk space available, and the amount of free space in the swap file are also listed.

When used at the DIM prompt, STATUS reports the values and descriptions of all dimensioning system variables.

In addition, STATUS displays the following information.

\section*{List of Options}

The following options are displayed.
Model or Paper Space Limits Are Displays the grid limits defined by LIMITS. The first line shows the \(X Y\) coordinate of the limit's lower-left corner, stored in the LIMMIN system variable. The second line shows the \(X Y\) coordinate of
the limit's upper-right corner, stored in the LIMMAX system variable. The notation Off to the right of the \(Y\) coordinate value indicates that limits checking is set to 0 .

Model or Paper Space Uses Displays the drawing extents, which includes all objects in the database and can exceed the grid limits. The first line shows the \(X Y\) coordinate of the lower-left corner of the extents. The second line shows the \(X Y\) coordinate of the upper-right corner. The notation Over to the right of the \(Y\) coordinate value indicates that the drawing extends outside the grid limits.

Display Shows Lists the portion of the drawing extents visible in the current viewport. The first line shows the \(X Y\) coordinate of the display's lower-left corner. The second line shows the \(X Y\) coordinate of the upper-right corner.

Insertion Base Is (INSBASE system variable)
Snap Resolution Is Sets the snap spacing for the current viewport. (SNAPUNIT system variable)

Grid Spacing Is Specifies the grid spacing ( X and Y ) for the current viewport. (GRIDUNIT system variable)

Current Space Shows whether model space or paper space is active.
Current Layout Displays "Model" or the name of the current layout.
Current Layer Sets the current layer.
(CLAYER system variable)
Current Color Sets the color of new objects.
(CECOLOR system variable)
Current Linetype Sets the linetype of new objects.
(CELTYPE system variable)
Current Material Sets the material of new objects.
(CMATERIAL system variable)
Current Lineweight Sets the lineweight of new objects.
(CELWEIGHT system variable)
Current Plot Style (CPLOTSTYLE system variable)
Current Elevation Stores the current elevation of new objects relative to the current UCS.
(ELEVATION system variable)

Thickness Sets the current 3D thickness.
(THICKNESS system variable)
Fill, Grid, Ortho, Qtext, Snap, Tablet Shows whether these modes are on or off.

Object Snap Modes Lists the running object snap modes specified by OSNAP.
Free Dwg Disk Space Lists the amount of disk space available on the drive specified for this program's temporary files.

Free Temp Disk Space Lists the amount of disk space available on the drive specified for temporary files.

Free Physical Memory Lists the amount of installed memory free on your system.

Free Swap File Space Lists the amount of free space in your swap file.

\section*{STLOUT}

\section*{Quick Reference}

See also:
■ Export Stereolithography STL Files
Stores solids in an ASCII or binary file.

\section*{Summary}

The FACETRES system variable determines how the solid is triangulated. A higher value creates a finer mesh that more accurately represents the model. This also results in a much larger file.

Select solids or watertight meshes
You can select blocks or external references (xrefs) that contain solids or watertight meshes. Only solids and watertight meshes of the selected blocks of xrefs are included in the STL file. All other geometry is discarded.
Create a binary STL file? [Yes/No] <Yes>: To create a STL file, enter y or press
Enter. To create an ASCII file, enter n
The Create STL File Dialog Box displays.

The file is created with the .st/ file name extension. The STL file format is compatible with stereolithography apparatus (SLA). The solid data is transferred to the SLA as a faceted representation of the model. The facets consist of a set of triangles (with outward pointing normals) that approximate the faces of the model. From the faceted data, the SLA workstation produces a set of contours that defines a series of layers representing the part to be built.

\section*{Create STL File Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Export Stereolithography STL Files

Saves a drawing as an STL file.

\section*{Access Methods}

\section*{锉 Command entry: stlout}

\section*{Summary}

The Create STL File dialog box is a standard file selection dialog box. It displays when you use the 3DPRINT or STLOUT commands.

The STL file format is preferred by 3D printing service providers. If you have prepared your drawing for 3D printing, you can save it with the STLOUT command, rather than the 3DPRINT command.

The FACETRES system variable determines how the solid is triangulated. A higher value creates a finer mesh that more accurately represents the model. This also results in a much larger file.

\section*{Quick Reference}

\section*{See also:}

■ Resize or Reshape Objects

Stretches objects crossed by a selection window or polygon.

\section*{Access Methods}


Button
\(\oint\) Ribbon: Home tab \(>\) Modify panel \(>\) Stretch
\(\$\) Menu: Modify > Stretch
\(\$\) Toolbar: Modify

\section*{Summary}

Objects that are partially enclosed by a crossing window are stretched. Objects that are completely enclosed within the crossing window, or that are selected individually, are moved rather than stretched. Several objects such as circles, ellipses, and blocks, cannot be stretched.


\section*{List of Prompts}

The following prompts are displayed.
Select objects to stretch by crossing-window or crossing-polygon...
Select objects: Use the cpolygon option or the crossing object selection method, and press Enter. Individually selected objects and objects that are completely enclosed by the crossing selection are moved rather than stretched.


STRETCH moves only the vertices and endpoints that lie inside the crossing selection, leaving those outside unchanged. STRETCH does not modify 3D solids, polyline width, tangent, or curve-fitting information.

\section*{Base Point}

Specify base point or [Displacement] <last displacements: Specify a base point or enter displacement coordinates

Specify second point or <use first point as displacement>: Specify a second point, or press Enter to use the previous coordinates as a displacement

\section*{Displacement}

Specify displacement <last value>: Enter displacement values for \(X, Y\) (and optionally Z)


If you enter a second point, the objects are stretched the vector distance from the base point to the second point. If you press Enter at the Specify Second Point of Displacement prompt, the first point is treated as an \(X, Y, Z\) displacement.

\section*{STYLE}

\section*{Quick Reference}

See also:
■ Overview of Text Styles

Creates, modifies, or specifies text styles.

\section*{Access Methods}

Button
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Text Style
\(\$\) Menu: Format \(>\) Text Style
Toolbar: Text
Command entry: 'style for transparent use

\section*{Summary}

The Text Style dialog box is displayed.
If you enter -style at the Command prompt, options are displayed.
You can specify the current text style to determine the appearance of all new text. A text style includes the font, size, obliquing angle, orientation, and other text characteristics.

\section*{Text Style Dialog Box}

\section*{Quick Reference}

See also:
■ Overview of Text Styles

Creates, modifies, or specifies text styles.


1854 | Chapter 19 S Commands

\section*{Access Methods}

\section*{A. \\ Button}
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Text Style
\(\$\) Menu: Format \(>\) Text Style
\(\$\) Toolbar: Text
並 Command entry: style (or 'style for transparent use)
Summary
Creates, modifies, or sets named text styles.
List of Options
The following options are displayed.

\section*{Current Text Style}

Lists the current text style.

\section*{Styles}

Displays the list of styles in the drawing. A icon before the style name indicates that the style is .

Style names can be up to 255 characters long. They can contain letters, numbers, and the special characters dollar sign (\$), underscore (_), and hyphen (-).

\section*{Style List Filter}

The drop-down list specifies whether all styles or only the styles in use are displayed in the styles list.

\section*{Preview}

Displays sample text that changes dynamically as you change fonts and modify the effects.

\section*{Font}

Changes the style's font.

NOTE If you change the orientation or font file of an existing text style, all text objects with that style use the new values when the drawing is regenerated.

\section*{Font Name}

Lists the font family name for all registered TrueType fonts and all compiled shape (SHX) fonts in the Fonts folder. When you select a name from the list, the program reads the file for the specified font. The file's character definitions are loaded automatically unless the file is already in use by another text style. You can define several styles that use the same font. For more information, see "Assign Text Fonts".

\section*{Font Style}

Specifies font character formatting, such as italic, bold, or regular. When Use Big Font is selected, this option changes to Big Font Name and is used to select a Big Font file name.

\section*{Use Big Font}

Specifies an Asian-language Big Font file. Only SHX files are valid file types for creating Big Fonts.
For more information, see "Use Text Fonts for International Work".

\section*{Size}

Changes the size of the text.

\section*{Annotative}

Specifies that the text is. Click the information icon to learn more about the annotative objects.

\section*{Match Text Orientation to Layout}

Specifies that the orientation of the text in paper space viewports matches the orientation of the layout. This option is unavailable if the option is cleared.

\section*{Height or Paper Text Height}

Sets the text height based on the value you enter. Entering a height greater than 0.0 sets the text height for this style automatically. If you enter 0.0 , the text height defaults to the last text height used, or the value stored in the drawing template file.
TrueType fonts might be displayed at a smaller height than SHX fonts with the same height setting.
If the annotative option is selected, the value entered sets the text height in paper space.

See "Set Text Height" for more information.

\section*{Effects}

Modifies characteristics of the font, such as its height, width factor, and obliquing angle and whether it is displayed upside down, backwards, or vertically aligned.

\section*{Upside Down}

Displays the characters upside down.

\section*{Backwards}

Displays the characters backwards.

\section*{Vertical}

Displays the characters aligned vertically. Vertical is available only if the selected font supports dual orientation. Vertical orientation is not available for TrueType fonts.

\section*{Width Factor}

Sets the character spacing. Entering a value less than \(\mathbf{1 . 0}\) condenses the text. Entering a value greater than 1.0 expands it.

\section*{Oblique Angle}

Sets the obliquing angle of the text. Entering a value between -85 and 85 italicizes the text.

NOTE TrueType fonts using the effects described in this section might appear bold on the screen. Onscreen appearance has no effect on plotted output. Fonts are plotted as specified by applied character formatting.

\section*{Set Current}

Sets the style selected under Styles to current.

\section*{New}

Displays the New Text Style dialog box and automatically supplies the name " stylen" (where \(n\) is the number of the supplied style) for the current settings. You can accept the default or enter a name and choose OK to apply the current style settings to the new style name.

\section*{Delete}

Deletes unused text styles.

\section*{Apply}

Applies style changes made in the dialog box to the current style and to the text of the current style in the drawing.

\section*{-STYLE}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Text Styles

\section*{List of Prompts}

The following prompts are displayed.
Enter name of text style or [?] <current>: Enter a style name, enter?, or press Enter Text Style Name Specifies the text style name. To define a style that uses Big Fonts, you can use long file names that do not contain commas. Commas are used to separate SHX files and Big Font files for defining a Big Font file.
Enter a TrueType font family name or an SHX font file name. If you do not enter a file name extension, this program searches for an SHX file. If the file is not located, Windows substitutes the first located registered TrueType font. All long file names except those containing commas are accepted at the prompt. The comma is reserved for the Big Font naming convention: an SHX file followed by a comma (,), followed by the Big Font file name. A space is interpreted as part of the font name, not as a carriage return.
If you enter annotative, you are prompted to create an text style.
Tilde (~) Displays the Select Font File dialog box.
In the Select Font File dialog box, valid types include SHX and TTF. The character definitions of the selected font file are loaded automatically unless the file is already in use by another text style. You can define several styles that use the same font file.

Match Text Orientation to Layout If you enter yes the current text style orientation in paper space viewports matches the layout.

Height of Text If you enter a height of \(\mathbf{0 . 0}\), you are prompted for the text height each time you enter text using this style. Entering a height greater than
\(\mathbf{0 . 0}\) sets the Text Height (Non annotative), entering a height greater than \(\mathbf{0 . 0}\) sets the Paper Text Height (Annotative), for this style.

Width Factor Entering a value less than \(\mathbf{1 . 0}\) condenses the text. Entering a value greater than 1.0 expands it.

Obliquing Angle Entering a value between -85 and 85 obliques the text.
Vertical Vertical is available only if the selected font supports dual orientation.
?-List Text Styles Lists the text styles available in the drawing.
At the Enter Text Style(s) to List prompt, entering the name of a style displays the name, font file, height, width factor, obliquing angle, and generation of the style and exits the command. Entering an asterisk (*) or pressing Enter displays the height, width factor, obliquing angle, and generation (whether text is drawn backwards, upside-down, vertically, or normally) of each style, and then exits the command.

\section*{STYLESMANAGER}

\section*{Quick Reference}

See also:
- Manage Plot Style Tables

Displays the Plot Style Manager, where you can revise plot style tables.

\section*{Access Methods}


Bution
\(\$\) Menu: Application menu \(>\) Print \(>\) Manage Plot Styles

\section*{Summary}

In the folder, you can start the Add-a-Plot-Style-Table wizard, or double-click an STB or CTB file to open the Plot Style Table Editor.

■ Double-click the Add-a-Plot-Style-Table wizard to add plot style tables.
- Double-click a plot style table (STB or CTB file) to start the Plot Style Table Editor.

\section*{Add-a-Plot-Style-Table Wizard}

\section*{Quick Reference}

\section*{See also:}

■ Choose a Type of Plot Style Table

Adds new plot style tables.

\section*{Access Methods}
\(\$\) Menu: File > Plot Style Manager
挫 Command entry: stylesmanager

\section*{Summary}

Plot style tables contain and define plot styles, which can be assigned to objects. When complete, the wizard produces an STB or CTB file depending on the type of table you are creating. You can edit these files in the Plot Style Table Editor. To use your new plot style table, the selected options on the Plot and Publish tab of the Options dialog box must be appropriate for the type of plot style table (named or color-dependent) you created.

You can create a plot style table from scratch, use an existing plot style table as a starting point, or use settings from a PCP, PC2, or CFG file.

You can create either a named plot style table or a color-dependent plot style table. With a named plot style table, you can add and define plot styles as you like; the file name has the extension .stb. A color-dependent plot style table creates 255 plot styles based on color; the file name has the extension .ctb. You can specify whether you want to use a plot style table for new drawings or for pre-AutoCAD 2000 drawings when they are saved in a later format.

\section*{Plot Style Table Editor}

\section*{Quick Reference}

\section*{See also:}
- Manage Plot Style Tables

Modifies the plot styles in a plot style table.

\section*{Access Methods}
\(\$\) Menu: File > Plot Style Manager
㟇 Command entry: stylesmanager

\section*{Summary}

If the plot style table is attached to a layout or the Model tab, and you change a plot style, any objects that use that plot style are affected. If the plot style table is color-dependent, the file extension is CTB. If the plot style table is named, the file extension is STB. For information, see "Use Plot Styles to Control Plotted Objects".

Open the Plot Style Table Editor with any of the following methods:
- Double-click a CTB or STB file in the Plot Style Manager.

■ Right-click a CTB or STB file in the Plot Style Manager, and then choose Open from the shortcut menu.

■ Choose Plot Style Table Editor from the Finish screen in the Add Plot Style Table wizard.
- In the Page Setup dialog box under Plot Style Table (Pen Assignments), select a plot style and click the Edit button.

■ In the Current Plot Style and Select Plot Style dialog boxes, choose Editor.
- General
- Table View and Form View

\section*{General Tab (Plot Style Table Editor)}

\section*{Quick Reference}

See also:
- Use Plot Styles to Control Plotted Objects

Lists the plot style table file name, description, version number, location (path name), and table type.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Plot Style Table Editor - acad.stb} \\
\hline \multicolumn{5}{|l|}{General Table View \begin{tabular}{l|l|l|}
\hline
\end{tabular}} \\
\hline \multicolumn{5}{|c|}{Plot style table file name:} \\
\hline \multicolumn{5}{|l|}{Description \(\quad \square\)} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
File Information \\
Number of styles: 2 \\
Path: C:\Users \auto \AppData \Roaming \Autodesk \AutoCAD 2011\R18.1...\acad.stb \\
Version: 1.0 \\
Regular
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\(\square\) Apply global scale factor to non-ISO linetypes} \\
\hline \multicolumn{5}{|l|}{Save \& Close Cancel Help \(^{\text {H }}\)} \\
\hline
\end{tabular}

\section*{Access Methods}

Menu: File > Plot Style Manager
Command entry: stylesmanager

\section*{List of Options}

The following options are displayed.
Plot Style Table File Name Displays the name of the plot style table file you are editing.

\section*{Description}

Provides a description area for a plot style table.

\section*{File Information}

Displays information about the plot style table you are editing: number of plot styles, path, and version number of the Plot Style Table Editor.

\section*{Apply Global Scale Factor to Non-ISO Linetypes}

Scales all the non-ISO linetypes and fill patterns in the plot styles of objects controlled by this plot style table.

\section*{Scale Factor}

Specifies the amount to scale non-ISO linetypes and fill patterns.

\section*{Delete R14 Color Mapping Table}

Deletes color mapping tables that are used when you open pre-AutoCAD 2000 drawings. Named plot style tables that you create using acadr14.cfg, PCP, or PC2 files contain plot styles that are created from your AutoCAD Release 14 pen mappings. Color-dependent plot style tables also have color mapping tables. Color mapping tables are used to map plot styles to colors and thus to objects of each color when opening pre-AutoCAD 2000 drawings. While the color mapping table exists, you cannot add, delete, or rename plot styles in that plot style table.

If you delete a color mapping table, plot styles cannot be automatically assigned to objects when pre-AutoCAD 2000 drawings are opened for the first time.

If you delete the mapping table, the plot style table becomes an ordinary plot style table and is no longer useful for applying plot styles to old drawings. It continues to be useful for new drawings.

\section*{Table View and Form View Tabs (Plot Style Table Editor)}

\section*{Quick Reference}

\section*{See also:}
- Use Plot Styles to Control Plotted Objects


\section*{Access Methods}

Menu: File > Plot Style Manager
Command entry: stylesmanager

\section*{Summary}

Lists all of the plot styles in the plot style table and their settings. Plot styles are displayed in columns from left to right. In general, the Table View tab is convenient if you have a small number of plot styles. If you have a large number of plot styles, the Form view is more convenient because the plot style names are listed at the left and the properties of the selected style are displayed to the right. The first plot style in a named plot style table is NORMAL and represents an object's default properties (no plot style applied). You cannot modify or delete the NORMAL style.

\section*{List of Options}

The following options are displayed.
Name Displays the names of plot styles in named plot style tables. Plot styles in named plot style tables can be changed. Plot style names in color-dependent plot style tables are tied to object color and cannot be changed. The program accepts up to 255 characters for style names.

\section*{Description}

Provides a description for each plot style.

\section*{Properties}

Specifies the settings for the new plot style you are adding to the current plot style table.

\section*{Color}

Specifies the plotted color for an object. The default setting for plot style color is Use Object Color. If you assign a plot style color, the color overrides the object's color at plot time.

You can choose Select Color to display the Select Color dialog box and select one of the 255 AutoCAD Color Index (ACI) colors, a true color, or a color from a color book. The color you specify is displayed in the plot style color list as Custom Color. If the plot device does not support the color you specify, it plots the nearest available color or, in the case of monochrome devices, black.

\section*{Enable Dithering}

Enables dithering. A plotter uses dithering to approximate colors with dot patterns, giving the impression of plotting more colors than available in the AutoCAD Color Index (ACI). If the plotter does not support dithering, the dithering setting is ignored.

Dithering is usually turned off in order to avoid false line typing that results from dithering of thin vectors. Turning off dithering also makes dim colors more visible. When you turn off dithering, the program maps colors to the nearest color, resulting in a smaller range of colors when plotting.

\section*{Convert to Grayscale}

Converts the object's colors to grayscale if the plotter supports grayscale. If you clear Convert to Grayscale, the RGB values are used for object colors. Dithering is available whether you use the object's color or assign a plot style color.

\section*{Use Assigned Pen Number (Pen Plotters Only)}

Specifies a pen to use when plotting objects that use this plot style. Available pens range from 1 to 32 . If plot style color is set to Use Object Color, or you are editing a plot style in a color-dependent plot style table, the value is set to Automatic.

If you specify 0 , the field updates to read Automatic. The program determines the pen of the closest color to the object you are plotting using the information
you provided under Physical Pen Characteristics in the Plotter Configuration Editor.

\section*{Virtual Pen Number}

Specifies a virtual pen number between 1 and 255. Many non-pen plotters can simulate pen plotters using virtual pens. For many devices, you can program the pen's width, fill pattern, end style, join style, and color/screening from the front panel on the plotter.

Enter 0 or Automatic to specify that the program should make the virtual pen assignment from the AutoCAD Color Index.
The virtual pen setting in a plot style is used only by non-pen plotters and only if they are configured for virtual pens. If this is the case, all the other style settings are ignored and only the virtual pen is used. If a non-pen plotter is not configured for virtual pens, then the virtual and physical pen information in the plot style is ignored and all the other settings are used.
You can configure your non-pen plotter for virtual pens under Vector Graphics on the Device and Document Settings tab in the PC3 Editor. Under Color Depth, select 255 Virtual Pens.

\section*{Screening}

Specifies a color intensity setting that determines the amount of ink placed on the paper while plotting. Selecting 0 reduces the color to white. Selecting 100 displays the color at its full intensity. In order for screening to work, the Enable Dithering option must be selected.

\section*{Linetype}

Displays a list with a sample and a description of each linetype. If you assign a plot style linetype, the linetype overrides the object's linetype at plot time.

\section*{Adaptive Adjustment}

Adjusts the scale of the linetype to complete the linetype pattern. If you don't select Adaptive Adjustment, the line might end in the middle of a pattern. Turn off Adaptive Adjustment if linetype scale is important. Turn on Adaptive Adjustment if complete linetype patterns are more important than correct linetype scaling.

\section*{Lineweight}

Displays a sample of the lineweight as well as its numeric value. You can specify the numeric value of each lineweight in millimeters. If you assign a plot style lineweight, the lineweight overrides the object's lineweight at plot time.

\section*{Line End Style}

If you assign a line end style, the line end style overrides the object's line end style at plot time.

\section*{Line Join Style}

If you assign a line join style, the line join style overrides the object's line join style at plot time.

\section*{Fill Style}

If you assign a fill style, the fill style overrides the object's fill style at plot time.

\section*{Add Style}

Adds a new plot style to a named plot style table.
The plot style is based on Normal, which uses an object's properties and doesn't apply any overrides by default. You must specify the overrides you want to apply after you create the new plot style. You cannot add a new plot style to a color-dependent plot style table; a color-dependent plot style table has 255 plot styles mapped to color. You also cannot add a plot style to a named plot style table that has a translation table.

\section*{Delete Style}

Deletes the selected style from the plot style table.
Objects assigned this plot style retain the plot style assignment but plot as Normal because the plot style is no longer defined in the plot style table. You cannot delete a plot style from a named plot style table that has a translation table, or from a color-dependent plot style table.

\section*{Edit Lineweights}

Displays the Edit Lineweights dialog box. There are 28 lineweights available to apply to plot styles in plot style tables. If the lineweight you need doesn't exist in the list of lineweights stored in the plot style table, you can edit an existing lineweight. You can't add or delete lineweights from the list in the plot style table.

\section*{Save As}

Displays the Save As dialog box and saves the plot style table to a new name.

\section*{Edit Lineweights Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Use Plot Styles to Control Plotted Objects

Modifies the values of existing lineweights.


\section*{Access Methods}
\(\$\) Menu: File > Plot Style Manager
䱂 Command entry: stylesmanager

\section*{List of Options}

The following options are displayed.

\section*{Lineweights}

Lists the lineweights in the plot style table. You can modify existing lineweights, but you can't add or delete them. If you change a lineweight value, other plot styles that use the lineweight also change.

When you edit a lineweight value, it is rounded and displayed with a precision of four places past the decimal point. Lineweight values must be zero or a positive number. If you create a lineweight with a zero width, the line is plotted as thin as the plotter can create it. The maximum possible lineweight value is 100 millimeters (approximately four inches).

\section*{Units for Listing}

Specifies the units in which to display the list of lineweights.

\section*{Edit Lineweight}

Makes the selected lineweight available for editing.

\section*{Sort Lineweights}

Sorts the list of lineweights by value. If you change lineweight values, choose Sort Lineweights to resort the list.

\section*{SUBTRACT}

\section*{Quick Reference}

\section*{See also: \\ ■ Create Composite Objects}

Combines selected 3D solids or 2D regions by subtraction.

\section*{Access Methods}


\section*{Button}
\(\$\) Ribbon: Solid Modeling tab \(>\) Boolean panel \(>\) Subtract
\(\$\) Menu: Modify \(>\) Solid Editing \(>\) Subtract
8 Toolbar: Modeling

\section*{Summary}

With SUBTRACT, you can create a 3D solid by subtracting one set of existing 3D solids from another, overlapping set. You can create a 2 D region object by subtracting one set of existing region objects from another, overlapping set. You can select only regions for use with this command.

NOTE Using SUBTRACT with 3D surfaces is not recommended. Use the SURFTRIM on page 1886 command instead.

Select the objects that you want to keep, press Enter, then select the objects that you want to subtract.


Objects in the second selection set are subtracted from objects in the first selection set. A single new 3D solid, surface, or region is created.

solid to be subtracted from

solid to subtract

region to be subtracted from

solid after SUBTRACT
region to subtract


region after SUBTRACT

You can only subtract regions from other regions that are on the same plane. However, you can perform simultaneous SUBTRACT actions by selecting sets of regions on different planes. The program then produces separate subtracted
regions on each plane. Regions for which there are no other selected coplanar regions are rejected.

You cannot use SUBTRACT with mesh objects. However, if you select a mesh object, you will be prompted to convert it to a 3D solid or surface.

\section*{List of Prompts}

The following prompts are displayed.
Select objects (to subtract from) Specifies the 3D solids, surfaces, or regions to be modified by subtraction.

Select objects (to subtract) Specifies the 3D solids, surfaces, or regions to subtract.

\section*{SUNPROPERTIES}

\section*{Quick Reference}

\section*{See also:}

■ Sun and Sky Simulation
Displays the Sun Properties window.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render tab \(>\) Sun \& Location panel \(\ggg\) Sun Properties
\(\$\) Menu: View \(>\) Render \(>\) Light \(>\) Sun Properties
\(\$\) Toolbar: Lights

\section*{Summary}

The Sun Properties window provides different panels to specify sun and sky settings and controls.

The Sun Properties window is displayed.

\section*{Sun Properties Window}

\section*{Quick Reference}

See also:
■ Sun and Sky Simulation

Sets and modifies the properties of the sun.


\section*{Access Methods}


Button

Ribbon: Render tab \(>\) Sun \& Location panel \(\ggg\) Sun Properties
Menu: View \(>\) Render \(>\) Light \(>\) Sun Properties
Toolbar: Lights
Command entry: sunproperties

\section*{List of Options}

The following options are displayed.

\section*{General}

Sets the general properties of the sun.
Status Turns the sun on and off. If lighting is not enabled in the drawing, this setting has no effect.

Intensity Factor Sets the intensity or brightness of the sun. The range is from 0 (no light) to maximum. The higher the number, the brighter the light.

Color (Standard lighting workflow only) Controls the color of the light.
Shadows Turns display and calculation of shadows for the sun on and off. Turning shadows off increases performance.

\section*{Sky Properties}

The sky general properties are as follows:
Status Determines if the sky illumination is computed at render time. This has no impact on the viewport illumination or the background. It simply makes the sky available as a gathered light source for rendering. Note this does not control the background. Values are Sky Off, Sky Background, Sky Background and Illumination. [Sky Off] is default.

Intensity Factor Provides a way to magnify the effect of the skylight. Values are 0.0-MAX. [1.0] is default.

Haze Determines the magnitude of scattering effects in the atmosphere. Values are 0.0-15.0. [0.0] is default.

\section*{Horizon}

This category of properties pertains to the appearance and location of the ground plane.

Height Determines the absolute position of the ground plane relative to world zero. This parameter represents a world-space length and should be formatted in the current length unit. Values are -10.0 to +10.0 [0.0] is default.

Blur Determines the amount of blurring between ground plane and sky. Values are 0-10. [.1] is default.

Ground Color Determines the color of the ground plane.

\section*{Advanced}

This category of properties pertains to various artistic effects.

Night Color Specifies the color of the night sky.
Aerial Perspective Specifies if aerial perspective is applied. Values are On/Off.
Visibility Distance Specifies the distance at which 10\% haze occlusion results. Values are 0.0-MAX.

\section*{Sun Disk Appearance}

This category of properties pertains to the background only. They control the appearance of the sun disk.

Disk Scale Specifies the scale of the sun disk ( \(1.0=\) correct size \()\).
Glow Intensity Specifies the intensity of the sun glow. Values are 0.0-25.0.
Disk Intensity Specifies the intensity of the sun disk. Values are 0.0-25.0.

\section*{Sun Angle Calculator}

Sets the angle of the sun.
Date Displays the current date setting.
Time Displays the current time setting.
Daylight Saving Displays the current setting for daylight saving time.
Azimuth Displays the angle of the sun along the horizon clockwise from due north. This setting is read-only.
Altitude Displays the angle of the sun vertically from the horizon. The maximum is 90 degrees, or directly overhead. This setting is read-only.

Source Vector Displays the coordinates of the direction of the sun. This setting is read-only.

\section*{Rendered Shadow Details}

Specifies the properties of the shadows.
Type Displays the setting for shadow type. This setting is read-only when display of shadows is turned off. The selections are Sharp, Soft (mapped) which display the Map size option and Soft (area) which displays the Samples option. Soft (area) is the only option for the sun in photometric workflow (LIGHTINGUNITS \(=1\) or 2 ).

Map size (Standard lighting workflow only) Displays the size of the shadow map. This setting is read-only when display of shadows is turned off. Values are 0-1000.

Samples Specifies the number of samples to take on the solar disk. This setting is read-only when display of shadows is turned off. Values are 0-1000.

Softness Displays the setting for the appearance of the edges of shadows. This setting is read-only when display of shadows is turned off. Values are 1-10.

\section*{Geographic Location}

Displays the current geographic location settings. This information is read-only. When a city is not stored with latitude and longitude, the city does not appear in the list.

Use the Edit Geographic Location button to open the Geographic Location dialog box.

See also:
- Standard and Photometric Lighting Workflow

\section*{SUNPROPERTIESCLOSE}

\section*{Quick Reference}

\section*{See also:}
- Sun and Sky Simulation

Closes the Sun Properties window.

\section*{Summary}

The Sun Properties window is closed.

\section*{SURFBLEND}

\section*{Quick Reference}

\section*{See also: \\ ■ Blend a Surface}

Creates a continuous blend surface between two existing surfaces.

\section*{Access Methods}
\(\otimes\) Ribbon: Surface tab \(>\) Create panel \(>\) Blend
\(\$\) Menu: Draw \(>\) Modeling \(>\) Surfaces \(>\) Blend
\(\$\) Toolbar: Surface Creation

\section*{Summary}

When you blend two surfaces together, you specify surface continuity and bulge magnitude.
Set SURFACEASSOCIATIVITY on page 2537 to 1 to create a relationship between the blend surface and the originating curves.


\section*{List of Prompts}

The following prompts are displayed.

\section*{Select Surface Edge}

Selects an edge subobject or a surface or region (not the surface itself) as the first and second edges.

\section*{Continuity}

Measures how smoothly surfaces flow into each other. The default is G0. Select a value or use the grip to change the continuity.


\section*{Bulge Magnitude}

Sets the roundness of the blend surface edge where it meets the originating surface. The default is 0.5 . Valid values are between 0 and 1 .

\section*{SURFEXTEND}

\section*{Quick Reference}

See also:
■ Extend a Surface

Lengthens a surface by a specified distance.

\section*{Access Methods}
\(\$\) Ribbon: Surface tab \(>\) Edit panel \(>\) Extend
\(\$\) Menu: Modify \(>\) Surface Editing \(>\) Extend
\(\$\) Toolbar: Surface Creation

Summary


\section*{List of Prompts}

The following prompts are displayed.
Specify Extension Distance Specifies the extension length.
Expression Enter a formula or equation to specify the length of the surface extension. See Constrain a Design with Formulas and Equations.

\section*{Modes}

■ Extend - Extrudes the surface in a way that tries to mimic and continue the shape of the surface.

■ Stretch - Extrudes the surface without trying to mimic and continue the shape of the surface.

\section*{Creation Type}

■ Merge - Extends the surface the specified distance without creating a new surface.
- Append - Creates a new extension surface that is adjacent to the original surface. If the originating surface is a NURBS surface, the new extension surface will also be a NURBS surface.

\section*{SURFFILLET}

\section*{Quick Reference}

See also:
- Fillet a Surface

Creates a filleted surface between two other surfaces.

\section*{Access Methods}
\(\$\) Ribbon: Surface tab \(>\) Edit panel \(>\) Fillet
\(\$\) Menu: Draw \(>\) Modeling \(>\) Surfaces \(>\) Fillet
\(\$\) Toolbar: Surface Creation

\section*{Summary}

The fillet surface has a constant radius profile and is tangent to the original surfaces. The original surfaces are automatically trimmed to connect the edges of the fillet surface.


\section*{List of Prompts}

The following prompts are displayed.

First and Second Surface or Region Specifies the first and second surfaces or regions.

Radius Specifies fillet radius. Use the Fillet grip or enter a value to change the radius. You cannot enter a value that is smaller than the gap between the surfaces. If no radius value is entered, the FILLETRAD3D on page 2321 system variable value is used.

Trim Surface Trims the original surfaces or regions to the edges of the fillet surface.

Expression Enter a formula or equation to specify the fillet radius. See Constrain a Design with Formulas and Equations.

\section*{SURFNETWORK}

\section*{Quick Reference}

See also:
- Create Network Surfaces

Creates a surface in the space between several curves in the \(U\) and \(V\) directions (including surface and solid edge subobjects).

\section*{Access Methods}


Button
\(\$\) Ribbon: Surface tab \(>\) Create panel \(>\) Network
\(\$\) Menu: Draw \(>\) Modeling \(>\) Surfaces \(>\) Network
\(\$\) Toolbar: Surface Creation

\section*{Summary}

A network surface can be created between a network of curves or between the edges of other 3D surfaces or solids.


The surface will be dependent on the curves or edges from which it was created if the SURFACEASSOCIATIVITY on page 2537 system variable is set to 1 .

\section*{List of Prompts}

The following prompts display:
Select Curves or Surface Edges in the First Direction Select a network of open curves, open surface edges, or region edges (not the surfaces or regions) for the U or V direction.

Select Curves or Surface Edges in the Second Direction Select a network of open curves, open surface edges, or region edges (not the surfaces or regions) for the U or V direction.

Bulge Magnitude Sets the roundness of the network surface edge where it meets the originating surface. Valid values are between 0 and 1 . The default is 0.5 . This option displays only if a lofting edge belongs to a 3D solid or surface (not a curve).

\section*{SURFOFFSET}

\section*{Quick Reference}

See also:
■ Offset a Surface

Creates a parallel surface a specified distance from the original surface.

\section*{Access Methods}


Button
\(\$\) Ribbon: Surface tab \(>\) Create panel \(>\) Offset
\(\$\) Menu: Draw \(>\) Modeling \(>\) Surfaces \(>\) Offset
Toolbar: Offset Surface

Summary
Reverse the direction of the offset with the Flip Direction option.


\section*{List of Prompts}

The following prompts display.
Specify Offset Distance Specifies the distance between the offset surface and the original surface.

Flip Direction Reverses the offset direction shown by the arrows.


Both Sides Offsets the surface in both directions (creates two new surfaces in instead of one).


Solid Creates a solid from the offset. This is similar to the THICKEN on page 1942 command.


Connect Connects multiple offset surfaces, if the original surfaces are connected.


Expression Enter a formula or equation to specify the distance of the surface offset. See Constrain a Design with Formulas and Equations.

\section*{SURFPATCH}

\section*{Quick Reference}

See also:
- Patch a Surface

Creates a new surface by fitting a cap over a surface edge that forms a closed loop.

\section*{Access Methods}


Button
\(\$\) Ribbon: Surface tab \(>\) Create panel \(>\) Patch
\(\$\) Menu: Draw \(>\) Modeling \(>\) Surfaces \(>\) Patch
Toolbar: Surface Creation

\section*{Summary}

You can also add an additional curve over the closed loop to constrain and guide the patch surface.


When you create a patch surface, you can specify surface continuity and bulge magnitude. If the SURFACEASSOCIATIVITY on page 2537 system variable is set to 1 , associativity is maintained between the patch surface and the originating edges or curves.

\section*{List of Prompts}

The following prompts are displayed.

\section*{Select Surface Edges or Curves}

Select one or more closed surface edges (not the surface itself) or one or more curves. You cannot choose both edges and curves at the same time.

\section*{Continuity}

Measures how smoothly surfaces flow into each other. The default is G0. See Understand Surface Continuity and Bulge Magnitude. Select a value or use the grip to change the continuity.

\section*{Bulge Magnitude}

For best results, enter a value between 0 and 1 to set the roundness of the patch surface edge where it meets the originating surface. The default is 0.5 .

\section*{Constrain Geometry}

Uses additional guide curves to shape the patch surface. Guide curves can be curves or points.

\section*{SURFSCULPT}

\section*{Quick Reference}

See also:
- Convert a Group of Surfaces to a 3D Solid

Trims and combines surfaces that bound a watertight area to create a solid.

\section*{Access Methods}


Button
\(\$\) Ribbon: Surface tab \(>\) Edit panel \(>\) Sculpt
Toolbar: Surface Editing

\section*{Summary}

The SURFSCULPT command automatically combines and trims a collection of surfaces that enclose a watertight area to create a solid.


NOTE The area enclosed by the surfaces must be watertight and the surfaces must have a continuity of G0 or the SURFSCULPT command cannot complete.

The SURFSCULPT command also works with solid and mesh objects. If you are working with meshes, the operation uses the SMOOTHMESHCONVERT on page 2515 setting.

\section*{SURFTRIM}

\section*{Quick Reference}

\section*{See also:}
- Trim and Untrim Surfaces

Trims portions of a surface where it meets another surface or type of geometry.
Access Methods


Button
\(\$\) Ribbon: Surface tab \(>\) Edit panel \(>\) Trim
\(\$\) Menu: Modify \(>\) Surface Editing \(>\) Trim
\(\$\) Toolbar: Surface Editing

\section*{Summary}

Trims portions of a surface where it meets or bisects a curve, region, or another surface.


If the SURFACEASSOCIATIVITY on page 2537 system variable is set to 1 , the trimmed surface updates whenever the trimming edges are modified.

\section*{List of Prompts}

The following prompts are displayed.
Select Surfaces or Regions to Trim Select one or more surfaces or regions to trim.

Select Cutting Curves, Surfaces, or Regions The curves that can be used as a trimming edge includes lines, arc, circles, ellipses, 2D polylines, 2D spline fit polylines, 2D curve fit polylines, 3D polylines, 3D spline-fit polylines, splines, and helixes. You can also use surfaces and regions as trimming boundaries

Select Area to Trim Select one or more regions on a surface to remove.

Extend Controls whether the cutting surface is trimmed to meet the edge of the trimmed surface.

Projection Direction The cutting geometry is projected onto the surface. Controls the projection angle as follows:
\begin{tabular}{ll}
\hline Automatic \begin{tabular}{l} 
When trimming a surface or region in plan, parallel view \\
(for example, the default Top, Front, and Right view), the \\
cutting geometry is projected onto the surface in the view \\
direction.
\end{tabular} \\
\begin{tabular}{l} 
When trimming a surface or region with a planar curve in \\
an angled parallel or perspective view, the cutting geo- \\
metry is projected onto the surface in a direction perpen- \\
dicular to the curve plane. \\
When trimming a surface or region with a 3D curve in an \\
angled, parallel or perspective view (for example, the de- \\
fault perspective view), the cutting geometry is projected \\
onto the surface in a direction parallel to the \(Z\) direction \\
of the current UCS.
\end{tabular} \\
\hline View & \begin{tabular}{l} 
Projects the geometry based on the current view.
\end{tabular} \\
\hline Projects the geometry in the \(+Z\) and - \(Z\) axis of the current UCS. \\
\hline None & \begin{tabular}{l} 
The surface will only be trimmed if the cutting curve lies on \\
the surface.
\end{tabular} \\
\hline
\end{tabular}

\section*{SURFUNTRIM}

\section*{Quick Reference}

See also:
■ Trim and Untrim Surfaces

Replaces surface areas removed by the SURFTRIM command.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Edit panel \(>\) Untrim
\(\$\) Menu: Modify \(>\) Surface Editing \(>\) Untrim
\(\$\) Toolbar: Surface Editing

\section*{Summary}

If the trimmed edge is dependent on another surface edge that has also been trimmed, you may not be able to fully restore the trimmed area.


NOTE SURFUNTRIM does not restore areas removed by the SURFAUTOTRIM system variable and PROJECTGEOMETRY.

\section*{List of Prompts}

The following prompts are displayed.
Select Edges on Surfaces to Un-Trim [SURface] Select the edges of trimmed areas to replace or enter SUR to untrim surfaces.

Select Surfaces to Un-Trim Select a surface to replace all trimmed areas.

\section*{SWEEP}

\section*{Quick Reference}

\section*{See also:}
- Create a Solid or Surface by Sweeping

Creates a 3D solid or surface by sweeping a 2D or 3D object or subobject along a path.

\section*{Access Methods}


Button

8 Ribbon: Solid tab \(>\) Solid panel \(>\) Sweep
\(\$\) Ribbon: Surface tab \(>\) Create panel \(>\) Sweep
Toolbar: Modeling
Menu: Draw \(>\) Modeling \(>\) Sweep

\section*{Summary}

Creates a solid or surface by sweeping an open or closed, planar or non-planar curve (profile) along an open or closed path. Open curves create surfaces and closed curves create solids or surfaces, depending on the specified mode.


You can use the following objects and paths when creating a swept solid or surface:

Objects for sweeping
\begin{tabular}{ll} 
Objects that Can Be Swept & \begin{tabular}{l} 
Objects that Can Be Used as a Sweep \\
Path
\end{tabular} \\
\hline \(2 D\) and \(3 D\) splines & \(2 D\) and \(3 D\) splines
\end{tabular}
\begin{tabular}{ll}
\hline Objects that Can Be Swept & \begin{tabular}{l} 
Objects that Can Be Used as a Sweep \\
Path
\end{tabular} \\
\hline 2D polylines & 2D and 3D polylines \\
\hline 2D solids & Solid, surface and mesh edge subobjects \\
\hline 3D solid face subobjects & Helices \\
\hline Arcs & Arcs \\
\hline Circles & Circles \\
\hline Ellipses & Ellipses \\
\hline Elliptical arcs & Elliptical arcs \\
\hline Lines & Lines \\
\hline Regions & \\
\hline
\end{tabular}

Solid, surface and mesh edge su-
bobjects

Trace

NOTE Select face and edge subobjects by pressing Ctrl while you select them.
To automatically delete the original geometry used to create the object, use the DELOBJ system variable. For associative surfaces on page 2537, the DELOBJ system variable is ignored and the originating geometry is not deleted.

\section*{List of Prompts}

The following prompts are displayed.
Objects to Sweep Specifies an object to use as the sweep profile.
Sweep Path Specifies the sweep path based on the object you select.
Mode Controls whether the sweep action creates a solid or a surface. Surfaces are swept as either NURBS surfaces or procedural surfaces, depending on the SURFACEMODELINGMODE on page 2539 system variable.

Alignment Specifies whether the profile is aligned to be normal to the tangent direction of the sweep path.

NOTE If the profile is not perpendicular (normal) to the tangent of the start point of the path, then the profile automatically aligns. Enter No at the alignment prompt to prevent this.

Base Point Specifies a base point for the objects to be swept.
Scale Specifies a scale factor for a sweep operation. The scale factor is uniformly applied to the objects that are swept from the start to the end of the sweep path.
■ Reference. Scales the selected objects based on the length you reference by picking points or entering values.

Twist Sets a twist angle for the objects being swept. The twist angle specifies the amount of rotation along the entire length of the sweep path.
■ Bank. Specifies whether the curve(s) being swept will naturally bank (rotate) along a 3D sweep path (3D polyline, spline, or helix).

\section*{SYSWINDOWS}

\section*{Quick Reference}

See also:
- Switch Between Open Drawings

Arranges windows and icons when the application window is shared with external applications.

\section*{Access Methods}


Button

Ribbon: View tab \(>\) Window panel \(>\) Tile Horizontally

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [Cascade on page 1893/tile Horizontal on page 1893/tile Vertical on page 1893/Arrange icons on page 1893]: Enter an option Cascade

Organizes a large number of windows by overlapping them for easier access.
Tile Horizontal Arranges open drawings in horizontal, nonoverlapping windows.

When several drawings are open, you can view them in rows. Additional columns are added only when there's not enough space.

Tile Vertical Arranges windows in vertical, nonoverlapping tiles.
When several drawings are open, you can view them in columns. Additional rows are added only when there's not enough space.

Arrange Icons Arranges the window icons.
Arranges multiple open drawings, when minimized, in a line at the bottom of the workspace.

\section*{T Commands}

\section*{TABLE}

\section*{Quick Reference}

See also:
- Create and Modify Tables

Creates an empty table object.

\section*{Access Methods}
\(\square\)
Table
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Insert Table
\(\$\) Menu: Draw > Table
\(\$\) Toolbar: Draw

\section*{Summary}

A table is a compound object that contains data in rows and columns. It can be created from an empty table or a table style. A table can also be linked to data in a Microsoft Excel spreadsheet.


The Insert Table dialog box is displayed.
If you select a table cell when the ribbon is active, the Table ribbon contextual tab displays.

If you enter -table at the Command prompt, options are displayed.

\section*{Insert Table Dialog Box}

\section*{Quick Reference}

See also:
- Create and Modify Tables

Creates an empty table object.

\section*{Access Methods}


Table
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Insert Table
\(\$\) Menu: Draw \(>\) Table
\(\$\) Toolbar: Draw
挫 Command entry: table

\section*{Summary}

Inserts an empty table in the drawing.

\section*{List of Options}

The following options are displayed.

\section*{Table Style}

Choose a table style from within the current drawing from which to create a table. You can create a new table style by clicking the button next to the drop-down list.

\section*{Insert Options}

Specifies the method for inserting your table.

\section*{Start from Empty Table}

Creates an empty table that can be filled in with data manually.

\section*{Start from Data Link}

Creates a table from data in an external spreadsheet.

\section*{Start from Data Extraction}

Launches the Data Extraction wizard.

\section*{Preview}

Controls whether a preview displays. If you start from an empty table, the preview displays an example of the table style. If you create a table link, the preview displays the resulting table. Clear this option to improve performance when working with large tables.

\section*{Insertion Behavior}

Specifies the location of the table.
Specify Insertion Point
Specifies the location of the upper-left corner of the table. You can use the pointing device or enter coordinate values at the Command prompt. If the table style sets the direction of the table to read from the bottom up, the insertion point is the lower-left corner of the table.

\section*{Specify Window}

Specifies a size and a location for the table. You can use the pointing device or enter coordinate values at the Command prompt. When this option is selected, the number of columns and rows and the column width and row height depend on the size of the window and the column and row settings.

\section*{Column \& Row Settings}

Set the number and size of columns and rows.

\section*{Columns Icon}

Indicates columns.

\section*{Rows Icon}

Indicates rows.

\section*{Columns}

Specifies the number of columns. When the Specify Window option is selected and you specify a column width, the Auto option is selected, and the number of columns is controlled by the width of the table. If a table style containing a starting table has been specified, then you can choose the number of additional columns you would like added to that starting table.

\section*{Column Width}

Specifies the width of the columns. When the Specify Window option is selected and you specify the number of columns, the Auto option is selected, and the column width is controlled by the width of the table. The minimum column width is one character.

\section*{Data Rows}

Specifies the number of rows. When the Specify Window option is selected and you specify a row height, the Auto option is selected, and the number of rows is controlled by the height of the table. A table style with a title row and a header row has a minimum of three rows. The minimum row height is one line. If a table style containing a starting table has been specified, then you can choose the number of additional data rows you would like added to that starting table.

\section*{Row Height}

Specifies the height of the rows in number of lines. The height of a line is based on the text height and the cell margin, which are both set in the table style. When the Specify Window option is selected and you specify the number of rows, the Auto option is selected, and the row height is controlled by the height of the table.

\section*{Set Cell Styles}

For table styles that do not contain a starting table, specifies a cell style for rows in the new table.

\section*{First Row Cell Style}

Specifies a cell style for the first row in the table. The Title cell style is used by default.

\section*{Second Row Cell Style}

Specifies a cell style for the second row in the table. The Header cell style is used by default.

\section*{All Other Row Cell Styles}

Specifies a cell style for all other rows in the table. The Data cell style is used by default.

\section*{Table Options}

For table styles that contain a starting table, specifies the table elements from the starting table that are retained upon insertion.

\section*{Label Cell Text}

Retains text from the Header or Title rows in the starting table in the newly-inserted table.

\section*{Data Cell Text}

Retains text from the Data rows in the starting table in the newly-inserted table.

Blocks
Retains blocks from the starting table in the newly-inserted table.
Retain Cell Style Overrides
Retains cell style overrides from the starting table in the newly-inserted table.

\section*{Data Links}

Retains data links from the starting table in the newly-inserted table.

\section*{Fields}

Retains fields from the starting table in the newly-inserted table.
Formulas
Retains formulas from the starting table in the newly-inserted table.

\section*{Table Ribbon Contextual Tab}

\section*{Quick Reference}

See also:
- Create and Modify Tables

\section*{Access Methods}


Table
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Insert Table
\(\$\) Menu: Draw > Table
锉 Command entry: table

\section*{List of Options}

The following options are displayed.

\section*{Rows/Columns Panel}

Insert Row Above Inserts a row above the currently selected cell or row.
Insert Row Below Inserts a row below the currently selected cell or row
Delete Row(s) Deletes the currently selected row(s).
Insert Column Left Inserts a column to the left of the currently selected cell or row.

Insert Column Right Inserts a column to the right of the currently selected cell or row.

Delete Column(s) Deletes the currently selected column(s).

\section*{Merge Panel}

Merge Cells Merges the selected cells into one large cell.
Unmerge Cells Unmerges cells that were previously merged.

\section*{Cell Styles Panel}

Match Cell Applies the properties of a selected cell to other cells.

Cell Styles Lists all cell styles contained within the current table style. The cell styles Title, Header, and Data are always contained within any table style, and cannot be deleted or renamed.

Cell Borders Sets the properties of the borders of the selected table cells.
Alignment Specifies alignment for the content within cells. Content is middle-, top-, or bottom-aligned with respect to the top and bottom borders of the cell. Content is center-, left-, or right-aligned with respect to the left and right borders of the cell.

Background Fill Specifies the fill color. Select None or a background color, or click Select Color to display the Select Color dialog box.

\section*{Cell Format Panel}

Cell Locking Locks or unlocks cell content and/or formatting from editing.
Data Format Displays a list of data types (Angle, Date, Decimal Number, and so on) that you can format for table rows.

Preview Displays a preview of the option you selected in the Format list.
Format Depending on the data type you select, displays a list of relevant format types. For example, if you selected Angle as the data type, options such as Decimal Degrees, Grads, Radians, and so on are displayed.

Precision For Angle, Decimal Number and Points data types only, sets the precision for applicable formats. For example, if you select Angle as the data type and Radians as the format type, options such as Current Precision, 0.0r, \(0.00 \mathrm{r}, 0.000 \mathrm{r}\), and so on are displayed.

List Separator For a Point data type only, displays a list of options (comma, semicolon, or colon) that you can use to separate list items.

Symbol For Currency data types only, displays a list of currency symbols that you can use.
Append Symbol In Currency data types, places the currency symbol after the number. In the Percentage data types, places the percent symbol after the number.

Negative Numbers For Currency data types only, lists options for displaying negative numbers.

X, Y, and Z For a Point data type only, filters X, Y, or Z coordinates.
Additional Format For Angle, Decimal Number, Point and Whole Number data types only, opens the Additional Format dialog box, where you set additional formatting options for table cells.

Examples For the Date data type only, displays a list of date display options for the date option you selected in the Format field. Click a date in the Format field to see an example.

\section*{Insert Panel}

Block The Insert dialog box is displayed, where you can insert a block into the currently selected table cell.

Field The Field dialog box is displayed, where you can insert a field into the currently selected table cell.

Formula Inserts a formula into the currently selected table cell. A formula must start with an equal sign (=). The formulas for sum, average, and count ignore empty cells and cells that do not resolve to a numeric value. Other formulas display an error (\#) if any cell in the arithmetic expression is empty or contains nonnumeric data.

Manage Cell Contents Displays the content of the selected cell. You can change the order of cell content as well as change the direction in which cell content will appear.

\section*{Data Panel}

Link Cell The New and Modify Excel Link dialog box is displayed, where you can link data from a spreadsheet created in Microsoft Excel to a table within your drawing.

Download from Source Updates data in the table cell that is referenced by changed data in an established data link.
-TABLE

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Tables

\section*{List of Prompts}

The following prompts are displayed.
Current table style: "Standard" Cell width: 2.5000 Cell height: 1 line(s)
Enter number of columns on page 1903 or [Auto/from Style/data Link] <5>:

\section*{Number of Columns}

Specifies the number of columns.

\section*{Number of Rows}

Specifies the number of rows.
Insertion Point Specifies the location of the upper-left corner of the table. If the table style sets the direction of the table to read from the bottom up, the insertion point is the lower-left corner of the table.

Width Specifies a width for the table columns.
Height Specifies a height for the table rows.
Style Specifies a table style for the table. The specified table style must contain a starting table. For more information, see Work with Table Styles.

Auto Specifies a size and a location for the table. When this option is selected, you can set the number of columns or the column width, but not both. The number of rows and the row height depend on the size of the window you specify.
First Corner Specifies the location of the upper-left corner of the table. If the table style sets the direction of the table to read from the bottom up, the insertion point is the lower-left corner of the table.

Height Specifies a height for the table rows.
Auto
Specifies a size and a location for the table.
Number of Rows Specifies the number of rows.

\section*{From Style}

Specifies a table style for creating the table. You can use the pointing device or enter coordinate values at the Command prompt. The specified table style must contain a starting table. For more information about starting tables, see Work with Table Styles.

Insertion Point Specifies the location of the upper-left corner of the table. If the table style sets the direction of the table to read from the bottom up, the insertion point is the lower-left corner of the table.

Style Specifies a table style for the table.
Entering [?] displays a list of table styles available in your drawing.
Rows Specifies the number of rows you want to add to the table stored in the specified table style. The rows are added to the rows already in the specified table.

Columns Specifies the number of columns you want to add to the table stored in the specified table style. The columns are added to the columns already in the specified table.

\section*{Options}

Specifies special formatting options that can be inserted in the table.
Label Text Retains rows with a cell type of Label found in the table style's starting table. The cell type is set in the Properties palette. The Header and Title cell styles use the Label cell type by default.

Data Text Retains rows with a cell type of Data found in the table style's starting table. The cell type is set in the Properties palette. The Data cell style uses the Data cell type property by default.

Formulas Retains formulas found in the specified table style's starting table.
Fields Retains fields found in the specified table style's starting table. For more information, see Use Fields in Text.

Data Links Retains data links found in the specified table style's starting table. For more information, see Link a Table to External Data.

Blocks Retains blocks found in the specified table style's starting table.
Cell Style Overrides Retains cell style overrides found in the specified table style's starting table. For more information, see Work with Table Styles.

\section*{Data Link}

Specifies a data link from which a table is created.
Entering [?] displays a list of data links available in your drawing.

\section*{Manage Cell Content Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Create and Modify Tables

Displays the content of the selected cell.


\section*{Access Methods}
\(\$\) Toolbar: Table
Shortcut menu: Right-click while editing any single cell, and click Manage Cell Content.

\section*{List of Options}

The following options are displayed.

\section*{Cell Content List Box}

Lists all text and/or blocks in the selected cell in order of appearance. Text is indicated with the label Table Cell Text. Blocks are indicated with Block preceding the name of the block.

\section*{Content Order Buttons \\ Move Up}

Moves the selected list box content up in the display order.

\section*{Move Down}

Moves the selected list box content down in the display order.
Delete
Removes the selected list box content from the table cell.

\section*{Layout Mode Options}

Changes the direction in which cell content will appear.
Flow
Places cell content based on the width of the cell.

\section*{Stacked Horizontal}

Places cell content horizontally, regardless of cell width.

\section*{Stacked Vertical}

Places cell content vertically, regardless of cell height.

\section*{Content Spacing}

Determines the spacing between text and/or blocks within the cell.

\section*{TABLEDIT}

\section*{Quick Reference}

See also:
■ Add Text and Blocks to Tables

Edits text in a table cell.

\section*{Access Methods}

Shortcut menu: With a table cell selected, right-click and click Edit Cell Text.
Pointing device: Double-click inside a table cell.
Pick a table cell: Click inside a table cell, and enter text or use the Text Formatting toolbar or the Options shortcut menu to make changes

\section*{TABLEEXPORT}

\section*{Quick Reference}

See also:
- Create and Modify Tables

Exports data from a table object in CSV file format.

\section*{Access Methods}

Shortcut menu: With a table selected, right-click and click Export.

\section*{Summary}

A standard file selection dialog box is displayed. Table data is exported in the comma-separated (CSV) file format. All formatting of the table and its text is lost.

\section*{TABLESTYLE}

\section*{Quick Reference}

See also:
■ Work with Table Styles

Creates, modifies, or specifies table styles.

\section*{Access Methods}


Butlon
\(\$\) Ribbon: Annotate tab \(>\) Tables \(\ggg\) Table Style
\(\$\) Menu: Format > Table Style
\(\$\) Toolbar: Styles

\section*{Summary}

The Table Style dialog box is displayed.
You can specify the current table style to determine the appearance of all new tables. A table style includes settings for background colors, margins, borders, text, and other table characteristics.

\section*{Table Style Dialog Box}

\section*{Quick Reference}

See also:
■ Work with Table Styles

Sets the current table style and creates, modifies, and deletes table styles.


\section*{Access Methods}


Button


1908 | Chapter 20 T Commands

8 Toolbar: Styles
嵫 Command entry: tablestyle

\section*{List of Options}

The following options are displayed.

\section*{Current Table Style}

Displays the name of the table style that is applied to tables you create.
Styles
Displays a list of table styles. The current style is highlighted.
List
Controls the contents of the Styles list.

\section*{Preview Of}

Displays a preview image of the style that is selected in the Styles list.

\section*{Set Current}

Sets the table style selected in the Styles list as the current style. All new tables are created using this table style.

New
Displays the Create New Table Style dialog box, in which you can define new table styles.

Modify
Displays the Modify Table Style dialog box, in which you can modify table styles.

Delete
Deletes the table style selected in the Styles list. A style that is being used in the drawing cannot be deleted.

\section*{Create New Table Style Dialog Box}

\section*{Quick Reference}

See also:
■ Work with Table Styles

Specifies a name for the new table style and specifies the existing table style on which the new table style will be based.


\section*{Access Methods}


Button
\(\otimes\) Ribbon: Annotate tab \(>\) Tables \(\ggg\) Table Style
\(\$\) Menu: Format \(>\) Table Style
\(\$\) Toolbar: Styles
Command entry: tablestyle

\section*{List of Options}

The following options are displayed.
New Style Name
Names the new table style.

\section*{Start With}

Specifies an existing table style whose settings are the default for the new table style.

Continue Displays the New Table Style dialog box, in which you define the new table style.

\section*{New and Modify Table Style Dialog Boxes}

\section*{Quick Reference}

See also:
- Work with Table Styles

Defines a new table style or modifies an existing table style.


\section*{Access Methods}
\(\$\) Ribbon: Annotate tab \(>\) Tables \(\ggg\) Table Style
\(\$\) Menu: Format \(>\) Table Style
\(\$\) Toolbar: Styles
㟇 Command entry: tablestyle

\section*{List of Options}

The following options are displayed.

\section*{Starting Table}

Allows you to specify a table in your drawing to use as an example for formatting this table style. Once you select a table, you can specify the structure and contents you want copied from that table to the table style.
With the Remove Table icon, you can remove a table from the current specified table style.

\section*{General \\ Table Direction}

Sets the direction of a table. Down creates a table that reads from top to bottom. Up creates a table that reads from bottom to top.
- Down: The title row and the column heads row are at the top of the table. When you click Insert Rows and click Below, the new row is inserted below the current row.
- Up: The title row and the column heads row are at the bottom of the table. When you click Insert Rows and click Below, the new row is inserted above the current row.

\section*{Preview}

Displays an example of the effect of the current table style settings.

\section*{Cell Styles}

Defines a new cell style or modifies an existing cell style. You can create any number of cell styles.

\section*{Cell Style Menu}

Displays cell styles already found within the table.

\section*{Create Cell Styles Button}

Launches the Create New Cell Style dialog box.

\section*{Manage Cell Styles Button}

Launches the Manage Cell Styles dialog box.

\section*{Cell Style Tabs}

Set the appearance of the data cells, the cell text, and the cell borders.

\section*{General Tab}


\section*{Properties}

\section*{Fill Color}

Specifies the background color of the cell. The default is None.
You can choose Select Color to display the Select Color dialog box.

\section*{Alignment}

Sets justification and alignment for the text in the table cell. Text is middle-, top-, or bottom-aligned with respect to the top and bottom borders of the cell. Text is center-justified, left-justified, or right-justified with respect to the left and right borders of the cell.
See "Justify Multiline Text" in the User's Guide for an illustration of the nine options.

\section*{Format}

Sets data type and formatting for the Data, Column Heading, or Title rows in a table. Clicking this button displays the Table Cell Format dialog box, where you can further define formatting options.

Type
Specifies the cell style as either a label or data.

\section*{Margins}

Controls the spacing between the border of the cell and the cell content. The cell margin settings apply to all cells in the table. The default setting is 0.06 (imperial) and 1.5 (metric).

\section*{Horizontal}

Sets the distance between the text or block in the cell and the left and right cell borders.

\section*{Vertical}

Sets the distance between the text or block in the cell and the top and bottom cell borders.

\section*{Merge cells on row/column creation}

Merges any new row or column created with the current cell style into one cell. You can use this option to create a title row at the top of your table.

\section*{Text Tab}


\section*{Text Style}

Lists the available text styles.

\section*{Text Style Button}

Displays the Text Style Dialog Box where you can create or modify text styles. (DIMTXSTY system variable)

\section*{Text Height}

Sets the text height. The default text height for data and column head cells is 0.1800 . The default text height for the table title is 0.25 .

\section*{Text Color}

Specifies the color of the text. Choose Select Color at the bottom of the list to display the Select Color dialog box.

\section*{Text Angle}

Sets the text angle. The default text angle is 0 degrees. You can enter any angle between -359 and +359 degrees.

\section*{Borders Tab}


\section*{Lineweight}

Sets the lineweight to be applied to the borders you specify by clicking a border button. If you use a heavy lineweight, you may have to increase the cell margins.

Linetype
Sets the linetype to be applied to the borders you specify. Choose Other to load a custom linetype.

\section*{Color}

Sets the color to be applied to the borders you specify by clicking a border button. Choose Select Color to display the Select Color dialog box.

\section*{Double Line}

Displays table borders as double lines.

\section*{Spacing}

Determines the spacing for double line borders. The default spacing is 0.1800 .

\section*{Border Buttons}

Controls the appearance of the borders of the cells. The border properties are lineweight and color of the gridlines.

\section*{All Borders}

Applies the border properties settings to all borders.

\section*{Outside Border}

Applies the border properties settings to the outside border.
Inside Border

Applies the border properties settings to the inside border.

\section*{Bottom Border}

Applies the border properties settings to the bottom borders.
Left Border
Applies the border properties settings to the left borders.

\section*{Top Border}

Applies the border properties settings to the top borders.

\section*{Right Border}

Applies the border properties settings to the right borders.
No Border
Hides borders.

\section*{Cell Style Preview}

Displays an example of the effect of the current table style settings.

\section*{Create New Cell Style Dialog Box}

\section*{Quick Reference}

See also:
■ Work with Table Styles

Specifies a name for the new cell style and specifies the existing cell style on which the new cell style will be based.


\section*{Access Methods}

Ribbon: Annotate tab \(>\) Tables \(\ggg\) Table Style
\(\$\) Menu: Format \(>\) Table Style
\(\$\) Toolbar: Styles
锉 Command entry: tablestyle
List of Options
The following options are displayed.
New Style Name
Names the new cell style.
Start With
Specifies an existing cell style whose settings are the default for the new cell style.

Continue Returns you to the New Table Style dialog box, in which you define the new cell style.

\section*{Manage Cell Styles Dialog Box}

\section*{Quick Reference}

See also:
■ Work with Table Styles

Displays all cell styles within the current table style and allows you to create or delete a cell style.


\section*{Access Methods}
\(\otimes\) Ribbon: Annotate tab \(>\) Tables \(\ggg\) Table Style
\(\$\) Menu: Format > Table Style
Toolbar: Styles
Command entry: tablestyle

\section*{List of Options}

The following options are displayed.

\section*{Cell Styles}

Lists all cell styles contained within the current table style. The cell styles Title, Header, and Data are always contained within any table style.

\section*{New}

Displays the Create New Cell Style dialog box. From here, you can create a new cell style to be contained within the current table style.

\section*{Rename}

Allows you to give a new name to the selected cell style. The Title, Header, and Data cell styles cannot be renamed.

\section*{Delete}

Allows you to delete the selected cell style.
Cell Style Preview
Displays an example of the effect of the current cell style settings.

\section*{Table Cell Format Dialog Box}

\section*{Quick Reference}

See also:
- Work with Table Styles

The options displayed here change based on the selected data type and format you select.


\section*{Access Methods}
\(\otimes\) Ribbon: Annotate tab \(>\) Tables \(\ggg\) Table Style
\(\$\) Menu: Format \(>\) Table Style
8 Toolbar: Styles
锉 Command entry: tablestyle

\section*{List of Options}

The following options are displayed.
Data Type Displays a list of data types (Angle, Date, Decimal Number, and so on) that you can format for table rows.

Preview Displays a preview of the option you selected in the Format list.

Format Depending on the data type you select, displays a list of relevant format types. For example, if you selected Angle as the data type, options such as Decimal Degrees, Grads, Radians, and so on are displayed.

Precision For Angle, Decimal Number, and Points data types only, sets the precision for applicable formats. For example, if you select Angle as the data type and Radians as the format type, options such as Current Precision, 0.0r, \(0.00 \mathrm{r}, 0.000 \mathrm{r}\), and so on are displayed.

List Separator For a Point data type only, displays a list of options (comma, semicolon, or colon) that you can use to separate list items.

Symbol For Currency data types only, displays a list of currency symbols that you can use.

Append Symbol In Currency data types, places the currency symbol after the number. In the Percentage data types, places the percent symbol after the number.

Negative Numbers For Currency data types only, lists options for displaying negative numbers.

X, Y, and Z Coordinates For a Point data type only, filters \(X, Y\), or \(Z\) coordinates.

Additional Format For Angle, Decimal Number, Point, and Whole Number data types only, opens the Additional Format dialog box, where you set additional formatting options for table cells.

Examples For the Date data type only, displays a list of date display options for the date option you selected in the Format field. Click a date in the Format field to see an example.

\section*{Additional Format Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Work with Table Styles

Provides additional formatting options for fields and table cells.

\section*{Access Methods}
```

$\$$ Ribbon: Annotate tab $>$ Tables \ggg Table Style
$\$$ Menu: Format > Table Style
$\%$ Toolbar: Styles
巢 Command entry: tablestyle

```

\section*{List of Options}

The following options are displayed.

\section*{Current Value}

Displays the value in base drawing units.

\section*{Preview}

Displays updates to the format as you change the conversion factor and other settings.

\section*{Conversion Factor}

Specifies the conversion factor to use on the current value. The default is 1 for no conversion.

\section*{Additional Text}

Specifies a prefix or a suffix for the value.

\section*{Number Separators}

Specifies a decimal separator and the formatting for numbers over 1000.
Decimal Specifies the separator for decimal values. Select a period, a comma, or a space.

Thousands Inserts a comma to group thousands in a field value.

\section*{Zero Suppression}

Controls the suppression of leading and trailing zeros, and of feet and inches that have a value of zero.

Leading Suppresses leading zeros in all decimal values. For example, 0.5000 becomes . 5000 .

Trailing Suppresses trailing zeros in all decimal values. For example, 12.5000 becomes 12.5 , and 30.0000 becomes 30 .
\(\mathbf{0}\) Feet Suppresses the feet portion of a feet-and-inches value when the distance is less than one foot. For example, \(0^{\prime}-61 / 2^{\prime \prime}\) becomes \(61 / 2^{\prime \prime}\).

0 Inches Suppresses the inches portion of a feet-and-inches value when the distance is an integral number of feet. For example, \(1^{\prime}-0\) " becomes \(1^{\prime}\).

\section*{TABLET}

\section*{Quick Reference}

\section*{See also:}
- Digitizing Tablets

Calibrates, configures, and turns on and off an attached digitizing tablet.

\section*{Access Methods}
\$ Menu: Tools > Tablet

\section*{List of Options}

The following options are displayed.
Enter an option [ON on page 1922/OFF on page 1922/CAL on page 1922/CFG on page 1925]:

\section*{On}

Turns on Tablet mode. Setting the TABMODE system variable to 1 also turns on Tablet mode. Pressing Ctrl+T on some systems turns Tablet mode on and off.

\section*{Off}

Turns off Tablet mode. Setting the TABMODE system variable to 0 also turns off Tablet mode. Pressing Ctrl+T on some systems turns Tablet mode on and off.

\section*{Cal}

Calibrates the digitizer with a paper drawing or photograph, creating the tablet transformation, which is the mapping of points from the tablet to the coordinate drawing system. Calibration is digitizing points on the drawing and mapping them to their real coordinates.

Calibration can be performed in model space or paper space. The Cal option turns on Tablet mode in the space in which the tablet is calibrated. When the space is changed, the Cal option turns off Tablet mode.
The paper should be flat (with no bumps or wrinkles) and securely fastened to the digitizing tablet. The paper can be oriented at any angle.

The points you enter cannot be duplicates. The points need not be the origin on either axis, and you can enter as many points as you like. The more points you enter, the more accurate the drawing will be.

If you enter only two points, the program automatically computes an orthogonal transformation.

If you enter three or more points, the program computes the transformation in each of the three transformation types (Orthogonal, Affine, and Projective) to determine which best fits the calibration points. If you enter more than four points, computing the best-fitting projective transformation can take a long time. You can cancel the process by pressing Esc.

When the computations are complete, the program displays a table with the number of calibration points and a column for each transformation type.

If there have been no failures of projection transformation, the program prompts you to choose a transformation type.

Only transformation types for which the outcome was Success, Exact, or Canceled are included in this prompt. A projective transformation can be specified even if it was canceled. The program uses the result computed at the time you canceled.

Orthogonal Specifies translation, uniform scaling, and rotation with two calibration points.

Use Orthogonal for dimensionally accurate paper drawings and paper drawings in which the portion to be digitized is long and narrow, with most points confined to single lines.

NOTE You must specify the lower-left point location before specifying the upper-right point location.

Affine Specifies arbitrary linear transformation in two dimensions consisting of translation, independent \(X\) - and \(Y\)-scaling, rotation, and skewing with three calibration points.
Use Affine when horizontal dimensions in a paper drawing are stretched with respect to vertical dimensions, and lines that are supposed to be parallel actually are parallel.
The RMS (root mean square) error reported after calibration measures how close the program has come to making a perfect fit. Affine should be used if the RMS is small.

Projective Specifies a transformation equivalent to a perspective projection of one plane in space onto another plane with four calibration points. A projective transformation provides a limited form of what cartographers call rubber sheeting, in which different portions of the tablet surface are stretched by varying amounts. Straight lines map into straight lines. Parallel lines do not necessarily stay parallel.

Projective transformation corrects parallel lines that appear to converge.

Repeat Table Redisplays the computed table, which rates the transformation types.

\section*{Transformation Table}

Reports the number of calibration points and provides information about each transformation type.

\section*{Outcome of Fit}

Reports the outcome of fit for each of the transformation types. If the outcome of fit is not Success or Exact for any of the transformation types, the program reports failure of the entire calibration process and ends the command. The remaining entries in each column are blank unless Outcome of Fit is Success.

Exact Indicates the correct number of points for a valid transformation.
Success Indicates more than enough points. The program succeeded in fitting a transformation to the data.

Impossible Indicates not enough points.
Failure Indicates enough points, but the program was unable to fit a transformation to the points, usually because some points were colinear or coincident.

Canceled Indicates that the fit process was canceled. This outcome occurs only with the projective transformation.

\section*{RMS Error}

Reports the RMS (root mean square) error, which measures how close the program has come to finding a perfect fit. The goal is the smallest RMS error.

\section*{Standard Deviation}

Reports the standard deviation of the residuals. If it is near zero, the residual at each calibration point is about the same.

\section*{Largest Residual/At Point}

Reports the point at which the mapping is least accurate. The residual is the distance between where the point was mapped during transformation and where it would be mapped if the fit were perfect. The distance is given in the current linear units.

\section*{Second-Largest Residual/At Point}

Reports the point at which the mapping is second-least accurate. The residual is the distance between where the point was mapped during transformation and where it would be mapped if the fit were perfect. The distance is given in the current linear units.

\section*{Cfg}

Designates or realigns the tablet menu areas or designates a small portion of a large tablet as a screen pointing area.

If tablet menus are in use and the same number of menus is selected, the following prompts are displayed:
Do you want to realign tablet menus? [Yes/No] <N>: Entery or \(\mathbf{n}\) or press Enter
Digitize upper-left corner of menu area \(n\) : Digitize a point (1)
Digitize lower-left corner of menu area \(n\) : Digitize a point (2)
Digitize lower-right corner of menu area \(n\) : Digitize a point (3)


In the prompt, \(n\) is the menu number (1-4).
The printed menu form must be affixed to the tablet surface, and the requested points must be digitized. The set of three points must form a 90-degree angle. Tablet menu areas can be skewed at any angle.
After all interaction concerning tablet menus is complete, the following prompt is displayed:

Do you want to respecify the screen pointing area? [Yes/No] < N>: Entery or n or press Enter

If you enter \(\mathbf{y}\), the following prompts are displayed:
Digitize lower-left corner of the pointing area: Digitize a point
Digitize upper-right corner of the pointing area: Digitize a point
A small portion of the tablet's surface is designated as the fixed screen pointing area.

Do you want to specify the Floating Screen Pointing area? [Yes/No] <N>: Enter y or \(\mathbf{n}\) or press Enter
If you responded \(\boldsymbol{y}\) to the previous prompt, respond to the following prompt:
Do you want the Floating Screen Area to be the same size as the Fixed Screen Pointing Area? [Yes/No] <Y>: Entery or n or press Enter

If you responded \(\mathbf{n}\) to the previous prompt, respond to the following prompts:
Digitize lower-left corner of the Floating Screen pointing area: Digitize a point
Digitize upper-right corner of the Floating Screen pointing area: Digitize a point Respond to the following prompt:
Would you also like to specify a button to toggle the Floating Screen Area? [Yes/No] <N>: Entery or \(\mathbf{n}\) or press Enter

If you responded \(\boldsymbol{y}\) to the previous prompt, respond to the following prompt:
Press any non-pick button on the digitizer puck that you wish to designate as the toggle for the Floating Screen Area

\section*{TABSURF}

\section*{Quick Reference}

\section*{See also: \\ ■ Construct Meshes from Other Objects}

Creates a mesh from a line or curve that is swept along a straight path.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) 3D Modeling panel \(>\) Tabulated Surface
\(\%\) Menu: Draw \(>\) Modeling \(>\) Meshes \(>\) Tabulated Mesh

\section*{Summary}

Select a line, arc, circle, ellipse, or polyline to sweep in a straight path. Then select a line or polyline to determine the first and last points of a vector that indicates the direction and length of the polygon mesh.

The MESHTYPE system variable sets which type of mesh is created. Mesh objects are created by default. Set the variable to 0 to create legacy polyface or polygon mesh.

For polygon meshes, TABSURF constructs a 2 by \(n\) mesh, where \(n\) is determined by the SURFTAB1 system variable. The \(M\) direction of the mesh is always 2 and lies along the direction vector. The \(N\) direction lies along the path curve. If the path curve is a line, arc, circle, ellipse, or spline-fit polyline, tabulation lines are drawn that divide the path curve into intervals of equal size set by SURFTAB1. If the path curve is a polyline that has not been spline fit, tabulation lines are drawn at the ends of straight segments, and each arc segment is divided into intervals set by SURFTAB1.

polyline spline fit


\section*{List of Prompts}

The following prompts are displayed.
Object for path curve Specifies which object is swept along the path.
The path curve defines the approximated surface of the polygon mesh. It can be a line, arc, circle, ellipse, or 2D or 3D polyline. The mesh is drawn starting at the point on the path curve closest to the selection point.

Object for direction vector. Specifies a line or open polyline that defines the direction of the sweep.

extrusion upward

extrusion downward

Only the first and last points on a polyline are considered, and intermediate vertices are ignored. The direction vector indicates the direction and length of the shape to be extruded. The end selected on the polyline or line determines the direction of the extrusion. The original path curve is drawn with wide lines to help you visualize how the direction vector dictates the construction of a tabulated mesh.

\section*{TARGETPOINT}

\section*{Quick Reference}

See also:
■ Use Point Lights

Creates a target point light.

\section*{List of Prompts}

The following prompts are displayed.
Specify source location \(\langle 0,0,0\rangle\) : Enter coordinate values or use the pointing device Specify target location \(\langle 0,0,-10\rangle\) : Enter coordinate values or use the pointing device

If the LIGHTINGUNITS system variable is set to 0 , the following prompt is displayed:
Enter an option to change [Name on page 1929/Intensity on page 1929/Status on page 1929/shadoW on page 1930/Attenuation on page 1930/Color on page 1931/eXit on page 1931] <eXit>:

If the LIGHTINGUNITS system variable is set to 1 or 2 , the following prompt is displayed:

Enter an option to change [Name on page 1929/Intensity factor on page 1929/Status on page 1929/Photometry on page 1929/shadoW on page 1930/Attenuation on page 1930/filterColor on page 1931/eXit on page 1931] <eXit>:

NOTE When the LIGHTINGUNITS system variable is set to 1 or 2 , the Attenuation option has no affect on the creation of the light. It is only maintained for scripting compatibility.

\section*{Name}

Specifies the name of the light.

\section*{Intensity/Intensity Factor}

Sets the intensity or brightness of the light.

\section*{Status}

Turns the light on and off.

\section*{Photometry}

Photometry is available when the LIGHTINGUNITS system variable is set to 1 or 2. Photometry is the measurement of the luminous intensities of visible light sources.

In photometry, luminous intensity is a measure of the perceived power emitted by a light source in a particular direction. Luminous flux is the perceived power per unit of solid angle. The total luminous flux for a lamp is the perceived power emitted in all directions. Luminance is the total luminous flux incident on a surface, per unit area.

Intensity Enter an intensity value in candelas, the perceived power in a luminous flux value, or illuminance value for the total luminous flux incident on a surface.
- Candela (symbol: cd) is the SI unit of luminous intensity (perceived power emitted by a light source in a particular direction). \(\mathrm{Cd} / \mathrm{Sr}\)

■ Lux (symbol: lx) is the SI unit of illuminance. Lm/m^2
■ Foot-candle (symbol: fc) is the American unit of illuminance. \(\mathrm{Lm} / \mathrm{ft}^{\wedge} 2\)

Enter \(\mathbf{f}\) to specify the perceived power in a luminous flux value.
If you enter \(\mathbf{i}\), you can specify the intensity of the light based on an illuminance value.
The illuminance value can be specified in either lux or foot-candles. Enter d to specify a distance to use to calculate illuminance.

Color Specify the color of the light based on a color name or a Kelvin temperature.

Enter ? to display a list of color names. Enter a text string using wild card characters to display a partial listing of color names, or an asterisk (*) to display all the possible choices.
If you enter \(\mathbf{k}\), you can specify the color of the light based on a Kelvin temperature value.

Exit Exits the command.

\section*{Shadow}

Makes the light cast shadows.
Off Turns off the display and calculation of shadows for the light. Turning shadows off increases performance.

Sharp Displays shadows with sharp edges. Use this option to increase performance.

Soft Mapped Displays realistic shadows with soft edges.
Map Size Specifies the amount of memory that should be used to calculate the shadow map.

Softness Specifies the softness to use to calculate the shadow map.
Soft Sampled Displays realistic shadows with softer shadows (penumbra) based on extended light sources.

Shape Specify the shape of the shadow by entering \(s\) and then the dimensions of the shape. (For example, the radius of the sphere or the length and width of a rectangle.)

\section*{Attenuation}

Attenuation Type Controls how light diminishes over distance. The farther away an object is from a point light, the darker the object appears. Attenuation is also known as decay.
- None. Sets no attenuation. Objects far from the point light are as bright as objects close to the light.
- Inverse Linear. Sets attenuation to be the inverse of the linear distance from the light. For example, at a distance of 2 units, light is half as strong as at the point light; at a distance of 4 units, light is one quarter as strong. The default value for inverse linear is half the maximum intensity.
- Inverse Squared. Sets attenuation to be the inverse of the square of the distance from the light. For example, at a distance of 2 units, light is one quarter as strong as at the point light; at a distance of 4 units, light is one sixteenth as strong.

Use Limits Specifies whether to use limits or not.
Attenuation Start Limit Specifies the point where light starts as an offset from the center of the light.

Attenuation End Limit Specifies the point where light ends as an offset from the center of the light. No light is cast beyond this point. Setting an end limit increases performance where the effect of lighting is so minimal that the calculations are wasted processing time.

\section*{Color/Filter Color}

Controls the color of the light.
True Color Specifies a True Color. Enter in the format R,G,B (red, green, blue).
Index Specifies an ACI (AutoCAD Color Index) color.
HSL Specifies an HSL (hue, saturation, luminance) color.
Color Book Specifies a color from a color book.
Exit
Exits the command.

\section*{TASKBAR}

\section*{Quick Reference}

\section*{See also:}

■ Transfer Information between Open Drawings

Controls whether multiple open drawings are displayed separately or grouped on the Windows taskbar.

\section*{List of Prompts}

The following prompts are displayed.
Enter new value for Taskbar <varies>:
■ On Windows 7 systems, the default value is \(\mathbf{1}\).
■ For all other Windows operating systems, the default value is \(\mathbf{0}\).

When TASKBAR is set to 1 , drawings are displayed separately on the Windows taskbar. With Windows 7, preview images of each open drawing are displayed when the cursor is over the AutoCAD taskbar button.

When TASKBAR is set to 0 , only the name of the current drawing is displayed on the Windows taskbar buttons.

\section*{TEXT}

\section*{Quick Reference}

\section*{See also:}

■ Create Single-Line Text

Creates a single-line text object.

\section*{Access Methods}
\(A_{I}\)

Button
\(\$\) Ribbon: Home tab \(>\) Annotation panel \(>\) Single Line Text
\(\$\) Menu: Draw \(>\) Text \(>\) Single Line Text
\(\$\) Toolbar: Text

\section*{Summary}

You can use single-line text to create one or more lines of text, where each text line is an independent object that you can move, format, or otherwise modify. Right-click in the text box to select options on the shortcut menu.

If TEXT was the last command entered, pressing Enter at the Specify Start Point of Text prompt skips the prompts for paper height and rotation angle. The text that you enter in the text box is placed directly beneath the previous line of text. The point that you specified at the prompt is also stored as the insertion point of the text.

If the TEXTED system variable is set to 1 , text created using TEXT displays the Edit Text dialog box.

If TEXTED is set to 2 , the In-Place Text Editor is displayed. When creating text, you can click anywhere in a drawing to create a new text block. You can also use the keyboard to move among text blocks (for example: for new text created using the TEXT command, you can navigate through text groups by pressing Tab or Shift+Tab, or edit a group of text lines by pressing Alt and clicking each text object.)

NOTE Text that would otherwise be difficult to read (if it is very small, very large, or is rotated) is displayed at a legible size and is oriented horizontally so that you can easily read and edit it.

You can enter special characters and format text by entering Unicode strings and control codes.

Use -TEXT to honor the TEXTEVAL system variable.

\section*{List of Prompts}

The following prompts are displayed.
Current text style: <current> Current text height: <current> Annotative: <current> Specify start point on page 1933 of text or [Justify on page 1933/Style on page 1936]: Specify a point or enter an option

\section*{Start Point}

Specifies a start point for the text object. Enter text in the In-Place Text Editor for single-line text.

The SpecifyHeight prompt is displayed only if the current text style is not and does not have a fixed height.

The Specify Paper Text Height prompt is displayed only if the current text style is annotative.


\section*{Justify}

Controls justification of the text.
You can also enter any of these options at the Specify Start Point of Text prompt.

Align Specifies both text height and text orientation by designating the endpoints of the baseline.

The size of the characters adjusts in proportion to their height. The longer the text string, the shorter the characters.
```

1\varnothing12.7 FOR ф\&/2
BUSHING-PRESS
FIT-4 REQ.-EQ. SP.

```

Fit Specifies that text fits within an area and at an orientation defined with two points and a height. Available for horizontally oriented text only.
\[
\begin{aligned}
& \$ 12.7 \text { FOR } \$ 8 \\
& \text { BUSHNG-PRESS } \\
& \text { FIT-4 REQ.-EQ. SP. }
\end{aligned}
\]

The height is the distance in drawing units that the uppercase letters extend from the baseline. Designated text height is the distance between the start point and a point you specify. The longer the text string, the narrower the characters. The height of the characters remains constant.

Center Aligns text from the horizontal center of the baseline, which you specify with a point.
The rotation angle specifies the orientation of the text baseline with respect to the center point. You can designate the angle by specifying a point. The text baseline runs from the start point toward the specified point. If you specify a point to the left of the center point, the text is drawn upside down.
```

AUTQCAD

```

Middle Aligns text at the horizontal center of the baseline and the vertical center of the height you specify. Middle-aligned text does not rest on the baseline.
The Middle option differs from the MC option in that it uses the midpoint of all text, including descenders. The MC option uses the midpoint of the height of uppercase letters.
\(\underset{1}{\mathrm{~A}} \underset{1}{\mathrm{C}} \mathrm{CAD}\)

Right Right-justifies the text at the baseline, which you specify with a point.
```

AUTOCAD

```

TL (Top Left) Left-justifies text at a point specified for the top of the text. Available for horizontally oriented text only.

\section*{1 \\ *AUTOCAD}

TC (Top Center) Centers text at a point specified for the top of the text. Available for horizontally oriented text only.


TR (Top Right) Right-justifies text at a point specified for the top of the text. Available for horizontally oriented text only.

\section*{AUTOCA․ \({ }^{1}\)}

ML (Middle Left) Left-justifies text at a point specified for the middle of the text. Available for horizontally oriented text only.

\section*{1)AUTOCAD}

MC (Middle Center) Centers the text both horizontally and vertically at the middle of the text. Available for horizontally oriented text only.
The MC option differs from the Middle option in that it uses the midpoint of the height of uppercase letters. The Middle option uses the midpoint of all text, including descenders.


MR (Middle Right) Right-justifies text at a point specified for the middle of the text. Available for horizontally oriented text only.

\section*{AUTOCAD×1}

BL (Bottom Left) Left-justifies text at a point specified for the baseline. Available for horizontally oriented text only.


BC (Bottom Center) Centers text at a point specified for the baseline. Available for horizontally oriented text only.


BR (Bottom Right) Right-justifies text at a point specified for the baseline. Available for horizontally oriented text only.
```

AUTOCAD

```

\section*{Style}

Specifies the text style, which determines the appearance of the text characters. Text you create uses the current text style.
Entering ? lists the current text styles, associated font files, height, and other parameters.

> AUTOCAD
> AUTOCAD
> AUTOCAD
> various styles

\section*{Text Shortcut Menu}

\section*{Quick Reference}

See also:
■ Create Single-Line Text

Displays options available for creating and modifying single-line text.

\section*{List of Options}

The following options are displayed.

1936 | Chapter 20 T Commands

Opaque Background When checked, makes the background of the editor opaque.

Insert Field Displays the Field dialog box, where you can select a field to insert in the text.

Find and Replace Displays the Replace dialog box.
Select All Selects all the text in the single-line text object.
Change Case Changes the case of selected text.

\section*{Special Unicode Characters}

\section*{Quick Reference}

\section*{See also:}

■ Create Single-Line Text

\section*{Summary}

When entering text, you can create special characters, including the degree symbol, plus/minus tolerance symbol, and the diameter symbol, by entering the following Unicode character strings.

\section*{List of Options}

The following options are displayed.
\U+00B0 Degrees symbol ( \({ }^{\circ}\) )
\U+00B1 Tolerance symbol ()
\U+2205 Diameter symbol ( \(\varnothing\) )
See "Unicode Font Descriptions" in the Customization Guide.

\section*{Control Codes and Special Characters}

\section*{Quick Reference}

\section*{See also:}

■ Create Single-Line Text

\section*{Summary}

In addition to using Unicode characters for entering special characters, you can also overscore text, underscore text, or insert a special character by including control information in the text string. Use a pair of percent signs to introduce each control sequence.

You can use this control code with standard AutoCAD text fonts and Adobe PostScript fonts.

\section*{List of Options}

The following options are displayed.
\%\%nnn Draws character number nnn.
You can use these control codes with standard AutoCAD text fonts only:
\%\%o Toggles overscoring on and off.
\[
36.63
\]
\%\%u Toggles underscoring on and off.

\subsection*{36.63}
\%\%d Draws degrees symbol ( \({ }^{\circ}\) ).
\(36.63^{\circ}\)
\%\%p Draws plus/minus tolerance symbol ( ).
36.63士. 1
\%\%c Draws circle diameter dimensioning symbol (ý).

\section*{ø 36.63}
\%\%\% Draws a single percent sign (\%). This is valid for the TEXT command only.
36.63\%

Overscoring and underscoring can be in effect at the same time. Both turn off automatically at the end of the text string.
\[
36.63
\]

You can use the \%\%nnn control sequence to display special characters using the PostScript fonts.
A sample drawing (truetype. \(d w g\) ) showing the character map for each font is provided in the sample folder.

\section*{The Euro Symbol}

You can use the euro symbol with SHX fonts and their TrueType equivalent fonts shipped with AutoCAD 2000 and later releases. If your keyboard does not contain a euro symbol, hold down the Alt key and enter 0128 on the numeric keypad.

\section*{TEXT and the TEXTEVAL System Variable}

\section*{Quick Reference}

\section*{See also:}

■ Create Single-Line Text

\section*{Summary}

Entering -text at the Command prompt displays the same prompts as the TEXT command. Unlike the TEXT command, -TEXT honors the setting of the TEXTEVAL system variable. When the TEXTEVAL system variable is set to 2 , AutoLISP \({ }^{\circledR}\) expressions are evaluated when the-TEXT command ends. AutoLISP expressions that are entered using this method must begin with an exclamation point or left parenthesis.

The TEXT command honors the TEXTEVAL system variable setting only if used in a script or AutoLISP expression and all the TEXT command prompts are included within the script or AutoLISP expression.

\section*{TEXTEDIT}

\section*{Quick Reference}

\section*{See also:}

■ Modify Objects with Dimensional Constraints Applied

Edits a dimensional constraint, dimension, or text object.

\section*{Summary}

Displays the in-place text editor, and updates the dimension text on exit.
The TEXTEDIT command works with TEXT, MTEXT, dimensions, and dimensional constraints.

\section*{List of Prompts}

The following prompts are displayed.
Select an annotation object: Select a text, mtext, dimensional, or dimensional constraint object to edit

\section*{TEXTSCR}

\section*{Quick Reference}

\section*{See also:}

■ Navigate and Edit Within the Command Window

Opens the text window.

\section*{Access Methods}

\section*{A}

Button
\(\$\) Ribbon: Views tab \(>\) Windows panel \(>\) User Interface drop-down \(>\) Text Window
\(\$\) Menu: View > Display > Text Window
䱂 Command entry: 'textscr for transparent use

\section*{Summary}

The Command prompt is displayed in a separate window. You can press F2 to switch between the drawing area and the text window.

When the Command prompt is hidden, you can turn it back on by entering commandline in the text window.

This command is ignored on dual-screen systems.

\section*{TEXTTOFRONT}

\section*{Quick Reference}

\section*{See also:}
- Control How Overlapping Objects Are Displayed

Brings text and dimensions in front of all other objects in the drawing.

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Draw Order \(>\) Bring Text and Dimensions to Front

\section*{List of Prompts}

The following prompts are displayed.
Bring to front: [Text/Dimensions/Both]<Both>: Enter an option or press Enter Text Brings all text in front of all other objects in the drawing.

Dimensions Brings all dimensions in front of all other objects in the drawing.

Both Brings all text and dimensions in front of all other objects in the drawing.
NOTE Text and dimensions that are contained within blocks and xrefs cannot be brought to the front apart from the containing object. Also, text in multileaders and tables are not supported.

\section*{THICKEN}

\section*{Quick Reference}

See also:
■ Create 3D Solids from Objects

Converts a surface into a 3D solid with a specified thickness.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Solid Editing panel \(>\) Thicken
\(\$\) Menu: Modify \(>\) 3D Operations \(>\) Thicken

\section*{Summary}

A useful technique for modeling a complex 3D curved solid is to first create a surface and then convert it to a 3D solid by thickening it.

Initially, the default thickness value is zero. During a drawing session, the default value for the thickness is the previously entered thickness value.

The DELOBJ system variable controls whether the object(s) you select are automatically deleted when the surface is created or whether you are prompted to delete the object(s).

If you select a mesh face to thicken, you can choose to convert the mesh object to a solid or surface before completing the operation.

\section*{List of Options}

The following prompts are displayed.
Surfaces to thicken Specifies one or more surfaces to thicken into solids.
Thickness Sets the height of the thickened object.

\section*{TIFOUT}

\section*{Quick Reference}

\section*{See also:}

■ Export Raster Files
Saves selected objects to a file in TIFF file format.

\section*{Summary}

The Create Raster File dialog box (a standard file selection dialog box) is displayed. Enter the file name in the dialog box.

\section*{List of Prompts}

The following prompts are displayed.
Select objects or <all objects and viewports>: Press Enter to select all objects and viewports or use an object selection method and press Enter

A TIFF file is created that contains the objects you select. The file reflects what is displayed on the screen.

NOTE When the FILEDIA system variable is set to 0 (Off), command prompts are displayed.

TIME

\section*{Quick Reference}

\section*{See also:}

■ Obtain General Drawing Information

Displays the date and time statistics of a drawing.

\section*{Access Methods}


Button
\(\$\) Menu: Tools \(>\) Inquiry \(>\) Time
聮 Command entry: 'time for transparent use

\section*{Summary}

\section*{List of Prompts}

The following prompts are displayed.
Current time: Wednesday, December 31, 2003 9:54:51:406 AM Times for this drawing:
Created: Friday, December 12, 2003 1:21:36:203 AM
Last Updated: Wednesday, December 31, 2003 9:49:19:208 AM
Total Editing Time: 0 days 06:44:10.520
Elapsed Timer (on): 0 days 00:07:05.312
Next Automatic Save In: 0 days 01:59:15.570
Enter option [Display/On/OFF/Reset]: Enter an option or press Enter Current Time Displays the current date and time to the nearest millisecond using a 24 -hour clock.

Created Displays the date and time that the current drawing was created.
Last Updated Displays the date and time of the latest update of the current drawing. This date and time is initially the drawing creation time. The time is revised whenever the drawing file is saved.

Total Editing Time Displays the time spent editing the current drawing. This timer is updated by the program and cannot be reset or stopped. Plotting time is not included in the total editing time. If you quit the editing session without saving the drawing, the time you spent in the editing session is not added to the accumulated editing time.

Elapsed Timer Runs as another timer while the program is running. You can turn it on and off or reset it whenever you like.

Next Automatic Save In Indicates the time remaining until the next automatic save. You can set the time interval using OPTIONS or the SAVETIME system variable.

Display Repeats the display with updated times.
On Starts the user elapsed timer if it was off.
Off Stops the user elapsed timer.
Reset Resets the user elapsed timer to 0 days 00:00:00.000.

\section*{TINSERT}

\section*{Quick Reference}

\section*{See also:}
- Add Text and Blocks to Tables

Inserts a block in a table cell.

\section*{Access Methods}

Shortcut menu: With a cell in a table selected, right-click and click Insert Block on the shortcut menu.

\section*{Summary}

The Insert a Block in a Table Cell dialog box is displayed.

\section*{Insert a Block in a Table Cell Dialog Box}

\section*{Quick Reference}

See also:
- Add Text and Blocks to Tables

Specifies options for inserting a block in a table cell.

\section*{Access Methods}

Shortcut menu: With a cell in a table selected, right-click and click Insert Block on the shortcut menu.
㟇 Command entry: tinsert

\section*{List of Options}

The following options are displayed.
Scale
Specifies the scale for the block reference. Enter a value or select AutoFit to scale the block to fit in the selected cell.

\section*{Rotation Angle}

Specifies a rotation angle for the block.

\section*{Cell Alignment}

Specifies alignment for the block in the table cell. The block is middle-, top-, or bottom-aligned with respect to the top and bottom borders of the cell. The block is center-, left-, or right-aligned with respect to the left and right borders of the cell.

\section*{TOLERANCE}

\section*{Quick Reference}

See also:
■ Overview of Geometric Tolerances

Creates geometric tolerances contained in a feature control frame.

\section*{Access Methods}
\(\Phi .1\)
Button
\(\$\) Ribbon: Annotate tab \(\boldsymbol{>}\) Dimensions panel \(\boldsymbol{>}\) Tolerance
\(\$\) Menu: Dimension \(>\) Tolerance
\(\$\) Toolbar: Dimension

Summary
The Geometric Tolerance dialog box is displayed.
Geometric tolerances show acceptable deviations of form, profile, orientation, location, and runout. Feature control frames can be created with leader lines using TOLERANCE, LEADER, or QLEADER.


\section*{Geometric Tolerance Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Overview of Geometric Tolerances

Specifies the symbols and values for a feature control frame.


\section*{Access Methods}
```

Ф. }

```

Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Tolerance
\(\$\) Menu: Dimension \(>\) Tolerance
Toolbar: Dimension
並 Command entry: tolerance

\section*{Summary}

After you select geometric characteristic symbols, the Geometric Tolerance dialog box closes and the following prompt is displayed:

Enter tolerance location: Specify a location
The feature control frame is placed at the specified location.

\section*{List of Prompts}

The following prompts are displayed.

\section*{Sym}

Displays the geometric characteristic symbol, which you select from the Symbol dialog box. The dialog box is displayed when you select one of the Sym boxes.
\[
\text { ( } 由 0.08 \text { © (©) } A
\]

\section*{Tolerance 1}

Creates the first tolerance value in the feature control frame. The tolerance value indicates the amount by which the geometric characteristic can deviate
from a perfect form. You can insert a diameter symbol before the tolerance value and a material condition symbol after it.
\[
\begin{array}{|c|c|}
\hline \phi 0.08 \text { S } & \mathrm{A} \\
\hline
\end{array}
\]

\section*{First Box}

Inserts a diameter symbol in front of the tolerance value. Click the box to insert the diameter symbol.

\section*{Second Box}

Creates the tolerance value. Enter a value in the box.

\section*{Third Box}

Displays the Material Condition dialog box, in which you select a modifying symbol. These symbols act as modifiers to the geometric characteristic and the tolerance value of features that can vary in size.

The symbol is inserted into the MC box for the first tolerance value in the Geometric Tolerance dialog box.

\section*{Tolerance 2}

Creates the second tolerance value in the feature control frame. Specify the second tolerance value in the same way as the first.
\[
\perp \varnothing 0 \otimes \mid \varnothing 0.1 \mathrm{MAX} \mathrm{~A}
\]

\section*{Datum 1}

Creates the primary datum reference in the feature control frame. The datum reference can consist of a value and a modifying symbol. A datum is a theoretically exact geometric reference used to establish the tolerance zone for a feature.
\(\phi \varnothing 0.05\) (M) A M

\section*{First Box}

Creates the datum reference value.

\section*{Second Box}

Displays the Material Condition dialog box, in which you select a modifying symbol. These symbols act as modifiers to the datum reference.

The symbol is inserted into the MC box for the primary datum reference in the Geometric Tolerance dialog box.

\section*{Datum 2}

Creates the secondary datum reference in the feature control frame in the same way as the primary datum reference.
\[
\begin{array}{|l|l|l|l|}
\hline \triangle 8 & .005 & \mathrm{~A} & \mathrm{~B} \\
\hline
\end{array}
\]

\section*{Datum 3}

Creates the tertiary datum reference in the feature control frame in the same way as the primary datum reference.
\[
\left.\begin{array}{|l|}
\hline \phi 0.5 @ \\
\hline
\end{array} \mathrm{~A}|\mathrm{~B}| \mathrm{C} \right\rvert\, \begin{aligned}
& \\
& \hline
\end{aligned}
\]

\section*{Height}

Creates a projected tolerance zone value in the feature control frame. A projected tolerance zone controls the variation in height of the extended portion of a fixed perpendicular part and refines the tolerance to that specified by positional tolerances.
\begin{tabular}{|c|c|c|}
\hline\(+\varnothing .005\) & A \\
\hline \(1.000 ®\) & \\
\hline
\end{tabular}

\section*{Projected Tolerance Zone}

Inserts a projected tolerance zone symbol after the projected tolerance zone value.


\section*{Datum Identifier}

Creates a datum-identifying symbol consisting of a reference letter. A datum is a theoretically exact geometric reference from which you can establish the location and tolerance zones of other features. A point, line, plane, cylinder, or other geometry can serve as a datum.
A

\section*{Symbol Dialog Box}

\section*{Quick Reference}

See also:
■ Overview of Geometric Tolerances

Displays the geometric characteristic symbols for location, orientation, form, profile, and runout.


\section*{Access Methods}
\(\Phi .1\)
Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Tolerance
\(\$\) Menu: Dimension \(>\) Tolerance
\(\$\) Toolbar: Dimension
亜 Command entry: tolerance

\section*{Summary}


The symbol is inserted into the Sym text box in the Geometric Tolerance dialog box. The following table describes the symbols.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Geometric characteristic symbols} \\
\hline Symbol & Characteristic & Type \\
\hline & Position & Location \\
\hline & Concentricity or coaxiality & Location \\
\hline & Symmetry & Location \\
\hline & Parallelism & Orientation \\
\hline & Perpendicularity & Orientation \\
\hline & Angularity & Orientation \\
\hline & Cylindricility & Form \\
\hline & Flatness & Form \\
\hline & Circularity or roundness & Form \\
\hline & Straightness & Form \\
\hline & Profile of a surface & Profile \\
\hline & Profile of a line & Profile \\
\hline
\end{tabular}

Geometric characteristic symbols
\begin{tabular}{lll}
\hline Symbol & Characteristic & Type \\
\hline & Circular runout & Runout \\
\hline & Total runout & \\
\hline
\end{tabular}

\section*{Material Condition Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Geometric Tolerances

Specifies a modifying symbol. These symbols act as modifiers to the geometric characteristic and the tolerance value of features that can vary in size.


\section*{Access Methods}


Button
\(\$\) Ribbon: Annotate tab \(>\) Dimensions panel \(>\) Tolerance
\(\$\) Menu: Dimension \(>\) Tolerance
\(\$\) Toolbar: Dimension
䱂 Command entry: tolerance

\section*{Summary}

The symbol is inserted into the MC box for the first or second tolerance value in the Geometric Tolerance dialog box.

\section*{TOOLBAR}

\section*{Quick Reference}

See also:
■ Toolbars

Displays, hides, and customizes toolbars.

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Windows panel \(>\) Toolbars
\(\$\) Menu: View > Toolbars
Shortcut menu: Right-click any toolbar and choose Customize.

\section*{Summary}

The Customize User Interface dialog box (see CUI) is displayed.
If you enter -toolbar at the Command prompt, options are displayed.
-TOOLBAR

\section*{Quick Reference}

See also:
■ Toolbars

\section*{List of Prompts}

The following prompts are displayed.
Enter toolbar name on page 1954 or [ALL on page 1956]: Enter a name or enter all Toolbar Name
Specifies a toolbar to display, close, or position.

Enter a valid toolbar name. If the default menu is loaded, the following names are available:
\begin{tabular}{llll}
\hline 3d_navigation & layers & orbit & styles \\
\hline cad_standards & layers_ii & parametric & text \\
\hline camera_adjustment & layouts & properties & ucs \\
\hline dimension & lights & refedit & ucs_ii \\
\hline dimensional_con- & mapping & reference & view \\
straints & measure- & render & viewports \\
\hline draw & modeling & smooth_mesh & visual_styles \\
\hline draw_order & modify & smooth_mesh_prop- & walk_and_fly \\
\hline find_text & modify_ii & solid_editing & web \\
\hline \begin{tabular}{l} 
geometric_con- \\
straint
\end{tabular} & multileader & standard & workspaces \\
\hline inquiry & standard_annota- & zoom \\
\hline insert & & & \\
\hline
\end{tabular}

Show Displays the specified toolbar.
Hide Closes the specified toolbar.
Left Docks the specified toolbar at the left side of the screen.
Right Docks the specified toolbar at the right side of the screen.
Top Docks the specified toolbar at the top of the screen.
Bottom Docks the specified toolbar at the bottom of the screen.
Enter New Position Sets the position of the toolbar in columns and rows relative to a toolbar dock. The first value is horizontal. The second value is vertical.

Float Changes the toolbar from docked to floating.
Enter Number of Rows Specifies the number of rows in the floating toolbar.

\section*{All}

Displays or closes all toolbars.
Show Displays all toolbars.
Hide Closes all toolbars.

\section*{TOOLPALETTES}

\section*{Quick Reference}

See also:
- Create and Use Tools from Objects and Images

Opens the Tool Palettes window.


Button

\section*{Access Methods}

Ribbon: View tab \(>\) Palettes panel \(>\) Tool Palettes
\(\$\) Menu: Tools \(>\) Palettes \(>\) Tool Palettes
Toolbar: Standard

\section*{Summary}

Use tool palettes to organize blocks, hatches, and custom tools in a tabbed window. Various options and settings are accessible from shortcut menus that display when you right-click different areas of the Tool Palettes window.

NOTE Tool palettes can be used only in the version of the product in which they were created. For example, you cannot use a tool palette that was created in AutoCAD 2011 in AutoCAD 2007.

\section*{List of Options}

The following options are displayed.

Add Text Inserts a text entry box at the cursor location, where you can add a label that helps organize palette contents.

Add Separator Adds a tool palette separator line at the location of the cursor.
All Palettes Displays all tool palette tabs in the palette window.
Allow Docking Toggles the ability to dock or anchor palette windows. A docked window adheres to the side of the application window and causes the drawing area to be resized. Selecting this option also makes Anchor Right and Anchor Left available. Clear this option to undock a docked tool palette.

Anchor Left/ Anchor Right Attaches the palette to an anchor tab base at the left or right side of the drawing area. An anchored palette rolls open and closed as the cursor moves across it. When an anchored palette is open, its content overlaps the drawing area. An anchored palette cannot be set to stay open.

Auto-hide A setting that causes a floating window to roll open and closed as the cursor moves across it. When this option is cleared, the full tool palette stays open continuously.
Close Closes the tool palette window.
Copy Copies the selected tool to the Clipboard.
Customize Commands Displays the Customize User Interface Dialog Box.
Customize Palettes Displays the Customize dialog box.
Cut Removes the selected tool from the tool palette and places it on the Clipboard.

Delete Removes the selected tool from the tool palette.
Delete Palette Removes the current palette.
Dynamic Blocks Displays the palette tabs containing dynamic blocks.
Move Changes the cursor to a four-direction arrow.
Move Up Moves the selected tool palette up one position.
Move Down Moves the selected tool palette down one position.
New Palette Creates a new palette. Enter a name or press Enter to use the default name.

Paste Pastes a tool from the Clipboard to the current tab.
Properties Displays the Tool Properties dialog box, where you can change the properties of the selected tool.

Rename Renames the selected tool.
Rename Palette Renames the current palette.
Samples Displays the Samples tool palette.
Sort By Specifies whether palette contents are sorted by name or by type.
Size Changes the cursor to a four-direction arrow.
Transparency Displays the Transparency dialog box.
View Options Displays the View Options dialog box, where you can control how tools are displayed.

\section*{View Options Dialog Box}

\section*{Quick Reference}

See also:
■ Change Tool Palette Settings

Controls the display of tools in the current tool palette or in all tool palettes.

\section*{Access Methods}

Shortcut menu: Right-click a blank area or a tab on a tool palette and click View Options.

\section*{List of Options}

The following options are displayed.

\section*{Image Size}

Controls the display size of the selected tool palette icon.

\section*{View Style}

Controls the text displayed with a tool palette icon.
Icon Only
Displays the tool icon only.

\section*{Icon with Text}

Displays the tool icon with the tool name below.

\section*{List View}

Displays the tool icon with the tool name to the right.

\section*{Apply To}

Controls whether the view options are applied to the current tool palette or to all tool palettes in the Tool Palettes window.

\section*{Tool Properties Dialog Box}

\section*{Quick Reference}

\section*{See also: \\ - Customize Tool Palettes}

Controls the properties associated with the selected tool.

\section*{Access Methods}

Shortcut menu: Right-click a tool on a tool palette and click Properties.

\section*{Summary}

The types of properties that are displayed will vary depending on the type of tool that is selected. In addition the following controls are displayed:

\section*{List of Options}

The following options are displayed.
Image
Displays the icon of the selected tool.
Name
Displays the name of the selected tool. This can be edited.

\section*{Description}

Displays a description of the selected tool.

\section*{Tool Palettes - Materials}

When the Tool Palettes - Materials is displayed and a material tool is selected with the right-click Properties is one of the options. By selecting properties the Tool Properties dialog box displays the settings from the Materials Browser.

\section*{Add Actions Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Customize Tool Palettes

Adds actions to a parameter or parameter set in the Block Authoring Palettes in the Block Editor.

\section*{List of Options}

The following options are displayed.
Action Object to Add
Specifies the action to add to the parameter or parameter set.

\section*{Action Object List}

Lists the actions associated with the selected parameter or parameter set.
Add
Adds the action specified in the Action Object to Add box to the parameter or parameter set.

Delete
Deletes the selected action from the parameter or parameter set.

\section*{TOOLPALETTESCLOSE}

\section*{Quick Reference}

\author{
See also: \\ - Create and Use Tools from Objects and Images \\ Closes the Tool Palettes window.
}

\section*{Access Methods}
\(\$\) Menu: Tools \(>\) Tool Palettes Window

\section*{TORUS}

\section*{Quick Reference}

See also:
- Create a Solid Torus

Creates a donut-shaped 3D solid.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modeling panel \(>\) Torus
\(\$\) Menu: Draw \(>\) Modeling \(>\) Torus
\(\$\) Toolbar: Modeling

\section*{Summary}

You can create a torus by specifying the center, then the radius or diameter of the torus, and then the radius or diameter of the tube that surrounds the torus. You can control the smoothness of curved 3D solids, such as a torus, in a shaded or hidden visual style with the FACETRES system variable.


\section*{List of Prompts}

The following prompts are displayed.
Specify center point or [3P on page 1962/2P on page 1962/TTR on page 1962]: Specify a point (1) or enter an option

When you specify the center point, the torus is positioned so that its central axis is parallel to the \(Z\) axis of the current user coordinate system (UCS). The torus is parallel to and bisected by the \(X Y\) plane of the current workplane.

Specify radius on page 1962 or [diameter on page 1962] <default>: Specify a distance or enter d


\section*{3P (Three Points)}

Defines the circumference of the torus with three points that you specify. The three specified points also define the plane of the circumference.

\section*{2P (Two Points)}

Defines the circumference of the torus with two points that you specify. The plane of the circumference is defined by the \(Z\) value of the first point.

\section*{TTR (Tangent, Tangent, Radius)}

Defines the torus with a specified radius tangent to two objects. The specified tangency points are projected onto the current UCS.

\section*{Radius}

Defines the radius of the torus: the distance from the center of the torus to the center of the tube. A negative radius creates a solid shaped like an American football.

Radius Defines the radius of the tube.
Diameter Defines the diameter of the tube.


\section*{Diameter}

Defines the diameter of the torus.
- Radius on page 1962

■ Diameter on page 1962

\section*{TPNAVIGATE}

\section*{Quick Reference}

See also:
- Organize Tool Palettes

Displays a specified tool palette or palette group.

\section*{List of Prompts}

The following prompts are displayed.
Specify tool palette to display or [palette Group]: Enter a tool palette name, or enter \(\mathbf{g}\)
Tool Palette Name Displays the specified tool palette.
Specifying a tool palette that is not part of the current group displays the specified palette and its palette group.

Palette Group Displays the specified tool palette group.
NOTE TPNAVIGATE opens the Tool Palettes window if closed.

\section*{TRACE}

\section*{Quick Reference}

\author{
See also: \\ - Draw Linear Objects
}

Creates solid lines.

\section*{Summary}

The endpoints of a trace are on the center line and are always cut square. TRACE automatically calculates the correct bevels for connection to adjacent segments. Each segment is drawn after you either specify the next segment or press Enter. Because of the way bevels are handled, TRACE has no undo option.

Traces are solid filled when Fill mode is on. When Fill mode is off, only the outline of a trace is displayed.

\section*{List of Prompts}

The following prompts are displayed.
Specify trace width <current>: Specify a distance or press Enter
Specify start point: Specify a point (1)
Specify next point: Specify a point (2)
Specify next point: Specify a point (3) or press Enter to end the command

\section*{TRANSPARENCY}

\section*{Quick Reference}

See also:
■ Modify Color and Transparency for Bitonal Raster Images

Controls whether background pixels in an image are transparent or opaque.

\section*{Access Methods}


Butlon
\(\$\) Menu: Modify \(>\) Object \(>\) Image \(>\) Transparency
\(\$\) Toolbar: Reference
Shortcut menu: Select an image, right-click in the drawing area, and click Image > Transparency.

\section*{List of Prompts}

The following prompts are displayed.
Select image(s):
Enter transparency mode [ON/OFF] <current>: Enter an option or press Enter On Turns transparency on so that objects beneath the image are visible.

Off Turns transparency off so that objects beneath the image are not visible.

NOTE The PALETTEOPAQUE system variable controls whether dockable windows can be made transparent.

\section*{TRAYSETTINGS}

\section*{Quick Reference}

See also:
- Application Status Bar

Controls the display of icons and notifications in the status bar tray

\section*{Access Methods}


Button

Shortcut menu: Right-click the status bar and click Tray Settings.
Summary
The Tray Settings dialog box is displayed.

\section*{Tray Settings Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Application Status Bar

Controls the display of icons and notifications in the tray at the right end of the status bar.

\section*{Access Methods}


Button

Shortcut menu: Right-click the status bar and click Tray Settings.䱂 Command entry: traysettings

\section*{List of Options}

The following options are displayed.

\section*{Display Icons from Services}

Displays the tray at the right end of the status bar and displays icons from services. When this option is cleared, the tray is not displayed.

\section*{Display Notifications from Services}

Displays notifications from services.
Display Time
Sets the time in seconds that a notification is displayed.
Display Until Closed
Displays a notification until you click the Close button.

\section*{TREESTAT}

\section*{Quick Reference}

See also:
- Work with Layer and Spatial Indexes

Displays information about the drawing's current spatial index.

\section*{Access Methods}

Command entry: 'treestat for transparent use

\section*{Summary}

The program indexes objects in a region by recording their positions in space. The result is called a spatial index. The spatial index is tree structured and has branching nodes to which objects are attached. The index has two major branches. The paper space branch is called a quad-tree and treats objects as two-dimensional. The model space branch is called an oct-tree and treats objects as either two- or three-dimensional. The model space branch can also be changed to a quad-tree when you are working on two-dimensional drawings.

TREESTAT displays information about each branch. The most important information is in the first two lines of the report-number of nodes, number of objects, maximum depth of the branch, and average number of objects per node.

If REDRAW and object selection are very slow, you can improve their performance. For example, if there are 50 megabytes of memory available and the current drawing has 50,000 objects with only 1,000 nodes in the index tree, increase the TREEDEPTH value to improve performance.
Each node consumes about 80 bytes of memory. The fewer objects per node of the oct-tree, the better the performance.

\section*{TRIM}

\section*{Quick Reference}

\section*{See also:}
- Trim or Extend Objects

Trims objects to meet the edges of other objects.

\section*{Access Methods}


Button

8 Ribbon: Home tab \(>\) Modify panel \(>\) Trim
Menu: Modify > Trim
\(\%\) Toolbar: Modify

\section*{Summary}

To trim objects, select the boundaries. Then press Enter and select the objects that you want to trim. To use all objects as boundaries, press Enter at the first Select Objects prompt.


\section*{List of Prompts}

The following prompts are displayed.
Current settings: Projection = current, Edge = current
Select cutting edges...
Select objects or <select all>: Select one or more objects and press Enter, or press Enter to select all displayed objects


Select the objects that define the cutting edges to which you want to trim an object, or press Enter to select all displayed objects as potential cutting edges. TRIM projects the cutting edges and the objects to be trimmed onto the \(X Y\) plane of the current user coordinate system (UCS).

NOTE To select cutting edges that include blocks, you can use only the single selection, Crossing, Fence, and Select All options.

Select object to trim on page 1969 or shift-select to extend on page 1969 or [Fence on page 1969/Crossing on page 1969/Project on page 1969/Edge on page 1970/eRase on page 1971/Undo on page 1971]: Select an object to trim, hold down SHIFT and select an object to extend it instead, or enter an option

Specify an object selection method to select the objects to trim. If more than one trim result is possible, the location of the first selection point determines the result.

\section*{Object to Trim}

Specifies the object to trim.


\section*{Shift-Select to Extend}

Extends the selected objects rather than trimming them. This option provides an easy method to switch between trimming and extending.

\section*{Fence}

Selects all objects that cross the selection fence. The selection fence is a series of temporary line segments that you specify with two or more fence points. The selection fence does not form a closed loop.

\section*{Crossing}

Selects objects within and crossing a rectangular area defined by two points.
NOTE Some crossing selections of objects to be trimmed are ambiguous. TRIM resolves the selection by following along the rectangular crossing window in a clockwise direction from the first point to the first object encountered.

\section*{Project}

Specifies the projection method used when trimming objects.
None Specifies no projection. The command trims only objects that intersect with the cutting edge in 3D space.


UCS Specifies projection onto the \(X Y\) plane of the current UCS. The command trims objects that do not intersect with the cutting edge in 3D space.


View Specifies projection along the current view direction. The command trims objects that intersect the boundary in the current view.


\section*{Edge}

Determines whether an object is trimmed at another object's extrapolated edge or only to an object that intersects it in 3D space.


Extend Extends the cutting edge along its natural path to intersect an object in 3D space.


No Extend Specifies that the object is trimmed only at a cutting edge that intersects it in 3D space.

NOTE When trimming hatches, do not set Edge to Extend. If you do, gaps in the trim boundaries will not be bridged when trimming hatches, even when the gap tolerance is set to a correct value.


\section*{Erase}

Deletes selected objects. This option provides a convenient method to erase unneeded objects without leaving the TRIM command.

\section*{Undo}

Reverses the most recent change made by TRIM.

\section*{U Commands}

\section*{U}

\section*{Quick Reference}

See also:
■ Correct Mistakes

Reverses the most recent operation.

\section*{Access Methods}

6
Butlon

\section*{\(\$\) Toolbar: Standard}

Shortcut menu: With no commands active and no objects selected, right-click in the drawing area and click Undo.

\section*{Summary}

You can enter \(\mathbf{u}\) as many times as you wish, backing up one step at a time, until the drawing is as it was when you began the current editing session.

When an operation cannot be undone, the command name is displayed but no action is performed. Operations external to the current drawing, such as plotting or writing to a file, cannot be undone.

If you changed modes or used transparent commands during a command, their effects are undone, along with the effects of the main command.

You can also press Ctrl+Z to undo.
The U command is equivalent to entering undo 1.

\section*{UCS}

\section*{Quick Reference}

\section*{See also:}
- Understand the User Coordinate System (UCS)

Manages user coordinate systems.

\section*{Access Methods}


\section*{Button}

Ribbon: View tab \(>\) Coordinates panel \(>\) World
\(\$\) Menu: Tools \(>\) New UCS \(>\) World
Toolbar: UCS

\section*{List of Prompts}

The following prompts are displayed.
Specify Origin of UCS on page 1974 or [Face on page 1975/NAmed on page 1975/OBject on page 1976/Previous on page 1978/View on page 1978/World on page 1978/X/Y/Z on page 1978/ZAxis on page 1980] <World>:

\section*{Specify Origin of UCS}

Defines a new UCS using one, two, or three points. If you specify a single point, the origin of the current UCS shifts without changing the orientation of the \(X, Y\), and \(Z\) axes.

If you specify a second point, the UCS rotates around the previously specified origin point such that the positive \(X\) axis of the UCS passes through the point.

If you specify a third point, the UCS rotates around the \(X\) axis such that the positive \(Y\) half of the \(X Y\) plane of the UCS contains the point.

The three points specify an origin point, a point on the positive \(X\) axis, and a point on the positive \(X Y\) plane.


NOTE If you enter the coordinates for a point and you do not specify a \(Z\) coordinate value, the current \(Z\) value is used.

\section*{Face}

Aligns the user coordinate system to a face on a 3D solid.
Select a face by clicking within the boundary or on an edge of the face. The UCS \(X\) axis is aligned with the closest edge of the original face selected.


Next Locates the UCS on either the adjacent face or the back face of the selected edge.

Xflip Rotates the UCS 180 degrees around the \(X\) axis.
Yflip Rotates the UCS 180 degrees around the \(Y\) axis.
Accept If you press Enter, accepts the location. The prompt repeats until you accept a location.

Named
Save and restore commonly used UCS orientations by name.

\section*{Restore}

Restores a saved UCS so that it becomes the current UCS.
Name Specifies a named UCS.
?-List UCSs Lists the names of currently defined UCSs.

\section*{Save}

Saves the current UCS to a specified name.
Name Saves the current UCS with the specified name.

\section*{Delete}

Removes the specified UCS from the list of saved user coordinate systems.
If you delete a named UCS that is current, the current UCS is renamed UNNAMED.

\section*{?-List UCSs}

Lists names of user coordinate systems and provides the origin and \(X, Y\), and \(Z\) axes for each saved UCS relative to the current UCS. If the current UCS is unnamed, it is listed as WORLD or UNNAMED, depending on whether it's the same as the WCS.

\section*{Object}

Aligns the user coordinate system to a selected object.
The positive Z axis of the UCS is aligned perpendicular to the plane in which the object was originally created.


The following objects cannot be used with this option: 3D polylines, 3D meshes, and xlines.

For most objects, the origin of the new UCS is located at the nearest vertex to where you select the object, and the X axis is aligned with an edge or is tangent to an edge. For planar objects, the XY plane of the UCS is aligned with the plane in which the object is located. For complex objects, the origin is relocated, but the current orientation of the axes is maintained.

The new UCS is defined as shown in the following table.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Define a UCS by selecting an object} \\
\hline Object & Method of determining UCS \\
\hline Arc & The center of the arc becomes the new UCS origin. The \(X\) axis passes through the arc endpoint that is closest to the selection point. \\
\hline Circle & The center of the circle becomes the new UCS origin. The \(X\) axis passes through the selection point. \\
\hline Dimension & The midpoint of the dimension text becomes the new UCS origin. The direction of the new \(X\) axis is parallel to the \(X\) axis of the UCS in effect when the dimension was drawn. \\
\hline Line & The endpoint nearest the selection point becomes the new UCS origin. The new \(X\) axis is set so that the line lies in the \(X Z\) plane of the new UCS. The line's second endpoint has a \(Y\) coordinate of zero in the new UCS. \\
\hline Point & The point becomes the new UCS origin. \\
\hline 2D polyline & The start point of the polyline is the new UCS origin. The \(X\) axis extends along the line segment from the start point to the next vertex. \\
\hline Solid & The first point of the solid determines the new UCS origin. The new \(X\) axis lies along the line between the first two points. \\
\hline Trace & The "from" point of the trace becomes the UCS origin, with the \(X\) axis lying along its centerline. \\
\hline 3D face & The new UCS origin is taken from the first point, the \(X\) axis from the first two points, and the \(Y\) positive side from the first and fourth points. The \(Z\) axis follows by application of the right-hand rule. \\
\hline Shape, text, block reference, attribute definition & The insertion point of the object becomes the new UCS origin, and the new \(X\) axis is defined by the rotation of the object about its extrusion direction. The object you select to establish a new UCS has a rotation angle of zero in the new UCS. \\
\hline
\end{tabular}

\section*{Previous}

Restores the previous UCS.
The last 10 user coordinate systems created in model space and the last 10 created in paper space layouts are retained. Repeating this option steps back through one set or the other, depending on which space is current.

If you have saved different UCS settings in individual viewports and you switch between viewports, the different UCSs are not retained in the Previous list. However, if you change a UCS setting within a viewport, the last UCS setting is retained in the Previous list. For example, changing the UCS from World to UCS1 would retain World at the top of the Previous list. If you then switch viewports with Front as the current UCS, and then change the UCS to Right, the Front UCS is retained at the top of the Previous list. If you then choose the UCS Previous option twice in this viewport, the UCS setting changes to Front, and then back to World. (UCSVP system variable)

\section*{View}

Aligns the \(X Y\) plane of the user coordinate system to a plane perpendicular to your viewing direction. The origin point remains unchanged, but the \(X\) and \(Y\) axes become horizontal and vertical.


\section*{World}

Sets the current user coordinate system to the world coordinate system (WCS).
The WCS is the basis for all user coordinate systems and cannot be redefined.
\(\mathbf{X}, \mathbf{Y}, \mathbf{Z}\)
Rotates the current UCS about a specified axis.
Point your right thumb in the positive direction of the \(X\) axis and curl your fingers. Your fingers indicate the positive rotation direction about the axis.


Point your right thumb in the positive direction of the \(Y\) axis and curl your fingers. Your fingers indicate the positive rotation direction about the axis.


Point your right thumb in the positive direction of the \(Z\) axis and curl your fingers. Your fingers indicate the positive rotation direction about the axis.


You can define any UCS by specifying an origin and one or more rotations around the \(X, Y\), or \(Z\) axis.


\section*{Z Axis}

Aligns the user coordinate system to a specified positive Z axis.
The UCS origin is moved to the first point specified and its positive Z axis passes through the second point specified.


Object Aligns the \(Z\) axis in the direction tangent to the endpoint nearest to where the object was selected. The positive \(Z\) axis points away from the object.

\section*{Apply}

Applies the current UCS setting to a specified viewport or all active viewports when other viewports have a different UCS saved in the viewport. (UCSVP system variable)

Viewport Applies the current UCS to the specified viewport and ends the UCS command.

All Applies the current UCS to all active viewports.

\section*{UCSICON}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of the User Coordinate System Icon

Controls the visibility and placement of the UCS icon.

\section*{Access Methods}
\(\downarrow\)
Button

8 Ribbon: View tab \(>\) Coordinates panel \(>\) Display UCS icon
\(\$\) Menu: View \(>\) Display \(>\) UCS Icon \(>\) On

\section*{Summary}

The UCS icon displays the orientation of the user coordinate system (UCS) axes and the location of the UCS origin. If the location of the UCS origin is not visible in a viewport, the UCS icon is displayed in the lower-left corner of the viewport instead.

A UCS can be stored with a viewport if the UCSVP system variable is set to 1 for that viewport.

Different coordinate system icons are displayed in paper space and model space. In both cases, a plus sign (+) appears at the base of the icon when it is positioned at the origin of the current UCS. The letter \(W\) appears in the \(Y\) portion of the icon if the current UCS is the same as the world coordinate system.

With the 3D UCS icon, a square is displayed in the \(X Y\) plane at the origin when the UCS is the same as the world coordinate system.

A box is formed at the base of the icon if you are viewing the UCS from above (the positive \(Z\) direction). The box is missing if you are viewing the UCS from below.

With the 3D UCS icon, the \(Z\) axis is solid when viewed from above the XY plane and dashed when viewed from below the XY plane.

If the UCS is rotated so that the \(Z\) axis lies in a plane parallel to the viewing plane-that is, if the \(X Y\) plane is edge-on to the viewer-the 2D UCS icon is replaced by a broken pencil icon.
The 3D UCS icon does not use a broken pencil icon.


\section*{List of Prompts}

The following prompts are displayed.
Enter an option [ON/OFF/All/Noorigin/ORigin/Properties] <current>: Enter an option or press Enter


On Displays the UCS icon.
Off Turns off display of the UCS icon.
All Applies changes to the icon in all active viewports. Otherwise, UCSICON affects only the current viewport.

No Origin Displays the icon at the lower-left corner of the viewport regardless of the location of the UCS origin.

Origin Displays the icon at the origin \((0,0,0)\) of the current coordinate system. If the origin is off the screen, or if the icon cannot be positioned at the origin without being clipped at the viewport edges, the icon is displayed at the lower-left corner of the viewport.

Properties Displays the UCS Icon dialog box, in which you can control the style, visibility, and location of the UCS icon.

\section*{UCS Icon Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of the User Coordinate System Icon

Controls the style, visibility, and location of the UCS icon.


\section*{Access Methods}


Button

\footnotetext{
\(\$\) Ribbon: View tab \(>\) Coordinates panel \(>\) Display UCS icon
\(\$\) Menu: View \(>\) Display \(>\) UCS Icon \(>\) On
}

\section*{曼 Command entry: ucsicon}

\section*{List of Options}

The following options are displayed.

\section*{UCS Icon Style}

Specifies display of either the 2D or the 3D UCS icon and its appearance.
2D
Displays a 2D icon without a representation of the \(Z\) axis.
3D
Displays a 3D icon.

\section*{Line Width}

Controls the line width of the UCS icon if the 3D UCS icon is selected.

\section*{Preview}

Displays a preview of the UCS icon in model space.

\section*{UCS Icon Size}

Controls the size of the UCS icon as a percentage of viewport size. The default value is 50 , and the valid range is from 5 to 95 . Note that the size of the UCS icon is proportional to the size of the viewport in which it is displayed.

\section*{UCS Icon Color}

Controls the colors of the UCS icon in model space viewports and in layout tabs.

\section*{Model Space Icon Color}

Controls the color of the UCS icon in model space viewports.
Apply Single Color Applies the selected Model space icon color to the 2D UCS icons in Model space.

Layout Tab Icon Color
Controls the UCS icon color in layout tabs.

\section*{UCSMAN}

\section*{Quick Reference}

\section*{See also:}
- Understand the User Coordinate System (UCS)

Manages defined user coordinate systems.

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Coordinates panel \(>\) Named
\$ Menu: Tools \(>\) Named UCS
Toolbar: UCS

Summary
The UCS dialog box is displayed.

\section*{UCS Dialog Box}

\section*{Quick Reference}

See also:
- Understand the User Coordinate System (UCS)

Controls the UCS and UCS icon settings for viewports.
Access Methods
\(\xrightarrow{\square}\)
Button
\(\$\) Ribbon: View tab \(>\) Coordinates panel \(>\) Named
\(\$\) Menu: Tools \(>\) Named UCS
\(\$\) Toolbar: UCS
菐 Command entry: ucsman

\section*{Summary}

Lists, renames, and restores previously defined user coordinate systems, and controls UCS and UCS icon settings for viewports.

\section*{List of Tabs}

■ Named UCSs on page 1986
■ Orthographic UCSs on page 1987
- Settings on page 1989

Named UCSs Tab (UCS Dialog Box)
Lists user coordinate systems and sets the current UCS.


\section*{Current UCS}

Displays the name of the current UCS. If the UCS has not been saved and named, it is listed as UNNAMED.

\section*{UCS Names List}

Lists the coordinate systems defined in the current drawing. If there are multiple viewports and multiple unnamed UCS settings, the list includes only the unnamed UCS of the current viewport. Unnamed UCS definitions that are locked to other viewports (UCSVP system variable \(=1\) ) are not listed in the current viewport. A pointer indicates the current UCS.

UNNAMED is always the first entry if the current UCS is unnamed. World is always listed and cannot be renamed or deleted. If you define other coordinate systems for the active viewport during the current editing session, a Previous entry is next. You can step back through these coordinate systems by selecting Previous and Set Current repeatedly.
To add a UCS name to this list, use the Save option of the UCS command.

\section*{Set Current}

Restores the selected coordinate system. You can also restore a selected coordinate system by double-clicking its name in the list, or by right-clicking the name and choosing Set Current.

\section*{Details}

Displays the UCS Details dialog box, which displays UCS coordinate data. You can also view the details about a selected coordinate system by right-clicking the name and choosing Details.

Rename (Shortcut Menu Only) Renames a customized UCS. You cannot rename the World UCS.

Delete (Shortcut Menu Only) Deletes a customized UCS. You cannot delete the World UCS.

Orthographic UCSs Tab (UCS Dialog Box)
Changes the UCS to one of the orthographic UCS settings.


\section*{Current UCS}

Displays the name of the current UCS. If the UCS has not been saved and named, it is listed as UNNAMED.

Orthographic UCS Names

Lists the six orthographic coordinate systems defined in the current drawing. The orthographic coordinate systems are defined relative to the UCS specified in the Relative To list.

■ Name. Specifies the name of the orthographic coordinate system.
- Depth. Specifies the distance between the \(X Y\) plane of the orthographic UCS and a parallel plane that passes through the origin of the coordinate system specified by the UCSBASE system variable. The parallel plane of the UCSBASE coordinate system can be an \(X Y, Y Z\), or \(X Z\) plane.
NOTE You can specify the depth or a new origin for the selected orthographic UCS. See Depth option.

\section*{Set Current}

Restores the selected coordinate system.

\section*{Details}

Displays the UCS Details dialog box, which displays UCS coordinate data. You can also view the details about a selected coordinate system by right-clicking the name and choosing Details.

\section*{Relative To}

Specifies the base coordinate system for defining the orthographic UCSs. By default, WCS is the base coordinate system.

Whenever you change the Relative To setting, the origin of the selected orthographic UCS is restored to its default position.
If you save an orthographic coordinate system in a drawing as part of a viewport configuration, or if you select a setting in Relative To other than World, the orthographic coordinate system name changes to UNNAMED to distinguish it from the predefined orthographic coordinate system.

Reset (Shortcut Menu Only) Restores the origin of the selected orthographic coordinate system. The origin is restored to its default location ( \(0,0,0\) ) relative to the specified base coordinate system.

Depth (Shortcut Menu or Double-Click) Specifies the distance between the \(X Y\) plane of the orthographic UCS and a parallel plane that passes through the origin of the coordinate system. In the Orthographic UCS Depth dialog box, enter a value or choose the Select New Origin button to use the pointing device to specify a new depth or a new origin.

\section*{Settings Tab (UCS Dialog Box)}

Displays and modifies UCS icon settings and UCS settings saved with a viewport.


\section*{UCS Icon Settings}

Specifies the UCS icon display settings for the current viewport.
On
Displays the UCS icon in the current viewport.

\section*{Display at UCS Origin Point}

Displays the UCS icon at the origin of the current coordinate system in the current viewport. If this option is cleared, or if the origin of the coordinate system is not visible in the viewport, the UCS icon is displayed at the lower-left corner of the viewport.

\section*{Apply to All Active Viewports}

Applies the UCS icon settings to all active viewports in the current drawing.

\section*{UCS Settings}

Specifies UCS behavior when the UCS setting is updated.

\section*{Save UCS with Viewport}

Saves the coordinate system setting with the viewport (UCSVP system variable). If this option is cleared, the viewport reflects the UCS of the viewport that is current.

Update View to Plan When UCS Is Changed

Restores Plan view when the coordinate system in the viewport is changed. (UCSFOLLOW system variable)

\section*{Orthographic UCS Depth Dialog Box}

\section*{Quick Reference}

See also:
- Understand the User Coordinate System (UCS)

Specifies the depth for an orthographic UCS.

\section*{Access Methods}

Shortcut menu: Right-click in the Orthographic UCSs list. Click Depth.

\section*{Summary}

\section*{List of Options}

The following options are displayed.

\section*{Front Depth}

Specifies the distance between the \(X Y\) plane of the orthographic UCS and a parallel plane that passes through the origin of the coordinate system.

\section*{Select New Origin}

Temporarily closes the dialog box so that you can use the pointing device to specify a new depth location in the drawing. To reset the origin of the selected orthographic UCSs to the default location ( \(0,0,0\) ), right-click, and click Reset.

\section*{UCS Details Dialog Box}

\section*{Quick Reference}

See also:
- Understand the User Coordinate System (UCS)

Displays information about the origin and axes of the selected UCS.

\section*{Access Methods}

国
Button
\(\$\) Ribbon: View tab \(>\) Coordinates panel \(>\) Named
\(\$\) Menu: Tools \(>\) Named UCS
\(\%\) Toolbar: UCS
座 Command entry: ucsman

\section*{Summary}

By default, the origin and the values for the \(X, Y\), and \(Z\) axes are calculated relative to the world coordinate system.

\section*{List of Options}

The following options are displayed.
Name
Displays the name of the current named UCS.

\section*{Origin}

Displays the UCS origin relative to the UCS selected in Relative To.
X Axis
Displays the values for the \(X\) axis relative to the UCS selected in Relative To.

\section*{Y Axis}

Displays the values for the \(Y\) axis relative to the UCS selected in Relative To.
Z Axis
Displays the values for the \(Z\) axis relative to the UCS selected in Relative To.
Relative To
Sets a base coordinate system for calculating the values for Origin, X Axis, Y Axis, and Z Axis. (UCSBASE system variable)

\section*{ULAYERS}

\section*{Quick Reference}

See also:
- Control the Display of Layers in an Underlay

Controls the display of layers in a DWF, DWFx, PDF, or DGN underlay.
Access Methods


Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Layers
Shortcut menu: Select an underlay, right-click in the drawing area, and choose DWF, PDF, or DGN Layers.

\section*{Summary}

After selecting the underlay, the Underlay Layers dialog box is displayed.

\section*{Underlay Layers Dialog Box}

\section*{Quick Reference}

See also:
- Control the Display of Layers in an Underlay

Controls the display of layers in a DWF, DWFx, PDF, or DGN underlay.

\section*{Access Methods}


Button

\section*{\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Layers}

Shortcut menu: Select an underlay, right-click in the drawing area, and choose DWF, PDF, or DGN Layers.

\section*{巢 Command entry: ulayers}

\section*{Summary}

You can turn layers on and off to filter which layers display in an underlay.

\section*{List of Options}

The following options are available in this dialog box.
Reference Name Select the reference whose layers you want to manage.

\section*{Search for layer}

Filters the layer list by name quickly as you enter characters. This filter is not saved when you close the Underlay Layers dialog box. You can also search using wild cards.

On
Turns the selected layers on and off. When a layer is on it is visible and available for plotting. When a layer is off, it is invisible and not plotted, even if Plot is on.

Name
Displays the name of the layer.

\section*{UNDEFINE}

\section*{Quick Reference}

\section*{See also:}

■ Use Built-in Commands in Macros

Allows an application-defined command to override an internal command.

\section*{List of Prompts}

The following prompts are displayed.
Enter command name:

Enter a command name to suppress that command. The suppressed command name can then be redefined to perform some other function.

You can undefine only built-in AutoCAD commands. You cannot undefine commands defined by AutoLISP \({ }^{\circledR}\). This includes ObjectARX \({ }^{\text {TM }}\) application commands registered by acedDefun(). You also cannot undefine external commands and aliases defined in the acad.pgp file.

If an AutoLISP or ObjectARX application has redefined a command with the same name as a built-in AutoCAD command, the application-defined command is active.

You can restore an undefined command with REDEFINE.
You can always access a built-in AutoCAD command by preceding the command name with a period (.).

ObjectARX application commands that are registered by acedRegCmd can be accessed by preceding the command name with a period (.), followed by the command's group name, followed by another period (.). For example, the MTEXT command can be accessed with .acad_mtext.mtext.

To determine command names and groups of an ObjectARX application, use the ARX command, and choose the Commands option to see a listing of all currently loaded ObjectARX commands and their group names.

\section*{UNDO}

\section*{Quick Reference}

\section*{See also:}
- Correct Mistakes

Reverses the effect of commands.

\section*{Access Methods}


Button
\(\$\) Toolbar: Standard

\section*{Summary}

UNDO displays the command or system variable name at the Command prompt to indicate that you have stepped past the point where the command was used.

NOTE UNDO has no effect on some commands and system variables, including those that open, close, or save a window or a drawing, display information, change the graphics display, regenerate the drawing, or export the drawing in a different format.

\section*{List of Prompts}

The following prompts are displayed.
Enter the number on page 1995 of operations to undo or [Auto on page 1995/Control on page 1995/BEgin/End on page 1996/Mark/Back on page 1996]: Enter a positive number, enter an option, or press Enter to undo a single operation

\section*{Number}

Undoes the specified number of preceding operations. The effect is the same as entering \(\mathbf{u}\) multiple times.

\section*{Auto}

Groups the commands in a macro, such as a menu macro, into a single action, making them reversible by a single U command.

UNDO Auto is not available if the Control option has turned off or limited the UNDO feature.

\section*{Control}

Limits or turns off UNDO.
All Turns on the full UNDO command.
None Turns off the \(U\) and UNDO commands and discards any UNDO command information saved earlier in the editing session. The Undo button on the Standard toolbar is unavailable.
The Auto, Begin, and Mark options are not available when None or One is in effect. If you attempt to use UNDO while it is turned off, the following prompt is displayed:
Enter an UNDO control option [All/None/One/Combine/Layer] <All>:
One Limits UNDO to a single operation.
The Auto, Begin, and Mark options are not available when None or One is in effect. The main prompt for the UNDO command changes to show that only
a Control option or a single step of the UNDO command is available when the One option is in effect.

Combine Controls whether multiple, consecutive zoom and pan commands are combined as a single operation for undo and redo operations.
NOTE Pan and zoom commands that are started from the menu are not combined, and always remain separate actions.

Layer Controls whether the layer dialog operations are combined as a single undo operation.

\section*{Begin, End}

Groups a sequence of actions into a set. After you enter the Begin option, all subsequent actions become part of this set until you use the End option.
Entering undo begin while a group is already active ends the current set and begins a new one. UNDO and U treat grouped actions as a single action.
If you enter undo begin without undo end, using the Number option undoes the specified number of commands but does not back up past the begin point. If you want to go back to before the begin point, you must use the End option, even if the set is empty. The same applies to the \(U\) command. A mark placed by the Mark option disappears inside an UNDO group.

\section*{Mark, Back}

Mark places a mark in the undo information. Back undoes all the work done back to this mark. If you undo one operation at a time, you are informed when you reach the mark.

You can place as many marks as necessary. Back moves back one mark at a time, removing the mark. If no mark is found, Back displays the following prompt:
This will undo everything. OK? <Y>: Entery or n or press Enter
Enter \(\mathbf{y}\) to undo all commands entered in the current session. Enter \(\mathbf{n}\) to ignore the Back option.
When you use the Number option to undo multiple actions, UNDO stops if it encounters a mark.

\section*{Undocumented Command or System Variable}

\section*{Quick Reference}

This command or system variable is not documented in the Help system for one of several reasons, including

■ It is obsolete, but included in the product to maintain legacy script compatibility
- It was included for testing purposes and has limited or no functionality
- It is a special case of a similar, documented command and is used in the menu or the ribbon only

Use Search to find additional information about the feature in which you are interested, and the documented commands and system variables associated with it.

\section*{UNION}

\section*{Quick Reference}

See also:
■ Create Composite Objects

Combines selected 3D solids, surfaces, or 2D regions by addition.

\section*{Access Methods}


Button
8 Ribbon: Home tab \(>\) Solid Editing panel \(>\) Union
\(\$\) Menu: Modify \(>\) Solid Editing \(>\) Union
\(\$\) Toolbar: Modeling

\section*{Summary}

You can combine two or more 3D solids, surfaces, or 2D regions into a single, composite 3D solid, surface, or region. You must select the same type of objects to combine.


\section*{Using the Union Command with Surfaces}

Although you can use the UNION command with surfaces, it will cause the surface to lose associativity. Instead, it is recommended that you use the surface editing commands:

■ SURFBLEND on page 1875
■ SURFFILLET on page 1878
■ SURFPATCH on page 1883

\section*{Using the Union Command with Solids and Regions}

The selection set can contain objects that lie in any number of arbitrary planes. For mixed object types, selection sets are divided into subsets that are joined separately. Solids are grouped in the first subset. The first selected region and all subsequent coplanar regions are grouped in the second set, and so on.

solids before UNION

solids after UNION

The resulting composite solid includes the volume enclosed by all of the selected solids. Each of the resulting composite regions encloses the area of all regions in a subset.


You cannot use UNION with mesh objects. However, if you select a mesh object, you will be prompted to convert it to a 3D solid or surface.

\section*{List of Prompts}

The following prompt is displayed.
Select objects Select the 3D solids, surfaces, or regions to be combined.

\section*{UNISOLATEOBJECTS}

\section*{Quick Reference}

See also:
■ Control the Display of Objects
Displays previously hidden objects.

\section*{Access Methods}

Shortcut menu: Right-click in the drawing area and click Isolate > End Object Isolation.

\section*{Summary}

Displays objects previously hidden with the ISOLATEOBJECTS on page 956 or HIDEOBJECTS on page 912 command.

\section*{UNITS}

\section*{Quick Reference}

See also:
■ Determine the Units of Measurement

Controls coordinate and angle display formats and precision.

\section*{Access Methods}
0.0

Button
\(\$\) Menu: Format \(>\) Units
座 Command entry: 'units for transparent use

\section*{Summary}

The format, precision, and other conventions to be used in displaying coordinates, distances, and angles are set and saved in drawing template files. These settings can also be changed in the current drawing file.

The Drawing Units dialog box is displayed.
If you enter -units at the Command prompt, options are displayed.

\section*{Drawing Units Dialog Box}

\section*{Quick Reference}

See also:
- Determine the Units of Measurement

Controls the displayed precision and format for coordinates and angles.

\section*{Access Methods}

\section*{0.0}

Button

8 Menu: Format \(>\) Units
座 Command entry: units (or 'units for transparent use)

\section*{List of Options}

The following options are displayed.

\section*{Length}

Specifies the current unit of measurement and the precision for the current units.

Type
Sets the current format for units of measure. The values include Architectural, Decimal, Engineering, Fractional, and Scientific. The Engineering and Architectural formats produce feet-and-inches displays and assume that each drawing unit represents one inch. The other formats can represent any real-world unit.

\section*{Precision}

Sets the number of decimal places or fractional size displayed for linear measurements.

\section*{Angle}

Specifies the current angle format and the precision for the current angle display.

\section*{Type}

Sets the current angle format.

\section*{Precision}

Sets the precision for the current angle display.
The following conventions are used for the various angle measures: decimal degrees appear as decimal numbers, grads appear with a lowercase \(g\) suffix, and radians appear with a lowercase \(r\) suffix. The degrees/minutes/seconds format uses \(d\) for degrees, ' for minutes, and " for seconds; for example:
123d45'56.7"
Surveyor's units show angles as bearings, using N or S for north or south, degrees/minutes/seconds for how far east or west the angle is from direct north or south, and E or W for east or west; for example:
N 45d0'0" E
The angle is always less than 90 degrees and is displayed in the degrees/minutes/seconds format. If the angle is precisely north, south, east, or west, only the single letter representing the compass point is displayed.

\section*{Clockwise}

Calculates positive angles in the clockwise direction. The default direction for positive angles is counterclockwise.
When prompted for an angle, you can point in the desired direction or enter an angle regardless of the setting specified for Clockwise.

\section*{Insertion Scale}

Controls the unit of measurement for blocks and drawings that are inserted into the current drawing. A block or a drawing that is created with units that are different from the units specified with this option is scaled when inserted. The insertion scale is the ratio of the units used in the source block or drawing and the units used in the target drawing. Select Unitless to insert the block without scaling it to match the specified units.

NOTE In the Options dialog box, User Preferences tab, the Source Content Units and Target Drawing Units settings are used when, either in the source block or the target drawing, Insertion Scale is set to Unitless.

\section*{Sample Output}

Displays an example of the current settings for units and angles.

\section*{Lighting}

Controls the unit of measurement for the intensity of photometric lights in the current drawing.

NOTE In order to create and use photometric lights, a unit other than Generic must be specified from the list of options. If Insertion Scale is set to Unitless, a warning message is displayed informing you that the rendered output might not be as expected.

\section*{Direction}

Displays the Direction Control dialog box.

\section*{Direction Control Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Determine the Units of Measurement

Defines the angle for 0 degrees and specifies the direction in which angles are measured.


\section*{Access Methods}
0.0

Button

Menu: Format > Units
Command entry: units (or 'units for transparent use)

\section*{Summary}

When prompted for an angle, you can locate a point in the desired direction or enter an angle.

\section*{Base Angle}

Sets the direction of the zero angle. The following options affect the entry of angles, the display format, and the entry of polar, cylindrical, and spherical coordinates.

\section*{East}

Specifies the compass direction east (the default).

\section*{North}

Specifies the compass direction north.

\section*{West}

Specifies the compass direction west.

\section*{South}

Specifies the compass direction south.
Other
Specifies a direction different from the points of the compass.
Angle
Specifies a value for the zero angle when Other is selected.

\section*{Pick an Angle Button}

Defines the zero angle in the graphics area based on the angle of an imaginary line that connects any two points you specify with the pointing device.

\section*{Quick Reference}

\section*{See also:}
- Determine the Units of Measurement

\section*{List of Prompts}

The following prompts are displayed.
Report formats: (Examples)
1. Scientific \(1.55 \mathrm{E}+01\)
2. Decimal 15.50
3. Engineering \(1^{\prime}-3.50^{\prime \prime}\)
4. Architectural \(1^{\prime}-31 / 2^{\prime \prime}\)
5. Fractional 15 1/2

Enter choice, 1 to 5 <current>: Enter a value (1-5) or press Enter
The following prompt for decimal precision is displayed if you specify the scientific, decimal, or engineering format:

Enter number of digits to right of decimal point (0 to 8) <current>: Enter a value (0-8) or press Enter

The following prompt for the denominator of the smallest fraction is displayed if you specify the architectural or fractional format.
Enter denominator of smallest fraction to display
(1, 2, 4, 8, 16, 32, 64, 128, or 256) <currents: Enter a value (1, 2, 4, 8, 16, 32, 64,
128, or 256) or press Enter
The next prompt is for angle formats and precision:
Systems of angle measure: (Examples)
1. Decimal degrees 45.0000
2. Degrees/minutes/seconds \(45 \mathrm{~d} 0^{\prime}{ }^{\prime \prime}{ }^{\prime \prime}\)
3. Grads 50.0000 g
4. Radians 0.7854 r
5. Surveyor's units N 45d0'0" E

Enter choice, 1 to 5 <current>: Enter a value (1-5) or press Enter
Enter number of fractional places for display of angles (0 to 8) <current>: Enter a value (0-8) or press Enter

The next prompt is for the direction for angle 0 :

Direction for angle 0 :
East 3 o'clock \(=0\)
North 12 o'clock \(=90\)
West 9 o'clock \(=180\)
South 6 o'clock \(=270\)
Enter direction for angle 0 <current>: Enter a value or press Enter
The default direction for 0 degrees is to the east quadrant, or 3 o'clock. The default direction for positive angular measurement is counterclockwise.

Measure angles clockwise? [Yes/No] <current>: Enter y or n or press Enter

\section*{UPDATEFIELD}

\section*{Quick Reference}

See also:
- Update Fields

Manually updates fields in selected objects in the drawing

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Data panel \(>\) Update Fields
\(\$\) Menu: Tools \(>\) Update Fields
Shortcut menu: With any text command active and a field selected, right-click and click Update Field.

\section*{Summary}

You can update a field manually when you want to see the latest value. With Date fields, you must update them manually, they never update automatically.

\section*{UPDATETHUMBSNOW}

\section*{Quick Reference}

\section*{See also:}

■ Switch Between Open Drawings

Manually updates thumbnail previews in the Sheet Set Manager and the Quick View tool.

\section*{Summary}

The UPDATETHUMBNAIL system variable controls how the thumbnail previews are updated. The UPDATETHUMBSNOW command updates the following

■ Sheets, sheet views, and model space views thumbnails in the Sheet Set Manager

■ Quick View images

\section*{V Commands}


\section*{VBAIDE}

\section*{Quick Reference}

See also:
■ AutoCAD VBA

Displays the Visual Basic Editor.
NOTE Microsoft \({ }^{\circledR}\) Visual Basic \({ }^{\circledR}\) for Applications software (VBA) is no longer installed with AutoCAD. For more information, visit http://www.autodesk.com/vba-download.

\section*{Access Methods}


Button
\(\$\) Ribbon: Manage tab \(>\) Applications panel \(>\) Visual Basic Editor
\(\$\) Menu: Tools \(>\) Macro \(>\) Visual Basic Editor

\section*{Summary}

Use the Visual Basic Editor to edit code, forms, and references for any loaded global Visual Basic for Applications (VBA) project or any embedded VBA project in an open drawing.

You can also debug and run projects from the Visual Basic Editor.

\section*{VBALOAD}

\section*{Quick Reference}

\section*{See also:}
- AutoCAD VBA

Loads a global VBA project into the current work session.
NOTE Microsoft \({ }^{\circledR}\) Visual Basic \({ }^{\circledR}\) for Applications software (VBA) is no longer installed with AutoCAD. For more information, visit http://www.autodesk.com/vba-download.

\section*{Access Methods}

VBA

\section*{Button}
\(\$\) Ribbon: Manage tab \(>\) Applications panel \(>\) Load Project
Menu: Tools \(>\) Macro \(>\) Load Project

\section*{Summary}

The Open VBA Project dialog box (a standard file selection dialog box) is displayed.

VBA projects are stored in a separate file with a .dvb extension. Once loaded, the modules and macros of a VBA project are available in the Macros dialog box.

There is no limit to the number of Visual Basic for Applications (VBA) projects you can load. Any project referenced by the selected project will also be loaded, if available.

You cannot use this dialog box to load embedded VBA projects. Embedded projects are loaded when you open the drawing containing the project, and they are unloaded when you close the drawing.

If you select Open Visual Basic Editor, the Visual Basic Editor is opened after the selected project is loaded. For information about the Visual Basic Editor, see the ActiveX and VBA Developer's Guide.

If FILEDIA is set to 0 (zero), or if you enter -vbaload at the Command prompt, VBALOAD displays command prompts.

\section*{List of Prompts}

The following prompts are displayed.
Open VBA project <>: Enter the path and file name of the project to open
If the selected project contains macros, the AutoCAD Macro Virus Protection dialog box is displayed.

\section*{AutoCAD Macro Virus Protection Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Overview of AutoCAD VBA

Disables macro viruses.

\section*{Access Methods}

VBA


Button
\(\$\) Ribbon: Manage tab \(>\) Applications panel \(>\) Load Project
\(\$\) Menu: Tools \(>\) Macro \(>\) Load Project
菐 Command entry: vbaload

\section*{Summary}

If you open a drawing or project file that contains macros, a macro virus can become active and be transmitted to your computer. From that point on, every drawing or project file you save can become infected with the macro virus. When other users open the infected drawing or project file, the macro virus can also be transmitted to their computers.

The AutoCAD Macro Virus Protection dialog box that is displayed when you open a drawing or project file that contains macros gives you the opportunity to disable the macros. A macro virus can be harmful only if it is allowed to run.

\section*{List of Options}

The following options are displayed.

\section*{Always Ask Before Opening Projects with Macros}

When cleared, prevents the AutoCAD Macro Virus Protection dialog box from being displayed again. You can later enable macro virus protection using the VBA Options dialog box.

\section*{Disable Macros}

Loads the drawing or project file with the macros disabled. Use Disable Macros if you do not expect the drawing or project file to contain useful macros, or if you aren't certain about the reliability of their source.

Once you disable the macros, you can't run any macros. However, you can still view, edit, and save the macros. You can close the drawing or project file later and open it again with the macros enabled.

\section*{Enable Macros}

Loads the drawing or project file with the macros enabled. Use Enable Macros if the drawing or project file is from a reliable source, or if you expect the drawing or project file to contain useful macros.

\section*{Do Not Load}

If you are loading a project file, the process is canceled and the project file is not loaded. If you are opening a drawing with an embedded project, the drawing is opened with the macros disabled.

\section*{VBAMAN}

\section*{Quick Reference}

\section*{See also:}
- AutoCAD VBA

Manages VBA project operations using a dialog box.

NOTE Microsoft \({ }^{\circledR}\) Visual Basic \({ }^{\circledR}\) for Applications software (VBA) is no longer installed with AutoCAD. For more information, visit http://www.autodesk.com/vba-download.

\section*{Access Methods}
VBA

Button
\(\$\) Ribbon: Manage tab \(>\) Applications panel \(>\) VBA Manager
\(\$\) Menu: Tools \(>\) Macro \(>\) VBA Manager

\section*{Summary}

Loads, unloads, saves, creates, embeds, and extracts VBA projects.
The VBA Manager is displayed.

\section*{VBA Manager}

\section*{Quick Reference}

See also:
■ Overview of AutoCAD VBA

Loads, unloads, saves, creates, embeds, and extracts Visual Basic for Applications (VBA) projects.


\section*{Access Methods}

VBA
Button

Ribbon: Manage tab \(>\) Applications panel \(>\) VBA Manager
\(\%\) Menu: Tools \(>\) Macro \(>\) VBA Manager
幾 Command entry: vbaman

\section*{List of Options}

The following options are displayed.

\section*{Drawing}

Specifies the active drawing.

\section*{Embedded Project}

Specifies the name of the embedded project for the drawing. If the drawing does not contain an embedded project, "(none)" is displayed.

\section*{Extract}

Moves the embedded project out of the drawing and into a global project file.
If you have never saved the project, you are prompted to save it.

If you choose No, the project is extracted and assigned a temporary project name.

\section*{Projects}

Lists the name and location of all the projects currently available in the current work session.

\section*{Embed}

Embeds the selected project in the specified drawing. A drawing can contain only one embedded project. You cannot embed a project in a drawing that already contains an embedded project.

New
Creates a new project with the default name "Global \(n\)," where \(n\) is a session-based number incremented with each new project.

\section*{Save As}

Saves a global project. This option is available only when an unsaved global project is selected.

Load
Displays the Open VBA Project dialog box (see VBALOAD), in which you can load an existing project into the current work session.

Unload
Unloads the selected global project.

\section*{Macros}

Displays the Macros dialog box, in which you can run, edit, or delete a VBA macro.

\section*{Visual Basic Editor}

Displays the Visual Basic Editor in which you can edit code, forms, and references for any loaded global VBA project or any embedded VBA project in an open drawing. You can also debug and run projects from the Visual Basic Editor.

\section*{VBARUN}

\section*{Quick Reference}

See also:
- AutoCAD VBA

Runs a VBA macro.
NOTE Microsoft \({ }^{\circledR}\) Visual Basic \({ }^{\circledR}\) for Applications software (VBA) is no longer installed with AutoCAD. For more information, visit http://www.autodesk.com/vba-download.

Access Methods


Button
\(\$\) Ribbon: Manage tab \(>\) Applications panel \(>\) Run VBA Macro
\(\$\) Menu: Tools \(>\) Macro \(>\) Macros

\section*{Summary}

Runs, edits, or deletes a VBA macro. You can also create new macros, set the VBA options, and display the VBA Manager.
The Macros dialog box is displayed.
If you enter -vbarun at the Command prompt, options are displayed.

\section*{Macros Dialog Box}

\section*{Quick Reference}

See also:
■ Overview of AutoCAD VBA

Runs, edits, or deletes a VBA macro.


\section*{Access Methods}


Button
\(\$\) Ribbon: Manage tab \(>\) Applications panel \(>\) Run VBA Macro
\(\$\) Menu: Tools > Macro > Macros
座 Command entry: vbarun

\section*{Summary}

You can also create new macros, set the VBA options, and display the VBA Manager.

\section*{List of Options}

The following options are displayed.

\section*{Macro Name}

Specifies the name of the macro you want to run, edit, delete, or create.

\section*{Macro List}

Lists all macros found in the drawing or project selected in Macros In.

\section*{Macros In}

Specifies the project or drawing whose macros are available from the macro list. If your project or drawing is not listed, click VBA Manager to load it.

\section*{Description}

Describes the selected macro.

\section*{Run}

Runs the selected macro.

\section*{Step Into}

Displays the Visual Basic Editor and begins execution of the macro. Execution is paused at the first executable line of code.

\section*{Edit}

Displays the Visual Basic Editor and the selected macro.

\section*{Create}

Creates a macro with the name specified in Macro Name, and then displays the Visual Basic Editor and the empty procedure for the new macro.

If no project file or drawing is specified for the new macro, the Select Project dialog box is displayed.
If you choose Yes, the code in the existing macro is deleted and a new, empty macro is created with the specified name.

\section*{Delete}

Deletes the selected macro.

\section*{VBA Manager}

Displays the VBA Manager.
Options
Displays the VBA Options dialog box.

\section*{Select Project Dialog Box}

\section*{Quick Reference}

See also:
- Overview of AutoCAD VBA

Prompts you to select a project or drawing in which to create the new macro.

\section*{Access Methods}

Button
\(\$\) Ribbon: Manage tab \(>\) Applications panel \(>\) Run VBA Macro
\(\$\) Menu: Tools > Macro > Macros
亜 Command entry: vbarun

\section*{Summary}

The macro is created in the selected project or drawing, and the Visual Basic Editor is opened.

\section*{VBA Options Dialog Box}

\section*{Quick Reference}

See also:
- Overview of AutoCAD VBA

Sets VBA-specific options for the current work session.


\section*{Access Methods}

Button
```

Ribbon: Manage tab > Applications panel > Run VBA Macro
Menu: Tools > Macro > Macros
甾 Command entry: vbarun

```

\section*{List of Options}

The following options are displayed.

\section*{Enable Auto Embedding}

Automatically creates an embedded VBA project for all drawings when you open the drawing.

\section*{Allow Break on Errors}

Break mode is a temporary suspension of program execution in the development environment. In Break mode, you can examine, debug, reset, step through, or continue program execution.

When you select Allow Break on Errors, unhandled errors found during the execution of a VBA macro suspend the execution of the macro and display the Visual Basic Editor at the point of the error in the macro.

When you clear Allow Break on Errors, untrapped errors found during the execution of a VBA macro display a message alerting you to the error and then end execution of the macro.

\section*{Enable Macro Virus Protection}

The virus protection mechanism displays a built-in warning message whenever you open a drawing that might contain macro viruses.

\section*{-VBARUN}

\section*{Quick Reference}

See also:
- AutoCAD VBA

\section*{Summary}

For embedded or loaded global projects, enter the name of the macro to run. If the macro name is not unique among all the currently loaded projects, you must also include the name of the project and module in which the macro is found. For example, to run a macro named Test in a project named Project1, and a module named Module1, enter the following information at the Macro name prompt:

\section*{Project1.Module1.Test}

To run a macro in a global project that is not currently loaded, enter the name of the DVB file that contains the macro, as well as the project and module names. For example, if the Test macro described previously is contained in a file called Acad_Projects.dvb, and that file is not loaded, you can execute the Test macro by entering the following at the Macro name prompt:

Acad_Projects.dvb!Project1.Module1.Test
The Acad_Projects.dvb file is loaded and the Test macro is executed. The Acad_Projects.dvb file remains loaded once the macro has been completed.

\section*{VBASTMT}

\section*{Quick Reference}

\section*{See also:}

■ Overview of AutoCAD VBA

Executes a VBA statement at the AutoCAD Command prompt.
NOTE Microsoft \({ }^{\circledR}\) Visual Basic \({ }^{\circledR}\) for Applications software (VBA) is no longer installed with AutoCAD. For more information, visit http://www.autodesk.com/vba-download.

\section*{Summary}

A Visual Basic statement is a complete instruction that can contain keywords, operators, variables, constants, and expressions. A statement generally occupies a single line, although you can use a colon (:) to include more than one statement on a line.

VBA statements are executed in the context of the current drawing.

\section*{VBAUNLOAD}

\section*{Quick Reference}

See also:
- AutoCAD VBA

Unloads a global VBA project.
NOTE Microsoft \({ }^{\circledR}\) Visual Basic \({ }^{\circledR}\) for Applications software (VBA) is no longer installed with AutoCAD. For more information, visit http://www.autodesk.com/vba-download.

\section*{Summary}

If you do not enter a project name, the active global project is unloaded.

\section*{VIEW}

\section*{Quick Reference}

\section*{See also:}

■ Save and Restore Views

Saves and restores named views, camera views, layout views, and preset views.

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) View panel \(>\) Named Views
\(\$\) Menu: View > Named Views
\(\$\) Toolbar: View

Summary
The View Manager on page 2023 is displayed.
If you enter -view at the Command prompt, options are displayed.
NOTE The VIEW command cannot be used transparently.

\section*{View Manager}

\section*{Quick Reference}

See also:
- Save and Restore Views

Creates, sets, renames, modifies, and deletes named views, including model named views and camera views, layout views, and preset views.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) View panel \(>\) Named Views
\(\$\) Menu: View > Named Views
\(\$\) Toolbar: View

\section*{Summary}

Click a view to display the properties for that view.

\section*{List of Options}

The following options are displayed.

\section*{Views}

Displays a list of the available views. You can expand each node (except for the Current node) to display its views.
- Current. Displays the current view and its View and Clipping properties

■ Model Views. Displays a list of named views and cameras, and lists General, View, and Clipping properties for a selected view.

■ Layout Views. Displays a list of viewports on a layout that define a view, and lists General and View properties for a selected view.

■ Preset Views. Displays a list of orthogonal and isometric views, and lists the General properties for a selected view.

\section*{General}

The following properties are available:
Name Displays the name of a selected camera, model, or layout view.
Category For model views and layout views, displays view categories (for example, Elevations or Section and Details) defined in a drawing or the sheet set with which the selected view is associated.

Viewport Association For layout views only, displays whether the named view is associated with a viewport on a sheet in a sheet set.

UCS For model and layout views, displays the name of the user coordinate system saved with the named view.

Restore Ortho UCS For preset views, restores the associated UCS when an orthographic view is current. This option sets the UCSORTHO system variable.

Set Relative To For preset views, specifies the base coordinate system for defining the orthographic view. The UCSBASE system variable controls the orientation of orthographic UCSs relative to the WCS or to named UCSs. Changing this setting also changes the orientation of the predefined orthographic UCSs.

Layer Snapshot For model views and layout views, specifies whether the current layer on/off settings are stored with the selected view.

Annotation Scale Specifies the annotation scale saved with the view.
Visual Style For model views only, specifies a visual style to save with the view. For more information, see Use a Visual Style to Display Your Model.

Background For model views whose visual style is not set to 2D Wireframe, specifies the background override (Solid, Gradient, Image, or Sun \& Sky) applied to the selected view. Opens the Background dialog box on page 2036.

Live Section For model views only, displays the live section applied when the view is restored. For more information, see SECTIONPLANE.

\section*{Animation}

View Type For model and layout views, displays the view type assigned to the named view.

Transition Type For model and layout views, displays the transition type assigned to the named view and is used when playing back the view.

Transition Duration For model and layout views, displays the length of time for the transition that is assigned to the named view and is used when playing back the view.

Movement For model views only, displays the movement assigned to a named view that is assigned the Cinematic view type.

Playback Duration For model and layout views, displays the length of time that the animation takes to play back.

Distance For model views only, displays the distance used for the Cinematic view type.

Distance Up For model views only, displays the distance the camera can move upward. Applies to the Crane Up movement type.

Distance Down For model views only, displays the distance the camera can move downward. Applies to the Crane Down movement type.

Distance Forward For model views only, displays the distance the camera can move forward. Applies to the Crane Down movement type.

Distance Back For model views only, displays the distance the camera can move backward. Applies to the Crane Up movement type.

Degrees Left / Right For model views only, displays the amount of rotation around the \(Z\) axis. Applies to Look and Orbit movement types.

Degrees Up / Down For model views only, displays the amount of rotation around the \(X Y\) plane. Applies to Look and Orbit movement types.

Distance (Pan) Left / Right For layout views only, displays the distance the camera can pan left and right. Applies to Pan + Zoom movement type.

Distance (Pan) Up / Down For layout views only, displays the distance the camera can pan up and down. Applies to Pan + Zoom movement type.

Percentage In / Out For layout views only, displays the percentage the camera can zoom in and out. Applies to Pan + Zoom movement type.

Current Position For model and layout views, displays the current position of the camera.

Always Look at Pivot Point For model views only, displays if the view is locked to the center-of-interest. Applies to Track and Crane movement types.

\section*{View}

Camera X For current and model views only, displays the \(X\) coordinate of the view's camera.

Camera Y For current and model views only, displays the \(Y\) coordinate of the view's camera.

Camera Z For current and model views only, displays the \(Z\) coordinate of the view's camera.

Target \(X\) For current and model views only, displays the \(X\) coordinate of the view's target.

Target Y For current and model views only, displays the \(Y\) coordinate of the view's target.

Target Z For current and model views only, displays the \(Z\) coordinate of the view's target.

Roll angle Specifies the current roll angle of the view.
Height Specifies the height of the view.
Width Specifies the width of the view.
Perspective For current and model views, specifies whether perspective view is on.

Lens Length (mm) For all views except layouts, specifies the lens length (in millimeters). Changing this value changes the Field of View setting accordingly.

Field of View For all views except layouts, specifies the horizontal field of view (in current angle units). Changing this value changes the Lens Length setting accordingly.

\section*{Clipping}

Front Plane Specifies the offset value for the front clipping plane if front clipping is enabled for the view.

Back Plane Specifies the offset value for the back clipping plane if back clipping is enabled for the view.

Clipping Sets clipping options.

\section*{Set Current}

Restores the selected view.
New
Displays the New View / Shot Properties dialog box on page 2028.

\section*{Update Layers}

Updates layer information saved with a selected view to match the layer visibility in the current model space or layout viewport.

\section*{Edit Boundaries}

Displays the selected view, with the rest of the drawing area displayed in a lighter color to show the boundaries of the named view.

Delete
Deletes a selected view.

\section*{New View / Shot Properties Dialog Box}

\section*{Quick Reference}

See also:
- Save and Restore Views

Creates a named view.


\section*{Access Methods}


Button

Ribbon: View tab \(\boldsymbol{>}\) View panel \(\boldsymbol{>}\) Named Views
\(\$\) Menu: View > Named Views
\(\$\) Toolbar: View

\section*{List of Options}

The following options are displayed.

\section*{View Name}

Specifies the view's name.

\section*{View Category}

Specifies a category for the named view.

\section*{View Type}

Specifies the type of view for the named view. Recorded Walk is available for model space views only.

\section*{Boundary}

Defines the area of the drawing that is assigned to the named view.

\section*{Current Display}

Uses the current display as the new view.

\section*{Define Window}

Uses a window as the new view, which you define in the drawing area by specifying two opposite corners.

\section*{Define View Window Button}

Temporarily closes the New View and View Manager dialog boxes so that you can use the pointing device to define the opposite corners of the New View window.

\section*{Settings}

Provides options for saving settings with the named view.
Save Layer Snapshot with View
Saves the current layer visibility settings with the new named view.
UCS
For model and layout views, specifies a UCS to save with the new view.

\section*{List of Tabs}

The following tabs are displayed.
■ View Properties tab on page 2031
- Shot Properties tab on page 2033

\section*{View Properties Tab}

\section*{Quick Reference}

\section*{See also:}
- Save and Restore Views

Defines the area of the drawing to display and controls the visual appearance of the objects in the view and the background assigned to a named view.


\section*{List of Options}

The following options are displayed.

\section*{Boundary}

Defines the area of the drawing that is assigned to the named view.

\section*{Current Display}

Uses the current display as the new view.

\section*{Define Window}

Uses a window as the new view, which you define in the drawing area by specifying two opposite corners.

\section*{Define View Window Button}

Temporarily closes the New View and View Manager dialog boxes so that you can use the pointing device to define the opposite corners of the New View window.

\section*{Settings}

Provides options for saving settings with the named view.
Save Layer Snapshot with View
Saves the current layer visibility settings with the new named view.
UCS
For model and layout views, specifies a UCS to save with the new view.

\section*{Live Section}

For model views only, specifies the live section applied when the view is restored.

\section*{Visual Style}

For model views only, specifies a visual style to save with the view. For more information, see Use a Visual Style to Display Your Model.

\section*{Background}

Controls the appearance of the background for the named view when a 3D visual style is applied or the view is rendered.

\section*{Background Type}

For model views whose visual style is not set to 2D Wireframe, specifies the background type (Solid, Gradient, Image, or Sun \& Sky) applied to the selected
view. Opens the Background dialog box on page 2036 or the Adjust Sun \& Sky Background dialog box on page 2038.

NOTE The Sun \& Sky option is only available when the LIGHTINGUNITS system variable is not set to a value of 0 .

\section*{Save Sun Properties with View}

Specifies whether sun and sky data is saved with the named view. The option is automatically selected when choosing Sun \& Sky for the background type. Saving sun and sky data to a named view is optional when using a background type other than Sun \& Sky.
Current Override Displays the current override type (if one is defined).

\section*{Preview Box}

Displays the current background (if one is defined).
[...] Button
If the Override Default Background option is selected, displays the Background dialog box so you can change the current background selection.

\section*{Shot Properties Tab}

\section*{Quick Reference}

\section*{See also:}
- Save and Restore Views

Defines the transition and motion used for a view when played back with ShowMotion.


\section*{List of Options}

The following options are displayed.
Transition
Defines the transition to use when playing back a view.
Transition Type
Defines the transition type to use when playing back a view.

\section*{Transition Duration}

Sets the length of time for the transition.

\section*{Motion}

Defines the behavior of the motion to use when playing back a view.

\section*{Movement}

Sets the type of movement to use for a named view when the named view is assigned the Cinematic view type.

\section*{Playback Duration}

Sets the length of time that the animation takes to play back.

\section*{Distance}

Sets the distance that the motion takes to complete when the named view is assigned the Cinematic view type.

\section*{Distance Up}

Sets the distance the camera can be moved upward. Applies to the Crane Up movement types.

Distance Down Sets the distance the camera can be moved downward. Applies to the Crane Down movement types.

Distance Forward Sets the distance the camera can be moved forward. Applies to the Crane Down movement types.

\section*{Distance Back}

Sets the distance the camera can be moved backward. Applies to the Crane Up movement types.

Degrees Left / Right
Sets the amount the camera can rotate around the \(Z\) axis. Applies to Look and Orbit movement types.

\section*{Degrees Up / Down}

Sets the amount the camera can rotate around the \(X Y\) plane. Applies to the Look and Orbit movement types.

Distance (Pan) Left / Right Sets the distance the camera can pan left and right. Applies to the Pan + Zoom movement type.

Distance (Pan) Up / Down
Sets the distance the camera can pan up and down. Applies to the Pan + Zoom movement type.

Percentage In / Out Sets the percentage the camera can zoom in and out. Applies to the Pan + Zoom movement type.

\section*{Current Position}

Sets the current position of the camera.

\section*{Always Look at Pivot Point}

Locks the camera to the center-of-interest. Applies to the Track and Crane movement types.

\section*{Preview}

Previews the transition and motion assigned to the named view.

\section*{Loop}

Continuously plays back the transition and motion assigned to the named view.

\section*{Background Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Save and Restore Views

Defines the type, color, effects, and position of the background for a named view.


\section*{List of Options}

The following options are displayed.

\section*{Type}

Lists background overrides (None, Solid, Gradient, Image, or Sun \& Sky) that you can apply to a named view.

Solid Selects a single-color, solid background.
Gradient Specifies a two- or three-color gradient background.
Image Uses an image file for the background.
Sun \& Sky Displays the Adjust Sun \& Sky Background dialog box on page 2038 to specify the position, color and properties of the sun and sky for the background.

\section*{Solid Options}

Preview Displays the selected color.

\section*{Color}

Opens the Select Color dialog box on page 337.

\section*{Gradient Options}

Specifies settings for a new gradient background.
Preview Displays the gradient.
Three Color
Specifies a three-color gradient. If not selected, you can specify a two-color gradient.

Top Color
Choose a color for the top color of the gradient.

\section*{Bottom Color}

Opens the Select Color dialog box. Choose a color for the bottom color of the gradient.

\section*{Rotation}

Specifies an angle at which you can rotate a gradient background. Rotation is not available with a solid or image background.

\section*{Image Options}

Preview Displays the selected image.

\section*{Filename}

Displays the image file's name and path.

\section*{Browse}

Select an image file and click Open.

\section*{Adjust Image}

Displays the Adjust Background Image dialog box. on page 2041

\section*{Adjust Sun \& Sky Background Dialog Box}

\section*{Quick Reference}

See also:
■ Save and Restore Views

Defines the position, color, and effects of the sun and sky for a view.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) View panel \(>\) Named Views
\(\$\) Menu: View > Named Views
\(\$\) Toolbar: View

Summary
Only available in photometric lighting workflow (LIGHTINGUNITS \(=1\) or 2 ).

\section*{List of Options}

The following options are displayed.

\section*{Preview}

Displays the results of the current sun and sky settings for the current view.

\section*{General}

Sets the general properties of the sun.
Status Turns the sun on and off.
Intensity Factor Sets the intensity or brightness of the sun. The higher the number, the brighter the light.

Color Controls the color of the light.
Shadows Turns display and calculation of shadows for the sun on and off. Turning shadows off increases performance.

\section*{Sky Properties}

Status Determines if the sky illumination is computed at render time. This has no impact on the viewport illumination or the background. It simply makes the sky available as a gathered light source for rendering.

Intensity Factor Provides a way to magnify the effect of the skylight.
Haze Determines the magnitude of scattering effects in the atmosphere.

\section*{Horizon}

This category of properties pertains to the appearance and location of the ground plane.

Height Determines the absolute position of the ground plane relative to world zero. This parameter represents a world-space length and should be formatted in the current length unit.

Blur Determines the amount of blurring between ground plane and sky.
Ground color Determines the color of the ground plane.

\section*{Advanced}

This category of properties pertains to various artistic effects.
Night Color Specifies the color of the night sky.
Aerial Perspective Specifies if aerial perspective is applied.
Visibility Distance Specifies the distance at which 10\% haze occlusion results.

\section*{Sun Disk Appearance}

This category of properties pertains to the background only.
Disk Scale Specifies the scale of the sun disk ( \(1.0=\) correct size \()\).
Glow Intensity Specifies the intensity of the sun glow.
Disk Intensity Specifies the intensity of the sun disk.

\section*{Sun Angle Calculator}

Date Displays the current date setting.
Time Displays the current time setting.
Daylight Saving Displays the current setting for daylight saving time.
Azimuth Displays the angle of the sun along the horizon clockwise from due north.

Altitude Displays the angle of the sun vertically from the horizon. The maximum is 90 degrees, or directly overhead.

Source Vector Displays the coordinates of the direction of the sun.

\section*{Rendered Shadow Details}

Specifies the properties of the shadows.
Type Displays the setting for shadow type. This setting is soft (area) only in photometric workflow. This setting is read-only when display of shadows is turned off

Samples Specifies the number of samples to take on the solar disk. Values are \(0-1000\). [8] is default. This setting is read-only when display of shadows is turned off.

Softness Displays the setting for the appearance of the edges of shadows. This setting is read-only when display of shadows is turned off.

\section*{Geographic Location}

Displays the current geographic location settings. When a city is not stored with latitude and longitude, the city does not appear in the list.

\section*{Adjust Background Image Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Save and Restore Views

Controls options for the background image applied to a model space named view.


\section*{Access Methods}

\section*{Button}

\section*{\(\$\) Ribbon: View tab \(>\) View panel \(>\) Named Views \\ \(\$\) Menu: View > Named Views \\ \(\%\) Toolbar: View}

\section*{List of Options}

The following options are displayed.

\section*{Image Position}

Determines the image position in the named view.
- Center. Centers the image without changing its aspect ratio or scale.
- Stretch. Centers the image and stretches (scales) it along both the \(X\) and \(Y\) axes so that the image takes up the entire view. If you plan to plot the background image, set the image position to Stretch.
- Tile. Positions the image at the top left corner of the view and repeats the image as needed to fill up the space in the associated viewport. The image's aspect ratio and scale are maintained.

\section*{Offset}

Specifies the image offset control (not available if Stretch is selected as the image position).

Offset values can range from -2000 to +2000 on either the \(X\) or \(Y\) axis.

\section*{Scale}

Specifies the image scale (not available if Stretch is selected as the image position).

Scale values can range from 0.1 to 10 on either the \(X\) or \(Y\) axis.

\section*{Vertical Position Slider}

If the Offset option is chosen, offsets the image vertically (the \(Y\) offset). If Scale is chosen, adjusts the \(Y\) scale of the image.

\section*{Horizontal Position Slider}

If the Offset option is chosen, offsets the image horizontally (the \(X\) offset). If Scale is chosen, adjusts the \(X\) scale of the image.

\section*{Reset}

Resets the Offset or Scale settings to their default values.

\section*{Maintain Aspect Ratio When Scaling}

Locks the \(X\) and \(Y\) axes together.
If Tile is selected and you change the offset so that the bitmap rectangle appears outside the projection rectangle, the bitmap is not centered within the drawing area when you display the view. (During tiling, the offset acts as a displacement, not an absolute position.) If the bitmap is displayed outside the projection rectangle, it is not displayed in a view.

\section*{-VIEW}

\section*{Quick Reference}

\section*{See also:}

■ Save and Restore Views

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [?/Delete/Orthographic/Restore/Save/sEttings/Window]: ?-List Views Lists the named views and cameras in the drawing.
The list includes the name of each specified view and the space in which it was defined. \(M\) designates model space, and \(P\) designates paper space.

Delete Deletes one or more named views.
Orthographic Restores the predefined orthographic view you specify to the current viewport.


The view orientation of the specified orthographic view is based on the UCSBASE system variable, which is set to the world coordinate system by default. When one of the orthographic views is restored, the program zooms to the extents in the current viewport.

Restore Restores the view you specify to the current viewport. If a UCS setting was saved with the view, it is also restored.
The center point and magnification of the saved view are also restored. If you restore a model space view while working in paper space, you are prompted to select a viewport in which to restore that view.
Select the viewport by clicking its border. The viewport you select must be on and active. The program switches to model space and restores the view in the selected viewport.
If you restore a paper space view while working in model space in a layout tab, the program switches to paper space and restores the view. You can't restore a paper space view if you are working in the Model tab.

Save Saves the display in the current viewport using the name you supply.
The current value of the UCSVIEW system variable is displayed when you save a view. To change the setting and turn this option on or off, use the UCS option of VIEW.

Settings Specifies various settings for the VIEW command.
Background Specifies background the for view. Backgrounds are visible in a 3D visual style only.

Categorize Specifies a category for the named view. Named views are displayed by category on the View List tab in the Sheet Set Manager.

Layer Snapshot Saves the current layer visibility settings with the new named view.

Live Section For model views only, specifies the live section applied when the view is restored.

UCS Determines whether the current UCS and elevation settings are saved when a view is saved. (UCSVIEW system variable)

Visual Style Sets or updates a visual style for a view.
Window Saves a portion of the current display as a view.
Restoring such a view may display objects outside the window you specified because the shape of the window may differ from that of the viewport in which you are restoring the view. However, plotting the view plots only the objects inside the window, not the entire viewport display.

\section*{VIEWGO}

\section*{Quick Reference}

\section*{See also:}

See also:
- Content reference to: Play a Shot in ShowMotion

Restores a named view.

\section*{Summary}

Restores the view you specify to the current viewport. If a layer state, UCS, live section, visual style, or background setting was saved with the view, the settings are also restored.

\section*{VIEWPLAY}

\section*{Quick Reference}

\section*{See also:}

■ Content reference to: Play a Shot in ShowMotion

Plays the animation associated to a named view.

\section*{Summary}

Plays the animation associated to the named view entered. The command ends if the name entered does not match a view in the drawing or the view does not have any animation properties assigned to it.

\section*{VIEWPLOTDETAILS}

\section*{Quick Reference}

See also:
- Overview of Plotting

Displays information about completed plot and publish jobs.

\section*{Access Methods}


Button
\(\$\) Ribbon: Output tab \(>\) Plot panel \(>\) View Details
\(\$\) Menu: File \(>\) View Plot and Publish Details

\section*{Summary}

The Plot and Publish Details dialog box is displayed.
You can view detailed information about all completed plot and publish jobs, or just the errors that have occurred. You can also copy the information displayed in the dialog box to the Clipboard.

\section*{Plot and Publish Details Dialog Box}

\section*{Quick Reference}

\section*{See also:}
- Overview of Plotting

Displays information about plotting and publishing jobs that have been completed in the current session.


\section*{Access Methods}


\section*{Button}
\(\$\) Ribbon: Output tab > Plot panel \(>\) View Details
8 Menu: File View Plot and Publish Details
幽 Command entry: viewplotdetails

\section*{Summary}

Plot and publish details are also available through the Plot and Publish status bar icon shortcut menu.

\section*{List of Options}

The following options are displayed.
View
Specifies what is displayed. You can also right-click in the details area and click View Errors Only or View All to change this setting.

All Displays information about all completed plot and publish jobs and sheets within those jobs.

Errors Lists errors that have occurred as jobs were plotted or published.

\section*{Copy to Clipboard}

Copies all highlighted text in the Plot and Publish Details dialog box to the Clipboard.

\section*{Details Area}

Lists details of completed plot and publish jobs.

\section*{Plot and Publish Status Bar Icon Shortcut Menu}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Plotting

\section*{Summary}

When background plotting is enabled, provides options for cancelling the sheet that is currently being plotted, cancelling the entire plot or publish job, viewing the Plot and Publish Details dialog box, and viewing the most recently created Design Web Format ( \(\mathrm{DWF}^{\mathrm{TM}}\) ) file. Right-click any of the plot and publish icons in the tray on the right side of the status bar. These icons are described in the following table.


\section*{List of Options}

The following options are displayed.
Cancel Sheet Cancels the sheet that is currently being plotted.
Cancel Entire Job Cancels the entire plot or publish job.

View Plot and Publish Details Displays Plot and Publish Details dialog box.
View <filename>.dwf Opens the most recently created DWF file.
Enable Balloon Notification Turns on balloon notification of the status of jobs you have plotted and published.

\section*{VIEWRES}

\section*{Quick Reference}

\section*{See also:}
- Change Views

Sets the resolution for objects in the current viewport.

\section*{Summary}

The model is regenerated.
VIEWRES controls the appearance of circles, arcs, splines, and arced polylines using short vectors. The greater the number of vectors, the smoother the appearance of the circle or arc. For example, if you create a very small circle and then zoom in, it might appear to be a polygon. Using VIEWRES to increase the zoom percentage and regenerate the drawing updates and smooths the circle's appearance.


NOTE Increasing the zoom percentage in VIEWRES may increase the time it takes to regenerate the drawing.

When a paper space layout is made current for the first time and a default viewport is created in the layout, the viewing resolution for this initial viewport is the same as the viewing resolution for the Model tab viewport.

The VIEWRES setting is saved in the drawing. To change the default for new drawings, consider specifying the VIEWRES setting in the template files on which you base your new drawings.

\section*{VISUALSTYLES}

\section*{Quick Reference}

\section*{See also:}

■ Use a Visual Style to Display Your Model

Creates and modifies visual styles and applies a visual style to a viewport.

\section*{Access Methods}

Button
\(\$\) Ribbon: Home tab \(>\) View panel \(>\) Visual Styles
\(\%\) Menu: Tools \(>\) Palettes \(>\) Visual Styles
\$ Toolbar: Visual Styles

\section*{Summary}

The Visual Styles Manager on page 2051 is displayed.
If you enter -visualstyles at the Command prompt, options are displayed on page 2061.

A visual style is a collection of customizable settings that control the display of edges, shading, background, and shadows of 3D solids and surfaces in the current viewport.

NOTE In a script, the VISUALSTYLES command does not automatically suppress the Visual Styles Manager. You must use -visualstyles to display command prompts.

\section*{Visual Styles Manager}

\section*{Quick Reference}

\section*{See also}

■ Use a Visual Style to Display Your Model

Creates and modifies visual styles.


\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Visual Styles panel \(\ggg\) Visual Styles Manager
\(\%\) Menu: Tools \(>\) Palettes \(>\) Visual Styles
\(\$\) Toolbar: Visual Styles

\section*{Summary}

Creates and modifies visual styles.
The Visual Styles Manager has a panel of sample images of the visual styles available in the drawing, and the following properties panels:
- Face settings on page 2053

■ Environment settings on page 2058
- Edge settings on page 2058

■ Lighting settings on page 2060

NOTE Changes that you make in the Visual Style panel on the ribbon create a temporary visual style, *Current,* that is applied to the current viewport. The settings are not saved as a named visual style.

\section*{List of Options}

The following options are displayed.

\section*{Available Visual Styles in Drawing}

Displays sample images of the visual styles that are available in the drawing. The face, environment, and edge settings of the selected visual style are displayed in the settings panels.

Icons on the sample image indicate the status of the visual style:
■ The icon from the Apply Selected Visual Style to Current Viewport button at center bottom indicates the visual style that is applied to the current viewport.
- A drawing icon at center bottom indicates a visual style that is in use in the current drawing but not in the current viewport.
- A product icon at lower right indicates a default visual style that is shipped with the product.

\section*{Buttons in Tool Strip}

Provides button access to frequently used options.
Create New Visual Style A new sample image is placed at the end of the panel and selected.

Apply Selected Visual Style to Current Viewport Applies the selected visual style to the current viewport.

Export the Selected Visual Style to the Tool Palette Creates a tool for the selected visual style and places it on the active tool palette.

Delete the Selected Visual Style Removes the visual style from the drawing. A default visual style or one that is in use cannot be removed.

\section*{Shortcut Menu}

Provides menu access to options that are available from the buttons in the tool strip as well as the following additional options available only on the shortcut menu. Right-click a sample image in the panel to access the shortcut menu.

Apply to All Viewports Applies the selected visual style to all viewports in the drawing.

Edit Description The description is displayed in a tooltip when the cursor hovers over the sample image.

Copy Copies the visual style sample image to the Clipboard. You can paste it into the Tool Palettes window to create a visual style tool, or you can paste it into the Available Visual Styles panel to create a copy.

Paste Pastes a visual style tool into the panel and adds that visual style to the drawing, or pastes a copy of a visual style into the Available Visual Styles panel.

Size Sets the size of the sample images. The Full option fills the panel with one image.

Reset to Default For one of the default visual styles, restores the original settings.

\section*{Face Settings}

Control the appearance of faces in a viewport.

Highlight Intensity Button Changes the value for Highlight Intensity from positive to negative and vice versa.

Opacity Button Changes the value for Opacity from positive to negative and vice versa.

Face Style Defines the shading on faces. (VSFACESTYLE system variable)
- Realistic. This default option is as close as possible to how the face would appear in the real world.

■ Gooch. Uses cool and warm colors instead of dark and light to enhance the display of faces that might be shadowed and difficult to see in a realistic display.

■ None. Does not apply a face style. Other face settings are disabled.
This face style displays edges with all hidden lines removed.
Shows details of 3D surface or solid by using warm colors for lighted areas and cool colors for darker areas. Only objects without applied materials show this face style.

Lighting Quality Sets the method for interpolating colors for faces on 3D solids and surfaces in the current viewport (VSLIGHTINGQUALITY system variable)
■ Faceted.
- Smooth.
- Smoothest shows a high quality smooth appearance, but it will only produce a visible improvement if the "Per-Pixel Lighting" hardware effect option is turned on in the Manual Performance Tuning Dialog box.

This setting is the least resource intensive, but it displays curved surfaces as faceted approximations.


This default setting provides a smooth display without hardware acceleration.


To display at this setting, the Per-Pixel Lighting setting needs to be turned on in the Manual Performance Tuning dialog box from the 3DCONFIG command.


Color Controls the display of colors on faces. (VSFACECOLORMODE system variable)
- Normal. Does not apply a face color modifier.
- Monochrome. Displays the model in shades of the color you specify (VSMONOCOLOR on page 2606 system variable).

■ Tint. Changes the hue and saturation value of face colors.
- Desaturate. Softens the color by reducing its saturation component by 30 percent.

The monochrome color used is the color value stored in the VSMONOCOLOR system variable.


The tint color is determined by the hue and saturation settings of the color value stored in the VSMONOCOLOR system variable.


The color saturation of 3D solids and surfaces is reduced by 30 percent.


Opacity Controls the opacity or transparency of faces in a viewport. (VSFACEOPACITY system variable)

\section*{Materials and Color}

Controls the display of materials and color on faces.
Materials Controls whether materials and textures are displayed.
(VSMATERIALMODE system variable)
Monochrome Color/Tint Color Displays the Select Color dialog box on page 337, where you select the monochrome or tint color, depending on the face color mode. This setting is not available when face color mode is set to Normal or Desaturate. (VSMONOCOLOR system variable)

\section*{Environment Settings}

Control shadows and background.
Shadows Controls the display of shadows.
NOTE To display full shadows, hardware acceleration is required. When Geometry Acceleration is off, full shadows cannot be displayed. (To access these settings, enter 3dconfig at the Command prompt. In the Adaptive Degradation and Performance Tuning dialog box, click Manual Tune.)

Backgrounds Controls whether backgrounds are displayed in the viewport. (VSBACKGROUNDS system variable)

\section*{Edge Settings}

Control how edges are displayed.

Show Sets edge display to Facet Edges, Isolines, or None. (VSEDGES system variable)

Color Sets the color for edges. (VSEDGECOLOR system variable)
Edge Modifiers
Controls settings that apply to all edge modes except None.
Line Extensions Makes lines extend beyond their intersection, for a hand-drawn effect. The button turns the overhang effect on and off. When it is on, you can change the setting. (VSEDGELEX system variable)

Jitter Button and Setting Makes lines appear sketched. (VSEDGEJITTER system variable)

Crease Angle Sets the angle at which facet edges within a face are not shown, for a smooth effect. This option is available when the VSEDGES system variable is set to display facet edges. (VSEDGESMOOTH system variable)

Halo Gap \% Specifies the size of a gap to be displayed where an object is hidden by another object. This option is available when the Conceptual or 3D Hidden visual styles, or a visual style based on them, is selected. When the halo gap value is greater than 0 , silhouette edges are not displayed. (VSHALOGAP system variable)

\section*{Silhouette Edges}

Controls settings that apply to silhouette edges. Silhouette edges are not displayed on wireframe or transparent objects. (VSSILHEDGES system variable)
Show Controls the display of silhouette edges. (VSSILHEDGES system variable)
Width Specifies the width at which silhouette edges are displayed.
(VSSILHWIDTH system variable)

\section*{Occluded Edges}

Controls settings that apply to all edge modes except None.
Show Controls whether occluded edges are displayed. (VSOCCLUDEDEDGES system variable)

Color Sets the color for occluded edges. (VSOCCLUDEDCOLOR system variable)

Linetype Sets a linetype for occluded edges. (VSOCCLUDEDLTYPE system variable)

\section*{Intersection Edges}

Controls settings that apply to intersection edges when edge mode is set to Facet Edges.

Show Controls whether intersection edges are displayed. (VSINTERSECTIONEDGES system variable)
NOTE To increase performance, turn off the display of intersection edges.
Color Sets the color for intersection edges. (VSINTERSECTIONCOLOR system variable)

Linetype Sets a linetype for intersection edges. (VSINTERSECTIONLTYPE system variable)

\section*{Lighting Settings}

Controls lighting-related effects.
Exposure Control Controls the size of highlights on faces without materials. (VSFACEHIGHLIGHT system variable)

Shadow Display Controls the display of shadows in the viewports. Turn shadows off to increase performance. (VSSHADOWS system variable)
- Mapped Object Shadows. Displays full shadows.
- Ground Shadows.
- Off.

\section*{Create New Visual Style and Edit Name and Description Dialog} Boxes

\section*{Quick Reference}

\section*{See also:}

■ Use a Visual Style to Display Your Model
Names the visual style and provides space for a description.

\section*{List of Options}

The following options are displayed.
Name Names the visual style.

Description Provides an optional description for the visual style. The description is displayed in a tooltip when the cursor hovers over the sample image.

\section*{-VISUALSTYLES}

\section*{Quick Reference}

\section*{See also:}

■ Use a Visual Style to Display Your Model

Creates and modifies visual styles from the command line.

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [set Current on page 2061/Saveas on page 2061/Rename on page 2061/Delete on page 2061/? on page 2061]:
Set Current
These options are the same as the options in VSCURRENT.
Save As
Name Saves the visual style with the name you specify.
NOTE You must be in model space to save a visual style. If you enter a name that is already in use for a visual style, you can either replace the existing visual style or enter a different name.

\section*{Rename}

Name Renames the visual style.
Delete
Name Deletes the visual style.

\section*{?-List Visual Styles}

Lists the visual styles in the drawing.

\section*{VISUALSTYLESCLOSE}

\section*{Quick Reference}

See also:
- Use a Visual Style to Display Your Model

Closes the Visual Styles Manager.

\section*{VLISP}

\section*{Quick Reference}

See also:
■ Overview of AutoLISP and Visual LISP

Displays the Visual LISP interactive development environment.

\section*{Access Methods}

\(\$\) Ribbon: Manage tab \(>\) Applications panel \(>\) Visual LISP Editor
\(\$\) Menu: Tools \(>\) AutoLISP \(>\) Visual LISP Editor

\section*{Summary}

Use Visual LISP to develop, test, and debug AutoLISP programs.
The Visual LISP IDE (interactive development environment) is displayed.
NOTE VLIDE is used to transfer control to Visual LISP. It performs the same function as the VLISP command.

\section*{Quick Reference}

See also:
- Create and Modify Layout Viewports

Clips layout viewport objects and reshapes the viewport border.

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Viewports panel \(>\) Clip
Shortcut menu: Select the viewport to clip, right-click in the drawing area, and choose Viewport Clip.

\section*{Summary}

You can either select an existing object to designate as the new boundary, or specify the points of a new boundary. The new boundary does not clip the old boundary, it redefines it.

TIP Use the generic CLIP on page 332 command to clip images, external references, viewports, and underlays.

\section*{List of Prompts}

The following prompts are displayed.
Clipping Object Specifies an object to act as a clipping boundary. Objects that are valid as clipping boundaries include closed poly-lines, circles, ellipses, closed splines, and regions.

Polygonal Draws a clipping boundary. You can draw line segments or arc segments by specifying points. The following prompt is displayed:
The descriptions of the Next Point, Arc, Close, Length, and Undo options match the descriptions of the corresponding options in the PLINE command.

Delete Deletes the clipping boundary of a selected viewport. This option is available only if the selected viewport has already been clipped. If you clip a viewport that has been previously clipped, the original clipping boundary is deleted, and the new clipping boundary is applied.

\section*{VPLAYER}

\section*{Quick Reference}

See also:
■ Freeze Specified Layers in a Layout Viewport

Sets layer visibility within viewports.

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [? on page 2064/Color on page 2064/Ltype/LWeight/PStyle on page 2065/TRansparency on page 2065/Freeze on page 2066/Thaw on page 2066/Reset on page 2066/Newfrz on page 2066/Vpvisdflt on page 2066]:

In the Model tab, the VPLAYER command has two options.
Enter an option [Newfrz/Vpvisdflt]:
? -List Frozen Layers
Displays the names of frozen layers in a selected viewport.

\section*{Color}

Changes the color associated with a layer.
True Color Specifies a true color to use for the selected object.
Color Book Specifies a color from a loaded color book to use for the selected object.

All Applies the changes in all viewports.
Select Applies the changes in selected viewports.
Current Applies the changes in the current viewport only.

\section*{Ltype}

Changes the linetype associated with a layer.
- All on page 2064
- Select on page 2064

■ Current on page 2064

\section*{Lweight}

Changes the lineweight associated with a layer.
If you enter a lineweight that is not valid, the current lineweight is set to the nearest fixed lineweight value.
If you want to plot an object with a custom width not found in the list of fixed lineweight values, you can use the Plot Style Table Editor to customize plotted lineweights.
- All on page 2064
- Select on page 2064
- Current on page 2064

\section*{Pstyle}

Sets the plot style assigned to a layer. This option is not available if you are using color-dependent plot styles in the current drawing (the PSTYLEPOLICY on page 2473 system variable is set to 1). See Use Plot Styles to Control Plotted Objects in the User's Guide.
- All on page 2064
- Select on page 2064

■ Current on page 2064

\section*{Transparency}

Changes the transparency level associated with a layer.
- All on page 2064
- Select on page 2064
- Current on page 2064

\section*{Freeze}

Freezes a layer or set of layers in one or more viewports. Objects on frozen layers are not displayed, regenerated, or plotted.
- All on page 2064
- Select on page 2064

■ Current on page 2064

\section*{Thaw}

Thaws layers in specific viewports.
- All on page 2064
- Select on page 2064

■ Current on page 2064

\section*{Reset}

Sets the visibility of layers in specified viewports to their current default setting.
■ All on page 2064
- Select on page 2064

■ Current on page 2064

\section*{Newfrz (New Freeze)}

Creates new layers that are frozen in all viewports.
Vpvisdflt (Viewport Visibility Default)
Thaws or freezes the specified layers in subsequently created viewports.

\section*{VPMAX}

\section*{Quick Reference}

See also:
■ Access Model Space from a Layout Viewport

Expands the current layout viewport for editing.

\section*{Access Methods}

國
Btn
\(\$\) Toolbar: Status bar
Shortcut menu: Right-click in a viewport and click Maximize Viewport.

\section*{Summary}

The viewport is expanded to fill the screen and switched to model space for editing.

\section*{VPMIN}

\section*{Quick Reference}

See also:
- Access Model Space from a Layout Viewport

Restores the current layout viewport.

\section*{Access Methods}

\section*{)}

Button
\(\$\) Toolbar: Status bar
Shortcut menu: Right-click in a maximized viewport and click Minimize Viewport.

\section*{Summary}

The center point and magnification are returned to the settings that were in effect before the viewport was maximized.

\section*{VPOINT}

\section*{Quick Reference}

\section*{See also:}
- Define a 3D View with Coordinate Values or Angles

Sets the viewing direction for a 3D visualization of the drawing.

\section*{Access Methods}
\(\$\) Menu: View > 3D Views > Viewpoint

\section*{List of Prompts}

The following prompts are displayed.
Specify a view pointor [Rotate] <display compass and tripod>: Specify a point, enter \(\mathbf{r}\), or press ENTER to display a compass and axis tripod
View Point Creates a vector that defines a direction from which the drawing can be viewed. The view defined is as if the viewer is looking from the point back at the origin \((0,0,0)\).


Rotate Specifies a new viewing direction using two angles.
- Enter angle in \(X Y\) plane from \(X\) axis.

The first angle is specified with respect to the \(X\) axis, in the \(X Y\) plane.
- Enter angle from XY plane.

The second angle is specified up or down from the \(X Y\) plane.


Compass and Axis Tripod Displays a compass and axis tripod, which you use to define a viewing direction in the viewport.


The compass is a two-dimensional representation of a globe. The center point is the north pole \((0,0, n)\), the inner ring is the equator ( \(n, n, 0\) ), and the entire outer ring is the south pole \((0,0,-n)\).
As you move the crosshairs, the axis tripod rotates to conform to the viewing direction indicated on the compass. To select a viewing direction, move your pointing device to a location on the globe and click.

\section*{VPORTS}

\section*{Quick Reference}

See also:
- Set Model Space Viewports

Creates multiple viewports in model space or paper space.

\section*{Access Methods}
\(\square\)
\(\square\)
Button
\(\$\) Ribbon: View tab \(>\) Viewports panel \(>\) Named Viewports
\(\$\) Menu: View > Viewports
\(\$\) Toolbar: Layouts

\section*{Summary}

The Viewports dialog box is displayed.
If you enter -vports at the Command prompt, options are displayed.

\section*{Viewports Dialog Box}

\section*{Quick Reference}

See also:
■ Set Model Space Viewports

Creates new viewport configurations, or names and saves a model space viewport configuration.

Access Methods


Button
\(\$\) Ribbon: View tab \(>\) Viewports panel \(>\) Named Viewports
\(\$\) Menu: View \(>\) Viewports
\(\$\) Toolbar: Layouts
並 Command entry: vports

\section*{Summary}

The options available depend on whether you are configuring model space viewports (on the Model tab) or layout viewports (on a layout tab).

\section*{List of Options}

The following options are displayed.

\section*{New Viewports Tab-Model Space (Viewports Dialog Box)}


\section*{New Name}

Specifies a name for the new model space viewport configuration. If you do not enter a name, the viewport configuration is applied but not saved. If a viewport configuration is not saved, it cannot be used in a layout.

\section*{Standard Viewports}

Lists and sets the standard viewport configurations, including CURRENT, which is the current configuration.

\section*{Preview}

Displays a preview of the viewport configuration you select and the default views assigned to each individual viewport in the configuration.

\section*{Apply To}

Applies the model space viewport configuration to the entire display or to the current viewport.
- Display: Applies the viewport configuration to the entire Model tab display.
- Current Viewport: Applies the viewport configuration to the current viewport only.

\section*{Setup}

Specifies either a 2D or a 3D setup. When you select 2D, the new viewport configuration is initially created with the current view in all of the viewports. When you select 3D, a set of standard orthogonal 3D views is applied to the viewports in the configuration.

\section*{Change View To}

Replaces the view in the selected viewport with the view you select from the list. You can choose a named view, or if you have selected 3D setup, you can select from the list of standard views. Use the Preview area to see the choices.

Visual Style
Applies a visual style to the viewport. All available visual styles are displayed.
Named Viewports Tab-Model Space (Viewports Dialog Box)
Lists all saved model viewport configurations in the drawing.


\section*{Current Name}

Displays the name of the current viewport configuration.

\section*{New Viewports Tab-Layouts (Viewports Dialog Box)}

Standard Viewports Displays a list of standard viewport configurations and configures layout viewports.

Preview Displays a preview of the viewport configuration you select and the default views assigned to each individual viewport in the configuration.

Viewport Spacing
Specifies the spacing you want to apply between the layout viewports you are configuring.

Setup Specifies either a 2D or a 3D setup. When you select 2D, the new viewport configuration is initially created with the current view in all of the viewports. When you select 3D, a set of standard orthogonal 3D views is applied to the viewports in the configuration.

Change View To Replaces the view in the selected viewport with the view you select from the list. You can choose a named view, or if you have selected 3D setup, you can select from the list of standard views.
Named Viewports Tab-Layouts (Viewports Dialog Box)
Displays any saved and named model space viewport configurations for you to use in the current layout. You cannot save and name a layout viewport configuration.

\section*{-VPORTS}

\section*{Quick Reference}

See also:
- Set Model Space Viewports

\section*{Summary}

The command prompts available depend on whether you are configuring model viewports (on the Model tab) or layout viewports (on a layout tab).

\title{
-VPORTS - Model Space Viewports
}

\section*{Quick Reference}

See also:
- Set Model Space Viewports

\section*{Summary}

The number and layout of active viewports and their associated settings are called viewport configurations.

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [Save/Restore/Delete/Join/Single/?/2/3/4] <3>: Enter an option Save Saves the current viewport configuration using a specified name.

Restore Restores a previously saved viewport configuration.
Delete Deletes a named viewport configuration.
Join Combines two adjacent model viewports into one larger viewport.
The two model viewports must share a common edge of the same length. The resulting viewport inherits the view of the dominant viewport.


Single Returns the drawing to a single viewport view, using the view from the current viewport.

?-List Viewport Configurations Displays the identification numbers and screen positions of the active viewports.
The lower-left and upper-right corners of the viewport define its location. For these corners, values between 0.0,0.0 (for the lower-left corner of the drawing area) and 1.0,1.0 (for the upper-right corner) are used. The current viewport is listed first.

2 Divides the current viewport in half.
3 Divides the current viewport into three viewports.
The Horizontal and Vertical options split the area into thirds. The Above, Below, Left, and Right options specify where the larger viewport is placed.

4 Divides the current viewport into four viewports of equal size.

\section*{-VPORTS - Layout Viewports}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Layout Viewports

\section*{Summary}

The number and layout of active viewports and their associated settings are called viewport configurations.

\section*{List of Prompts}

The following prompts are displayed.
Specify corner of viewport or
[ON/OFF/Fit/Shadeplot/Lock/Object/Polygonal/Restore/LAyer/2/3/4] <Fit>:
Specify a point or enter an option

On Turns on a viewport, making it active and making its objects visible.
Off Turns off a viewport. When a viewport is off, its objects are not displayed, and you cannot make that viewport current.

Fit Creates one viewport that fills the available display area. The actual size of the viewport depends on the dimensions of the paper space view.

Shadeplot Specifies how viewports in layouts are plotted.
- As Displayed: Plots the same way it is displayed

■ All Visual Styles: Plots using the specified visual style; all visual styles in the drawing are listed as options whether in use or not
- All Render Presets: Plots using the specified render preset; all render presets are listed as options

Lock Locks the current viewport. This is similar to layer locking.
Object Creates a nonrectangular layout viewport from a closed polyline, ellipse, spline, region, or circle. The polyline you specify must be closed and contain at least three vertices. It can be self-intersecting, and it can contain arcs as well as line segments.

Polygonal Creates a nonrectangular layout viewport defined by a series of line and arc segments.
The descriptions of the Next Point, Arc, Close, Length, and Undo options match the descriptions of the corresponding options in the PLINE command.

Restore Restores a previously saved viewport configuration.
Layer Resets layer property overrides for the selected viewport to their global layer properties.

2 Divides the current viewport in half.


2 Nertical

3 Divides the current viewport into three viewports.

Horizontal and Vertical split the area into thirds. The other options create one large viewport in half the available area and two smaller ones in the other half. Above, Below, Left, and Right specify where the larger viewport is placed.


3/Right

4 Divides the current viewport into four viewports of equal size.


4

\section*{VSCURRENT}

\section*{Quick Reference}

See also:
■ Use a Visual Style to Display Your Model

Sets the visual style in the current viewport.

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [2dwireframe/Wireframe/Hidden/Realistic/Conceptual/Shaded on page 2078/shaded with Edges on page 2078/shades of Gray on page 2078/SKetchy on page 2078/X-ray on page 2078/Other] <2dwireframe>:

NOTE To display lighting from point lights, distant lights, spotlights, or the sun, set the visual style to Realistic, Conceptual, or a custom visual style with shaded objects.

2D Wireframe Displays the objects using lines and curves to represent the boundaries. Raster and OLE objects, linetypes, and lineweights are visible. Even if the value for the COMPASS on page 2192 system variable is set to 1, it does not appear in the 2D Wireframe view.

Wireframe Displays the objects using lines and curves to represent the boundaries. Displays a shaded 3D UCS icon. You can set the COMPASS system variable to 1 to view the compass.

Hidden Displays the objects using 3D wireframe representation and hides lines representing back faces.

Realistic Shades the objects and smooths the edges between polygon faces. Materials that you have attached to the objects are displayed.

Conceptual Shades the objects and smooths the edges between polygon faces. Shading uses a transition between cool and warm colors. The effect is less realistic, but it can make the details of the model easier to see.

Shaded Produces a smooth shaded model.
Shaded with Edges Produces a smooth shaded model with visible edges.
Shades of Gray Produces a gray color effect by using the monocolor face color mode.

Sketchy Produces a hand-sketched effect by using the overhang and jitter.
X-ray Changes the opacity of faces to make the whole scene partially transparent.

Other Displays the following prompt:
Enter a visual style name [?]: Enter the name of a visual style in the current drawing, or enter? to display a list of names and repeat the prompt

\section*{VSLIDE}

\section*{Quick Reference}

See also:
- View Slides

Displays an image slide file in the current viewport.

\section*{Summary}

The Select Slide File dialog box, a standard file selection dialog box, is displayed.
To display a slide in a slide library (.slb extension), set FILEDIA to 0, enter vslide, and then specify the slide library file name followed by the slide file name enclosed in parentheses: slidelibrary (slide).

When you view slides of images shaded with the -SHADE command in a larger window or a higher resolution than was used for creating the slide, black lines may appear interspersed among the lines of the shaded image. To avoid this situation, use a full screen that is set at the highest resolution when creating the slides.

\section*{Quick Reference}

See also:
■ Use a Visual Style to Display Your Model

Saves a visual style.

\section*{List of Prompts}

The following prompts are displayed.
Save current visual style as or [?]
Enter a name or enter ? to list all the visual styles in the drawing.

NOTE You must be in model space to save a visual style. If you enter a name that is already in use for a visual style, you can either replace the existing visual style or enter a different name.

\section*{VTOPTIONS}

\section*{Quick Reference}

See also:
- Pan or Zoom a View

Displays a change in view as a smooth transition.
Summary
The View Transitions dialog box on page 2080 is displayed.

\section*{View Transitions Dialog Box}

\section*{Quick Reference}

See also:
- Pan or Zoom a View

Controls when smooth view transitions are used.

\section*{Access Methods}

座 Command entry: vtoptions

\section*{Summary}

Sets the options for smooth view transitions.

\section*{List of Options}

The following options are displayed.

Enable Animation for Pan and Zoom Makes a smooth view transition during panning and zooming. (VTENABLE system variable)

Enable Animation When View Rotates Makes a smooth view transition when the view angle is changed. (VTENABLE system variable)

Enable Animation During Scripts Makes smooth view transitions while a script is running. (VTENABLE system variable)
Transition Speed Sets the speed of a smooth view transition in milliseconds.

\section*{Performance}

Set the minimum speed for a smooth view transition in frames per second. When a smooth view transition cannot maintain this speed, an instant transition is used to preserve performance.

\section*{W Commands}

\section*{WALKFLYSETTINGS}

\section*{Quick Reference}

See also:
■ Walk and Fly Through a Drawing

Controls the walk and fly navigation settings.

\section*{Access Methods}


Button
\(\$\) Ribbon: Render \(>\) Animations panel \(>\) Walk and Fly drop-down \(>\) Walk and Fly Settings.
\(\$\) Menu: View \(>\) Walk and Fly \(>\) Walk and Fly Settings
\(\%\) Toolbar: 3D Navigation
Summary
The Walk and Fly Settings dialog box on page 2084 is displayed.

\section*{Walk and Fly Settings Dialog Box}

\section*{Quick Reference}

See also:
■ Walk and Fly Through a Drawing

\section*{Controls the walk and fly navigation settings}
\begin{tabular}{|c|c|c|}
\hline A Walk and Fly Settings & & \(x^{2}\) \\
\hline \multicolumn{3}{|l|}{Settings} \\
\hline \multicolumn{3}{|l|}{Display instruction balloon:} \\
\hline \multicolumn{3}{|l|}{- When entering walk and fly modes} \\
\hline \multicolumn{3}{|l|}{O Once per session} \\
\hline \multicolumn{3}{|l|}{O Never} \\
\hline \multicolumn{3}{|l|}{\(\checkmark\) Display Position Locator window} \\
\hline \multicolumn{3}{|l|}{Current drawing settings} \\
\hline Walk/fly step size: & \multicolumn{2}{|l|}{Steps per second:} \\
\hline 6.0000 drawing units & 2.0000 & \\
\hline OK & Help & \\
\hline
\end{tabular}

\section*{Access Methods}


Walk
and Fly
Settings
\(\$\) Ribbon: Render \(>\) Animations panel \(>\) Walk and Fly drop-down \(>\) Walk and Fly Settings.
\$ Menu: View \(>\) Walk and Fly \(>\) Walk and Fly Settings
\(\$\) Toolbar: 3D Navigation
䱂 Command entry: walkflysettings

\section*{List of Options}

The following options are displayed.

\section*{Settings}

Specifies settings related to the Walk and Fly Navigation Mappings balloon on page 77 and the Position Locator window on page 76.

When Entering Walk and Fly Modes
Specifies that the Walk and Fly Navigation Mappings balloon is displayed each time you enter walk or fly mode.

Once Per Session
Specifies that the Walk and Fly Navigation Mappings balloon is displayed the first time in each AutoCAD session that you enter walk or fly mode.

\section*{Never}

Specifies that the Walk and Fly Navigation Mappings balloon is never displayed.

\section*{Display Position Locator Window}

Specifies whether the Position Locator window opens when you enter walk mode.

\section*{Current Drawing Settings}

Specifies walk and fly mode settings specific to the current drawing.
Walk/Fly Step Size
Sets the size of each step in drawing units (STEPSIZE system variable).

\section*{Steps Per Second}

Specifies how many steps occur per second (STEPSPERSEC system variable).

\section*{WBLOCK}

\section*{Quick Reference}

See also:
■ Create Drawing Files for Use as Blocks

Writes objects or a block to a new drawing file.

\section*{Summary}

The Write Block dialog box is displayed.
Entering -wblock at the Command prompt displays a standard file selection dialog box in which to specify a name for the new drawing file, followed by command prompts. If FILEDIA is set to 0 , the standard file selection dialog box is suppressed.

\section*{Write Block Dialog Box}

\section*{Quick Reference}

See also:
■ Create Drawing Files for Use as Blocks

Saves objects or converts a block to a file.


\section*{Access Methods}

锉 Command entry: wblock

\section*{Summary}

The Write Block dialog box displays different default settings depending on whether nothing is selected, a single block is selected, or objects other than blocks are selected.

\section*{List of Options}

The following options are displayed.

\section*{Source}

Specifies blocks and objects, saves them as a file, and specifies insertion points.

\section*{Block}

Specifies an existing block to save as a file. Select a name from the list.

\section*{Entire Drawing}

Selects current drawing to save as another file.

\section*{Objects}

Selects objects to save as a file. Specify a base point and select objects below.

\section*{Base Point}

Specifies a base point for the block. The default value is \(0,0,0\).
Pick Point
Temporarily closes the dialog box so that you can specify an insertion base point in the current drawing.

X
Specifies the \(X\) coordinate value for the base point.
Y

Specifies the \(Y\) coordinate value for the base point.
Z
Specifies the \(Z\) coordinate value for the base point.

\section*{Objects}

Sets the effect of block creation on objects used to create a block.
Retain
Retains the selected objects in the current drawing after saving them as a file.

\section*{Convert to Block}

Converts the selected object or objects to a block in the current drawing after saving them as a file.

\section*{Delete from Drawing}

Deletes the selected objects from the current drawing after saving them as a file.

\section*{Select Objects Button}

Temporarily closes the dialog box so that you can select one or more objects to save to the file.

Quick Select Button
Opens the Quick Select dialog box, which you can use to filter your selection set.

\section*{Objects Selected}

Indicates the number of objects selected.

\section*{Destination}

Specifies the new name and location of the file and the units of measurement to be used when the block is inserted.

\section*{File Name and Path}

Specifies a file name and path where the block or objects will be saved.
[...]
Displays a standard file selection dialog box.

\section*{Insert Units}

Specifies the unit value to be used for automatic scaling when the new file is dragged from DesignCenter \({ }^{\text {rim }}\) or inserted as a block in a drawing that uses different units. Select Unitless if you do not want to automatically scale the drawing when you insert it. See INSUNITS.

\section*{-WBLOCK}

\section*{Quick Reference}

\section*{See also:}
- Create Drawing Files for Use as Blocks

\section*{Summary}

If FILEDIA is set to 1 , entering -wblock at the Command prompt displays a standard file selection dialog box in which to specify a name for the new drawing file. If FILEDIA is set to 0 , entering -wblock at the Command prompt displays a prompt. The new drawing is saved in the file format that is specified in Save As on the Open and Save tab in the Options dialog box.

After the file is created, the selected objects are deleted from the drawing. You can use OOPS to restore the objects.

In the new drawing, the world coordinate system (WCS) is set parallel to the user coordinate system (UCS).

\section*{List of Prompts}

The following prompts are displayed.
Enter name of output file:
Enter name of existing block or
[= (block=output file)/* (whole drawing)] <define new drawing>:
Existing Block Writes that block to a file. You cannot enter the name of an external reference (xref) or one of its dependent blocks.
\(=\) Specifies that the existing block and the output file have the same name.
* Writes the entire drawing to the new output file, except for unreferenced symbols. Model space objects are written to model space, and paper space objects are written to paper space.

\section*{WEBLIGHT}

\section*{Quick Reference}

See also:
■ Overview of Weblights

Creates a web light

\section*{Access Methods}


Button
\(\$\) Ribbon: Render \(>\) Lights panel \(>\) Create Light \(>\) Weblight.
\(\$\) Toolbar: Lights

\section*{List of Prompts}

The following prompts are displayed.
Specify source location \(\langle 0,0,0\rangle\) : Enter coordinate values or use the pointing device Specify target location \(<1,1,1>\) : Enter coordinate values or use the pointing device Enter an option to change [Name on page 2090/Intensity factor on page 2090/Status on page 2090 /Photometry on page 2091 /weB on page 2091 /shadoW on page 2092/filterColor on page 2092/eXit on page 2092] <eXit>:

NOTE The LIGHTINGUNITS system variable must be set to a value other than 0 to create and use weblights.

\section*{Name}

Specifies the name of the light.

\section*{Intensity Factor}

Sets the intensity or brightness of the light.

\section*{Status}

Turns the light on and off. If lighting is not enabled in the drawing, this setting has no effect.

\section*{Photometry}

Photometry is available when the LIGHTINGUNITS system variable is set to 1 or 2 . Photometry is the measurement of the luminous intensities of visible light sources.

In photometry, luminous intensity is a measure of the perceived power emitted by a light source in a particular direction. Luminous flux is the perceived power in per unit of solid angle. The total luminous flux for a lamp is the perceived power emitted in all directions. Luminance is the total luminous flux incident on a surface, per unit area.

Intensity Enter an intensity value in candelas, the perceived power in a luminous flux value, or illuminance value for the total luminous flux incident on a surface.
- Candela (symbol: cd) is the SI unit of luminous intensity (perceived power emitted by a light source in a particular direction). \(\mathrm{Cd} / \mathrm{Sr}\)
- Lux (symbol: lx) is the SI unit of illuminance. \(\mathrm{Lm} / \mathrm{m}^{\wedge} 2\)
- Foot-candle (symbol: fc) is the American unit of illuminance. \(\mathrm{Lm} / \mathrm{ft}^{\wedge} 2\)

Enter \(\mathbf{f}\) to specify the perceived power in a luminous flux value.
If you enter \(\mathbf{i}\), you can specify the intensity of the light based on an illuminance value.
The illuminance value can be specified in either lux or foot-candles. Enter d to specify a distance to use to calculate illuminance.

Color Specify the color of the light based on a color name or a Kelvin temperature. Enter ? to display a list of color names.
Enter a text string using wild card characters to display a partial listing of color names, or an asterisk (*) to display all the possible choices.
If you enter \(\mathbf{k}\), you can specify the color of the light based on a Kelvin temperature value.

Exit Exits the command.
Web
Specifies the intensity for a light at points on a spherical grid.
File Specifies which web file to use to define the properties of the web. Web files have the file extension .ies.

X Specifies the X rotation for the web.
Y Specifies the Y rotation for the web.

Z Specifies the \(Z\) rotation for the web.

\section*{Shadow}

Makes the light cast shadows.
Off Turns off the display and calculation of shadows for the light. Use this option to increase performance.

Sharp Displays shadows with sharp edges. Use this option to increase performance.

Soft Mapped Displays realistic shadows with soft edges.
Map Size Specifies the amount of memory to use to calculate the shadow map.

Softness Specifies the softness to use to calculate the shadow map.
Soft Sampled Displays realistic shadows with softer shadows (penumbra) based on extended light sources.
Specify the shape of the shadow by entering \(s\) and then the dimensions of the shape. (For example, the radius of the sphere or the length and width of a rectangle.)
Specify the sample size by entering a.
Specify the visibility of the shape by for the shadow by entering \(v\).

\section*{Filter Color}

Controls the color of the light.
True Color Specifies a True Color. Enter in the format R,G,B (red, green, blue).
Index Specifies an ACI (AutoCAD Color Index) color.
HSL Specifies an HSL (hue, saturation, luminance) color.
Color Book Specifies a color from a color book.

\section*{Exit}

Exits the command.

\section*{WEDGE}

\section*{Quick Reference}

See also:
■ Create a Solid Wedge

Creates a 3D solid wedge.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Modeling panel \(>\) Wedge
\(\$\) Menu: Draw \(>\) Modeling \(>\) Wedge
\(\$\) Toolbar: Modeling
Summary
The direction of the taper is always in the positive \(X\)-axis direction of the UCS.


\section*{List of Prompts}

The following prompts are displayed.
Specify first corner or [Center on page 2094]: Specify a point or enter c for center Specify other corner or [Cube on page 2094/Length on page 2095]: Specify the other corner of the wedge or enteran option

If the other corner of the wedge is specified with a \(Z\) value that differs from the first corner, then no height prompt is displayed.

Specify height or [2Point on page 2095] <default>: Specify the height or enter 2P for the 2 Point option

Entering a positive value draws the height along the positive \(Z\) axis of the current UCS. Entering a negative value draws the height along the negative \(Z\) axis.

Center
Creates the wedge by using a specified center point.


Cube Creates a wedge with sides of equal length.


Length Creates a wedge with length, width, and height values you specify. The length corresponds to the \(X\) axis, the width to the \(Y\) axis, and the height to the \(Z\) axis. If you pick a point to specify the length, you also specify the rotation in the \(X Y\) plane.


Cube
Creates a wedge with sides of equal length.


\section*{Length}

Creates a wedge with length, width, and height values you specify. The length corresponds to the \(X\) axis, the width to the \(Y\) axis, and the height to the \(Z\) axis.


\section*{2Point}

Specifies that the height of the wedge is the distance between the two specified points.

\section*{WHOHAS}

\section*{Quick Reference}

\section*{See also:}

■ Open a Drawing

Displays ownership information for opened drawing files.

\section*{Summary}

You can use WHOHAS to track which users have certain drawing files open.
After you select a file, the ownership information is displayed at the Command prompt. The information includes the current user's computer name, login ID, and full name (if available) and the date and time the drawing file was opened.

NOTE Similar information is displayed automatically when you try to open a drawing file that another user has already opened.

The information displayed by WHOHAS is stored in a temporary DWL (drawing lock) file. A DWL file is deleted when the file is closed.

\section*{WIPEOUT}

\section*{Quick Reference}

See also:
- Create a Blank Area to Cover Objects

Creates a wipeout object, and controls whether wipeout frames are displayed in the drawing.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Draw panel \(>\) Wipeout
\(\$\) Menu: Draw \(>\) Wipeout

\section*{Summary}

Creates a polygonal area that masks underlying objects with the current background color. The wipeout area is bounded by a frame that you can turn on for editing and turn off for plotting.


\section*{List of Prompts}

The following prompts are displayed.
Specify first point on page 2097 or [Frames on page 2097/Polyline on page 2097] <Polyline>.

First Point Determines the polygonal boundary of the wipeout object from a series of points.

Frames Determines whether the edges of all wipeout objects are displayed or hidden.

Polyline Determines the polygonal boundary of the wipeout objects from a selected polyline.

Erase Polyline Enter \(y\) to erase the polyline that was used to create the wipeout object. Enter \(\mathbf{n}\) to retain the polyline.

\section*{WMFIN}

\section*{Quick Reference}

\section*{See also: \\ ■ Insert WMF Files \\ Imports a Windows metafile. \\ Access Methods \\  \\ WMF \\ Button \\ \(\$\) Menu: Insert > Windows Metafile \\ Summary}

WMF files can contain both vector and raster information, however only the vector information is imported. WMF files are inserted as a block reference and can be resized and printed without losing resolution.

The Import WMF dialog box (a standard file selection dialog box) is displayed.
In the Import WMF dialog box, if you click Tools \(>\) Options, the WMF In Options dialog box is displayed. You can also open this dialog box directly by using WMFOPTS.

\section*{List of Prompts}

The following prompts are displayed.
Specify insertion point on page 2098 or [Scale on page 2098/X on page 2098/Y on page 2098/Z on page 2098/Rotate on page 2098/PScale on page 2099/PX on page 2099/PY on page 2099/PZ on page 2099/PRotate on page 2099]: Specify a point or enter an option Insertion Point
Places a copy of the metafile with its base point at the specified insertion point.

X Scale Factor Sets the \(X\) and \(Y\) scale factors.
All \(X\) and \(Y\) dimensions of the metafile are multiplied by the \(X\) and \(Y\) scale factors supplied. The metafile is rotated by the angle specified, using the insertion point as the center of rotation.

Corner Defines the X and Y scales at the same time, using the insertion point and another point as the corners of a box. The X and Y dimensions of the box become the X and Y scale factors. The insertion point is the first corner.

The rotation angle sets the angle of the WMF file.
XYZ Scales the metafile in all three dimensions.
If you enter \(\mathbf{c}\), you specify a corner point. The specified point and the insertion point determine the \(X\) and \(Y\) scale factors for the WMF file.
The rotation angle sets the angle of the WMF file.

\section*{Scale}

Sets the scale factor for the \(X, Y\), and \(Z\) axes. The scale for the \(Z\) axis is the absolute value of the specified scale factor.

\section*{X}

Sets the \(X\) scale factor.

\section*{Y}

Sets the \(Y\) scale factor.

\section*{Z}

Sets the \(Z\) scale factor.

\section*{Rotate}

Sets the angle of insertion for the WMF file.
■ X Scale Factor on page 2098
- Corner on page 2098

■ XYZ on page 2098

\section*{PScale}

Sets the temporary scale factor for the \(X, Y\), and \(Z\) axes to control the display of the WMF file as it is dragged into position.

■ X Scale Factor on page 2098
- Corner on page 2098

■ XYZ on page 2098

\section*{PX}

Sets the temporary scale factor for the \(X\) axis to control the display of the WMF file as it is dragged into position.

■ X Scale Factor on page 2098
■ Corner on page 2098
■ XYZ on page 2098

\section*{PY}

Sets the temporary scale factor for the \(Y\) axis to control the display of the WMF file as it is dragged into position.
- X Scale Factor on page 2098
- Corner on page 2098

■ XYZ on page 2098
PZ
Sets the temporary scale factor for the \(Z\) axis to control the display of the WMF file as it is dragged into position.

■ X Scale Factor on page 2098
- Corner on page 2098

■ XYZ on page 2098

\section*{PRotate}

Sets the temporary rotation angle of the WMF file as it is dragged into position.
■ X Scale Factor on page 2098
- Corner on page 2098
- XYZ on page 2098

\section*{WMFOPTS}

\section*{Quick Reference}

See also:
■ Insert WMF Files

Sets options for WMFIN.
Summary
The WMF In Options dialog box is displayed.

\section*{WMF In Options Dialog Box}

\section*{Quick Reference}

See also:
■ Insert WMF Files

Controls whether metafiles maintain relative line widths and whether they are imported as wireframes or solid objects.


\section*{List of Options}

The following options are displayed.
Wire Frame (No Fills)
Imports objects as wireframes. If you clear this option, objects are imported as filled objects.

Wide Lines

Maintains the relative line width of lines and borders. If you clear this option, lines are imported with zero width.

\section*{WMFOUT}

\section*{Quick Reference}

See also:
- Export WMF Files

Saves objects to a Windows metafile.
Summary
The Create WMF standard file selection dialog box is displayed.

\section*{WORKSPACE}

\section*{Quick Reference}

\section*{See also:}
- Create Task-Based Workspaces

Creates, modifies, and saves workspaces and makes a workspace current.

\section*{List of Prompts}

The following prompts are displayed.
Enter Workspace option [setCurrent on page 2101/SAveas on page 2101/Edit on page 2101/Rename on page 1963/Delete on page 2102/SEttings on page 2102/? on page 2102].
Set Current Sets a current workspace.
Save As Saves a current interface configuration as a workspace.
Edit Opens the Customize User Interface dialog box, Customize tab on page 377, where you can make modifications to a workspace.

Rename Renames a workspace.

Delete Deletes a workspace.
Settings Opens the Workspace Settings dialog box on page 2103, which controls the display, menu order, and Save settings of a workspace.
?-List Workspaces Lists all workspaces defined in the main and enterprise CUIx files.

\section*{WSSAVE}

\section*{Quick Reference}

See also:
- Create Task-Based Workspaces

Saves a workspace.
Summary
If you enter -wssave at the Command prompt, WSSAVE displays prompts.
The Save Workspace dialog box is displayed.

\section*{Save Workspace Dialog Box}

\section*{Quick Reference}

See also:
■ Create Task-Based Workspaces

Saves the current workspace scheme and settings of a workspace.

\section*{Access Methods}

並 Command entry: wssave

\section*{List of Options}

The following option are displayed.

Name Displays a text box where you can specify a name for a newly saved workspace and view a list of existing workspaces. These workspaces can be overwritten if the CUIx file in which they are included is writable. Read-only files, such as CUIx files that are shared across a network (called enterprise CUIx files), are displayed with a "Read-Only" file name extension.

\section*{WSSETTINGS}

\section*{Quick Reference}

\section*{See also:}
- Create Task-Based Workspaces

Sets options for workspaces.

\section*{Summary}

The Workspace Settings dialog box is displayed.

\section*{Workspace Settings Dialog Box}

\section*{Quick Reference}

\author{
See also: \\ ■ Create Task-Based Workspaces
}

Controls the display, menu order, and Save settings of a workspace.

\section*{Access Methods}

座 Command entry: wssettings

\section*{List of Options}

The following options are displayed.
My Workspace

Displays a list of workspaces from which you can choose a workspace to assign to the My Workspace toolbar button.

\section*{Menu Display and Order}

Controls which workspace name you want to display in the Workspaces toolbar and menu, the order of those workspace names, and whether a separator line is added between each workspace name. The workspaces displayed here and in the Workspaces toolbar and menu include the current workspace (displayed with a check mark in the toolbar and menu) and the workspace you've defined in the My Workspace= option, regardless of the display settings.

\section*{Move Up}

Moves workspace names up in the display order.

\section*{Move Down}

Moves workspace names down in the display order.

\section*{Add Separator}

Adds a separator between workspace names.
Do Not Save Changes to Workspace
Does not save changes you've made to a workspace when you switch to another workspace
(WSAUTOSAVE on page 2624 system variable)
Automatically Save Workspace Changes
Saves changes you've made to a workspace when you switch to another workspace.
(WSAUTOSAVE on page 2624 system variable)

\section*{X Commands}

\section*{XATTACH}

\section*{Quick Reference}

See also:
■ Attach Drawing References (Xrefs)

Inserts DWG files as an external reference (xref).

\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab \(>\) Reference panel \(>\) Attach
\(\$\) Menu: Insert > External Reference
\(\$\) Toolbar: Reference

\section*{Summary}

When you attach a drawing file as an xref, you link that referenced drawing to the current drawing. Any changes to the referenced drawing are displayed in the current drawing when it is opened or reloaded.

The Select Reference File dialog box (a standard file selection dialog box) is displayed. After you select the DWG files, the Attach External Reference dialog
box is displayed. After the files are attached, you can adjust and clip the xref through the External Reference ribbon contextual tab.

\section*{Attach External Reference Dialog Box}

\section*{Quick Reference}

See also:
- Attach Drawing References (Xrefs)

Attaches drawings as an external reference (xref).


\section*{Access Methods}


Button
\(\$\) Ribbon: Insert tab > Reference panel > Attach
\(\$\) Menu: Insert > External Reference
\(\$\) Toolbar: Reference


\section*{Summary}

If you attach a drawing that contains an attached xref, the attached xref appears in the current drawing. You can select multiple DWG files to attach. Like blocks, attached xrefs can be nested. If another person is currently editing the xref, the attached drawing is based on the most recently saved version.

\section*{List of Options}

The following options are displayed.
Name
Identifies the DWG you have selected to attach.

\section*{Browse}

Displays the Select Reference File dialog box (a standard file selection dialog box), in which you can select a new external reference for the current drawing.

\section*{Preview}

Displays the DWG you have selected to attach.

\section*{Reference Type}

Specifies whether the external reference is an attachment or an overlay. Unlike an xref that is an attachment, an overlay is ignored when the drawing to which it is attached is then attached as an xref to another drawing.

See "Attach Drawing References (Xrefs)" and "Nest and Overlay Referenced Drawings".

\section*{Locate using Geographic Data}

Attaches drawings using geographic data as the reference.

\section*{Scale}

\section*{Specify On-screen}

Allows you to input at the Command prompt or the pointing device.
X
Sets the \(X\) scale factor.
Y
Sets the \(Y\) scale factor.
Z
Sets the \(Z\) scale factor.

\section*{Uniform Scale}

Sets the \(Y\) and \(X\) scale factors as the same as \(Z\).

\section*{Insertion Point}

Specify On-Screen
Allows you to input at the Command prompt or the pointing device.

\section*{X}

Sets the \(X\) coordinate value.

Y

Sets the \(Y\) coordinate value.

\section*{Z}

Sets the \(Z\) coordinate value.

\section*{Path Type}

Select the full (absolute) path, the relative path to the external reference file, or No Path, the name of the external reference (the file must be located in the same folder as the current drawing file).

\section*{Rotation}

Specify on-screen
If Specify On-Screen is selected, you may wait until you exit the dialog box to rotate the object with your pointing device or at the Command prompt.

Angle
If Specify On-Screen is cleared, enter the rotation angle value in the dialog box.

\section*{Block Unit}

Displays information about the block units.

\section*{Unit}

Displays the specified INSUNITS value for the inserted block.

\section*{Factor}

Displays the unit scale factor, which is calculated based on the INSUNITS value of the block and the drawing units.

\section*{Show Details}

Displays the external reference file paths.

Found In Displays the path where the external reference file is located.
Saved Path Displays the path that is saved with the drawing when the external reference is attached. The path is dependent upon the Path Type setting.

\section*{External Reference Ribbon Contextual Tab}

\section*{Quick Reference}

See also:
- Attach Drawing References (Xrefs)

Displays options for attaching external references.


\section*{Access Methods}
\(\$\) Ribbon: Insert tab \(>\) Reference panel
\(\$\) Menu: Insert > DWG Reference
䱂 Command entry: xattach
Summary
The External Reference tab is displayed when you select an external reference.

\section*{List of Options}

The following options are displayed.

\section*{Edit Panel}

Edit Reference In-Place (REFEDIT on page 1607) Edits an xref or a block definition directly within the current drawing.

Open Reference (XOPEN on page 2118) Opens a selected drawing reference (xref) in a new window.

\section*{Clipping Panel}

Create Clipping Boundary (XCLIP on page 2113) Crops the display of a selected external reference or block reference to a specified boundary.

Remove Clipping (XCLIP on page 2113) Deletes the clipping boundary.
Options Panel
External References (EXTERNALREFERENCES on page 771) Opens the External References palette.

\section*{XBIND}

\section*{Quick Reference}

See also:
- Archive Drawings That Contain Referenced Drawings (Bind)

Binds one or more definitions of named objects in an xref to the current drawing.

Access Methods


Butlon
\(\$\) Menu: Modify \(>\) Object \(>\) External Reference \(>\) Bind
\(\$\) Toolbar: Reference

Summary
The Xbind dialog box is displayed.
If you enter -xbind at the Command prompt, options are displayed.
NOTE The Bind option of XREF binds the xref file. Use XBIND for individual dependent definitions.

\section*{Xbind Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Archive Drawings That Contain Referenced Drawings (Bind)

Adds xref-dependent named objects (such as blocks, dimension styles, layers, linetypes, and text styles) to your drawing.


\section*{Access Methods}


Butlon
\(\$\) Menu: Modify \(>\) Object \(>\) External Reference \(>\) Bind
\(\$\) Toolbar: Reference
锉 Command entry: xbind

\section*{List of Options}

The following options are displayed.
Xrefs
Lists the xrefs currently attached to the drawing. Selecting an xref (double-clicking) displays the named object definitions in the attached xref.

Definitions to Bind
Lists the xref-dependent named object definitions to bind to the host drawing.
Add

Moves the named object definitions selected in the Xrefs list into the Definitions to Bind list.

\section*{Remove}

Moves the xref-dependent named object definition selected in the Definitions to Bind list back to its xref-dependent definition table.

\section*{-XBIND}

\section*{Quick Reference}

\section*{See also:}
- Archive Drawings That Contain Referenced Drawings (Bind)

Binds one or more definitions of named objects in an xref to the current drawing.

\section*{List of Prompts}

The following prompts are displayed.
Enter symbol type to bind [Block/Dimstyle/LAyer/LType/Style]: Enter an option
Depending on the option, you are prompted for a xref-dependent named object (symbol) such as a block, dimension style, layer, linetype, or text style.
Enter dependent Symbol name(s): Enter a name list or * to bind all xref-dependent named objects (symbols) from that definition table

The name you specify must be the full name, including the vertical bar character (1).

The xref-dependent named objects you specify are added to your drawing. You can manipulate them as you would any other named object. The vertical bar character ( 1 ) from each xref-dependent named object is replaced with a number (usually 0) between two dollar signs (\$).

If you specify a layer whose associated linetype is not CONTINUOUS, XBIND also binds the referenced linetype. If you apply XBIND to a block, any block, dimension style, layer, linetype, or text style that's referenced by objects in the block is also bound. If the block contains an xref, XBIND binds that xref and all its dependent named objects.

\section*{Quick Reference}

See also:
- Clip External References and Blocks

Crops the display of a selected external reference or block reference to a specified boundary.

\section*{Access Methods}


\section*{Button}
\(\$\) Ribbon: Inset tab \(>\) Reference panel \(>\) Clip.
\(\$\) Toolbar: Reference
Shortcut menu: Select an xref, right-click in the drawing area, and click Clip Xref.

\section*{Summary}

The clipping boundary determines the portion of an xref or block instance that is hidden, either outside or inside the boundary. The visibility of the clipping boundary is controlled by the XCLIPFRAME system variable.

TIP Use the generic CLIP command to clip images, external references, viewports, and underlays.

\section*{List of Options}

The following options are displayed.

\section*{On}

Displays the clipped portion of the external reference or block in the current drawing.

\section*{Off}

Displays all of the geometry of the external reference or block in the current drawing, ignoring the clipping boundary.

\section*{Clipdepth}

Sets the front and back clipping planes on an xref or block. Objects outside the volume defined by the boundary and the specified depth are not displayed. Regardless of the current UCS, the clip depth is applied parallel to the clipping boundary.

Front Clip Point Creates a clipping plane passing through and perpendicular to the clipping boundary.

Distance Creates a clipping plane the specified distance from and parallel to the clipping boundary.

Remove Removes both the front and back clipping planes.

\section*{Delete}

Removes a clipping boundary for the selected xref or block. To temporarily turn off a clipping boundary, use the Off option. Delete erases the clipping boundary and the clipdepth. The ERASE command cannot be used to delete clipping boundaries.

\section*{Generate Polyline}

Automatically draws a polyline coincident with the clipping boundary. The polyline assumes the current layer, linetype, lineweight, and color settings. Use this option when you want to modify the current clipping boundary using PEDIT and then redefine the clipping boundary with the new polyline. To see the entire xref while redefining the boundary, use the Off option.

\section*{New Boundary}

Defines a rectangular or polygonal clipping boundary, or generates a polygonal clipping boundary from a polyline.

Select Polyline Defines the boundary with the selected polyline. The polyline can be open but must consist of straight line segments and cannot intersect itself.

Polygonal Defines a polygonal clipping boundary with three or more points that you specify for the vertices of a polygon.

Rectangular Defines a rectangular boundary with the points that you specify for opposite corners.

Invert Clip Inverts the mode of the clipping boundary: objects are clipped either outside the boundary or inside the boundary.

NOTE You can only create a new clipping boundary for a selected XREF underlay when the old boundary is deleted.

\section*{XEDGES}

\section*{Quick Reference}

See also:
- Create Wireframe Models

Creates wireframe geometry from the edges of a 3D solid, surface, mesh, region, or subobject.

\section*{Access Methods}


Button
\(\$\) Ribbon: Home tab \(>\) Solid Editing panel \(>\) Extract Edges
\(\$\) Menu: Modify \(>\) 3D Operations \(>\) Extract Edges

\section*{Summary}

With the XEDGES command, you can create wireframe geometry by extracting all the edges from the following objects:
- 3D solids
- 3D solid history subobjects

■ Meshes
- Regions
- Surfaces
- Subobjects (edges and faces)

\section*{.}

Press and hold Ctrl to select faces, edges and component objects, repeating if necessary. Objects such as lines, arcs, splines, or 3D polylines are created along the edges of the selected objects or subobjects.

\section*{XLINE}

\section*{Quick Reference}

\section*{See also:}
- Draw Construction Lines (and Rays)

Creates a line of infinite length.

\section*{Access Methods}

\(\$\) Ribbon: Home tab \(>\) Draw panel \(>\) Construction Line
\(\$\) Menu: Draw \(>\) Construction Line
\(\$\) Toolbar: Draw

\section*{Summary}

Lines that extend to infinity, such as xlines, can be used to create construction and reference lines, and for trimming boundaries.


\section*{List of Prompts}

The following prompts are displayed.
Specify a point on page 2117 or [Hor on page 2117/Ver on page 2117/Ang on page \(2117 /\) Bisect on page \(2118 /\) Offset on page 2118.

\section*{Point}

Specifies the location of the infinite line using two points through which it passes.

The xline is created through the specified point.


\section*{Hor}

Creates a horizontal xline passing through a specified point.
The xline is created parallel to the \(X\) axis.


Ver
Creates a vertical xline passing through a specified point.
The xline is created parallel to the \(Y\) axis.


\section*{Ang}

Creates an xline at a specified angle.


Angle of Xline Specifies the angle at which to place the line.

Reference Specifies the angle from a selected reference line. The angle is measured counterclockwise from the reference line.

\section*{Bisect}

Creates an xline that passes through the selected angle vertex and bisects the angle between the first and second line.

The xline lies in the plane determined by the three points.


\section*{Offset}

Creates an xline parallel to another object.
Offset Distance Specifies the distance the xline is offset from the selected object.

Through Creates an xline offset from a line and passing through a specified point.

\section*{XOPEN}

\section*{Quick Reference}

See also:
■ Edit a Referenced Drawing in a Separate Window

Opens a selected drawing reference (xref) in a new window.

\section*{Summary}

Opens a selected drawing reference in a separate window for editing. If the selected reference contains nested xrefs, Open Reference Files dialog box on page 2119 is displayed where you can specify which xref to open.

\section*{Open Reference Files Dialog Box}

\section*{Quick Reference}

\section*{See also:}

■ Edit a Referenced Drawing in a Separate Window

Opens a selected drawing reference (xref) in a new window.


\section*{Access Methods}

业 Command entry: xopen

\section*{Summary}

The Open Reference Files dialog box, displays a reference tree showing all nested xrefs. The source file for the selected xref opens in a separate drawing window, where you can edit, save, and then close the drawing.

\section*{List of Options}

The following options are displayed.

\section*{Reference Name}

Displays a reference tree of all nested xrefs for a specified reference.
Highlight Selected Reference
Highlights the selected xrefs in the drawing area.

\section*{Preview}

Displays a preview of the selected reference.
Zoom To...
Temporarily closes the Open Reference Files dialog box and zooms the view in the drawing area to the selected reference. Press Enter to redisplay the dialog box.

Open
Opens the source file for the selected reference in a separate window.

\section*{XPLODE}

\section*{Quick Reference}

\section*{See also:}

■ Disassemble a Block Reference (Explode)

Breaks a compound object into its component objects.

\section*{Summary}

Reports how many objects were selected and, of those, how many objects cannot be exploded.

\section*{List of Prompts}

The following prompts are displayed.
Enter an option [Individually on page 2121/Globally on page 2121].

component
objects after
XPLODE

\section*{Individually}

Applies changes to the selected objects one at a time. The following prompt is displayed for each object.
All Sets the color, linetype, lineweight, and layer of the component objects after you explode them. The prompts associated with the Color, Linetype, Lineweight, and Layer options are displayed.

Color Sets the color of the objects after you explode them.
- Enter bylayer to inherit the color of the exploded object's layer.
- Enter byblock to inherit the color of the exploded object.
- Enter \(\mathbf{t}\) for a true color to be used for the selected object.
- Enter co for a color from a loaded color book to be used for the selected object.

Layer Sets the layer of the component objects after you explode them. The default option is to inherit the current layer rather than the layer of the exploded object.

LType Sets the linetype of the component objects after you explode them. Enter bylayer to inherit the linetype of the exploded object's layer.
Enter byblock to inherit the linetype of the exploded object.
LWeight Sets the lineweight of the component objects after you explode them.

Inherit from Parent Block Sets the color, linetype, lineweight, and layer of the component objects to that of the exploded object if the component objects' color, linetype, and lineweight are BYBLOCK and the objects are drawn on layer 0 .

Explode Breaks a compound object into its component objects exactly as the EXPLODE command does.

\section*{Globally}

Applies changes to all the selected objects.

\section*{XREF}

\section*{Quick Reference}

See also:
■ Attach and Detach Referenced Drawings

Starts the EXTERNALREFERENCES command.

\section*{Summary}

The External References palette is displayed.
If you enter -xref at the Command prompt, options are displayed.

\section*{Bind Xrefs Dialog Box}

\section*{Quick Reference}

See also:
- Attach and Detach Referenced Drawings

Converts DWG references (xrefs) to standard local block definitions.


\section*{Access Methods}


Button

Menu: Insert > External References
Toolbar: Reference

Shortcut menu: Select a DWG reference (xref), right-click in the drawing area, and choose External References.
业 Command entry: externalreferences

\section*{Summary}

If you bind an xref into the current drawing, the xref and all its dependent named objects become a part of the current drawing. Use XBIND to add individual xref-dependent named objects, such as blocks, text styles, dimension styles, layers, and linetypes, to the local definition table. The two methods of binding xrefs to the current drawing are Bind and Insert. Bind alters the definition table names of an xref when it is inserted. Insert does not alter the definition table names of an xref when it is inserted. To bind a nested xref, you must also select the parent xref.

\section*{List of Options}

The following options are displayed.

\section*{Bind}

Binds the selected DWG reference to the current drawing. Xref-dependent named objects are changed from blocknameldefinitionname to blockname\$n\$definitionname syntax. In this manner, unique named objects are created for all xref-dependent definition tables bound to the current drawing.

For example, if you have an xref named FLOOR1 containing a layer named WALL, after binding the xref, the xref-dependent layer FLOOR1IWALL becomes a locally defined layer named FLOOR1\$0\$WALL. The number in \(\$ n \$\) is automatically increased if a local named object with the same name already exists. In this example, if FLOOR1\$0\$WALL already existed in the drawing, the xref-dependent layer FLOOR1IWALL would be renamed FLOOR1\$1\$WALL.

\section*{Insert}

Binds the DWG reference to the current drawing in a way similar to detaching and inserting the reference drawing. Rather than being renamed using blockname\$n\$definitionname syntax, xref-dependent named objects are stripped of the xref name. As with inserting drawings, no name-incrementing occurs if a local named object shares the same name as a bound xref-dependent named object. The bound xref-dependent named object assumes the properties of the locally defined named object.

For example, if you have an xref named FLOOR1 containing a layer named WALL, after binding with the Insert option, the xref-dependent layer FLOOR1IWALL becomes the locally defined layer WALL.

\section*{Quick Reference}

\section*{See also:}
- Attach and Detach Referenced Drawings

\section*{List of Prompts}

The following prompts are displayed.

\section*{Enter an Option}
?-List Xrefs Lists the DWG reference name, path, and type and the number of DWG references currently attached to your drawing.

Bind Converts a specified DWG reference into a block, making it a permanent part of the drawing.
The xref-dependent named objects, such as layer names, of the former xref are added to your drawing. In each xref-dependent named object, the vertical bar \((I)\) is replaced with three new characters: a number (usually 0 ) between two dollar signs (\$). The number is increased if the same name already exists in the current drawing.

Detach Detaches one or more DWG references from your drawing, erasing all instances of a specified xref and marking the xref definition for deletion from the definition table. Only the xrefs attached or overlaid directly to the current drawing can be detached; nested xrefs cannot be detached.

Path Displays and edits the path name associated with a particular DWG reference. This option is useful if you change the location of or rename the drawing file associated with the xref.

Unload Unloads the selected DWG references.
A marker is left in place of the xref so that it can be reloaded later.
Reload Reloads one or more DWG references. This option reloads and displays the most recently saved version of that drawing.
If the program encounters an error while reloading, it ends XREF and undoes the entire reloading sequence.

Overlay Displays the Enter Name of File to Overlay dialog box (a standard file selection dialog box). If you reference a drawing that contains an overlaid xref, the overlaid xref does not appear in the current drawing.

Unlike blocks and attached xrefs, overlaid xrefs cannot be nested. If another person is currently editing the xref file, the program overlays the most recently saved version.
If the xref you specify is not already overlaid, a new xref is crated, using the name of the referenced file.
If FILEDIA is set to 0 , the following prompt is displayed:
Enter Name of File to Overlay.
You can enter a tilde ( \(\sim\) ) to display a dialog box.
Attach Displays the External Reference dialog box, if a DWG reference is selected, or the Select Reference File dialog box, if no DWG reference is selected. See XATTACH.
If you reference a drawing that contains an attached xref, the attached xref appears in the current drawing. Like blocks, attached xrefs can be nested. If another person is currently editing the xref file, the most recently saved version is attached.

\section*{Specify Insertion Point}

Specify a point or enter an option
Scale Sets the scale factor. All \(X\) and \(Y\) dimensions of the xref are multiplied by the \(X\) and \(Y\) scale factors. The xref is rotated by the specified angle, using the insertion point as the center of rotation.
\(X, Y\), and \(Z\) Sets \(X, Y\), and \(Z\) scale factors.
- X Scale Factor. Defines \(X, Y\), and \(Z\) scale factors for the xref.
- Corner. Defines the \(X\) and \(Y\) scales at the same time, using the insertion point and another point as the corners of a box, and then defines the \(Z\) scale.

Rotate Sets the angle of insertion for the xref.
PScale Sets the scale factor for the \(X, Y\), and \(Z\) axes to control the display of the xref as it is dragged into position.

PX, PY, and PZ Sets the \(X, Y\), and \(Z\) axes to control the display of the xref as it is dragged into position.

PRotate Sets the rotation angle of the xref as it is dragged into position.

\section*{Z Commands}


\section*{ZOOM}

\section*{Quick Reference}

See also:
■ Pan or Zoom a View

Increases or decreases the magnification of the view in the current viewport.

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Navigate panel \(>\) Realtime
\(\$\) Menu: View \(>\) Zoom \(>\) Realtime
\(\$\) Toolbar: Standard
Shortcut menu: With no objects selected, right-click in the drawing area and choose Zoom to zoom in real time.
䱂 Command entry: 'zoom for transparent use

\section*{Summary}

You can change the magnification of a view by zooming in and out, which is similar to zooming in and out with a camera. Using ZOOM does not change
the absolute size of objects in the drawing. It changes only the magnification of the view.

In a perspective view, ZOOM displays the 3DZOOM prompts.
NOTE You cannot use ZOOM transparently during VPOINT or DVIEW or while ZOOM, PAN, or VIEW is in progress.

\section*{List of Prompts}

The following prompts are displayed.
Specify corner of window, enter a scale factor (nX or nXP), or [All on page 2128/Center/Dynamic/Extents on page 2129/Previous/Scale/Window/Object] <real time.
All Zooms to display all visible objects and visual aids.
The model fills the window using the greater extents calculated by all visible objects, or the extents of all visible objects and some visual aids. Visual aids might be the model's grid, a gizmo, or other.

before ZOOM All

after ZOOM All

In the illustration, LIMITS is greater than the extents of the drawing. Because it always regenerates the drawing, you cannot use ZOOM All transparently.

Center Zooms to display a view defined by a center point and a magnification value or a height. A smaller value for the height increases the magnification. A larger value decreases the magnification.

before ZOOM center

after ZOOM center, magnification increased

Dynamic Pans and zooms using a rectangular view box. The view box represents your view, which you can shrink or enlarge and move around the drawing. Positioning and sizing the view box pans or zooms to fill the viewport with the view inside the view box.

- To change the size of the view box, click, resize it, and click again to accept the new size of the view box.
- To pan with the view box, drag it to the location you want and press Enter.

Extents Zooms to display the maximum extents of all objects.
The extents of each object in the model are calculated and used to determine how the model should fill the window.

before ZOOM Extents

after ZOOM Extents

Previous Zooms to display the previous view. You can restore up to 10 previous views.

original view

current view

after ZOOM Previous

NOTE If you change the visual style, the view is changed. If you enter ZOOM Previous, it restores the previous view, which is shaded differently but not zoomed differently.

Scale Zooms to change the magnification of a view using a scale factor.
■ Enter a value followed by \(\mathbf{x}\) to specify the scale relative to the current view.
- Enter a value followed by \(\mathbf{x p}\) to specify the scale relative to paper space units.

For example, entering \(.5 \mathbf{x}\) causes each object to be displayed at half its current size on the screen.


Entering . \(5 x p\) displays model space at half the scale of paper space units. You can create a layout with each viewport displaying objects at a different scale. Enter a value to specify the scale relative to the grid limits of the drawing. (This option is rarely used.) For example, entering 2 displays objects at twice the size they would appear if you were zoomed to the limits of the drawing.


Window Zooms to display an area specified by a rectangular window.
With the cursor, you can define an area of the model to fill the entire window.

before ZOOM Window

after ZOOM Window

Object Zooms to display one or more selected objects as large as possible and in the center of the view. You can select objects before or after you start the ZOOM command.

Real Time Zooms interactively to change the magnification of the view.
The cursor changes to a magnifying glass with plus (+) and minus (-) signs. See Zoom Shortcut Menu on page 2131 for a description of the options that are available while zooming in real time.

9
Holding down the pick button at the midpoint of the window and moving vertically to the top of the window zooms in to \(100 \%\). Conversely, holding the pick button down at the midpoint of the window and moving vertically to the bottom of the window zooms out by \(100 \%\).
When you reach the zoom-in limit, the plus sign in the cursor disappears, indicating that you can no longer zoom in. When you reach the zoom-out limit, the minus sign in the cursor disappears, indicating that you can no longer zoom out.
When you release the pick button, zooming stops. You can release the pick button, move the cursor to another location in the drawing, and then press the pick button again and continue to zoom the display from that location.
To exit zooming, press Enter or Esc.

\section*{Zoom Shortcut Menu}

\section*{Quick Reference}

\section*{See also:}
- Pan or Zoom a View

\section*{Access Methods}


Button
\(\$\) Ribbon: View tab \(>\) Navigate panel \(>\) Realtime
\(\$\) Menu: View > Zoom > Realtime
\(\$\) Toolbar: Standard
Shortcut menu: With no objects selected, right-click in the drawing area and choose Zoom to zoom in real time.
䱂 Command entry: zoom (or 'zoom for transparent use)

\section*{Summary}

When the ZOOM command is active, you can exit ZOOM or switch to PAN or 3DORBIT using the options on the Zoom shortcut menu. To access the Zoom shortcut menu, right-click in the drawing area while ZOOM is active.

\section*{List of Options}

The following options are displayed.
Exit Cancels ZOOM or PAN.
Pan Switches to PAN.
Zoom Switches to ZOOM in real time.
3D Orbit Switches to 3DORBIT.
Zoom Window Zooms to display an area specified by a rectangular window.
Zoom Object Zooms to display one or more selected objects as large as possible and in the center of the drawing area.

Zoom Original Restores the original view.
Zoom Extents Zooms to display the drawing extents.

\section*{Command Modifiers}

\section*{26}

You can use command modifiers to help you locate points or select objects while a command is in progress. Use the Coordinate Filter, Direct Distance Entry, From, MTP, and Tracking command modifiers at any prompt that requires point specification. Use the Selection Mode command modifiers at any prompt that requires object selection.

\section*{Coordinate Filters (Command Modifier)}

\section*{Quick Reference}

\section*{See also:}

■ Combine Coordinate Values (Coordinate Filters)

Combines \(\mathrm{X}, \mathrm{Y}\), and Z values from different points to specify a single point
善 Command entry: Enter .x, .y, .xy, .xz, or .yz
At any prompt for locating a point, you can enter point filters to specify a single coordinate by extracting the \(X, Y\), and \(Z\) values of several points. In the following example, the start point for the line has a coordinate constructed from the \(X\) value of the midpoint of the first object you select, with the \(Y\) and \(Z\) values of the midpoint of the second object you select.

\footnotetext{
Command: line
Specify first point: .x
of mid
of Select an object
of (need YZ) mid
of Select another object
To point: Specify a point
}

\title{
Direct Distance Entry (Command Modifier)
}

\section*{Quick Reference}

\section*{See also:}
- Enter Direct Distances

Locates the next point at a specified distance in the direction of your cursor
聮 Command entry: At a prompt to locate a point, enter a numeric value
With direct distance entry, you can quickly specify a point relative to the last point you entered. At any prompt for a point location, you move the cursor first to specify the direction, and then enter a numeric distance.

In the following example, the second point for the line will be located 5 units toward the direction of the cursor. The direct distance that you enter is measured along the path from the last point to the current location of the cursor. This feature is usually used with Ortho or Snap mode turned on.

Command: line
Specify first point: Specify a point
Specify next point: Move the cursor in the desired direction and enter 5
NOTE The direct distance entry method is not available while you are using temporary override keys for Ortho, object snap tracking, or polar tracking.

\section*{FROM (Command Modifier)}

\section*{Quick Reference}

See also:
- Offset from Temporary Reference Points

Locates a point offset from a reference point within a command.
\(\$\) Toolbar: Object Snap
业 Command entry: At a prompt to locate a point, enter from
Base Point: Specify a point to use as a base point
of <offset>: Enter a relative offset

At a prompt for locating a point, enter from, and then enter a temporary reference or base point from which you can specify an offset to locate the next point. Enter the offset location from this base point as a relative coordinate, or use direct distance entry.

NOTE You cannot use this method during dragging in commands such as MOVE and COPY. Specifying an absolute coordinate, either by keyboard entry or with a pointing device, cancels the FROM command.

\section*{MTP (Command Modifier)}

\section*{Quick Reference}

See also:
- Use Object Snaps

Locates the midpoint between two points.
业 Command entry: At a prompt to locate a point, enter mtp
The midpoint between two points (MTP) command modifier can be used with running object snaps or object snap overrides. (OSNAP command)

At any Command prompt to locate a point, enter mtp or m2p.
First point of mid: Specify a point
Second point of mid: Specify a second point

\section*{TRACKING (Command Modifier)}

\section*{Quick Reference}

\section*{See also:}
- Track to Offset Point Locations (Tracking)

Locates a point from a series of temporary points.
㟇 Command entry: At a prompt to locate a point, enter tracking
Tracking turns on Ortho mode and can be used with Snap mode.

At any prompt to locate a point, enter tracking, track, or tk.
First tracking point: Specify a location or distance
Next point (Press ENTER to end tracking): Specify a second location or distance
Tracking specifies a series of temporary points, each offset from the previous one. Thus, you specify a new point location from a series of directions and distances. To determine the location of each temporary point, you can use direct distance entry. First move the cursor to specify the direction, and then enter a numeric distance.

Alternatively, tracking can establish a new point by combining the \(X\) and \(Y\) values of two specified points. You can specify these two points in any order, depending on the cursor direction after the first point. Direct distance entry specifies a distance in the direction of the current location of your cursor. Coordinate filters combine \(X, Y\), and \(Z\) values from different points into a single point. Relative coordinate entry locates a point relative to the last point entered.

You can also access tracking by holding down SHIFT and right-clicking to display the object snap shortcut menu.

\section*{Object Snaps (Command Modifier)}

\section*{Quick Reference}

\section*{See also:}

■ Use Object Snaps

Specifies a precise point at a location on an object.
㟇 Command entry: Within a command, at a prompt to locate a point, specify an object snap
When you specify an object snap, the cursor snaps to the specified point on an object closest to the center of the cursor. By default, a marker and a tooltip are displayed when you move the cursor over the object snap location on an object.

\section*{Specify a Single Object Snap}

If you specify a single object snap, it stays in effect only for the next point you specify.

You can specify an object snap with any of the following methods:
■ Enter a object snap by typing its name. To see a list of valid object snaps, refer to the OSNAP on page 1380 command or the Drafting Settings Dialog Box on page 664.

■ Click an object snap from the Object Snap toolbar.
- Click an object snap from the Object Snap shortcut menu. You can diisplay this shortcut menu by pressing SHIFT while you right-click.

\section*{Use Running Object Snaps}

Using the OSNAP or DSETTINGS commands, you can specify a set of running object snaps. Running object snaps are one or more object snaps that remain in effect as you work.

■ To turn running object snaps on and off, click the OSNAP button on the status bar or press F3.
- Press TAB to cycle through the object snap possibilities before you specify the point.
- To turn off running object snaps for the next point only, specify the None object snap.

\section*{Selection Modes (Command Modifier)}

\section*{Quick Reference}

See also:
- Select Objects

Controls how you create selection sets
來 Command entry: At a prompt to select objects, enter one of the valid selection modes described in the SELECT command

The selection mode you enter remains active only for the current Select Objects prompt.

\section*{System Variables}

\begin{abstract}
AutoCAD \({ }^{\circledR}\) stores the values for its operating environment and some of its commands in system variables. You can examine any system variable and change any writable system variable directly at the command prompt by entering the system variable name or by using the SETVAR command or the AutoLISP \({ }^{\circledR}\) getvar and setvar functions. Many system variables are also accessible through dialog box options

To access a list of system variables, on the Contents tab of the Help window, click the + sign next to System Variables.
\end{abstract}

\section*{27}

\section*{3DDWFPREC}

\section*{Quick Reference}

See also:
■ Publish 3D DWF Files

Type: Integer
Saved in: Drawing
Initial value: 2
Controls the precision of 3D DWF or 3D DWFx publishing.
This system variable has a range from 1 to 6 . Higher settings result in finer precision.
\begin{tabular}{ll}
\multicolumn{2}{l}{ 3DDWFPREC Value }
\end{tabular} Deviation Value 9 1

NOTE Setting a 3DDWFPREC value of 5 or 6 will create very large files or sheets in a multi-sheet DWF or DWFx.

\section*{3DCONVERSIONMODE}

\section*{Quick Reference}

See also:
■ Work with Lights in Drawings from Previous Versions of AutoCAD

Type: Integer
Saved in: Registry
Initial value: 1
Used to convert material and light definitions to the current product release

\section*{3DCONVERSIONMODE Deviation Value \\ Value}
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
No material or lighting conversion takes place when the \\
drawing is opened
\end{tabular} \\
\hline 1 & Material and lighting conversion takes place automatically \\
\hline 2 & You are prompted to convert any materials or lighting. \\
\hline
\end{tabular}

\section*{3DOSMODE}

\section*{Quick Reference}

See also:
■ Use Object Snaps

Type: Integer
Saved in: Registry
Initial value: 11
Controls the settings for the 3D object snaps.

Controls which 3D object snaps are enabled. The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{lll}
\hline Value & Description & Shortcut Keys \\
\hline 0 & Enables all 3D object snaps & \\
\hline 1 & Disables all 3D object snaps & ZNON \\
\hline 2 & Snaps to a vertex or a control vertex & ZVER \\
\hline 4 & Snaps to the midpoint on a face edge & ZMID \\
\hline 8 & Snaps to a spline or surface knot & ZKNO \\
\hline 16 & Snaps to a perpendicular face (planar & ZPER \\
\hline 32 & Saces only) & ZCEN \\
\hline 64 & Turns on all 3D object snaps to an object nearest to a face & ZNEA \\
\hline 126 & & \\
\hline
\end{tabular}

To specify more than one object snap, enter the sum or their values. For example, entering 6 specifies the vertex (2) and midpoint (4) object snaps. Entering 126 turns on all 3D object snaps.

\section*{3DSELECTIONMODE}

\section*{Quick Reference}

\section*{See also:}
- Select Objects Individually

Type: \(\quad\) Integer
Saved in: Registry
Initial value: 1

Controls the selection precedence of both visually and physically overlapping objects when using 3D visual styles.
\begin{tabular}{ll}
\hline 0 & Use legacy 3D selection precedence \\
\hline 1 & \begin{tabular}{l} 
Use line-of-sight 3D selection precedence for selecting 3D \\
solids and surfaces. Also, a defining object associated with \\
a surface is given selection precedence with this setting.
\end{tabular} \\
\hline
\end{tabular}

3DSELECTIONMODE has no effect when selecting 3D solids if they are displayed as 2D or 3D wireframes.

\title{
A System Variables
}

\section*{ACADLSPASDOC}

\section*{Quick Reference}

See also:
- AutoLISP and Visual LISP

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether the acad.lsp file is loaded into every drawing or just the first drawing opened in a session.
\(0 \quad\) Loads acad.Isp into just the first drawing opened in a ses-
sion

1
Loads acad.Isp into every drawing opened

\section*{ACADPREFIX}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area
(Read-only)
Type: String
Saved in: Not-saved
Initial value: Varies
Stores the directory path, if any, specified by the ACAD environment variable, with path separators appended if necessary.

\section*{ACADVER}

\section*{Quick Reference}

See also:
■ Customize the Drawing Environment
(Read-only)
Type: String
Saved in: Not-saved
Initial value: Varies
Stores the AutoCAD version number.
This variable differs from the DXF file \$ACADVER header variable, which contains the drawing database level number.

\section*{ACISOUTVER}

\section*{Quick Reference}

See also:
■ Export ACIS SAT Files

Type: Integer
Saved in: Not-saved
Initial value: 70
Controls the ACIS version of SAT files created using the ACISOUT command.
ACISOUT only supports a value of 15 through \(18,20,21,30,31,40,50,60\), and 70.

\section*{ACTPATH}

\section*{Quick Reference}

See also:
- Play Back an Action Macro

\section*{Type: \(\quad\) String}

Saved in: Registry
Initial value: ""
Specifies the additional paths to use when locating available action macros for playback.
\(\overline{\text { NOTE To specify more than one path, but you need to enter a semi-colon between }}\) each path.

\section*{ACTRECORDERSTATE}

\section*{Quick Reference}

\section*{See also:}
- Overview of Action Macros
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Specifies the current state of the Action Recorder.
\begin{tabular}{ll}
0 & Action Recorder is idle \\
\hline 1 & \begin{tabular}{l} 
Action Recorder is active; an action macro is currently \\
being recorded
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Action Recorder is active; an action macro is currently \\
being played back
\end{tabular} \\
\hline
\end{tabular}

\section*{ACTRECPATH}

Quick Reference
See also:
■ Overview of Action Macros

Type: \(\quad\) String
Saved in: Registry
Initial value: Varies
Specifies the path used to store new action macros.

\section*{ACTUI}

\section*{Quick Reference}

See also:
- Overview of Action Macros

Type: Bitcode
Saved in: Registry
Initial value: 6
Controls the behavior of the Action Recorder panel when recording and playing back macros.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
No changes to the Action Recorder panel occur when re- \\
cording or playing back an action macro
\end{tabular} \\
\hline 1 & Action Recorder panel is expanded during playback \\
\hline 2 & \begin{tabular}{l} 
When recording is finished, prompt for a name and de- \\
scription for the action macro
\end{tabular} \\
\hline 4 &
\end{tabular}

\section*{ADCSTATE}

\section*{Quick Reference}

See also:
- Access Content with DesignCenter
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: Varies
Indicates whether the DesignCenter window is open or closed.
For developers who need to determine status through AutoLISP.
\begin{tabular}{ll}
\hline 0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{AFLAGS}

\section*{Quick Reference}

See also:
■ Define Block Attributes

Type: Integer
Saved in: Not-saved
Initial value: 16
Sets options for attributes.
The value is the sum of the following:
\begin{tabular}{ll}
\hline 0 & No attribute mode selected \\
\hline 1 & Invisible \\
\hline 2 & Constant
\end{tabular}
\begin{tabular}{ll}
4 & Verify \\
\hline 8 & Preset \\
\hline 16 & Lock position in block \\
\hline 32 & Multiple lines
\end{tabular}

\section*{ANGBASE}

\section*{Quick Reference}

See also:
- Create Angular Dimensions

Type: Real
Saved in: Drawing
Initial value: 0.0000
Sets the base angle to 0 with respect to the current UCS.

\section*{ANGDIR}

\section*{Quick Reference}

See also:
- Create Angular Dimensions

Type: Integer
Saved in: Drawing
Initial value: 0
Sets the direction of positive angles.
Angle values are measured from angle 0 relative to the orientation of the current UCS.
\(0 \quad\) Counterclockwise

\section*{ANNOALLVISIBLE}

\section*{Quick Reference}

See also:
■ Display Annotative Objects

Type: Integer
Saved in: Drawing
Initial value: 1
Hides or displays annotative objects that do not support the current annotation scale.
\(0 \quad\) Only annotative objects that support the current are displayed

1
All annotative objects are displayed

The ANNOALLVISIBLE setting is saved individually for model space and each layout.

NOTE When ANNOALLVISIBLE is set to 1, annotative objects that support more than one scale will only display one .

\section*{ANNOAUTOSCALE}

\section*{Quick Reference}

See also:
■ Set Annotation Scale

Type: Integer
Saved in: Registry
Initial value: -4

Updates annotative objects to support the annotation scale when the annotation scale is changed.

When the value is negative, the autoscale functionality is turned off, but the settings are maintained:
\begin{tabular}{ll}
\hline 1 & \begin{tabular}{l} 
Adds the newly set annotation scale to annotative objects \\
that support the current scale except for those on layers \\
that are turned off, frozen, locked or that are set to View- \\
port > Freeze.
\end{tabular} \\
\hline-1 & \begin{tabular}{l} 
ANNOAUTOSCALE is turned off, but when turned back \\
on is set to 1.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Adds the newly set annotation scale to annotative objects \\
that support the current scale except for those on layers \\
that are turned off, frozen, or that are set to Viewport > \\
Freeze. \\
on is set to 2.
\end{tabular} \\
\hline-2 & \begin{tabular}{l} 
Adds the newly set annotation scale to annotative objects \\
that support the current scale except for those on layers \\
that are locked.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
ANNOAUTOSCALE is turned off, but when turned back \\
on is set to 3.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Adds the newly set annotation scale to all annotative ob- \\
jects that support the current scale.
\end{tabular} \\
\hline-4 & on is set to 4.
\end{tabular}

\section*{ANNOTATIVEDWG}

\section*{Quick Reference}

See also:
■ Create Annotative Blocks and Attributes

\section*{Type: Integer}

Saved in: Drawing
Initial value: 0
Specifies whether or not the drawing will behave as an annotative block when inserted into another drawing.
\begin{tabular}{ll}
\hline 0 & Nonannotative \\
\hline 1 & Annotative \\
\hline
\end{tabular}

NOTE The ANNOTATIVEDWG system variable becomes read-only if the drawing contains annotative objects.

\section*{APBOX}

\section*{Quick Reference}

See also:
■ Set Visual Aids for Object Snaps (AutoSnap)

Type: Integer
Saved in: Registry
Initial value: 0
Turns the display of the AutoSnap aperture box on or off.
The aperture box is displayed in the center of the crosshairs when you snap to an object.
\(0 \quad\) Off

\section*{APERTURE}

\section*{Quick Reference}

See also:
- Use Object Snaps

Type: Integer
Saved in: Registry
Initial value: 10
Sets the display size for the object snap target box, in pixels.
This system variable has the same name as a command. Use the SETVAR command to access this system variable.

Enter a value (1-50). The higher the number, the larger the target box. You can also change this setting in the Options dialog box, Drafting tab.

APERTURE controls the object snap target box, not the pickbox displayed at the Select Objects prompt. The object selection pickbox is controlled by the PICKBOX system variable.

\section*{APPLYGLOBALOPACITIES}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

■ Transparency Dialog Box on page 1373

Type: Switch
Saved in: Registry
Initial value: 0

Applies transparency settings to all palettes.
\begin{tabular}{ll}
\hline 0 & Transparency settings off \\
\hline 1 & Transparency settings on \\
\hline
\end{tabular}

This system variable determines the default setting for the Transparency dialog box > Apply these settings to all palettes option on page 1373.

\section*{APSTATE}

\section*{Quick Reference}

\section*{See also:}

■ Create Custom Block Authoring Tools
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Indicates whether the Block Authoring Palettes window in the Block Editor is open or closed.
\begin{tabular}{ll}
\hline 0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{AREA}

\section*{Quick Reference}

\section*{See also:}
- Obtain Area and Mass Properties Information
(Read-only)
Type: Real

Saved in: Not-saved
Initial value: 0.0000
This system variable has the same name as a command. Use the GETVAR command to access this system variable.

\section*{ATTDIA}

\section*{Quick Reference}

See also:
■ Insert Blocks

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether the INSERT command uses a dialog box for attribute value entry.
\begin{tabular}{ll}
\hline 0 & Issues Command prompts \\
\hline 1 & Uses a dialog box \\
\hline
\end{tabular}

\section*{ATTIPE}

\section*{Quick Reference}

See also:
■ Define Block Attributes

Type: Integer
Saved in: Registry
Initial value: 0
Controls the display of the in-place editor used to create multiline attributes.
0
Displays a limited in-place editor that includes only a few formatting options

Use the limited in-place editor when creating multiline attributes for best compatibility with releases prior to AutoCAD 2008.

\section*{ATTMODE}

\section*{Quick Reference}

See also:
■ Define Block Attributes
Type: Integer
Saved in: Drawing
Initial value: 1
Controls display of attributes.
\begin{tabular}{ll}
\hline 0 & Off: Makes all attributes invisible \\
\hline 1 & \begin{tabular}{l} 
Normal: Retains current visibility of each attribute; visible \\
attributes are displayed; invisible attributes are not
\end{tabular} \\
\hline 2 & On: Makes all attributes visible \\
\hline
\end{tabular}

\section*{ATTMULTI}

\section*{Quick Reference}

See also:
- Define Block Attributes

Type: Integer
Saved in: Registry
Initial value: 1

Controls whether multiline attributes can be created.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Turns off all access methods for creating multiline attrib- \\
utes. They can still be viewed and edited.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Turns on all access methods for creating multiline attrib- \\
utes.
\end{tabular} \\
\hline
\end{tabular}

\section*{ATTREQ}

\section*{Quick Reference}

See also:
■ Insert Blocks

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether INSERT uses default attribute settings during insertion of blocks.
\(0 \quad\) Assumes the defaults for the values of all attributes

1 Turns on prompts or a dialog box for attribute values, as specified by ATTDIA

\section*{AUDITCTL}

\section*{Quick Reference}

See also:
- Repair a Damaged Drawing File

Type: Integer
Saved in: Registry Initial value: 0

Controls whether AUDIT creates an audit report (ADT) file.
\begin{tabular}{ll}
\hline 0 & Prevents writing of ADT files \\
\hline 1 & Writes ADT files \\
\hline
\end{tabular}

\section*{AUNITS}

\section*{Quick Reference}

\section*{See also:}
- Set Angular Unit Conventions
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Drawing \\
Initial value: 0 \\
Sets units for & 0 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline 0 & Decimal degrees \\
\hline 1 & Degrees/minutes/seconds \\
\hline 2 & Gradians \\
\hline 3 & Radians \\
\hline 4 & Surveyor's units \\
\hline
\end{tabular}

\section*{AUPREC}

\section*{Quick Reference}

See also:
- Set Angular Unit Conventions

Type: Integer

Saved in: Drawing
Initial value: 0
Sets the display precision for angular units and coordinates.
However, the internal precision of angular values and and coordinates is always maintained, regardless of the display precision. AUPREC does not affect the display precision of dimension text (see DIMSTYLE).

Valid values are integers from 0 to 8 .

\section*{AUTODWFPUBLISH}

\section*{Quick Reference}

See also:
- Set Publish Options

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether DWF (Design Web Format) files are created automatically when you save or close drawing (DWG) files.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Turns off automatic publishing to DWF files when a \\
drawing is saved or closed
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Turns on automatic publishing to DWF files when a \\
drawing is saved or closed
\end{tabular} \\
\hline
\end{tabular}

The AUTOPUBLISH command controls additional options.
NOTE This command will be removed in a future release.

\section*{AUTOMATICPUB}

\section*{Quick Reference}

See also:
- Set Publish Options

Type: Integer
Saved in: User-settings
Initial value: 0
Controls whether electronic files (DWF/PDF) are created automatically when you save or close drawing (DWG) files.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Turns off automatic publishing to DWF/PDF files when a \\
drawing is saved or closed
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Turns on automatic publishing to DWF/PDF files when a \\
drawing is saved or closed
\end{tabular} \\
\hline
\end{tabular}

The AUTOPUBLISH command controls additional options.

\section*{AUTOSNAP}

\section*{Quick Reference}

\section*{See also:}

■ Set Visual Aids for Object Snaps (AutoSnap)

Type: Integer
Saved in: Registry
Initial value: 63
Controls the display of the AutoSnap marker, tooltip, and magnet.

Also turns on polar and object snap tracking, and controls the display of polar tracking, object snap tracking, and Ortho mode tooltips. The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Turns off the AutoSnap marker, tooltips, and magnet. Also \\
turns off polar tracking, object snap tracking, and tooltips \\
for polar tracking, object snap tracking, and Ortho mode
\end{tabular} \\
\hline 1 & Turns on the AutoSnap marker \\
\hline 2 & Turns on the AutoSnap tooltips \\
\hline 4 & Turns on the AutoSnap magnet \\
\hline 8 & Turns on polar tracking \\
\hline 16 & Turns on object snap tracking \\
\hline 32 & \begin{tabular}{l} 
Turns on tooltips for polar tracking, object snap tracking, \\
and Ortho mode
\end{tabular} \\
\hline
\end{tabular}

\title{
B System Variables
}

\section*{BACKGROUNDPLOT}

\section*{Quick Reference}

See also:
■ Overview of Plotting
Type: Integer
Saved in: Registry
Initial value: 2
Controls whether background plotting is turned on or off for plotting and publishing.

By default, background plotting is turned off for plotting and on for publishing.
\begin{tabular}{lll}
\hline Value & PLOT & PUBLISH \\
\hline 0 & Foreground & Foreground \\
\hline 1 & Background & Foreground \\
\hline 2 & Foreground & Background \\
\hline 3 & Background & Background \\
\hline
\end{tabular}

When -PLOT, PLOT, -PUBLISH, and PUBLISH are used in a script (SCR file), the BACKGROUNDPLOT system variable value is ignored, and -PLOT, PLOT, -PUBLISH, and PUBLISH are processed in the foreground.

\section*{BACKZ}

\section*{Quick Reference}

See also:
- Create a 3D Dynamic View (DVIEW)
(Read-only)
Type: Real
Saved in: Drawing
Initial value: 0.0000
Stores the back clipping plane offset from the target plane for the current viewport, in drawing units.

Meaningful only if clipping is specified in CAMERA, DVIEW, or 3DCLIP. If there are several cameras, the value is the last back clipping plane that you set current. The distance of the back clipping plane from the camera point can be found by subtracting BACKZ from the camera-to-target distance.

\section*{BACTIONBARMODE}

\section*{Quick Reference}

\section*{See also:}
- Group Related Actions in Dynamic Blocks

\section*{Type: Integer \\ Saved in: Registry \\ Initial value: 1}

Indicates whether the action bars or the legacy action objects are displayed in the Block Editor.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Legacy action objects are displayed in the \\
Block Editor.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Action bars are displayed in the Block Edit- \\
or.
\end{tabular} \\
\hline
\end{tabular}

NOTE The BACTIONSET,BASSOCIATE, and BLOOKUPTABLE on page 252 commands are disabled when the BACTIONBARMODE system variable is set to 1 .

\section*{BACTIONCOLOR}

\section*{Quick Reference}

See also:
- Overview of Actions and Parameters

Type: String
Saved in: Registry
Initial value: 7
Sets the text color of actions in the Block Editor.
Valid values include BYLAYER, BYBLOCK, and an integer from 1 to 255.
Valid values for True Colors are a string of integers each from 1 to 255 separated by commas and preceded by RGB. The True Color setting is entered as follows:

RGB:000,000,000

\section*{BCONSTATUSMODE}

\section*{Quick Reference}

See also:
- Identify Fully Constrained Objects

Type: Integer
Saved in: Not-saved
Initial value: 0
Turns the constraint display status on and off and controls the shading of objects based on their constraint level.

When the display status is on, objects are shaded based on whether they are partially constrained, fully constrained, over constrained, or not constrained.
\begin{tabular}{ll}
\hline 0 & Turns off the constraint display status \\
\hline 1 & Turns on the constraint display status \\
\hline
\end{tabular}

You can turn the display status on or off using an icon in the drawing status bar. The colors corresponding to the constraint status can also be modified in the Block Editor Settings dialog box. When you enter the Block Editor, the value is always set to 0 .

\section*{BDEPENDENCYHIGHLIGHT}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Actions and Parameters

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether or not dependent objects are dependency highlighted when a parameter, action, or grip is selected in the Block Editor.
\(0 \quad\) Specifies that dependent objects are not highlighted
1 Specifies that dependent objects are highlighted

Dependency highlighting displays objects with a halo effect.

\section*{BGRIPOBJCOLOR}

\section*{Quick Reference}

See also:
- Overview of Actions and Parameters

Type: String
Saved in: Registry
Initial value: 141
Sets the color of grips in the Block Editor.
Valid values include BYLAYER, BYBLOCK, and an integer from 1 to 255.
Valid values for True Colors are a string of integers each from 1 to 255 separated by commas and preceded by RGB. The True Color setting is entered as follows:

RGB:000,000,000

\section*{BGRIPOBJSIZE}

\section*{Quick Reference}

See also:
- Overview of Actions and Parameters

Type: Integer
Saved in: Registry
Initial value: 8
Sets the display size of custom grips in the Block Editor relative to the screen display.
Valid values are integers from 1 to 255 .

\section*{BINDTYPE}

\section*{Quick Reference}

\section*{See also:}
- Save Back Edited Referenced Drawings and Blocks

Type: Integer
Saved in: Not-saved
Initial value: 0

Controls how xref names are handled when binding xrefs or editing xrefs in place.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Traditional binding behavior ("xref1lone" becomes \\
"xref\$0\$one")
\end{tabular} \\
\hline 1 & Insert-like behavior ("xref1 lone" becomes "one")
\end{tabular}

\section*{BLIPMODE}

\section*{Quick Reference}

See also:
- Erase Objects

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether marker blips are visible.
This system variable has the same name as the BLIPMODE command. Use the SETVAR command to access this system variable.
\begin{tabular}{ll}
\hline 0 & Turns off marker blips \\
\hline 1 & Turns on marker blips \\
\hline
\end{tabular}

\section*{BLOCKEDITLOCK}

\section*{Quick Reference}

See also:
- Create and Edit Dynamic Blocks

Type: Integer
Saved in: Registry

Initial value: 0
Disallows opening of the Block Editor and editing of dynamic block definitions.
When BLOCKEDITLOCK is set to 1 , double-clicking a dynamic block in a drawing opens the Properties palette. If the dynamic block contains attributes, double-clicking the block reference opens the Enhanced Attribute Editor. Double click actions can be customized using the Double Click Actions.
\(0 \quad\) Specifies that the Block Editor can be opened

1
Specifies that the Block Editor cannot be opened

\section*{BLOCKEDITOR}

\section*{Quick Reference}

See also:
- Create and Edit Dynamic Blocks
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Indicates whether or not the Block Editor is open.
\begin{tabular}{ll}
\hline 0 & Indicates that the Block Editor is not open \\
\hline 1 & Indicates that the Block Editor is open
\end{tabular}

\section*{BLOCKTESTWINDOW}

\section*{Quick Reference}

\section*{See also:}

■ Test Blocks Within the Block Editor
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Indicates whether or not a test block window is current.
The BLOCKTESTWINDOW system variable controls the display of the contextual panel that is displayed when a test block window is current. When the test block window is current, this system variable is set to 1 , otherwise it is set to 0 .

\section*{BPARAMETERCOLOR}

\section*{Quick Reference}

See also:
- Overview of Actions and Parameters

Type: \(\quad\) String
Saved in: Registry
Initial value: 170
Sets the color of parameters in the Block Editor.
Valid values include BYLAYER, BYBLOCK, and an integer from 1 to 255.
Valid values for True Colors are a string of integers each from 1 to 255 separated by commas and preceded by RGB. The True Color setting is entered as follows:

RGB:000,000,000

\section*{BPARAMETERFONT}

\section*{Quick Reference}

See also:
- Overview of Actions and Parameters
\(\begin{array}{ll}\text { Type: } & \text { String } \\ \text { Saved in: } & \text { Registry }\end{array}\)

Initial value: Simplex.shx
Sets the font used for parameters and actions in the Block Editor.
You can specify either a True Type font or a SHX font (for example, Verdana or Verdana.ttf). You must add the .shx extension to specify an AutoCAD SHX font. When specifying an Asian Big Font, use the following naming convention: an SHX file followed by a comma (,), followed by the Big Font file name (for example, Simplex.shx,Bigfont.shx).

\section*{BPARAMETERSIZE}

\section*{Quick Reference}

See also:
■ Overview of Actions and Parameters

Type: Integer
Saved in: Registry
Initial value: 12
Sets the size of parameter text and features in the Block Editor relative to the screen display.

Valid values include an integer from 1 to 255.

\section*{BPTEXTHORIZONTAL}

\section*{Quick Reference}

\author{
See also: \\ Type: Integer \\ Saved in: Registry \\ Initial value: 1
}
- Overview of Actions and Parameters

Forces the text displayed for action parametes and constraint parameters in the Block Editor to be horizontal.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Aligns text with the dimension line of the \\
parameter
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Displays the text for action parameters and \\
constraint parameters in the Block Editor \\
horizontally
\end{tabular}
\end{tabular}

The BPTEXTHORIZONTAL system variable is applicable to the action parameters and block constraint parameters.

\section*{BTMARKDISPLAY}

\section*{Quick Reference}

\section*{See also:}
- Overview of Actions and Parameters

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether or not value set markers are displayed for dynamic block references.
\begin{tabular}{ll}
\hline 0 & Specifies that value set markers are not displayed \\
\hline 1 & Specifies that value set markers are displayed
\end{tabular}

\section*{BVMODE}

Quick Reference
See also:
- Create Visibility States

\section*{Type: Integer \\ Saved in: Not-saved \\ Initial value: 0}

Controls how objects that are made invisible for the current visibility state are displayed in the Block Editor.
\begin{tabular}{ll}
\hline 0 & Specifies that hidden objects are not visible \\
\hline 1 & Specifies that hidden objects are visible but dimmed \\
\hline
\end{tabular}

\section*{C System Variables}

\section*{CALCINPUT}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

\section*{Type: Integer}

Saved in: Registry
Initial value: 1
Controls whether mathematical expressions and global constants are evaluated in text and numeric entry boxes of windows and dialog boxes.

0
Expressions are not evaluated
1
Expressions are evaluated after you press Alt+Enter

\section*{CAMERADISPLAY}

\section*{Quick Reference}

See also:
- Change Camera Properties
```

Type: Integer
Saved in: Drawing
Initial value: 0
Turns the display of camera objects on or off.
The value changes to 1 (to display cameras) when you use the CAMERA command.

```
\begin{tabular}{ll}
\hline 0 & Camera glyphs are not displayed \\
\hline 1 & Camera glyphs are displayed \\
\hline
\end{tabular}

\section*{CAMERAHEIGHT}

\section*{Quick Reference}

See also:
- Change Camera Properties

Type: Real
Saved in: Drawing
Initial value: 0.0000
Specifies the default height for new camera objects.
The height is expressed in current drawing units.

\section*{CANNOSCALE}

\section*{Quick Reference}

See also:
- Set Annotation Scale

Type: String
Saved in: Drawing
Initial value: \(1: 1\)
Sets the name of the current annotation scale for the current space.

You can only enter a named scale that exists in the drawing's named scale list.

\section*{CANNOSCALEVALUE}

\section*{Quick Reference}

See also:
- Set Annotation Scale
(Read-only)
Type: Real
Saved in: Drawing
Initial value: 1.0000
Returns the value of the current annotation scale.

\section*{CAPTURETHUMBNAILS}

\section*{Quick Reference}

See also:
■ Content reference to: Rewind Tool

Type: Integer
Saved in: Registry
Initial value: 1
Specifies if and when thumbnails are captured for the Rewind tool.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
No preview thumbnails are generated when a view change \\
occurs outside the SteeringWheels
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Preview thumbnails are generated on demand for the Re- \\
wind tool when the bracket is positioned over an empty \\
frame
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Preview thumbnails are automatically generated after each \\
view change occurs
\end{tabular} \\
\hline
\end{tabular}

\section*{CBARTRANSPARENCY}

\section*{Quick Reference}

See also:
- Display and Verify Geometric Constraints

Type: Integer
Saved in: Registry
Initial value: 50
Controls the transparency of the constraint bars.
The valid CBARTRANSPARENCY system variable is between 10 and 90. The higher value makes the constraint bars more opaque.

\section*{CCONSTRAINTFORM}

\section*{Quick Reference}

See also:
- Apply Dimensional Constraints

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether annotational or dynamic constraints are applied to objects.
\begin{tabular}{ll}
0 & Dynamic \\
\hline 1 & Annotational
\end{tabular}

When this system variable is set to 0 , dynamic constraints are created, by default, when you use the DIMCONSTRAINT command.

\section*{CDATE}

\section*{Quick Reference}

See also:
■ Obtain General Drawing Information
(Read-only)
Type: Real
Saved in: Not-saved
Initial value: Varies
Stores the current date and time in decimal format.
The date and time displays in a decimal format starting with the year. After the decimal point, CDATE displays the time using a 24 -hour clock. For example, the ninth day of February in the year 2006 at 3:05 pm displays as 20060209.150500.

\section*{CECOLOR}

\section*{Quick Reference}

See also:
- Change the Color of an Object

Type: String
Saved in: Drawing
Initial value: BYLAYER
Sets the color of new objects.
Valid values include the following:
- BYLAYER or BYBLOCK
- AutoCAD Color Index (ACI): integer values from 1 to 255 , or a color name from the first seven colors
- True Colors: RGB or HSL values from 000 to 255 in the form "RGB:130,200,240"

■ Color Books: Text from standard PANTONE or custom color books, the DIC color guide, or RAL color sets, for example "DIC COLOR GUIDE(R)\$DIC 43"

\section*{CELTSCALE}

\section*{Quick Reference}

See also:
- Control Linetype Scale

Type: Real
Saved in: Drawing
Initial value: 1.0000
Sets the current object linetype scaling factor.
Sets the linetype scaling for new objects relative to the LTSCALE command setting. A line created with CELTSCALE \(=2\) in a drawing with LTSCALE set to 0.5 would appear the same as a line created with CELTSCALE \(=1\) in a drawing with LTSCALE \(=1\).

\section*{CELTYPE}

\section*{Quick Reference}

See also:
- Set the Current Linetype

Type: String
Saved in: Drawing
Initial value: BYLAYER
Sets the linetype of new objects.

\section*{CELWEIGHT}

\section*{Quick Reference}

See also:
- Set the Current Lineweight

Type: Integer
Saved in: Drawing
Initial value: -1
Sets the lineweight of new objects.
\begin{tabular}{ll}
-1 & Sets the lineweight to "BYLAYER." \\
\hline-2 & Sets the lineweight to "BYBLOCK." \\
\hline-3 & \begin{tabular}{l} 
Sets the lineweight to "DEFAULT." "DEFAULT" is controlled \\
by the LWDEFAULT system variable.
\end{tabular}
\end{tabular}

Other valid values entered in hundredths of millimeters include \(0,5,9,13\), \(15,18,20,25,30,35,40,50,53,60,70,80,90,100,106,120,140,158,200\), and 211.

All values must be entered in hundredths of millimeters. (Multiply a value by 2540 to convert values from inches to hundredths of millimeters.)

\section*{CENTERMT}

\section*{Quick Reference}

See also:
■ Change Multiline Text

Type: Integer
Saved in: Registry Initial value: 0
Controls how grips stretch multiline text that is centered horizontally.

CENTERMT does not apply to stretching multiline text by using the ruler in the In-Place Text Editor.

0 When you move a corner grip in centered multiline text, the center grip moves in the same direction, and the grip on the opposite side remains in place

When you move a corner grip in centered multiline text, the center grip stays in place, and both sets of side grips move in the direction of the stretch

\section*{CETRANSPARENCY}

\section*{Quick Reference}

\section*{See also:}
- Display and Change the Properties of Objects
\begin{tabular}{ll} 
Type: \(\quad\) String \\
Saved in: \(\quad\) Drawing \\
Initial value: & ByLayer \\
Sets the transparency level for new objects.
\end{tabular}
\begin{tabular}{ll}
\hline ByLayer & Transparency value determined by layer \\
\hline ByBlock & Transparency value determined by block \\
\hline 0 & Fully opaque (not transparent) \\
\hline \(1-90\) & Transparency value defined as a percentage \\
\hline
\end{tabular}

To change the transparency of existing objects, use the Properties palette or the Layer Properties Manager.

NOTE Transparency is limited to 90 percent to avoid confusion with layers that are turned off or frozen.

The transparency level for new hatch objects is controlled by the HPTRANSPARENCY system variable.

\section*{CHAMFERA}

\section*{Quick Reference}

See also:
■ Create Chamfers

Type: Real
Saved in: Drawing
Initial value: 0.0000
Sets the first chamfer distance when CHAMMODE is set to 0 .

\section*{CHAMFERB}

\section*{Quick Reference}

See also:
■ Create Chamfers

Type: Real
Saved in: Drawing
Initial value: 0.0000
Sets the second chamfer distance when CHAMMODE is set to 0 .

\section*{CHAMFERC}

\section*{Quick Reference}

See also:
- Create Chamfers

Type: Real
Saved in: Drawing
Initial value: 0.0000
Sets the chamfer length when CHAMMODE is set to 1 .

\section*{CHAMFERD}

\section*{Quick Reference}

See also:
■ Create Chamfers

\section*{Type: Real}

Saved in: Drawing
Initial value: 0.0000
Sets the chamfer angle when CHAMMODE is set to 1 .

\section*{CHAMMODE}

\section*{Quick Reference}

See also:
■ Create Chamfers

Type: Integer
Saved in: Not-saved
Initial value: 0
Sets the input method for CHAMFER
\begin{tabular}{ll}
\hline 0 & Requires two chamfer distances \\
\hline 1 & Requires a chamfer length and an angle \\
\hline
\end{tabular}

\section*{CIRCLERAD}

\section*{Quick Reference}

See also:
- Draw Circles

Type: Real
Saved in: Not-saved
Initial value: 0.0000
Sets the default circle radius.
A zero indicates no default.

\section*{CLASSICKEYS}

\section*{Quick Reference}

Type: \(\quad\) Switch
Saved in: Registry
Initial value: 0
Sets shortcuts to pre-Windows AutoCAD shortcuts or Windows shortcuts.
\begin{tabular}{ll}
0 & To copy, press Ctrl + C \\
\hline 1 & To cancel, press Ctrl +C \\
\hline
\end{tabular}

\section*{CLAYER}

\section*{Quick Reference}

See also:
- Change Layer Settings and Layer Properties

Type: String
Saved in: Drawing
Initial value: 0
Sets the current layer.

\section*{CLEANSCREENSTATE}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Indicates whether the clean screen state is on or off.
\begin{tabular}{lll}
\hline 0 & Off \\
\hline 1 & On \\
\hline
\end{tabular}

\section*{CLISTATE}

\section*{Quick Reference}

See also:
■ Dock, Resize, and Hide the Command Window
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 1
Indicates whether the command window is open or closed.
\begin{tabular}{ll}
\hline 0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{CMATERIAL}

\section*{Quick Reference}

See also:
■ Create New Materials

Type: String
Saved in: Drawing
Initial value: BYLAYER
Sets the material of new objects.
Valid values are BYLAYER, BYBLOCK, and the name of a material in the drawing

\section*{CMDACTIVE}

\section*{Quick Reference}

See also:
■ Enter Commands on the Command Line
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: Varies
Indicates whether an ordinary command, transparent command, script, or dialog box is active.

The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & No active command \\
\hline 1 & Ordinary command is active \\
\hline 2 & Transparent command is active \\
\hline 4 & Script is active \\
\hline
\end{tabular}
\begin{tabular}{ll}
8 & Dialog box is active \\
\hline 16 & DDE is active \\
\hline 32 & \begin{tabular}{l} 
AutoLISP is active (only visible to an ObjectARX-defined \\
command)
\end{tabular} \\
\hline 64 & ObjectARX command is active \\
\hline
\end{tabular}

\section*{CMDDIA}

\section*{Quick Reference}

See also:
- Create and Modify Leaders

Type: Integer
Saved in: Registry
Initial value: 1
Controls the display of the In-Place Text Editor for the LEADER and QLEADER commands.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On
\end{tabular}

\section*{CMDECHO}

\section*{Quick Reference}

See also:
- AutoLISP and Visual LISP

Type: Integer
Saved in: Not-saved

Initial value: 1
Controls whether prompts and input are echoed during the AutoLISP command function.
\begin{tabular}{ll}
\hline 0 & Turns off echoing \\
\hline 1 & Turns on echoing \\
\hline
\end{tabular}

\section*{CMDINPUTHISTORYMAX}

\section*{Quick Reference}

See also:
- Shortcut Menus

Type: Integer
Saved in: Registry
Initial value: 20
Sets the maximum number of previous input values that are stored for a prompt in a command.

Display of the history of user input is controlled by the INPUTHISTORYMODE system variable.

\section*{CMDNAMES}

\section*{Quick Reference}

See also:
- Enter Commands on the Command Line
(Read-only)
Type: String
Saved in: Not-saved
Initial value: ""
Displays the names of the active and transparent commands.

For example, LINE'ZOOM indicates that the ZOOM command is being used transparently during the LINE command.

This variable is designed for use with programming interfaces such as AutoLISP, DIESEL, and ActiveX Automation.

The following is a simple example that demonstrates how to use DIESEL to display the current command at the status line.

Command: modemacro
New value for MODEMACRO, or . for none <"">: \$(getvar, cmdnames)
For additional information, see "Introduction to Programming Interfaces" in the Customization Guide.

\section*{CMLEADERSTYLE}

\section*{Quick Reference}

See also:
■ Work with Leader Styles

Type: String
Saved in: Drawing
Initial value: Standard
Sets the name of the current multileader style.

\section*{CMLJUST}

\section*{Quick Reference}

See also:
■ Modify Multilines

Type: Integer
Saved in: Drawing Initial value: 0

Specifies multiline justification.
\begin{tabular}{ll}
\hline 0 & Top \\
\hline 1 & Zero (Middle) \\
\hline 2 & Bottom \\
\hline
\end{tabular}

\section*{CMLSCALE}

\section*{Quick Reference}

See also:
■ Modify Multilines

Type: Real
Saved in: Drawing
Initial value: 1.0000 (imperial) or 20.0000 (metric)
Controls the overall width of a multiline.
A scale factor of 2.0 produces a multiline twice as wide as the style definition. A zero scale factor collapses the multiline into a single line. A negative scale factor flips the order of the offset lines (that is, the smallest or most negative is placed on top when the multiline is drawn from left to right).

\section*{CMLSTYLE}

\section*{Quick Reference}

\section*{See also:}
- Modify Multilines

Type: String
Saved in: Drawing
Initial value: Standard
Sets the multiline style that governs the appearance of the multiline.

\section*{COMPASS}

\section*{Quick Reference}

See also:
- Use 3D Navigation Tools

Type: Integer
Saved in: Not-saved
Initial value: 0
Controls whether the 3D compass is on or off in the current viewport.
\begin{tabular}{ll}
\hline 0 & Turns off the 3D compass \\
\hline 1 & Turns on the 3D compass \\
\hline
\end{tabular}

\section*{CONSTRAINTBARDISPLAY}

\section*{Quick Reference}

See also:
- Apply or Remove Geometric Constraints

Type: Bitcode
Saved in: Registry
Initial value: 3
Controls the display of constraint bars after you apply constraints and when you select geometrically constrained drawings.
0 . \begin{tabular}{l}
\hline \begin{tabular}{l} 
Does not display constraint bars for selec- \\
ted objects after applying geometric con- \\
straints
\end{tabular} \\
\begin{tabular}{l} 
NOTE Constraint bars will always be dis- \\
played when CONSTRAINTBAR = Showall, \\
even if you set the value of the CON- \\
STRAINTBARDISPLAY system variable to 0.
\end{tabular} \\
\hline
\end{tabular}

Displays constraint bars for selected objects after applying constraints

2
Temporarily displays constraint bars for the selected geometrically constrained objects

3
Bits 1 and 2 are both turned on

\section*{CONSTRAINTBARMODE}

\section*{Quick Reference}

\section*{See also:}

■ Apply or Remove Geometric Constraints

Type: Bitcode
Saved in: Registry
Initial value: 4095
Controls the display of geometrical constraints on constraint bars.
\begin{tabular}{ll}
\hline 1 & Horizontal \\
\hline 2 & Vertical \\
\hline 4 & Perpendicular \\
\hline 8 & Parallel \\
\hline 32 & Tangent \\
\hline 64 & Smooth \\
\hline 128 & Coincident \\
\hline 256 & Concentric \\
\hline 512 & Colinear \\
\hline
\end{tabular}
\begin{tabular}{ll}
1024 & Equal \\
\hline 2048 & Fix \\
\hline
\end{tabular}

For example, set CONSTRAINTBARMODE to \(12(8+4)\) to display parallel and perpendicular constraints on the constraint bars.
Set CONSTRAINTBARMODE to 4095 to display constraint bars for all constraint types.

\section*{CONSTRAINTINFER}

\section*{Quick Reference}

See also:
■ Infer Geometric Constraints

Type: Bitcode
Saved in: Registry Initial value: 0
Controls whether the geometric constraints are inferred while drawing and editing geometry.
\begin{tabular}{ll}
0 & Geometric constraints are not inferred \\
\hline 1 & Geometric constraints are inferred \\
\hline
\end{tabular}

\section*{CONSTRAINTNAMEFORMAT}

\section*{Quick Reference}

See also:
- Apply Dimensional Constraints
\(\begin{array}{ll}\text { Type: } & \text { Integer } \\ \text { Saved in: } & \text { Registry }\end{array}\)
Saved in: Registry

\section*{Initial value: 2}

Controls the text format for dimensional constraints.
\begin{tabular}{ll}
\hline 0 & Name (for example, Width) \\
\hline 1 & Value (for example, 4.0000) \\
\hline 2 & Expression (for example, width \(=4.0000\) )
\end{tabular}

NOTE The CONSTRAINTNAMEFORMAT system variable is also applicable to the block constraint parameters (BCPARAMETER command) in the Block Editor.

\section*{CONSTRAINTRELAX}

\section*{Quick Reference}

\section*{See also:}

■ Modify Objects with Geometric Constraints Applied
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Indicates whether constraints are enforced or relaxed when editing an object.
\begin{tabular}{ll}
\hline 0 & Maintains constraints \\
\hline 1 & Relaxes constraints
\end{tabular}

Use this system variable when you run scripts and action macros and want to relax any constraints.

\section*{CONSTRAINTSOLVEMODE}

\section*{Quick Reference}

\section*{See also:}
- Modify Objects with Geometric Constraints Applied
Type: Bitcode

Saved in: Registry
Initial value: 1
Controls constraint behavior when applying or editing constraints.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Does not retain the size of the geometry \\
when a constraint is applied or modified
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Retains the size of the geometry when a \\
constraint is applied or modified
\end{tabular} \\
\hline
\end{tabular}

When the CONSTRAINTSOLVEMODE is set to 0 , resizing a constrained line may result in unpredictable behavior.

\section*{COORDS}

\section*{Quick Reference}

\section*{See also:}
- Overview of Coordinate Entry

Type: Integer
Saved in: Registry
Initial value: 1
Controls the format and update frequency of coordinates on the status line.

0 The absolute coordinates of your pointing device is updated only when you specify points

The absolute coordinates of your pointing device is updated continuously

2 The absolute coordinates of your pointing device is updated continuously except when a point, distance, or angle is requested. In that case, relative polar coordinates are displayed instead of \(X\) and \(Y\). The \(Z\) values always display as absolute coordinates.

3
The absolute coordinates (WCS) of your pointing device is updated continuously with the latitude and longitude coordinate values of the geographic location.

\section*{COPYMODE}

\section*{Quick Reference}

See also:
■ Copy Objects

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether the COPY command repeats automatically.
\begin{tabular}{ll}
0 & Sets the COPY command to repeat automatically \\
\hline 1 & Sets the COPY command to create a single copy \\
\hline
\end{tabular}

\section*{CPLOTSTYLE}

\section*{Quick Reference}

See also:
■ Overview of Plot Styles
```

Type: String
Saved in: Drawing
Initial value: ByColor
Controls the current plot style for new objects.
If the current drawing you are working in is in color-dependent mode
(PSTYLEPOLICY is set to 1), CPLOTSTYLE is read-only and has a value of
BYCOLOR. If the current drawing you are working in is in named plot styles
mode (PSTYLEPOLICY is set to 0), CPLOTSTYLE can be set to the following
values (BYLAYER is the default):
"BYLAYER"
"BYBLOCK"
"NORMAL"
"USER DEFINED"

```

To convert the current drawing to use named or color-dependent plot styles, use CONVERTPSTYLES.

\section*{CPROFILE}

\section*{Quick Reference}
```

See also:
■ Save and Restore Interface Settings (Profiles)
(Read-only)
Type: String
Saved in: Registry
Initial value: <<Unnamed Profile>>
Displays the name of the current profile.

```

\section*{CROSSINGAREACOLOR}

\section*{Quick Reference}

See also:
- Customize Object Selection

Type: Integer
Saved in: Registry
Initial value: 100
Controls the color of the selection area during crossing selection.
The valid range is 1 to 255 . The SELECTIONAREA system variable must be on.

\section*{CSHADOW}

\section*{Quick Reference}

See also:
- Display Backgrounds and Shadows

Type: Integer
Saved in: Drawing
Initial value: 0
Sets the shadow display property for a 3D object.
To be visible, shadows must be turned on in the visual style that is applied to the viewport.
\begin{tabular}{ll}
\hline 0 & Casts and receives shadows \\
\hline 1 & Casts shadows \\
\hline 2 & Receives shadows \\
\hline 3 & Ignores shadows
\end{tabular}

NOTE To display full shadows, hardware acceleration is required. When Geometry Acceleration is off, full shadows cannot be displayed. (To access these settings, enter 3dconfig at the Command prompt. In the Adaptive Degradation and Performance Tuning dialog box, click Manual Tune.)

\section*{CTAB}

\section*{Quick Reference}

See also:
■ Set Model Space Viewports

Type: \(\quad\) String
Saved in: Drawing
Initial value: Model
Returns the name of the current (model or layout) tab in the drawing.
Provides a means for the user to determine which tab is active.

\section*{CTABLESTYLE}

\section*{Quick Reference}

See also:
■ Work with Table Styles

Type: \(\quad\) String
Saved in: Drawing
Initial value: Standard
Sets the name of the current table style

\section*{CULLINGOBJ}

\section*{Quick Reference}

See also:
- Cycle Through and Filter Subobjects

\section*{Type: Integer}

Saved in: Registry
Initial value: 1
Controls whether 3D subobjects that are hidden from view can be highlighted or selected.

0 No subobject culling
- Rolling over 3D objects highlights all 3D subobjects, including hidden subobjects.

■ Selecting 3D objects by dragging selects all 3D subobjects, including hidden subobjects.

1 Apply subobject culling
Rolling over 3D objects highlights only the subobjects that are normal in the current view.

■ Selecting 3D objects by dragging selects only the subobjects that are normal in the current view.

\section*{CULLINGOBJSELECTION}

\section*{Quick Reference}

See also:
- Cycle Through and Filter Subobjects

Type: Integer
Saved in: Registry
Initial value: 0

Controls whether 3D objects that are hidden from view can be highlighted or selected.
\(0 \quad\) No object culling
- Rolling over 3D objects highlights all 3D objects, including hidden objects.

■ Selecting 3D objects by dragging selects all 3D objects, including hidden objects.

1 Apply object culling
- Rolling over 3D objects highlights only the objects that are normal in the current view.
- Selecting 3D objects by dragging selects only the objects that are normal in the current view.

\section*{CURSORSIZE}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Type: Integer
Saved in: Registry
Initial value: 5
Determines the size of the crosshairs as a percentage of the screen size.
Valid settings range from 1 to 100 percent. When set to 100 , the crosshairs are full-screen and the ends of the crosshairs are never visible. When less than 100 , the ends of the crosshairs may be visible when the cursor is moved to one edge of the screen.

\section*{CVPORT}

\section*{Quick Reference}

\section*{See also:}
- Select and Use the Current Viewport

Type: Integer
Saved in: Drawing
Initial value: 2
Displays the identification number of the current viewport.
You can change this value, which changes the current viewport, if the following conditions are met:
- The identification number you specify is that of an active viewport.
- A command in progress has not locked cursor movement to that viewport.
- Tablet mode is off.

\title{
D System Variables
}

\section*{DATALINKNOTIFY}

\section*{Quick Reference}

See also:
■ Link a Table to External Data

Type: Integer
Saved in: Registry
Initial value: 2
Controls the notification for updated or missing data links.
\begin{tabular}{ll}
0 & Disables data link update notification. \\
\hline 1 & \begin{tabular}{l} 
Enables data link notification. Notifies you that external \\
data is linked to the current drawing by displaying the \\
data link icon in the lower-right corner of the application \\
window (the notification area of the status bar tray). Will \\
not display balloon message notifications.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Enables data link notification and balloon message notific- \\
ations. Notifies you that external data is linked to the \\
current drawing as in 1 above. Also displays a data link \\
file change notification in the area of the drawing where \\
the data link requires updating.
\end{tabular}
\end{tabular}

\section*{DATE}

\section*{Quick Reference}

\section*{See also:}
- Obtain General Drawing Information
(Read-only)
\begin{tabular}{ll} 
Type: & Real \\
Saved in: & Not-saved \\
Initial value: & Varies
\end{tabular}

Initial value: Varies
Stores the current date and time in Modified Julian Date format.
This value is represented as a Modified Julian Date (MJD), which is the Julian day number and decimal fraction of a day in the format:
\(<\) Julian day number>.<Decimal fraction of a day>
The Modified Julian Date, conventionally called UT1, is a worldwide scientific standard that assigns day numbers beginning at an essentially arbitrary date and time of 12:00 a.m. on 1 January 4713 B.C. (B.C.E.). With this system, 4 July 1997 at 2:29:58 p.m. corresponds to 2450634.60387736, and 1 January 1998 at 12:00 noon corresponds to 2450815.50000000 .

You can compute differences in date and time by subtracting the numbers returned by DATE. To extract the seconds since midnight from the value returned by DATE, use AutoLISP expressions:
```

(setq s (getvar "DATE"))
(setq seconds (* 86400.0 (- s (fix s))))

```

Because your computer clock provides the date and time, the DATE system variable returns a true Julian date only if the system clock is set to UTC/Zulu (Greenwich Mean Time). TDCREATE and TDUPDATE have the same format as DATE, but their values represent the creation time and last update time of the current drawing.

\section*{DBCSTATE}

\section*{Quick Reference}

\section*{See also:}

■ Configure a Database for Use with PRODNAME Drawings
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Indicates whether the dbConnect Manager is open or closed.
\begin{tabular}{ll}
\hline 0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{DBLCLKEDIT}

\section*{Quick Reference}

See also:
■ Overview of Double Click Actions

Type: Integer
Saved in: Registry
Initial value: 1
Controls the double click editing behavior in the drawing area.
Double click actions can be customized using the Customize User Interface (CUI) Editor. The system variable can accept the values of On and Off in place of 1 and 0 .
\begin{tabular}{ll}
\hline 0 & Disabled \\
\hline 1 & Enabled
\end{tabular}

\section*{DBMOD}

\section*{Quick Reference}

See also:
- Save a Drawing
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Indicates the drawing modification status.
The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 1 & Object database modified \\
\hline 4 & Database variable modified \\
\hline 8 & Window modified \\
\hline 16 & View modified \\
\hline 32 & Field modified
\end{tabular}

The DBMOD value is reset to 0 when you save the drawing.

\section*{DCTCUST}

\section*{Quick Reference}

See also:
- Check Spelling

Type: String
Saved in: Registry
Initial value: Varies
Displays the path and file name of the current custom spelling dictionary.

\section*{DCTMAIN}

\section*{Quick Reference}

\section*{See also:}
- Check Spelling

Type: \(\quad\) String
Saved in: Registry
Initial value: Varies by country/region
Displays the three letter keyword for the current main spelling dictionary.
You can specify a default main spelling dictionary using the SETVAR command. When prompted for a new value for DCTMAIN, you can enter one of the keywords below. Depending on the language version of the program, not all dictionaries may be available.
\begin{tabular}{ll}
\hline Keyword & Language name \\
\hline enu & American English \\
\hline eng & British English (ise) \\
\hline enc & Canadian English \\
\hline csy & Catalan \\
\hline dan & Danish \\
\hline nld & Dutch (primary) \\
\hline fin & Finnish \\
\hline fra & French (accented capitals) \\
\hline frc & French (unaccented capitals) \\
\hline deu & German (post-reform) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
deo & German (pre-reform) \\
\hline ita & Italian \\
\hline nor & Norwegian (Bokmal) \\
\hline ptb & Portuguese (Brazilian) \\
\hline ptg & Portuguese (lberian) \\
\hline rus & Russian \\
\hline esp & Spanish \\
\hline sve & Swedish \\
\hline
\end{tabular}

\section*{DEFAULTGIZMO}

\section*{Quick Reference}

See also:
- Use the Gizmos

Type: Integer
Saved in: Not-saved
Initial value: 0
Sets the 3D Move, 3D Rotate, or 3D Scale gizmo as the default during subobject selection.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
The 3D Move gizmo is displayed by default \\
when an object is selected in a 3D visual \\
style.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
The 3D Rotate gizmo is displayed by default \\
when an object is selected in a 3D visual \\
style.
\end{tabular} \\
\hline
\end{tabular}

The 3D Scale gizmo is displayed by default when an object is selected in a 3D visual style.

3
No gizmo is displayed by default when an object is selected in a 3D visual style.

Set this variable to display the gizmo you use most often by default.


With the 3D Move gizmo, you can restrict the movement of selected objects along an \(X, Y\), or \(Z\) axis, or within a specified plane. To specify the movement limitations, hover the cursor over the gizmo until the axis or plane is highlighted.

With the 3D Rotate gizmo, you can restrict the rotation of selected objects about an \(X, Y\), or \(Z\) axis. To specify the rotation axis, hover the cursor over the gizmo until the axis line is displayed in red and the revolution path is highlighted in yellow.


With the 3D Scale gizmo, you can resize selected objects uniformly, resize them along an \(X, Y\), or \(Z\) axis, or resize them along a specified plane. To specify the scale limitations, hover the cursor over the gizmo. Highlight the solid area between the axes for uniform resizing. Highlight the double lines between the axes to specify resizing along a plane. Highlight an axis to specify resizing along an axis.


No gizmo is displayed by default when an object is selected in a 3D visual style.


You can also change the gizmo defaults on the Subobject panel of the Home and Mesh Modeling tabs.

\section*{DEFAULTLIGHTING}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Lighting

Type: Integer
Saved in: Drawing Initial value: 1
Turns on and off default lighting in place of other lighting.
Default lighting is provided by a set of distant lights that follow the view direction. When default lighting is on, the sun and other lights do not cast
light, even if they are turned on. The setting of this system variable is viewport-specific.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Default lighting is automatically turned off when point \\
lights, spotlights, distant lights, or the sun are on
\end{tabular} \\
\hline 1 & Default lighting only is turned on \\
\hline
\end{tabular}

\section*{DEFAULTLIGHTINGTYPE}

\section*{Quick Reference}

See also:
■ Overview of Lighting

Type: Integer
Saved in: Drawing
Initial value: 1
Specifies the type of default lighting, old or new.
The default lighting provided in AutoCAD 2006 and earlier releases used one distant light. The new default lighting uses two distant lights to illuminate more of the model and also adjusts ambient light. The setting of this system variable is viewport-specific.
\begin{tabular}{ll}
\hline 0 & Old type of default lighting \\
\hline 1 & New type of default lighting
\end{tabular}

\section*{DEFLPLSTYLE}

\section*{Quick Reference}

\section*{See also:}
- Overview of Plot Styles
```

Type: String
Saved in: Registry

```
Initial value: ByColor
Specifies the default plot style for all layers in a drawing when opening a drawing that was created in a release prior to AutoCAD 2000, or for Layer 0 when creating a new drawing from scratch without using a drawing template.

When the drawing is opened and PSTYLEPOLICY is set to 1 (color-dependent plot style mode), DEFLPLSTYLE is read-only and has a value of "BYCOLOR." If PSTYLEPOLICY is set to 0 (named plot style mode) when the drawing is opened, DEFLPLSTYLE is writable and has a default value of "NORMAL."
To convert the current drawing to use named or color-dependent plot styles, use CONVERTPSTYLES.

\section*{DEFPLSTYLE}

\section*{Quick Reference}

See also:
- Overview of Plot Styles

Type: String
Saved in: Registry
Initial value: ByColor
Specifies the default plot style for new objects in a drawing when opening a drawing that was created in a release prior to AutoCAD 2000, or when creating a new drawing from scratch without using a drawing template.

When the drawing is opened and PSTYLEPOLICY is set to 1 (color-dependent plot style mode), DEFPLSTYLE is read-only and has a value of "BYCOLOR." If PSTYLEPOLICY is set to 0 (named plot style mode), DEFPLSTYLE is writable and has a default value of "BYLAYER."

To convert the current drawing to use named or color-dependent plot styles, use CONVERTPSTYLES.

\section*{DELOBJ}

\section*{Quick Reference}

\section*{See also:}
- Create and Combine Areas (Regions)
- Create Solids and Surfaces from Lines and Curves

Type: Integer
Saved in: Registry
Initial value: 3
Controls whether geometry used to create 3D objects is retained or deleted.
If the SURFACEASSOCIATIVITY on page 2537 system variable is set to 1 , the DELOBJ setting is ignored.
\begin{tabular}{ll}
\hline 0 & All defining geometry is retained. \\
\hline 1 & \begin{tabular}{l} 
Deletes profile curves, including those used with the EX- \\
TRUDE, SWEEP, REVOLVE, and LOFT commands. Removes \\
all defining geometry for CONVTOSOLID on page 363, \\
CONVTOSURFACE on page 366, CONVTONURB, and \\
CONVTOMESH commands. Cross sections used with the \\
LOFT command are also deleted.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Deletes all defining geometry, including paths and guide \\
curves used with the SWEEP and LOFT commands.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Deletes all defining geometry, including paths and guide \\
curves used with the SWEEP and LOFT commands if the \\
action results in a solid object. Removes all defining geo- \\
metry for CONVTOSOLID, CONVTOSURFACE, CONVTON- \\
URBS, and CONVTOMESH commands.
\end{tabular} \\
\hline-1 & \begin{tabular}{l} 
Displays prompts to delete profile curves, including those \\
used with the EXTRUDE, SWEEP, REVOLVE, and LOFT \\
commands. Prompts to remove cross sections used with \\
the LOFT command. \\
The original geometry for CONVTOSOLID, CONVTOSUR-
\end{tabular} \\
FACE, and CONVTOMESH commands is removed without \\
prompting.
\end{tabular}
-2 Displays prompts to delete all defining geometry, including paths and guide curves used with the SWEEP and LOFT commands.

The original geometry for CONVTOSOLID, CONVTOSURFACE, and CONTOMESH commands is removed without prompting.
-3 Displays prompts to delete all defining geometry if the resulting entities are a surface of any type. Deletes all original geometry resulting in a solid entity, original geometry for CONVTOSOLID, CONVTOSURFACE, CONVTONURBS, and CONVTOMESH commands is removed without prompting

\section*{DEMANDLOAD}

\section*{Quick Reference}

\section*{See also:}

■ Work with Demand Loading

Type: Integer
Saved in: Registry
Initial value: 3
Specifies if and when to demand-load certain applications.
If you set this system variable to 0, third-party applications and some AutoCAD commands cannot function.
\(0 \quad\) Turns off demand-loading.

1 Demand-loads the source application when you open a drawing that contains custom objects. This setting does not demand-load the application when you invoke one of the application's commands.

2 Demand-loads the source application when you invoke one of the application's commands. This setting does not
demand-load the application when you open a drawing that contains custom objects.

\section*{DGNFRAME}

\section*{Quick Reference}

See also:
- Hide and Show Underlay Frames

Type: Integer
Saved in: Drawing
Initial value: 0
Determines whether DGN underlay frames are visible or plotted in the current drawing.

The FRAME system variable overrides the DGNFRAME setting. Use the DGNFRAME system variable after the FRAME system variable to reset the DGN frame settings.
\begin{tabular}{ll}
\hline 0 & The DGN underlay frame is not displayed or plotted \\
\hline 1 & The DGN underlay frame is displayed and plotted \\
\hline 2 & The DGN underlay frame is displayed but not plotted \\
\hline
\end{tabular}

\section*{DGNIMPORTMAX}

\section*{Quick Reference}

See also:
■ Import MicroStation DGN Files
```

Type: Real
Saved in: Registry

```

Initial value: 10000000
Sets the maximum number of elements that are translated when importing a DGN file.

This limit prevents the program from running out of memory and suspending when importing large DGN files.
\begin{tabular}{ll}
0 & Turns off the limit. \\
\hline\(>0\) & Sets the limit for the number of elements.
\end{tabular}

\section*{DGNMAPPINGPATH}

\section*{Quick Reference}

\section*{See also:}
- Manage Translation Mapping Setups
(Read-only)
Type: String
Saved in: Registry
Initial value: Varies
Specifies the location of the dgnsetups.ini file where DGN mapping setups are stored.

NOTE You can set the location of the dgnsetups.ini file in Files tab (Options dialog box).

\section*{DGNOSNAP}

\section*{Quick Reference}

\section*{See also:}
- Use Object Snaps with Underlays
```

Type: Integer
Saved in: Registry
Initial value: 1
Determines whether object snapping is active for geometry in DGN underlays that are attached to the drawing.
The UOSNAP system variable overrides the DGNOSNAP setting.

```
```

$0 \quad$ Turns off object snapping for geometry in all DGN underlay attachments in the drawing

```

1 Turns on object snapping for geometry in all DGN underlay attachments in the drawing

\section*{DIASTAT}

\section*{Quick Reference}

\section*{See also:}
- Switch Between Dialog Boxes and the Command Line
(Read-only)
Type: Integer

Saved in: Not-saved
Initial value: 0
Stores the exit method of the most recently used dialog box.
\begin{tabular}{ll}
0 & Cancel \\
\hline 1 & OK \\
\hline
\end{tabular}

NOTE The DIASTAT system variable does not apply to standard file selection dialog boxes, such as the Select File and the Save Drawing As dialog boxes.

\section*{DIGITIZER}

\section*{Quick Reference}

See also:
- Draw Freehand Sketches
(Read-only)
Type: Integer
Saved in: Registry
Initial value: 0
Identifies digitizers connected to the system.
\begin{tabular}{ll}
\hline 1 & Integrated touch \\
\hline 2 & External touch \\
\hline 4 & Integrated pen \\
\hline 8 & External pen \\
\hline 16 & Multiple input \\
\hline 128 & Input devices are ready \\
\hline
\end{tabular}

\section*{DIMADEC}

\section*{Quick Reference}

See also:
- Create Angular Dimensions

Type: Integer
Saved in: Drawing
Initial value: 0

Controls the number of precision places displayed in angular dimensions.
\begin{tabular}{ll}
\hline-1 & \begin{tabular}{l} 
Angular dimensions display the number of decimal places \\
specified by DIMDEC.
\end{tabular} \\
\hline \(0-8\) & \begin{tabular}{l} 
Specifies the number of decimal places displayed in angu- \\
lar dimensions (independent of DIMDEC)
\end{tabular} \\
\hline
\end{tabular}

\section*{DIMALT}

\section*{Quick Reference}

See also:
- Control the Display of Dimension Units

Type: Switch
Saved in: Drawing
Initial value: Off
Controls the display of alternate units in dimensions.
See also DIMALTD, DIMALTF, DIMALTTD, DIMALTTZ, DIMALTZ, and DIMAPOST.
\begin{tabular}{ll}
\hline Off & Disables alternate units \\
\hline On & Enables alternate units \\
\hline
\end{tabular}

\section*{DIMALTD}

\section*{Quick Reference}

See also:
- Control the Display of Dimension Units

Type: Integer
Saved in: Drawing

Initial value: 2 (imperial) or 3 (metric)
Controls the number of decimal places in alternate units.
If DIMALT is turned on, DIMALTD sets the number of digits displayed to the right of the decimal point in the alternate measurement.

\section*{DIMALTF}

\section*{Quick Reference}

\author{
See also: \\ ■ Control the Display of Dimension Units
}
\(\begin{array}{ll}\text { Type: } & \text { Real } \\ \text { Saved in: } & \text { Drawing }\end{array}\)
Initial value: 25.4000 (imperial) or 0.0394 (metric)
Controls the multiplier for alternate units.
If DIMALT is turned on, DIMALTF multiplies linear dimensions by a factor to produce a value in an alternate system of measurement. The initial value represents the number of millimeters in an inch.

\section*{DIMALTRND}

\section*{Quick Reference}

\section*{See also:}

■ Control the Display of Dimension Units
```

Type: Real
Saved in: Drawing
Initial value: }0.000
Rounds off the alternate dimension units.

```

\section*{DIMALTTD}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Dimension Units

Type: Integer
Saved in: Drawing
Initial value: 2 (imperial) or 3 (metric)
Sets the number of decimal places for the tolerance values in the alternate units of a dimension.

\section*{DIMALTTZ}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Dimension Units

Type: Integer
Saved in: Drawing
Initial value: 0
Controls suppression of zeros in tolerance values.
\begin{tabular}{ll}
\hline 0 & Suppresses zero feet and precisely zero inches \\
\hline 1 & Includes zero feet and precisely zero inches \\
\hline 2 & Includes zero feet and suppresses zero inches \\
\hline 3 & Includes zero inches and suppresses zero feet \\
\hline
\end{tabular}

To suppress leading or trailing zeros, add the following values to one of the preceding values:
\(4 \quad\) Suppresses leading zeros

\section*{DIMALTU}

\section*{Quick Reference}

\section*{See also:}

■ Control the Display of Dimension Units

Type: Integer
Saved in: Drawing
Initial value: 2
Sets the units format for alternate units of all dimension substyles except Angular.
\begin{tabular}{ll}
\hline 1 & Scientific \\
\hline 2 & Decimal \\
\hline 3 & Engineering \\
\hline 4 & Architectural (stacked) \\
\hline 5 & Fractional (stacked) \\
\hline 6 & Architectural \\
\hline 7 & \begin{tabular}{l} 
Fractional \\
\hline 8
\end{tabular} \\
\hline
\end{tabular}

\section*{DIMALTZ}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Dimension Units

Type: Integer
Saved in: Drawing
Initial value: 0
Controls the suppression of zeros for alternate unit dimension values.
DIMALTZ values 0-3 affect feet-and-inch dimensions only.
\begin{tabular}{ll}
\hline 0 & Suppresses zero feet and precisely zero inches \\
\hline 1 & Includes zero feet and precisely zero inches \\
\hline 2 & \begin{tabular}{l} 
Includes zero feet and suppresses zero inches
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Suppresses leading zeros in decimal dimensions (for ex- \\
ample, 0.5000 becomes .5000)
\end{tabular} \\
\hline 8 & \begin{tabular}{l} 
Suppresses trailing zeros in decimal dimensions (for ex- \\
ample, 12.5000 becomes 12.5 )
\end{tabular} \\
\hline 12 & \begin{tabular}{l} 
Suppresses both leading and trailing zeros (for example,
\end{tabular} \\
\hline
\end{tabular}

\section*{DIMANNO}

\section*{Quick Reference}

See also:
- Create Annotative Dimensions and Tolerances
(Read-only)
Type: Integer
Saved in: Drawing
Initial value: 0
Indicates whether or not the current dimension style is .
\begin{tabular}{ll}
\hline 0 & Nonannotative \\
\hline 1 & Annotative
\end{tabular}

\section*{DIMAPOST}

\section*{Quick Reference}

\section*{See also:}

■ Control the Display of Dimension Units

\section*{Type: \(\quad\) String}

Saved in: Drawing
Initial value: ""
Specifies a text prefix or suffix (or both) to the alternate dimension measurement for all types of dimensions except angular.
For instance, if the current units are Architectural, DIMALT is on, DIMALTF is 25.4 (the number of millimeters per inch), DIMALTD is 2 , and DIMAPOST is set to "mm", a distance of 10 units would be displayed as 10 " [ 254.00 mm ].

To turn off an established prefix or suffix (or both), set it to a single period (.).

\section*{DIMARCSYM}

\section*{Quick Reference}

See also:
- Create Arc Length Dimensions

Type: Integer
Saved in: Drawing
Initial value: 0
Controls display of the arc symbol in an arc length dimension.
\begin{tabular}{ll}
\hline 0 & Places arc length symbols before the dimension text \\
\hline 1 & Places arc length symbols above the dimension text \\
\hline 2 & Suppresses the display of arc length symbols \\
\hline
\end{tabular}

\section*{DIMASSOC}

\section*{Quick Reference}

See also:
■ Associative Dimensions

Type: Integer
Saved in: Drawing
Initial value: 2
Controls the associativity of dimension objects and whether dimensions are exploded.
\(0 \quad\) Creates exploded dimensions. There is no association between the various elements of the dimension. The lines, arcs, arrowheads, and text of a dimension are drawn as separate objects.

1 Creates non-associative dimension objects. The elements of the dimension are formed into a single object. If one of the definition points of the dimension moves, the dimension is updated.

2 Creates associative dimension objects. The elements of the dimension are formed into a single object, and one or more definition points of the dimension are coupled with association points on geometric objects. If the asso-
ciation point on the geometric object moves, the dimension location, orientation, and value are updated.

DIMASSOC is not stored in a dimension style.
Drawings saved in a format previous to AutoCAD 2002 retain the setting of the DIMASSOC system variable. When the drawing is reopened in AutoCAD 2002 or later, the dimension associativity setting is restored.

\section*{DIMASZ}

\section*{Quick Reference}

See also:
- Customize Arrowheads

Type: Real
Saved in: Drawing
Initial value: 0.1800 (imperial) or 2.5000 (metric)
Controls the size of dimension line and leader line arrowheads. Also controls the size of hook lines.

Multiples of the arrowhead size determine whether dimension lines and text should fit between the extension lines. DIMASZ is also used to scale arrowhead blocks if set by DIMBLK. DIMASZ has no effect when DIMTSZ is other than zero.

\section*{DIMATFIT}

\section*{Quick Reference}

\section*{See also:}
- Fit Dimension Text Within Extension Lines

Type: Integer
Saved in: Drawing
Initial value: 3

Determines how dimension text and arrows are arranged when space is not sufficient to place both within the extension lines.
\begin{tabular}{ll}
\hline 0 & Places both text and arrows outside extension lines \\
\hline 1 & Moves arrows first, then text \\
\hline 2 & Moves text first, then arrows \\
\hline 3 & Moves either text or arrows, whichever fits best \\
\hline
\end{tabular}

A leader is added to moved dimension text when DIMTMOVE is set to 1 .

\section*{DIMAUNIT}

\section*{Quick Reference}

\section*{See also:}
- Create Angular Dimensions
Type: \(\quad\) Integer
Saved in: \(\quad\) Drawing
Initial value: 0
Sets the units format for angular dimensions.
\begin{tabular}{ll}
\hline 0 & Decimal degrees \\
\hline 1 & Degrees/minutes/seconds \\
\hline 2 & Gradians \\
\hline 3 & Radians \\
\hline
\end{tabular}

DIMAUNIT sets this value when entered at the Command prompt or when set from the Primary Units area in the Annotation dialog box.

\section*{DIMAZIN}

\section*{Quick Reference}

See also:
- Suppress Zeros in Dimensions

Type: Integer
Saved in: Drawing
Initial value: 0
Suppresses zeros for angular dimensions.
\begin{tabular}{ll}
\hline 0 & Displays all leading and trailing zeros \\
\hline 1 & \begin{tabular}{l} 
Suppresses leading zeros in decimal dimensions (for ex- \\
ample, 0.5000 becomes .5000)
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Suppresses trailing zeros in decimal dimensions (for ex- \\
ample, 12.5000 becomes 12.5)
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Suppresses leading and trailing zeros (for example, 0.5000 \\
becomes .5)
\end{tabular} \\
\hline
\end{tabular}

\section*{DIMBLK}

\section*{Quick Reference}

See also:
■ Customize Arrowheads

Type: String
Saved in: Drawing
Initial value: ""
Sets the arrowhead block displayed at the ends of dimension lines.
To return to the default, closed-filled arrowhead display, enter a single period (.). Arrowhead block entries and the names used to select them in the New,

Modify, and Override Dimension Style dialog boxes are shown below. You can also enter the names of user-defined arrowhead blocks.

NOTE Annotative blocks cannot be used as custom arrowheads for dimensions or leaders.
\begin{tabular}{|c|c|}
\hline "" & closed filled \\
\hline "_DOT" & dot \\
\hline "_DOTSMALL" & dot small \\
\hline "_DOTBLANK" & dot blank \\
\hline "_ORIGIN" & origin indicator \\
\hline \[
\begin{aligned}
& \text { "_ORI- } \\
& \text { GIN2" }
\end{aligned}
\] & origin indicator 2 \\
\hline "_OPEN" & open \\
\hline "_OPEN90" & right angle \\
\hline "_OPEN30" & open 30 \\
\hline "_CoSED" & closed \\
\hline "_SMALL" & dot small blank \\
\hline "_NONE" & none \\
\hline \begin{tabular}{l}
"_OB- \\
LIQUE"
\end{tabular} & oblique \\
\hline \begin{tabular}{l}
"_BOX- \\
FILLED"
\end{tabular} & box filled \\
\hline \begin{tabular}{l}
"_BOXB- \\
LANK"
\end{tabular} & box \\
\hline
\end{tabular}
\begin{tabular}{ll} 
"_COSED- & closed blank \\
BLANK" & \\
\hline "_DATUM- & datum triangle filled \\
FILLED" & \\
\hline "DATUMB & datum triangle \\
\hline LANK" & \\
\hline "_INTEG- & integral \\
RAL" & \\
\hline "_ARCMIGK" & architectural tick
\end{tabular}

\section*{DIMBLK1}

\section*{Quick Reference}

\section*{See also:}
- Customize Arrowheads

\section*{Type: \(\quad\) String}

Saved in: Drawing
Initial value: ""
Sets the arrowhead for the first end of the dimension line when DIMSAH is on.

To return to the default, closed-filled arrowhead display, enter a single period (.). For a list of arrowheads, see DIMBLK.

NOTE Annotative blocks cannot be used as custom arrowheads for dimensions or leaders.

\section*{DIMBLK2}

\section*{Quick Reference}

\section*{See also:}

■ Customize Arrowheads

Type: String
Saved in: Drawing
Initial value: ""
Sets the arrowhead for the second end of the dimension line when DIMSAH is on.

To return to the default, closed-filled arrowhead display, enter a single period (.). For a list of arrowhead entries, see DIMBLK.

NOTE Annotative blocks cannot be used as custom arrowheads for dimensions or leaders.

\section*{DIMCEN}

\section*{Quick Reference}

See also:
■ Create Radial Dimensions

Type: Real
Saved in: Drawing
Initial value: 0.0900 (imperial) or 2.5000 (metric)
Controls drawing of circle or arc center marks and centerlines by the DIMCENTER, DIMDIAMETER, and DIMRADIUS commands.

For DIMDIAMETER and DIMRADIUS, the center mark is drawn only if you place the dimension line outside the circle or arc.
\begin{tabular}{ll}
\hline 0 & No center marks or lines are drawn \\
\hline\(<0\) & Centerlines are drawn
\end{tabular}

The absolute value specifies the size of the center mark or centerline.
The size of the centerline is the length of the centerline segment that extends outside the circle or arc. It is also the size of the gap between the center mark and the start of the centerline.

The size of the center mark is the distance from the center of the circle or arc to the end of the center mark.

\section*{DIMCLRD}

\section*{Quick Reference}

See also:
- Control Dimension Lines

Type: Integer
Saved in: Drawing
Initial value: 0
Assigns colors to dimension lines, arrowheads, and dimension leader lines.
Also controls the color of leader lines created with the LEADER command. Color numbers are displayed in the Select Color dialog box. For BYBLOCK, enter 0. For BYLAYER, enter 256.

\section*{DIMCLRE}

\section*{Quick Reference}

\section*{See also:}
- Override a Dimension Style

Type: Integer
Saved in: Drawing
Initial value: 0
Assigns colors to extension lines, center marks, and centerlines.

Color numbers are displayed in the Select Color dialog box. For BYBLOCK, enter 0. For BYLAYER, enter 256.

\section*{DIMCLRT}

\section*{Quick Reference}

See also:
■ Control the Appearance of Dimension Text

Type: Integer
Saved in: Drawing
Initial value: 0
Assigns colors to dimension text.
The color can be any valid color number.

\section*{DIMCONSTRAINTICON}

\section*{Quick Reference}

See also:
- Apply Dimensional Constraints

Type: Bitcode
Saved in: Registry
Initial value: 3
Displays the lock icon next to the text for dimensional constraints.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Does not display the lock icon next to the \\
text for dimensional constraints
\end{tabular} \\
\hline 1 & Displays the icon for dynamic constraints \\
\hline 2 & \begin{tabular}{l} 
Displays the icon for annotational con- \\
straints
\end{tabular} \\
\hline
\end{tabular}

\section*{DIMDEC}

\section*{Quick Reference}

\section*{See also:}

■ Control the Display of Dimension Units
Type: Integer
Saved in: Drawing
Initial value: 4 (imperial) or 2 (metric)
Sets the number of decimal places displayed for the primary units of a dimension.

The precision is based on the units or angle format you have selected. Specified value is applied to angular dimensions when DIMADEC on page 2221 is set to -1.

\section*{DIMDLE}

\section*{Quick Reference}

\section*{See also:}
- Control Dimension Lines

Type: Real
Saved in: Drawing
Initial value: 0.0000
Sets the distance the dimension line extends beyond the extension line when oblique strokes are drawn instead of arrowheads.

\section*{DIMDLI}

\section*{Quick Reference}

\section*{See also:}

■ Control Dimension Lines

Type: Real
Saved in: Drawing
Initial value: 0.3800 (imperial) or 3.7500 (metric)
Controls the spacing of the dimension lines in baseline dimensions.
Each dimension line is offset from the previous one by this amount, if necessary, to avoid drawing over it. Changes made with DIMDLI are not applied to existing dimensions.

\section*{DIMDSEP}

\section*{Quick Reference}

See also:
- Control the Display of Dimension Units

Type: \(\quad\) Single-character
Saved in: Drawing
Initial value: . (imperial) or , (metric)
Specifies a single-character decimal separator to use when creating dimensions whose unit format is decimal.

When prompted, enter a single character at the Command prompt. If dimension units is set to Decimal, the DIMDSEP character is used instead of the default decimal point. If DIMDSEP is set to NULL (default value, reset by entering a period), the decimal point is used as the dimension separator.

\section*{DIMEXE}

\section*{Quick Reference}

See also:
■ Control Extension Lines

Type: Real
Saved in: Drawing
Initial value: 0.1800 (imperial) or 1.2500 (metric)
Specifies how far to extend the extension line beyond the dimension line.

\section*{DIMEXO}

\section*{Quick Reference}

See also:
- Control Extension Lines

Type: Real
Saved in: Drawing
Initial value: 0.0625 (imperial) or 0.6250 (metric)
Specifies how far extension lines are offset from origin points.
With fixed-length extension lines, this value determines the minimum offset.

\section*{DIMFRAC}

\section*{Quick Reference}

\section*{See also: \\ - Control the Display of Fractions}

Type: Integer
Saved in: Drawing

Initial value: 0
Sets the fraction format when DIMLUNIT is set to 4 (Architectural) or 5 (Fractional).
\begin{tabular}{ll}
\hline 0 & Horizontal stacking \\
\hline 1 & Diagonal stacking \\
\hline 2 & Not stacked (for example, 1/2)
\end{tabular}

\section*{DIMFXL}

\section*{Quick Reference}

See also:
- Control Extension Lines

Type: Real
Saved in: Drawing
Initial value: 1.0000
Sets the total length of the extension lines starting from the dimension line toward the dimension origin.

\section*{DIMFXLON}

\section*{Quick Reference}

See also:
- Control Extension Lines

Type: Switch
Saved in: Drawing
Initial value: Off
Controls whether extension lines are set to a fixed length.
When DIMFXLON is on, extension lines are set to the length specified by DIMFXL.

\section*{DIMGAP}

\section*{Quick Reference}

\section*{See also:}

■ Control the Location of Dimension Text

Type: Real
Saved in: Drawing
Initial value: 0.0900 (imperial) or 0.6250 (metric)
Sets the distance around the dimension text when the dimension line breaks to accommodate dimension text.

Also sets the gap between annotation and a hook line created with the LEADER command. If you enter a negative value, DIMGAP places a box around the dimension text.

DIMGAP is also used as the minimum length for pieces of the dimension line. When the default position for the dimension text is calculated, text is positioned inside the extension lines only if doing so breaks the dimension lines into two segments at least as long as DIMGAP. Text placed above or below the dimension line is moved inside only if there is room for the arrowheads, dimension text, and a margin between them at least as large as DIMGAP: 2 * (DIMASZ + DIMGAP).

\section*{DIMJOGANG}

\section*{Quick Reference}

See also:
■ Create Radial Dimensions

Type: Real
Saved in: Drawing
Initial value: 45
Determines the angle of the transverse segment of the dimension line in a jogged radius dimension.

Jogged radius dimensions are often created when the center point is located off the page. Valid settings range is 5 to 90 .

\section*{DIMJUST}

\section*{Quick Reference}

\section*{See also:}
- Control the Location of Dimension Text
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Drawing \\
Initial value: & 0
\end{tabular}

\section*{Initial value: 0}

Controls the horizontal positioning of dimension text.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Positions the text above the dimension line and center- \\
justifies it between the extension lines
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Positions the text next to the first extension line
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Positions the text next to the second extension line the text above and aligned with the first exten- \\
sion line
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Positions the text above and aligned with the second ex- \\
tension line
\end{tabular} \\
\hline
\end{tabular}

\section*{DIMLDRBLK}

\section*{Quick Reference}

See also:
■ Overview of Leader Objects
Type: \(\quad\) String
```

Saved in: Drawing
Initial value: ""
Specifies the arrow type for leaders.

```

To return to the default, closed-filled arrowhead display, enter a single period (.). For a list of arrowhead entries, see DIMBLK.

NOTE Annotative blocks cannot be used as custom arrowheads for dimensions or leaders.

\section*{DIMLFAC}

\section*{Quick Reference}

See also:
- Set the Scale for Dimensions

Type: Real
Saved in: Drawing
Initial value: 1.0000
Sets a scale factor for linear dimension measurements.
All linear dimension distances, including radii, diameters, and coordinates, are multiplied by DIMLFAC before being converted to dimension text. Positive values of DIMLFAC are applied to dimensions in both model space and paper space; negative values are applied to paper space only.
DIMLFAC applies primarily to nonassociative dimensions (DIMASSOC set 0 or 1). For nonassociative dimensions in paper space, DIMLFAC must be set individually for each layout viewport to accommodate viewport scaling.

DIMLFAC has no effect on angular dimensions, and is not applied to the values held in DIMRND, DIMTM, or DIMTP.

\section*{DIMLIM}

\section*{Quick Reference}

See also:
■ Display Lateral Tolerances

Type: Switch
Saved in: Drawing
Initial value: Off
Generates dimension limits as the default text.
Setting DIMLIM to On turns DIMTOL off.
\begin{tabular}{ll} 
Off & Dimension limits are not generated as default text \\
\hline On & Dimension limits are generated as default text
\end{tabular}

\section*{DIMLTEX1}

\section*{Quick Reference}

See also:
■ Control Extension Lines

Type: String
Saved in: Drawing
Initial value: ""
Sets the linetype of the first extension line.
The value is BYLAYER, BYBLOCK, or the name of a linetype.

\section*{DIMLTEX2}

\section*{Quick Reference}

\section*{See also:}

■ Control Extension Lines

\section*{Type: \(\quad\) String}

Saved in: Drawing
Initial value: ""
Sets the linetype of the second extension line.
The value is BYLAYER, BYBLOCK, or the name of a linetype.

\section*{DIMLTYPE}

\section*{Quick Reference}

See also:
- Control Dimension Lines

Type: String
Saved in: Drawing
Initial value: ""
Sets the linetype of the dimension line.
The value is BYLAYER, BYBLOCK, or the name of a linetype.

\section*{DIMLUNIT}

\section*{Quick Reference}

\section*{See also: \\ ■ Control the Display of Dimension Units}

Type: Integer

\section*{Saved in: Drawing \\ Initial value: 2}

Sets units for all dimension types except Angular.
\begin{tabular}{ll}
\hline 1 & Scientific \\
\hline 2 & Decimal \\
\hline 3 & Engineering \\
\hline 4 & Architectural (always displayed stacked) \\
\hline 5 & Fractional (always displayed stacked) \\
\hline 6 & \begin{tabular}{l} 
Microsoft Windows Desktop (decimal format using Control \\
Panel settings for decimal separator and number grouping \\
symbols)
\end{tabular} \\
\hline
\end{tabular}

\section*{DIMLWD}

\section*{Quick Reference}

See also:
■ Control Dimension Lines
\begin{tabular}{ll} 
Type: \(\quad\) Enum \\
Saved in: \(\quad\) Drawing \\
Initial value: -2 \\
Assigns lineweight to dimension lines. \\
\hline-3 & Default (the LWDEFAULT value) \\
\hline-2 & BYBLOCK \\
\hline-1 & BYLAYER \\
\hline
\end{tabular}

The integer represents \(1 / 100\) th of a mm.

\section*{DIMLWE}

\section*{Quick Reference}

See also:
■ Control Extension Lines

Type: Enum
Saved in: Drawing
Initial value: -2
Assigns lineweight to extension lines.
\begin{tabular}{ll}
-3 & Default (the LWDEFAULT value) \\
\hline-2 & BYBLOCK \\
\hline-1 & BYLAYER
\end{tabular}

The integer represents \(1 / 100\) th of a mm .

\section*{DIMPOST}

\section*{Quick Reference}

See also:
■ Control the Display of Dimension Units

Type: \(\quad\) String
Saved in: Drawing
Initial value: None
Specifies a text prefix or suffix (or both) to the dimension measurement.
For example, to establish a suffix for millimeters, set DIMPOST to mm; a distance of 19.2 units would be displayed as 19.2 mm .
If tolerances are turned on, the suffix is applied to the tolerances as well as to the main dimension.

Use <> to indicate placement of the text in relation to the dimension value. For example, enter \(<>\mathrm{mm}\) to display a 5.0 millimeter radial dimension as " 5.0 mm ". If you entered \(\mathrm{mm}<>\), the dimension would be displayed as " mm 5.0". Use the <> mechanism for angular dimensions.

\section*{DIMRND}

\section*{Quick Reference}

See also:
- Round Off Dimension Values

Type: Real
Saved in: Drawing
Initial value: 0.0000
Rounds all dimensioning distances to the specified value.
For instance, if DIMRND is set to 0.25 , all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all distances round to the nearest integer. Note that the number of digits edited after the decimal point depends on the precision set by DIMDEC. DIMRND does not apply to angular dimensions.

\section*{DIMSAH}

\section*{Quick Reference}

\section*{See also:}
- Customize Arrowheads
\begin{tabular}{ll} 
Type: \(\quad\) Switch \\
Saved in: \(\quad\) Drawing \\
Initial value: & Off \\
Controls the display of dimension line arrowhead blocks. \\
\hline Off & Use arrowhead blocks set by DIMBLK \\
\hline On & Use arrowhead blocks set by DIMBLK1 and DIMBLK2 \\
\hline
\end{tabular}

\section*{DIMSCALE}

\section*{Quick Reference}

\section*{See also:}

■ Set the Scale for Dimensions

Type: Real
Saved in: Drawing
Initial value: 1.0000
Sets the overall scale factor applied to dimensioning variables that specify sizes, distances, or offsets.

Also affects the leader objects with the LEADER command.
Use MLEADERSCALE to scale multileader objects created with the MLEADER command.
0.0 A reasonable default value is computed based on the scaling between the current model space viewport and paper space. If you are in paper space or model space and not using the paper space feature, the scale factor is 1.0 .


DIMSCALE does not affect measured lengths, coordinates, or angles.
Use DIMSCALE to control the overall scale of dimensions. However, if the current dimension style is, DIMSCALE is automatically set to zero and the dimension scale is controlled by the CANNOSCALE system variable. DIMSCALE cannot be set to a non-zero value when using annotative dimensions.

\section*{DIMSD1}

\section*{Quick Reference}

\section*{See also:}
- Control Dimension Lines
\begin{tabular}{l} 
Type: Switch \\
Saved in: Drawing \\
Initial value: Off \\
Controls suppression of the first dimension line and arrowhea \\
When turned on, suppresses the display of the dimension line a \\
between the first extension line and the text. \\
\hline Off \(\quad\) First dimension line is not suppressed \\
\hline On \(\quad\) First dimension line is suppressed
\end{tabular}

\section*{DIMSD2}

\section*{Quick Reference}

See also:
- Control Dimension Lines

Type: Switch
Saved in: Drawing
Initial value: Off
Controls suppression of the second dimension line and arrowhead.
When turned on, suppresses the display of the dimension line and arrowhead between the second extension line and the text.
\begin{tabular}{ll} 
Off & Second dimension line is not suppressed \\
\hline On & Second dimension line is suppressed
\end{tabular}

\section*{DIMSE1}

\section*{Quick Reference}

See also:
- Control Extension Lines
\begin{tabular}{ll} 
Type: \(\quad\) Switch \\
Saved in: \(\quad\) Drawing \\
Initial value: & Off \\
Suppresses display of the first extension line. \\
\hline Off \(\quad\) Extension line is not suppressed \\
\hline On \(\quad\) Extension line is suppressed
\end{tabular}

\section*{DIMSE2}

\section*{Quick Reference}

See also:
- Control Extension Lines

Type: Switch
Saved in: Drawing
Initial value: Off
Suppresses display of the second extension line.
Off Extension line is not suppressed
On Extension line is suppressed

\section*{DIMSOXD}

\section*{Quick Reference}

See also:
- Control Dimension Lines

Type: Switch
Saved in: Drawing
Initial value: Off

Suppresses arrowheads if not enough space is available inside the extension lines.
\begin{tabular}{ll}
\hline Off & Arrowheads are not suppressed \\
\hline On & Arrowheads are suppressed \\
\hline
\end{tabular}

If not enough space is available inside the extension lines and DIMTIX is on, setting DIMSOXD to On suppresses the arrowheads. If DIMTIX is off, DIMSOXD has no effect.

\section*{DIMSTYLE}

\section*{Quick Reference}

\section*{See also:}
- Apply a New Dimension Style to Existing Dimensions
(Read-only)
Type: String
Saved in: Drawing
Initial value: Standard (imperial) or ISO-25 (metric)
Stores the name of the current dimension style.
This system variable has the same name as a command. Use the SETVAR command to access this system variable. The DIMSTYLE system variable is read-only; to change the current dimension style, use the DIMSTYLE command.

\section*{DIMTAD}

\section*{Quick Reference}

\section*{See also:}
- Control the Location of Dimension Text
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Drawing
\end{tabular}

Initial value: 0 (imperial) or 1 (metric)
Controls the vertical position of text in relation to the dimension line.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Centers the dimension text between the extension lines. \\
When the dimension line is not horizontal and text inside \\
the extension lines is forced horizontal (DIMTIH \(=1\) ). The \\
distance from the dimension line to the baseline of the \\
lowest line of text is the current DIMGAP value.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Places the dimension text on the side of the dimension \\
line farthest away from the defining points.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Places the dimension text to conform to Japanese Industrial \\
Standards (JIS).
\end{tabular} \\
\hline 4
\end{tabular}

\section*{DIMTDEC}

\section*{Quick Reference}

\section*{See also:}

■ Display Lateral Tolerances

Type: Integer
Saved in: Drawing
Initial value: 4 (imperial) or 2 (metric)
Sets the number of decimal places to display in tolerance values for the primary units in a dimension.

This system variable has no effect unless DIMTOL is set to On. The default for DIMTOL is Off.

\section*{DIMTFAC}

\section*{Quick Reference}

See also:
■ Set the Scale for Dimensions

Type: Real
Saved in: Drawing
Initial value: 1.0000
Specifies a scale factor for the text height of fractions and tolerance values relative to the dimension text height, as set by DIMTXT.

For example, if DIMTFAC is set to 1.0, the text height of fractions and tolerances is the same height as the dimension text. If DIMTFAC is set to 0.7500 , the text height of fractions and tolerances is three-quarters the size of dimension text.

\section*{DIMTFILL}

\section*{Quick Reference}

See also:
- Control the Appearance of Dimension Text

Type: Integer
Saved in: Drawing
Initial value: 0
Controls the background of dimension text.
\begin{tabular}{ll}
\hline 0 & No background \\
\hline 1 & The background color of the drawing \\
\hline 2 & The background specified by DIMTFILLCLR \\
\hline
\end{tabular}

\section*{DIMTFILLCLR}

\section*{Quick Reference}

\section*{See also:}
- Control the Appearance of Dimension Text

Type: Integer
Saved in: Drawing
Initial value: 0
Sets the color for the text background in dimensions.
Color numbers are displayed in the Select Color dialog box. For BYBLOCK, enter 0. For BYLAYER, enter 256.

\section*{DIMTIH}

\section*{Quick Reference}

\section*{See also:}

■ Control the Location of Dimension Text

Type: Switch
Saved in: Drawing
Initial value: On (imperial) or Off (metric)
Controls the position of dimension text inside the extension lines for all dimension types except Ordinate.
\begin{tabular}{ll} 
Off & Aligns text with the dimension line \\
\hline On & Draws text horizontally \\
\hline
\end{tabular}

\section*{DIMTIX}

\section*{Quick Reference}

\section*{See also:}

■ Fit Dimension Text Within Extension Lines

Type: Switch
Saved in: Drawing
Initial value: Off
Draws text between extension lines.
\begin{tabular}{ll} 
Off & \begin{tabular}{l} 
Varies with the type of dimension. For linear and angular \\
dimensions, text is placed inside the extension lines if there \\
is sufficient room. For radius and diameter dimensions \\
that don't fit inside the circle or arc, DIMTIX has no effect \\
and always forces the text outside the circle or arc.
\end{tabular} \\
\hline On \(\quad\)\begin{tabular}{l} 
Draws dimension text between the extension lines even \\
if it would ordinarily be placed outside those lines
\end{tabular} \\
\hline
\end{tabular}

\section*{DIMTM}

\section*{Quick Reference}

See also:
■ Display Lateral Tolerances

Type: Real
Saved in: Drawing
Initial value: 0.0000
Sets the minimum (or lower) tolerance limit for dimension text when DIMTOL or DIMLIM is on.

DIMTM accepts signed values. If DIMTOL is on and DIMTP and DIMTM are set to the same value, a tolerance value is drawn.

If DIMTM and DIMTP values differ, the upper tolerance is drawn above the lower, and a plus sign is added to the DIMTP value if it is positive.

For DIMTM, the program uses the negative of the value you enter (adding a minus sign if you specify a positive number and a plus sign if you specify a negative number).

\section*{DIMTMOVE}

\section*{Quick Reference}

\section*{See also:}

■ Modify Dimension Text

Type: \(\quad\) Integer
Saved in: Drawing
Initial value: 0
Sets dimension text movement rules.
\begin{tabular}{ll}
\hline 0 & Moves the dimension line with dimension text \\
\hline 1 & Adds a leader when dimension text is moved \\
\hline 2 & Allows text to be moved freely without a leader \\
\hline
\end{tabular}

\section*{DIMTOFL}

\section*{Quick Reference}

\section*{See also:}

■ Fit Dimension Text Within Extension Lines

Type: Switch
Saved in: Drawing
Initial value: Off (imperial) or On (metric)
Controls whether a dimension line is drawn between the extension lines even when the text is placed outside.

For radius and diameter dimensions (when DIMTIX is off), draws a dimension line inside the circle or arc and places the text, arrowheads, and leader outside.
\begin{tabular}{ll}
\hline Off & \begin{tabular}{l} 
Does not draw dimension lines between the measured \\
points when arrowheads are placed outside the measured \\
points
\end{tabular} \\
\hline On & \begin{tabular}{l} 
Draws dimension lines between the measured points even \\
when arrowheads are placed outside the measured points
\end{tabular} \\
\hline
\end{tabular}

\section*{DIMTOH}

\section*{Quick Reference}

\section*{See also:}

■ Fit Dimension Text Within Extension Lines
\begin{tabular}{ll} 
Type: \(\quad\) Switch \\
Saved in: \(\quad\) Drawing \\
Initial value: & On (imperial) or Off (metric) \\
Controls the position of dimension text outside the extension \\
\hline Off \(\quad\) Aligns text with the dimension line \\
\hline On \(\quad\) Draws text horizontally \\
\hline
\end{tabular}

\section*{DIMTOL}

\section*{Quick Reference}

See also:
■ Display Lateral Tolerances

Type: Switch
Saved in: Drawing Initial value: Off

Appends tolerances to dimension text.
Setting DIMTOL to on turns DIMLIM off.

\section*{DIMTOLJ}

\section*{Quick Reference}

See also:
■ Display Lateral Tolerances

Type: Integer
Saved in: Drawing
Initial value: 1 (imperial) or 0 (metric)
Sets the vertical justification for tolerance values relative to the nominal dimension text.

This system variable has no effect unless DIMTOL is set to On. The default for DIMTOL is Off.
\begin{tabular}{ll}
\hline 0 & Bottom \\
\hline 1 & Middle \\
\hline 2 & Top \\
\hline
\end{tabular}

\section*{DIMTP}

\section*{Quick Reference}

See also:
■ Set the Scale for Dimensions

Type: Real
Saved in: Drawing
Initial value: 0.0000

Sets the maximum (or upper) tolerance limit for dimension text when DIMTOL or DIMLIM is on.

DIMTP accepts signed values. If DIMTOL is on and DIMTP and DIMTM are set to the same value, a tolerance value is drawn.

If DIMTM and DIMTP values differ, the upper tolerance is drawn above the lower and a plus sign is added to the DIMTP value if it is positive.

\section*{DIMTSZ}

\section*{Quick Reference}

See also:
■ Customize Arrowheads

Type: Real
Saved in: Drawing
Initial value: 0.0000
Specifies the size of oblique strokes drawn instead of arrowheads for linear, radius, and diameter dimensioning.
\begin{tabular}{ll}
\hline 0 & Draws arrowheads. \\
\hline\(>0\) & \begin{tabular}{l} 
Draws oblique strokes instead of arrowheads. The size of \\
the oblique strokes is determined by this value multiplied \\
by the DIMSCALE value
\end{tabular} \\
\hline
\end{tabular}

\section*{DIMTVP}

\section*{Quick Reference}

See also:
■ Control the Location of Dimension Text

Type: Real
Saved in: Drawing

Initial value: 0.0000
Controls the vertical position of dimension text above or below the dimension line.

The DIMTVP value is used when DIMTAD is off. The magnitude of the vertical offset of text is the product of the text height and DIMTVP. Setting DIMTVP to 1.0 is equivalent to setting DIMTAD to on. The dimension line splits to accommodate the text only if the absolute value of DIMTVP is less than 0.7.

\section*{DIMTXSTY}

\section*{Quick Reference}

See also:
■ Control the Appearance of Dimension Text
Type: \(\quad\) String
Saved in: Drawing
Initial value: Standard
Specifies the text style of the dimension.

\section*{DIMTXT}

\section*{Quick Reference}

\section*{See also:}
- Control the Appearance of Dimension Text

Type: Real
Saved in: Drawing
Initial value: 0.1800 (imperial) or 2.5000 (metric)
Specifies the height of dimension text, unless the current text style has a fixed height.

\section*{DIMTXTDIRECTION}

\section*{Quick Reference}

\section*{See also:}

■ Control the Appearance of Dimension Text

Type: Integer
Saved in: Drawing
Initial value: 0
Specifies the reading direction of the dimension text.
\begin{tabular}{ll}
\hline 0 & Displays dimension text in a Left-to-Right reading style \\
\hline 1 & Displays dimension text in a Right-to-Left reading style \\
\hline
\end{tabular}

\section*{DIMTZIN}

\section*{Quick Reference}

See also:
■ Display Lateral Tolerances
\(\begin{array}{ll}\text { Type: } & \text { Integer } \\ \text { Saved in: } & \text { Drawing }\end{array}\)
Saved in: Drawing
Initial value: 0 (imperial) or 8 (metric)
Controls the suppression of zeros in tolerance values.
Values 0-3 affect feet-and-inch dimensions only.
\begin{tabular}{ll}
\hline 0 & Suppresses zero feet and precisely zero inches \\
\hline 1 & Includes zero feet and precisely zero inches \\
\hline 2 & Includes zero feet and suppresses zero inches \\
\hline 3 & Includes zero inches and suppresses zero feet
\end{tabular}

Suppresses leading zeros in decimal dimensions (for example, 0.5000 becomes .5000 )

8
Suppresses trailing zeros in decimal dimensions (for example, 12.5000 becomes 12.5 )

12 Suppresses both leading and trailing zeros (for example, 0.5000 becomes .5)

\section*{DIMUPT}

\section*{Quick Reference}

See also:
■ Control the Location of Dimension Text

Type: Switch
Saved in: Drawing
Initial value: Off
Controls options for user-positioned text.
\begin{tabular}{ll}
\hline Off & Cursor controls only the dimension line location \\
\hline On & \begin{tabular}{l} 
Cursor controls both the text position and the dimension \\
line location
\end{tabular} \\
\hline
\end{tabular}

\section*{DIMZIN}

\section*{Quick Reference}
```

See also:
■ Suppress Zeros in Dimensions
Type: Integer
Saved in: Drawing

```

Initial value: 0 (imperial) or 8 (metric)
Controls the suppression of zeros in the primary unit value.
Values 0-3 affect feet-and-inch dimensions only:
\begin{tabular}{ll}
\hline 0 & Suppresses zero feet and precisely zero inches \\
\hline 1 & Includes zero feet and precisely zero inches \\
\hline 2 & Includes zero feet and suppresses zero inches \\
\hline 3 & \begin{tabular}{l} 
Includes zero inches and suppresses zero feet \\
\hline 4
\end{tabular} \\
\hline 8 & \begin{tabular}{l} 
Suppresses leading zeros in decimal dimensions (for ex- \\
amplesses trailing zeros in decimal dimensions (for ex- \\
ample becomes .5000 )
\end{tabular} \\
\hline 12 & \begin{tabular}{l} 
Suppresses both leading and trailing zeros (for example, \\
0.5000 becomes .5)
\end{tabular} \\
\hline
\end{tabular}

DIMZIN also affects real-to-string conversions performed by the AutoLISP rtos and angtos functions.

\section*{DISPSILH}

\section*{Quick Reference}

See also:
See also:
■ Control the Display of Edges
```

Type: Integer
Saved in: Drawing
Initial value: 0

```

Controls display of silhouette edges of 3D solid objects in a 2D Wireframe or 3D Wireframe visual style.
\begin{tabular}{ll}
\hline 0 & Off. Do not display silhouette edges \\
\hline 1 & On. Display silhouette edges \\
\hline
\end{tabular}

When turned on, DISPSILH also suppresses the mesh displayed when using the HIDE command in the 2D wireframe visual style.
Use the REGEN command to display the results.

\section*{DISTANCE}

\section*{Quick Reference}

See also:
- Obtain Distances, Angles, and Point Locations
(Read-only)
Type: Real
Saved in: Not-saved
Initial value: 0.0000
Stores the distance computed by the DIST command.

\section*{DIVMESHBOXHEIGHT}

\section*{Quick Reference}

\section*{See also:}

■ Create a Mesh Box

Type: Integer
Saved in: User-settings
Initial value: 3
Sets the number of subdivisions for the height of a mesh box along the \(Z\) axis.


This setting affects new mesh boxes that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHBOXLENGTH}

\section*{Quick Reference}

See also:
■ Create a Mesh Box

Type: Integer
Saved in: User-settings
Initial value: 3
Sets the number of subdivisions for the length of a mesh box along the \(X\) axis.


This setting affects new mesh boxes that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHBOXWIDTH}

\section*{Quick Reference}

See also:
■ Create a Mesh Box

\section*{Type: Integer \\ Saved in: User-settings}

Initial value: 3
Sets the number of subdivisions for the width of a mesh box along the \(Y\) axis.


This setting affects new mesh boxes that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHCONEAXIS}

\section*{Quick Reference}

\section*{See also:}

■ Create a Mesh Cone
```

Type: Integer
Saved in: User-settings
Initial value: 8

```

Sets the number of subdivisions around the perimeter of the mesh cone base.


This setting affects new mesh cones that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHCONEBASE}

\section*{Quick Reference}

See also:
- Create a Mesh Cone

Type: Integer
Saved in: User-settings
Initial value: 3
Sets the number of subdivisions between the perimeter and the center point of the mesh cone base.


This setting affects new mesh cones that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHCONEHEIGHT}

\section*{Quick Reference}

\section*{See also:}
- Create a Mesh Cone

Type: Integer
Saved in: User-settings
Initial value: 3
Sets the number of subdivisions between the base and the point or top of the mesh cone.


This setting affects new mesh cones that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHCYLAXIS}

\section*{Quick Reference}

See also:
■ Create a Mesh Cylinder
```

Type: Integer
Saved in: User-settings
Initial value: 8
Sets the number of subdivisions around the perimeter of the mesh cylinder
base.

```


This setting affects new mesh cylinders that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHCYLBASE}

\section*{Quick Reference}

\section*{See also:}

■ Create a Mesh Cylinder
\(\begin{array}{ll}\text { Type: } & \text { Integer } \\ \text { Saved in: } & \text { User-settings } \\ \text { Initial value: } & 3\end{array}\)
Initial value: 3
Sets the number of radial subdivisions from the center of the mesh cylinder base to its perimeter.


This setting affects new mesh cylinders that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHCYLHEIGHT}

\section*{Quick Reference}

See also:
- Create a Mesh Cylinder
```

Type: Integer
Saved in: User-settings
Initial value: 3

```


Sets the number of subdivisions between the base and the top of the mesh cylinder.

This setting affects new mesh cylinders that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHPYRBASE}

\section*{Quick Reference}

\section*{See also:}
- Create a Mesh Pyramid

\section*{Type: Integer \\ Saved in: User-settings \\ Initial value: 3}

Sets the number of radial subdivisions between the center of the mesh pyramid base and its perimeter.


This setting affects new mesh pyramids that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHPYRHEIGHT}

\section*{Quick Reference}

See also:
- Create a Mesh Pyramid

Type: Integer
Saved in: User-settings
Initial value: 3
Sets the number of subdivisions between the base and the top of the mesh pyramid.


This setting affects new mesh pyramids that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHPYRLENGTH}

\section*{Quick Reference}

See also:
- Create a Mesh Pyramid

Type: Integer
Saved in: User-settings
Initial value: 3
Sets the number of subdivisions along each dimension of a mesh pyramid base.


This setting affects new mesh pyramids that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHSPHEREAXIS}

\section*{Quick Reference}

See also:
■ Create a Mesh Sphere
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & User-settings \\
Initial value: & 12
\end{tabular}

Initial value: 12


Sets the number of radial subdivisions around the axis endpoint of the mesh sphere.

This setting affects new mesh spheres that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHSPHEREHEIGHT}

\section*{Quick Reference}

\section*{See also:}

■ Create a Mesh Sphere

Type: Integer
Saved in: User-settings
Initial value: 6
Sets the number of subdivisions between the two axis endpoints of the mesh sphere.


This setting affects new mesh spheres that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHTORUSPATH}

\section*{Quick Reference}

See also:
■ Create a Mesh Torus

Type: Integer
Saved in: User-settings
Initial value: 8
Sets the number of subdivisions in the path that is swept by the profile of a mesh torus.


This setting affects new mesh tori that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHTORUSSECTION}

\section*{Quick Reference}

See also:
- Create a Mesh Torus
```

Type: Integer
Saved in: User-settings
Initial value: 8

```

Sets the number of subdivisions in the profile that sweeps the path of a mesh torus.


This setting affects new mesh tori that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHWEDGEBASE}

\section*{Quick Reference}

\section*{See also}

■ Create a Mesh Wedge

Type: Integer
Saved in: User-settings
Initial value: 3
Sets the number of subdivisions between the midpoint of the perimeter of triangular dimension of the mesh wedge.


This setting affects new mesh wedges that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHWEDGEHEIGHT}

\section*{Quick Reference}

See also:
■ Create a Mesh Wedge

Type: Integer
Saved in: User-settings
Initial value: 3
Sets the number of subdivisions for the height of the mesh wedge along the \(Z\) axis.


This setting affects new mesh wedges that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHWEDGELENGTH}

\section*{Quick Reference}

See also:
■ Create a Mesh Wedge

Type: Integer
Saved in: User-settings
Initial value: 4
Sets the number of subdivisions for the length of a mesh wedge along the X axis.


This setting affects new mesh wedges that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHWEDGESLOPE}

\section*{Quick Reference}

See also:
■ Create a Mesh Wedge

Type: Integer
Saved in: User-settings
Initial value: 3
Sets the number of subdivisions in the slope that extends from the apex of the wedge to the edge of the base.


This setting affects new mesh wedges that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DIVMESHWEDGEWIDTH}

\section*{Quick Reference}

See also:
■ Create a Mesh Wedge

Type: Integer
Saved in: User-settings
Initial value: 3
Sets the number of subdivisions for the width of the mesh wedge along the Y axis.


This setting affects new mesh wedges that are created with the MESH command. This value can also be set in the Mesh Primitive Options dialog box.

\section*{DONUTID}

\section*{Quick Reference}

See also:
- Draw Donuts

Type: Real
Saved in: Not-saved
Initial value: 0.5000
Sets the default for the inside diameter of a donut.

\section*{DONUTOD}

\section*{Quick Reference}

See also:
- Draw Donuts

Type: Real
Saved in: Not-saved
Initial value: 1.0000
Sets the default for the outside diameter of a donut.
The value must be nonzero. If DONUTID is larger than DONUTOD, the two values are swapped by the next command.

\section*{DRAGMODE}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Type: Integer
Saved in: Registry
Initial value: 2
Controls the display of objects being dragged.
This system variable has the same name as a command. Use the SETVAR command to access this system variable.

When it is on, the image of an object is displayed as you drag it to another position. With some computer configurations, dragging can be time-consuming. Use DRAGMODE to suppress dragging.
\begin{tabular}{ll}
\hline 0 & Does not display an outline of the object as you drag it \\
\hline 1 & \begin{tabular}{l} 
Displays the outline of the object as you drag it only if you \\
enter drag at the Command prompt after selecting the \\
object to drag
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Auto; always displays an outline of the object as you drag \\
it
\end{tabular} \\
\hline
\end{tabular}

\section*{DRAGP1}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Type: Integer
Saved in: Registry
Initial value: 10
Sets the regen-drag input sampling rate.

\section*{DRAGP2}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Type: Integer
Saved in: Registry
Initial value: 25
Sets the fast-drag input sampling rate.

\section*{DRAGVS}

\section*{Quick Reference}

See also:
- Create a Solid Box
\begin{tabular}{ll} 
Type: & String \\
Saved in: & Drawing \\
Initial value: "
\end{tabular}

Sets the visual style that is displayed while creating 3D solid and mesh primitives and extruded solids, surfaces, and meshes.

You can enter a period (.) to specify the current visual style. DRAGVS can only be set to a visual style that is saved in the drawing.

DRAGVS has no effect when the current viewport's visual style is set to 2D Wireframe.

The visual style specified for DRAGVS cannot be removed with the PURGE command.

\section*{DRAWORDERCTL}

\section*{Quick Reference}

\section*{See also:}
- Control How Overlapping Objects Are Displayed

Type: Integer
Saved in: Drawing
Initial value: 3
Controls the default display behavior of overlapping objects when they are created or edited.
0 \begin{tabular}{l} 
Turns off the default draw order of overlapping objects: \\
after objects are edited, regardless of their draw order, \\
the objects are displayed on top until a drawing is regen- \\
erated (REGEN) or reopened. This setting also turns off \\
draw order inheritance: new objects that are created from \\
another object using the commands listed below are not \\
assigned the draw order of the original object. Use this \\
setting to improve the speed of editing operations in large \\
drawings. The commands that are affected by inheritance \\
are BREAK, FILLET, HATCH, HATCHEDIT, EXPLODE, TRIM, \\
JOIN, PEDIT, and OFFSET. \\
\hline 1
\end{tabular} \begin{tabular}{l} 
Turns on the default draw order of objects: after objects \\
are edited, they are automatically displayed according to \\
the correct draw order.
\end{tabular}

Turns on draw order inheritance: new objects created from another object using the commands listed above are assigned the draw order of the original object.

Provides full draw order display. Turns on the correct draw order of objects, and turns on draw order inheritance.

NOTE Full draw order display may slow some editing operations.

\section*{DRSTATE}

\section*{Quick Reference}

See also:
- Recover from a System Failure
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: Varies
Indicates whether the Drawing Recovery Manager window is open or closed.
\begin{tabular}{ll}
\hline 0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{DTEXTED}

\section*{Quick Reference}

See also:
■ Change Single-Line Text

Type: Integer
Saved in: Registry

Initial value: 2
Specifies the user interface displayed for editing single-line text.
Obsolete command. Replaced by the TEXTED on page 2549 system variable.

\section*{DWFFRAME}

\section*{Quick Reference}

\section*{See also:}

■ Hide and Show Underlay Frames
Type: Integer
Saved in: Drawing
Initial value: 2
Determines whether DWF or DWFx underlay frames are visible or plotted in the current drawing.
The FRAME system variable overrides the DWFFRAME setting. Use the DWFFRAME system variable after the FRAME system variable to reset the DWF frame settings
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
The DWF or DWFx underlay frame is not visible and it is \\
not plotted
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Displays the DWF or DWFx underlay frame and allows it \\
to be plotted
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Displays the DWF or DWFx underlay frame but keeps it \\
from being plotted
\end{tabular} \\
\hline
\end{tabular}

\section*{DWFOSNAP}

\section*{Quick Reference}

\section*{See also:}

■ Use Object Snaps with Underlays
```

Type: Integer
Saved in: Registry

```
Initial value: 1
Determines whether object snapping is active for geometry in DWF or DWFx underlays that are attached to the drawing.

The UOSNAP system variable overrides the DWFOSNAP setting.
```

0
Object snapping is disabled for geometry in all DWF or DWFx underlay attachments in the drawing

```

1 Object snapping is enabled for geometry in all DWF or DWFx underlay attachments in the drawing

DWGCHECK

\section*{Quick Reference}

\section*{See also:}

■ Open a Drawing
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Registry
\end{tabular}

Initial value: 1
Checks drawings for potential problems when opening them.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
If a drawing that you try to open has a potential problem, \\
you are warned before the drawing is opened.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
If a drawing that you try to open has a potential problem, \\
or if it was saved by an application other than one released \\
by Autodesk or based on RealDWG, you are warned before \\
the drawing is opened.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
If a drawing that you try to open has a potential problem, \\
you are notified at the Command prompt.
\end{tabular} \\
\begin{tabular}{l} 
If a drawing that you try to open has a potential problem, \\
you are notified at the Command prompt. If the drawing \\
has a potential problem and the drawing was saved by
\end{tabular}
\end{tabular}
an application other than one released by Autodesk or based on RealDWG, you are warned before the drawing is opened.

\section*{DWGCODEPAGE}

\section*{Quick Reference}

See also:
■ Use Text Fonts for International Work
(Read-only)
Type: String
Saved in: Not-saved
Initial value: Varies
Stores the same value as SYSCODEPAGE (for compatibility reasons).

\section*{DWGNAME}

\section*{Quick Reference}

See also:
- Save a Drawing
(Read-only)
Type: String
Saved in: Not-saved
Initial value: Drawing1.dwg
Stores the name of the current drawing.
If a new drawing has not been saved yet, DWGNAME defaults to Drawing1.dwg. Additional new drawings are named Drawing2.dwg, Drawing3.dwg, and so on.

If you specified a drive and folder prefix, the prefix is stored in DWGPREFIX.

\section*{DWGPREFIX}

\section*{Quick Reference}

See also:
■ Save a Drawing
(Read-only)
Type: String
Saved in: Not-saved
Initial value: Varies
Stores the drive and folder prefix for the drawing.

\section*{DWGTITLED}

\section*{Quick Reference}

See also:
- Save a Drawing
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Indicates whether the current drawing has been named.
\begin{tabular}{ll}
\hline 0 & Drawing has not been named \\
\hline 1 & Drawing has been named
\end{tabular}

\section*{DXEVAL}

\section*{Quick Reference}

See also:
- Update Extracted Data

Type: Integer
Saved in: Drawing
Initial value: 12
Controls when data extraction tables are compared against the data source, and if the data is not current, displays an update notification

The setting is stored as an integer using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & No notification \\
\hline 1 & Open \\
\hline 2 & Save \\
\hline 4 & Publish \\
\hline 8 & Pave with Automatic Update \\
\hline 16 & Plot with Automatic Update \\
\hline 64 & eTransmit/Archive with Automatic Update \\
\hline 128 & \\
\hline 256 &
\end{tabular}

\section*{DYNCONSTRAINTMODE}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Dimensional Constraints

Type: Integer
Saved in: Registry
Initial value: 1
Displays hidden dimensional constraints when constrained objects are selected.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Keeps constraints hidden when an object \\
is selected
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Displays hidden constraints when dimen- \\
sionally constrained objects are selected
\end{tabular} \\
\hline
\end{tabular}

NOTE This system variable takes effect when dynamic constraints are hidden (see DCDISPLAY on page 515).

\section*{DYNDIGRIP}

\section*{Quick Reference}

See also:
■ Use Dynamic Input

Type: Bitcode
Saved in: Registry
Initial value: 31
Controls which dynamic dimensions are displayed during grip stretch editing.
The DYNDIVIS system variable must be set to 2 , which displays all dynamic dimensions.

The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & None \\
\hline 1 & Resulting dimension \\
\hline 2 & Length change dimension \\
\hline 4 & Absolute angle dimension \\
\hline 8 & Angle change dimension \\
\hline 16 & Arc radius dimension \\
\hline
\end{tabular}

The DYNMODE system variable turns Dynamic Input features on and off.

\section*{DYNDIVIS}

\section*{Quick Reference}

\section*{See also:}
- Use Dynamic Input

Type: \(\quad\) Integer
Saved in: Registry
Initial value: 1
Controls how many dynamic dimensions are displayed during grip stretch editing.

DYNDIGRIP controls which dynamic dimensions are displayed during grip stretch editing.
\begin{tabular}{ll}
\hline 0 & Only the first dynamic dimension in the cycle order \\
\hline 1 & Only the first two dynamic dimensions in the cycle order \\
\hline 2 & \begin{tabular}{l} 
All dynamic dimensions, as controlled by the DYNDIGRIP \\
system variable
\end{tabular} \\
\hline
\end{tabular}

The DYNMODE system variable turns Dynamic Input features on and off.

\section*{DYNMODE}

\section*{Quick Reference}

\section*{See also:}
- Use Dynamic Input

Type: Integer
Saved in: Registry
Initial value: 3
Turns Dynamic Input features on and off.
When all features are on, the context governs what is displayed.
When DYNMODE is set to a negative value, the Dynamic Input features are not turned on, but the setting is stored. Press the Dyn button in the status bar to set DYNMODE to the corresponding positive value.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
All Dynamic Input features, including dynamic prompts, \\
off
\end{tabular} \\
\hline 1 & Pointer input on \\
\hline 2 & Dimensional input on \\
\hline 3 & Both pointer input and dimensional input on
\end{tabular}

If dynamic prompts are on (DYNPROMPT is set to 1 ), they are displayed when DYNMODE is set to 1,2 , or 3 .

When dimensional input is turned on (DYNMODE \(=2\) or 3 ), the program switches to pointer input when you enter a comma or an angle bracket (<), or when you select multiple grip points.

When DYNMODE is set to 1,2 , or 3 , you can turn off all features temporarily by holding down the temporary override key, F12.

Settings are on the Dynamic Input tab in the Drafting Settings dialog box.

\section*{DYNPICOORDS}

\section*{Quick Reference}

\section*{See also:}
- Use Dynamic Input
\begin{tabular}{ll} 
Type: & Switch \\
Saved in: & Registry
\end{tabular}

Saved in: Registry
Initial value: 0
Controls whether pointer input uses relative or absolute format for coordinates.
\begin{tabular}{ll}
\hline 0 & Relative \\
\hline 1 & Absolute \\
\hline
\end{tabular}

The DYNMODE system variable turns Dynamic Input features on and off.

\section*{DYNPIFORMAT}

\section*{Quick Reference}

\section*{See also:}

■ Use Dynamic Input

Type: Switch
Saved in: Registry
Initial value: 0
Controls whether pointer input uses polar or Cartesian format for coordinates.
This setting applies only to a second or next point.
\begin{tabular}{ll}
\hline 0 & Polar \\
\hline 1 & Cartesian \\
\hline
\end{tabular}

The DYNMODE system variable turns Dynamic Input features on and off.

\section*{DYNPIVIS}

\section*{Quick Reference}

See also:
■ Use Dynamic Input

Type: Integer
Saved in: Registry
Initial value: 1
Controls when pointer input is displayed.
\begin{tabular}{ll}
\hline 0 & Only when you type at a prompt for a point \\
\hline 1 & Automatically at a prompt for a point \\
\hline 2 & Always \\
\hline
\end{tabular}

The DYNMODE system variable turns Dynamic Input features on and off.

\section*{DYNPROMPT}

\section*{Quick Reference}

See also:
■ Use Dynamic Input

Type: Integer
Saved in: Registry
Initial value: 1
Controls display of prompts in Dynamic Input tooltips.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On \\
\hline
\end{tabular}

The DYNMODE system variable turns Dynamic Input features on and off. When DYNMODE is set to 0 (off), prompts are not displayed regardless of the DYNPROMPT setting.

\section*{DYNTOOLTIPS}

\section*{Quick Reference}

See also:
- Use Dynamic Input

Type: Switch
Saved in: Registry
Initial value: 1
Controls which tooltips are affected by tooltip appearance settings.
\begin{tabular}{ll}
\hline 0 & Only Dynamic Input value fields \\
\hline 1 & All drafting tooltips
\end{tabular}

\section*{E System Variables}


\section*{EDGEMODE}

\section*{Quick Reference}

See also:
- Trim or Extend Objects

Type: Integer
Saved in: Registry
Initial value: 0
Controls how the TRIM and EXTEND commands determine cutting and boundary edges.
\begin{tabular}{ll}
\hline 0 & Uses the selected edge without any extensions \\
\hline 1 & \begin{tabular}{l} 
Extends or trims the selected object to an imaginary ex- \\
tension of the cutting or boundary edge
\end{tabular}
\end{tabular}

Lines, arcs, elliptical arcs, rays, and polylines are objects eligible for natural extension. The natural extension of a line or ray is an unbounded line (xline), an arc is a circle, and an elliptical arc is an ellipse. A polyline is broken down into its line and arc components, which are extended to their natural boundaries.

\section*{ELEVATION}

\section*{Quick Reference}

See also:
- Control the User Coordinate System in 3D

Type: Real
Saved in: Drawing
Initial value: 0.0000
Stores the current elevation of new objects relative to the current UCS.

\section*{ENTERPRISEMENU}

\section*{Quick Reference}

See also:
- Create an Enterprise CUIx File
(Read-only)
Type: String
Saved in: Registry
Initial value: "."
Stores the enterprise customization file name (if defined), including the path for the file name.

\section*{ERHIGHLIGHT}

\section*{Quick Reference}

See also:
■ Attach Drawing References (Xrefs)

Type: \(\quad\) Integer
Saved in: Registry

2302 | Chapter 32 E System Variables

Initial value: 1
Controls whether reference names or reference objects are highlighted when their counterparts are selected in the External References palette or in the drawing window.
\begin{tabular}{ll}
\hline 0 & Referenced objects are not highlighted. \\
\hline 1 & Referenced objects are highlighted.
\end{tabular}

\section*{ERRNO}

\section*{Quick Reference}

See also:
■ Overview of AutoLISP and Visual LISP
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Displays the number of the appropriate error code when an AutoLISP function call causes an error that AutoCAD detects.

AutoLISP applications can inspect the current value of ERRNO with (getvar "errno").

The ERRNO system variable is not always cleared to zero. Unless it is inspected immediately after an AutoLISP function has reported an error, the error that its value indicates may be misleading. This variable is always cleared when starting or opening a drawing.
See the AutoLISP Developer's Guide for more information.

\section*{ERSTATE}

\section*{Quick Reference}

\section*{See also:}
- Attach Drawing References (Xrefs)
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: Varies
Indicates whether the External References palette is open or closed.
\begin{tabular}{ll}
\hline 0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{EXPERT}

\section*{Quick Reference}

See also:
■ Switch Between Dialog Boxes and the Command Line

Type: Integer
Saved in: Not-saved Initial value: 0
Controls whether certain prompts are issued.
\begin{tabular}{ll}
\hline 0 & Issues all prompts normally. \\
\hline 1 & \begin{tabular}{l} 
Suppresses "About to regen, proceed?" and "Really want \\
to turn the current layer off?" (-LAYER)
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Suppresses the preceding prompts and "Block already \\
defined. Redefine it?" (-BLOCK) and "A drawing with this \\
name already exists. Overwrite it?" (SAVE or WBLOCK).
\end{tabular} \\
\hline
\end{tabular}

Suppresses the preceding prompts and those issued by the LINETYPE Command prompt (-LINETYPE) if you try to load a linetype that's already loaded or create a new linetype in a file that already defines that linetype.

4 Suppresses the preceding prompts and those issued by UCS Save and VPORTS Save if the name you supply already exists.

5 Suppresses the prompt, "That name is already in Use, redefine it?" issued by the -DIMSTYLE Save option when you supply the name of an existing dimension style. Suppresses the same prompt issued by the -SCALELISTEDIT Add option.

When a prompt is suppressed by EXPERT, the operation in question is performed as though you entered \(y\) at the prompt. Setting EXPERT can affect scripts, menu macros, AutoLISP, and the command functions.

\section*{EXPORTEPLOTFORMAT}

\section*{Quick Reference}

\section*{See also:}

■ Export DWF and DWFx Files

Type: Integer
Saved in: User-settings
Initial value: 2
Sets the default electronic file output type: PDF, DWF, or DWFx.
\begin{tabular}{ll}
\hline 0 & PDF \\
\hline 1 & DWF \\
\hline 2 & DWFx \\
\hline
\end{tabular}

\section*{EXPORTMODELSPACE}

\section*{Quick Reference}

See also:
- Export DWF and DWFx Files

Type: Integer
Saved in: Drawing
Initial value: 0
Specifies what part of the drawing to export to a DWF, DWFx, or PDF file from Model space
\begin{tabular}{ll}
\hline 0 & Display \\
\hline 1 & Extents \\
\hline 2 & Window
\end{tabular}

\section*{EXPORTPAPERSPACE}

\section*{Quick Reference}

See also:
■ Export DWF and DWFx Files
Type: \(\quad\) Integer
Saved in: \(\quad\) Drawing
Initial value: 0
Specifies what part of the drawing to export to a DWF, DWFx, or PDF file from
paper space. paper space.
\begin{tabular}{ll}
0 & Current Layout \\
\hline 1 & All Layouts
\end{tabular}

\section*{EXPORTPAGESETUP}

\section*{Quick Reference}

See also:
■ Export DWF and DWFx Files

\section*{Type: Integer}

Saved in: Drawing
Initial value: 0
Specifies whether to export to a DWF, DWFx, or PDF file with the current page setup.

0 Current - Exports the file using the DWG's current page setup. When this is set to 0 , the Page Setup combo box in the Export to DWF/PDF panel of the Ribbon's Output tab displays Current.

1
Override - Exports the file and allows you to override the DWG's current page setup. When this is set to 1 , the Page Setup combo box in the Export to DWF/PDF panel of the Ribbon's Output tab displays Override. You can override plot options such as page size and orientation in the Page Setup Override dialog box.

\section*{EXPLMODE}

\section*{Quick Reference}

\section*{See also:}

■ Disassemble a Block Reference (Explode)

Type: Integer
Saved in: Not-saved
Initial value: 1

Controls whether the EXPLODE command supports nonuniformly scaled (NUS) blocks.
\begin{tabular}{ll}
\hline 0 & Does not explode NUS blocks \\
\hline 1 & Explodes NUS blocks \\
\hline
\end{tabular}

\section*{EXTMAX}

\section*{Quick Reference}

See also:
- Pan or Zoom a View
(Read-only)
Type: 3D-point

Saved in: Drawing
Initial value: Varies
Stores the upper-right point of the drawing extents.
Expands outward as new objects are drawn; shrinks only with ZOOM All or ZOOM Extents. Reported in world coordinates for the current space.

\section*{EXTMIN}

\section*{Quick Reference}

See also:
■ Pan or Zoom a View
(Read-only)
Type: 3D-point
Saved in: Drawing
Initial value: Varies
Stores the lower-left point of the drawing extents.

Expands outward as new objects are drawn; shrinks only with ZOOM All or ZOOM Extents. Reported in world coordinates for the current space.

\section*{EXTNAMES}

\section*{Quick Reference}

\section*{See also:}
- Resolve Name Conflicts in External References

\section*{Type: Integer \\ Saved in: Drawing \\ Initial value: 1}

Sets the parameters for named object names (such as linetypes and layers) stored in definition tables.
\(0 \quad\) Uses AutoCAD Release 14 parameters, which limit names to 31 characters in length. Names can include the letters A to \(Z\), the numerals 0 to 9 , and the special characters dollar sign (\$), underscore (_), and hyphen (-).

1 Uses AutoCAD 2000 (and later releases) parameters. Names can be up to 255 characters in length, and can include the letters A to \(Z\), the numerals 0 to 9 , spaces, and any special characters not used by Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR}\) and AutoCAD for other purposes.

\title{
F System Variables
}

\section*{FACETERDEVNORMAL}

\section*{Quick Reference}

See also:
- Create Meshes by Conversion

Type: Real
Saved in: User-settings
Initial value: 40
Sets the maximum angle between the surface normal and contiguous mesh faces.

This setting affects mesh that is converted from another object using the MESHSMOOTH command. (For a complete list of objects that can be converted to mesh, see Objects That Can Be Converted to Mesh.) This value can also be set in the Mesh Tessellation Options dialog box.

Use this setting to retain visual consistency between mesh objects that have the same shape but different sizes. You can enter any non-negative number between 0 (zero) and 180. Lowering the value increases the density in areas of high curvature and decreases density in flatter areas.
Lowering the value might increase the drawing file size, and should be saved for larger objects with high FACETERDEVSURFACE settings. Avoid lowering this value for objects with small details such as holes or fillets.

NOTE The value of this system variable reflects the value for objects with no smoothness.

\section*{FACETERDEVSURFACE}

\section*{Quick Reference}

\section*{See also:}

■ Create Meshes by Conversion

Type: Real
Saved in: User-settings
Initial value: 0.001
Sets how closely the converted mesh object adheres to the original shape of the solid or surface.

This setting affects mesh that is converted from another object using the MESHSMOOTH command. (For a complete list of objects that can be converted to mesh, see Objects That Can Be Converted to Mesh.) This value can also be set in the Mesh Tessellation Options dialog box.

You can enter any non-negative number, including 0 (zero). Smaller values result in a higher number of faces, more accurate meshes with less deviation from the object surface, and slower performance. Set the value to 0 to turn off the option.

NOTE The value of this system variable reflects the value for objects with no smoothness.

\section*{FACETERGRIDRATIO}

\section*{Quick Reference}

See also:
- Create Meshes by Conversion

Type: Real
Saved in: User-settings Initial value: 0.0000
Sets the maximum aspect ratio for the mesh subdivisions that are created for solids and surfaces converted to mesh.

This setting affects mesh that is converted from another object using the MESHSMOOTH command. (For a complete list of objects that can be converted to mesh, see Objects That Can Be Converted to Mesh.) This value can also be set in the Mesh Tessellation Options dialog box.

Permissible values range from 0 to 100 , and set the height/width ratio of the face. Use this variable to prevent long, thin faces that can result from cylindrical object conversions. Smaller values result in more, better-formed faces, but can affect performance. Set this value to 0 to turn it off.

If the value you enter is less than 1 , the ratio calculation is based on \(1 / n\). For example, if you enter 0.2 , the variable value is \(1 / 0.2=5\).

NOTE The value of this system variable reflects the value for objects with no smoothness.

\section*{FACETERMAXEDGELENGTH}

\section*{Quick Reference}

\section*{See also:}
- Create Meshes by Conversion

Type: Real
Saved in: User-settings
Initial value: 0.0000
Sets the maximum length of edges for mesh objects that are created by conversion from solids and surfaces.

You can use any non-negative number, including 0 (zero).
This setting affects mesh that is converted from another object using the MESHSMOOTH command. (For a complete list of objects that can be converted to mesh, see Objects That Can Be Converted to Mesh.) This value can also be set in the Mesh Tessellation Options dialog box.

NOTE The value of this system variable reflects the value for objects with no smoothness.

\section*{FACETERMAXGRID}

\section*{Quick Reference}

\section*{See also:}

■ Create Meshes by Conversion

Type: Integer
Saved in: User-settings
Initial value: 4096
Sets the maximum number of U and V grid lines for solids and surfaces converted to mesh.

This setting affects mesh that is converted from another object using the MESHSMOOTH command. (For a complete list of objects that can be converted to mesh, see Objects That Can Be Converted to Mesh.)

Permissible values range from 0 to 4096.
NOTE The value of this system variable reflects the value for objects with no smoothness.

\section*{FACETERMESHTYPE}

\section*{Quick Reference}

\section*{See also:}
- Create Meshes by Conversion
\(\begin{array}{ll}\text { Type: } & \text { Integer } \\ \text { Saved in: } & \text { User-settings } \\ \text { Initial value: } & 0 \\ \text { Sets the type } & \\ \text { mesh to be created. }\end{array}\)
\(0 \quad\) Objects are converted to an optimized mesh object type with fewer faces
\(1 \quad\) Faces are mostly quadrilateral

This setting affects mesh that is converted from another object using the MESHSMOOTH command. (For a complete list of objects that can be converted to mesh, see Objects That Can Be Converted to Mesh.) This value can also be set in the Mesh Tessellation Options dialog box.

\section*{FACETERMINUGRID}

\section*{Quick Reference}

\section*{See also:}
- Create Meshes by Conversion

Type: Integer
Saved in: User-settings
Initial value: 0
Sets the minimum number of \(U\) grid lines for solids and surfaces that are converted to mesh.

This setting affects mesh that is converted from another object using the MESHSMOOTH command. (For a complete list of objects that can be converted to mesh, see Objects That Can Be Converted to Mesh.)

Permissible values range from 0 to 1023. Setting 0 (zero) turns off the setting. The value of this system variable cannot exceed the value of FACETERMAXGRID/FACETERMINVGRID.

NOTE The value of this system variable reflects the value for objects with no smoothness.

\section*{FACETERMINVGRID}

\section*{Quick Reference}

See also:
- Create Meshes by Conversion
```

Type: Integer
Saved in: User-settings
Initial value: 0

```

Sets the minimum number of V grid lines for solids and surfaces that are converted to mesh.

This setting affects mesh that is converted from a 3D solid or surface object using the MESHSMOOTH command. (For a complete list of objects that can be converted to mesh, see Objects That Can Be Converted to Mesh.)

Permissible values range from 0 to 1023. Setting 0 (zero) turns off the setting. The value of this system variable cannot exceed the value of FACETERMAXGRID/FACETERMINUGRID.

NOTE The value of this system variable reflects the value for objects with no smoothness.

\section*{FACETERPRIMITIVEMODE}

\section*{Quick Reference}

See also:
- Create Meshes by Conversion

Type: Bitcode
Saved in: User-settings Initial value: 1
Specifies whether smoothness settings for objects that are converted to mesh are derived from the Mesh Tessellation Options or the Mesh Primitive Options dialog box.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Applies settings from the Mesh Tessellation Options dialog box to \\
the converted object.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Applies settings from the Mesh Primitive Options dialog box to the \\
converted object.
\end{tabular}
\end{tabular}

This setting affects mesh that is converted from a primitive 3D solid object (such as box or cone) using the MESHSMOOTH command. (For a complete list of objects that can be converted to mesh, see Objects That Can Be

Converted to Mesh.) It can also be set in the Mesh Tessellation Options dialog box.

\section*{FACETERSMOOTHLEV}

\section*{Quick Reference}

\section*{See also:}
- Create Meshes by Conversion

Type: Integer
Saved in: User-settings
Initial value: 1
Sets the default level of smoothness for objects that are converted to mesh.
\begin{tabular}{ll}
\hline \begin{tabular}{l}
-1 or any \\
negative \\
number
\end{tabular} & Does not smooth the object after conversion \\
\hline 0 & Does not smooth the object after conversion \\
\hline 1 & Applies smoothness level 1 after conversion \\
\hline 2 & Applies smoothness level 2 after conversion \\
\hline 3 & Applies smoothness level 3 after conversion
\end{tabular}

This variable sets the default level of smoothness that is applied to mesh that is created as a result of conversion from another object with the MESHSMOOTH command.

The value cannot be greater than the value of SMOOTHMESHMAXLEV.
Mesh objects that are created under the following circumstances are always created without smoothness, and are not affected by this system variable:

■ Mesh created using REVSURF, TABSURF, RULESURF, or EDGESURF
- Mesh created using MESHSMOOTH when the type of mesh is set to be quadrilateral or triangular (FACETERMESHTYPE)

For a complete list of objects that can be converted to mesh, see Objects That Can Be Converted to Mesh.

This variable can also be set in the Mesh Tessellation Options dialog box.

\section*{FACETRATIO}

\section*{Quick Reference}

See also:
- Create 3D Solid Primitives

Type: Integer
Saved in: Not-saved
Initial value: 0
Controls the aspect ratio of faceting for cylindrical and conic solids.
\begin{tabular}{ll}
\hline 0 & Creates an \(N\) by 1 mesh for cylindrical and conic solids \\
\hline 1 & Creates an \(N\) by \(M\) mesh for cylindrical and conic solids \\
\hline
\end{tabular}

A setting of 1 increases the density of the mesh to improve the quality of rendered and shaded models.

The faceting is visible only in the 2D wireframe visual style.

\section*{FACETRES}

\section*{Quick Reference}

See also:
See also:
- Balance Mesh Density for Smooth Geometry
\(\begin{array}{ll}\text { Type: } & \text { Real } \\ \text { Saved in: } & \text { Drawing } \\ \text { Initial value: } & 0.5000\end{array}\)

Adjusts the smoothness of shaded objects and objects with hidden lines removed. Valid values are from 0.01 to 10.0.

When you use the 3DPRINT command, the FACTRES system variable is set to 10.

NOTE 3DDWFPREC replaces FACETRES in controlling the precision of published 3D DWF files.

\section*{FIELDDISPLAY}

\section*{Quick Reference}

\section*{See also:}

See also:
- Update Fields

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether fields are displayed with a gray background.
The background is not plotted.
\begin{tabular}{ll}
\hline 0 & Fields are displayed with no background \\
\hline 1 & Fields are displayed with a gray background \\
\hline
\end{tabular}

\section*{FIELDEVAL}

\section*{Quick Reference}

See also:
- Update Fields

Type: Integer

\section*{Saved in: Drawing}

Initial value: 31
Controls how fields are updated.
The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & Not updated \\
\hline 1 & Updated on open \\
\hline 2 & Updated on save \\
\hline 4 & Updated on plot \\
\hline 8 & Updated on use of ETRANSMIT \\
\hline 16 & Updated on regeneration \\
\hline
\end{tabular}

NOTE The Date field is updated by UPDATEFIELD, but it is not updated automatically based on the setting of the FIELDEVAL system variable.

\section*{FILEDIA}

\section*{Quick Reference}

See also:
- Switch Between Dialog Boxes and the Command Line

Type: Integer
Saved in: Registry
Initial value: 1
Suppresses display of file navigation dialog boxes.
Does not display dialog boxes. You can still request a file
dialog box to appear by entering a tilde \((\sim)\) in response
to the command's prompt. The same is true for AutoLISP
and ADS functions.

\section*{FILLETRAD}

\section*{Quick Reference}

See also:
- Create Fillets

Type: Real
Saved in: Drawing
Initial value: 0.0000
Stores the current fillet radius for 2D objects.
If you use the FILLET on page 800 command to change the radius of a 2 D fillet, the value of this system variable changes to match.

\section*{FILLETRAD3D}

\section*{Quick Reference}

See also:
- Fillet a Surface

■ Modify Edges on 3D Objects

Type: Real
Saved in: Drawing
Initial value: 1.0000
Stores the current fillet radius for 3D objects.
Stores the default radius for 3D solid and surface fillets created with the FILLETEDGE on page 804 and SURFFILLET on page 1878 commands. If you change the radius while using the FILLETEDGE or SURFFILLET commands, the FILLETRAD system variable does not update to this new value.

\section*{FILLMODE}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Polylines, Hatches, Gradient Fills, Lineweights, and Text

Type: Integer
Saved in: Drawing
Initial value: 1
Specifies whether hatches and fills, 2D solids, and wide polylines are filled in.
\begin{tabular}{ll}
0 & Objects are not filled \\
\hline 1 & Objects are filled
\end{tabular}

\section*{FONTALT}

\section*{Quick Reference}

See also:
■ Substitute Fonts

Type: String
Saved in: Registry
Initial value: simplex.shx
Specifies the alternate font to be used when the specified font file cannot be located.

When a drawing file with a defined text style is opened and an alternate font is not specified, the Alternate Font dialog box is displayed.

\section*{FONTMAP}

\section*{Quick Reference}

See also:
■ Substitute Fonts

\section*{Type: \(\quad\) String}

Saved in: Registry
Initial value: acad.fmp
Specifies the font mapping file to be used.
A font mapping file contains one font mapping per line; the original font used in the drawing and the font to be substituted for it are separated by a semicolon (;). For example, to substitute the Times TrueType font for the Roman font, the line in the mapping file would read as follows:
romanc.shx; times.ttf
If FONTMAP does not point to a font mapping file, if the FMP file is not found, or if the font file name specified in the FMP file is not found, the font defined in the style is used. If the font in the style is not found, a font is substituted according to the substitution rules.

FONTMAP only works with text created through the MTEXT command.

\section*{FRAME}

\section*{Quick Reference}

\section*{See also:}

■ Hide and Show Underlay Frames

Type: Integer
Saved in: Drawing
Initial value: 3
Turns the display of frames on and off for all external references, images, and DWF, DWFx, PDF, and DGN underlays.

The FRAME setting overrides the individual IMAGEFRAME, DWFFRAME, PDFFRAME, DGNFRAME, and XCLIPFRAME settings.
\begin{tabular}{ll}
\hline 0 & The frame is not visible and it is not plotted \\
\hline 1 & Displays the frame and allows it to be plotted \\
\hline 2 & Displays the frame but keeps it from being plotted \\
\hline 3 & \begin{tabular}{l} 
The individual setting varies for all underlays in the current \\
drawing (external references, images, and DWF, DWFx, \\
PDF, and DGN underlays all have different frame settings).
\end{tabular} \\
\hline
\end{tabular}

\section*{FRONTZ}

\section*{Quick Reference}

See also:
■ Create a 3D Dynamic View (DVIEW)
(Read-only)
\begin{tabular}{ll} 
Type: & Real \\
Saved in: & Drawing
\end{tabular}

Initial value: 0.0000
Stores the front clipping plane offset from the target plane for the current viewport, in drawing units.

The front clipping and front clip not at eye bitcodes in VIEWMODE are on. The FRONTZ value is the last front clipping plane value set current with the CAMERA, DVIEW, or 3DCLIP command. The distance of the front clipping plane from the camera point is found by subtracting FRONTZ from the camera-to-target distance.

\section*{FULLOPEN}

\section*{Quick Reference}

See also:
- Open Part of a Large Drawing (Partial Load)
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 1
Indicates whether the current drawing is partially open.
\begin{tabular}{ll}
\hline 0 & Indicates a partially open drawing \\
\hline 1 & Indicates a fully open drawing \\
\hline
\end{tabular}

\section*{FULLPLOTPATH}

\section*{Quick Reference}

See also:
■ Use AutoSpool

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether the full path of the drawing file is sent to the plot spooler.
\begin{tabular}{ll}
0 & Sends the drawing file name only \\
\hline 1 & Sends the full path of the drawing file \\
\hline
\end{tabular}

\section*{G System Variables}

\section*{34}

\section*{GEOLATLONGFORMAT}

\section*{Quick Reference}

See also:
■ Overview of Geographic Location
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Registry
\end{tabular}

Saved in: Registry
Initial value: 0
Controls the format of the latitude or longitude values in the Geographic Location dialog box, and the coordinate status bar in Geographic mode.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Latitude and longitude format is decimal \\
degrees (DD)
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Latitude and longitude format is degrees \\
minutes seconds (DMS)
\end{tabular} \\
\hline
\end{tabular}

\section*{GEOMARKERVISIBILITY}

Quick Reference
See also:
- Overview of Geographic Location

Type: Integer
Saved in: Drawing
Initial value: 1
Controls the visibility of geographic markers.
\begin{tabular}{ll}
0 & Geographic marker is not visible \\
\hline 1 & Geographic marker is visible \\
\hline
\end{tabular}

\section*{GFANG}

\section*{Quick Reference}

See also:
- Choose a Hatch Pattern or Fill

Type: \(\quad\) Integer
Saved in: Not-saved
Initial value: 0
Specifies the angle of a gradient fill.
Valid values are 0 to 360 (degrees).

\section*{GFCLR1}

\section*{Quick Reference}

See also:
■ Choose a Hatch Pattern or Fill

Type: String
Saved in: Not-saved
Initial value: "Blue"
Specifies the color for a one-color gradient fill or the first color for a two-color gradient fill.

Valid values include the following:
- AutoCAD Color Index (ACI): integer values from 1 to 255 , or a color name from the first seven colors

■ True Colors: RGB or HSL values from 000 to 255 in the form "RGB:130,200,240"

■ Color Books: Text from standard PANTONE color books, the DIC color guide, or RAL color sets, for example "DIC COLOR GUIDE(R)\$DIC 43"

\section*{GFCLR2}

\section*{Quick Reference}

\section*{See also:}
- Choose a Hatch Pattern or Fill

Type: String
Saved in: Not-saved
Initial value: "Yellow"
Specifies the second color for a two-color gradient fill.
Valid values include the following:
- AutoCAD Color Index (ACI): integer values from 1 to 255 , or a color name from the first seven colors

■ True Colors: RGB or HSL values from 000 to 255 in the form "RGB:130,200,240"

■ Color Books: Text from standard PANTONE color books, the DIC color guide, or RAL color sets, for example "DIC COLOR GUIDE(R)\$DIC 43"

\section*{GFCLRLUM}

\section*{Quick Reference}

See also:
- Choose a Hatch Pattern or Fill

Type: Real
Saved in: Not-saved
Initial value: 1.0000
Controls the tint or shade level in a one-color gradient fill.
A tint gradient transitions toward white and a shade gradient transitions toward black. Valid values range from 0.0 (darkest) to 1.0 (lightest).

\section*{GFCLRSTATE}

\section*{Quick Reference}

See also:
- Choose a Hatch Pattern or Fill

Type: \(\quad\) Integer
Saved in: Not-saved
Initial value: 0
Specifies whether a gradient fill uses one color or two colors.
\begin{tabular}{ll}
0 & Two-color gradient fill \\
\hline 1 & One-color gradient fill \\
\hline
\end{tabular}

\section*{GFNAME}

\section*{Quick Reference}

See also:
- Choose a Hatch Pattern or Fill

Type: Integer
Saved in: Not-saved
Initial value: 1
Specifies the pattern of a gradient fill.
\begin{tabular}{ll}
\hline 1 & Linear \\
\hline 2 & Cylindrical \\
\hline 3 & Inverted cylindrical \\
\hline 4 & Spherical \\
\hline 5 & Hemispherical \\
\hline 6 & Curved \\
\hline 7 & Inverted spherical \\
\hline 8 & Inverted hemispherical \\
\hline 9 & Inverted curved \\
\hline
\end{tabular}

\section*{GFSHIFT}

\section*{Quick Reference}

See also:
■ Choose a Hatch Pattern or Fill
\begin{tabular}{l} 
Type: \(\quad\) Integer \\
Saved in: \(\quad\) Not-saved \\
Initial value: 0 \\
Specifies whether the pattern in a gradient fill is centered or is shifted up and \\
to the left. \\
\hline \(0 \quad\) Centered \\
\hline \(1 \quad\) Shifted up and to the left
\end{tabular}

\section*{GLOBALOPACITY}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

■ Transparency Dialog Box on page 1373

Type: Integer
Saved in: Registry
Initial value: 100
Controls transparency level for all palettes.
\begin{tabular}{ll}
\hline 0 & Fully transparent \\
\hline 100 & Fully opaque \\
\hline
\end{tabular}

Enter a value from 0-100 to set the transparency level.
This system variable determines the default setting for the Transparency dialog box > Disable all window transparency (global) option on page 1374.

\section*{GRIDDISPLAY}

\section*{Quick Reference}

\section*{See also:}
- Adjust Grid and Grid Snap

Type: Bitcode
Saved in: Drawing
Initial value: 2
Controls the display behavior and display limits of the grid.
The setting is stored as a bitcode using the sum of the following values:

0 Restricts the grid to the area specified by the LIMITS command
\begin{tabular}{ll}
1 & \begin{tabular}{l} 
Does not restrict the grid to the area specified by the \\
LIMITS command
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Turns on adaptive grid display, which limits the density \\
of the grid when zoomed out
\end{tabular} \\
4 & \begin{tabular}{l} 
If the grid is set to adaptive display and when zoomed in, \\
generates additional, more closely spaced grid lines in the \\
same proportion as the intervals of the major grid lines
\end{tabular} \\
\hline
\end{tabular}

8
Changes the grid plane to follow the XY plane of the dynamic UCS.

NOTE Setting 4 is ignored unless setting 2 is specified.

\section*{GRIDMAJOR}

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap
```

Type: Integer
Saved in: Drawing
Initial value: 5
Controls the frequency of major grid lines compared to minor grid lines.
Valid values range from 1 to 100.
Grid lines are displayed in any visual style.

```

\section*{GRIDMODE}

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap

Type: Integer
Saved in: Drawing
Initial value: 1
Specifies whether the grid is turned on or off.
\begin{tabular}{ll}
\hline 0 & Turns the grid off \\
\hline 1 & Turns the grid on \\
\hline
\end{tabular}

\section*{GRIDSTYLE}

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap

Type: Integer
Saved in: Registry
Initial value: 0
Controls the style of grid displayed for 2D model space, Block Editor, 3D parallel projection, 3D perspective projection, and Sheet and Layout tabs.

The setting is stored as an integer using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Displays lined grid for 2D model space, Block Editor, 3D \\
parallel projection, 3D perspective projection, and Sheet \\
and Layout.
\end{tabular} \\
\hline 1 & Displays dotted grid for 2D model space. \\
\hline 2 & Displays dotted grid for Block Editor. \\
\hline 4 & Displays dotted grid for Sheet and Layout. \\
\hline
\end{tabular}

\section*{GRIDUNIT}

\section*{Quick Reference}

\section*{See also:}
- Adjust Grid and Grid Snap

Type: 2D-point
Saved in: Drawing
Initial value: \(0.5000,0.5000\) (imperial) or 10,10 (metric)
Specifies the grid spacing ( X and Y ) for the current viewport.

\section*{GRIPBLOCK}

\section*{Quick Reference}
```

See also:
■ Control Grips in Blocks
Type: Integer
Saved in: Registry
Initial value: 0

```

Controls the display of grips in blocks.
\begin{tabular}{ll}
0 & Assigns a grip only to the insertion point of the block \\
\hline 1 & Assigns grips to objects within the block \\
\hline
\end{tabular}

See also:
■ Selection Tab (Options Dialog Box) on page 1348

\section*{GRIPCOLOR}

\section*{Quick Reference}

See also:
■ Use Grip Modes
Type: Integer
Saved in: Registry
Initial value: 150
Controls the color of unselected grips.
The valid range is 1 to 255 .
See also:
- Selection Tab (Options Dialog Box) on page 1348

\section*{GRIPCONTOUR}

\section*{Quick Reference}

See also:
■ Use Grip Modes
Type: Integer
Saved in: Registry

Initial value: 251
Controls the color of the grip contour.
The valid range is 1 to 255 .

\section*{GRIPDYNCOLOR}

\section*{Quick Reference}

See also:
■ Work with Dynamic Blocks in Drawings

Type: Integer
Saved in: Registry
Initial value: 140
Controls the color of custom grips for dynamic blocks.
The valid range is 1 to 255 .

\section*{GRIPHOT}

\section*{Quick Reference}

\author{
See also: \\ ■ Use Grip Modes
}

Type: \(\quad\) Integer
Saved in: Registry
Initial value: 12
Controls the color of selected grips.
The valid range is 1 to 255 .
See also:
- Selection Tab (Options Dialog Box) on page 1348

\section*{GRIPHOVER}

\section*{Quick Reference}

See also:
■ Use Grip Modes

Type: Integer
Saved in: Registry
Initial value: 11
Controls the fill color of an unselected grip when the cursor pauses over it.
The valid range is 1 to 255 .
See also:
■ Selection Tab (Options Dialog Box) on page 1348

\section*{GRIPMULTIFUNCTIONAL}

\section*{Quick Reference}

See also:
- Choose a Method to Modify Objects

■ Modify Polylines
■ Edit Objects with Grips

Type: Bitcode
Saved in: Registry
Initial value: 3
Specifies the access methods to multi-functional grips.
\begin{tabular}{ll}
0 & Access to multi-functional grips is disabled \\
\hline 1 & \begin{tabular}{l} 
Access multi-functional grips with Ctrl-cycling and the Hot \\
Grip shortcut menu
\end{tabular} \\
\hline
\end{tabular}

\section*{GRIPOBJLIMIT}

\section*{Quick Reference}

See also:
- Use Grip Modes

Type: Integer
Saved in: Registry
Initial value: 100
Suppresses the display of grips when the selection set includes more than the specified number of objects.

The valid range is 0 to 32,767 . For example, when set to 1 , grips are suppressed when more than one object is selected. When set to 0 , grips are always displayed.

See also:
- Selection Tab (Options Dialog Box) on page 1348

\section*{GRIPS}

\section*{Quick Reference}

See also:
- Use Grip Modes

Type: Integer
Saved in: Registry
Initial value: 2

Controls the display of grips on selected objects.
\begin{tabular}{ll}
\hline 0 & Hides grips \\
\hline 1 & Displays grips \\
\hline 2 & Displays additional midpoint grips on polyline segments \\
\hline
\end{tabular}

To adjust the size of the grips and the effective selection area used by the cursor when you snap to a grip, use GRIPSIZE.

See also:
- Selection Tab (Options Dialog Box) on page 1348

\section*{GRIPSIZE}

\section*{Quick Reference}

See also:
■ Use Grip Modes

Type: Integer
Saved in: Registry
Initial value: 5
Sets the size of the grip box in pixels.
The valid range is 1 to 255 .
See also:
- Selection Tab (Options Dialog Box) on page 1348

\section*{GRIPSUBOBJMODE}

\section*{Quick Reference}

\section*{See also:}

■ Use Grips to Edit 3D Solids and Surfaces
- Choose a Method to Modify Objects
\begin{tabular}{ll} 
Type: & Bitcode \\
Saved in: & Registry \\
Initial value: & 1
\end{tabular}

Initial value: 1
Controls whether grips are automatically made hot when subobjects are selected.
\(0 \quad\) Does not turn the grips hot when subobjects are selected.
1 Turns the face, edge, or vertex grips hot when subobjects of 3D objects (solid, surface, or mesh) are selected.

2 Turns the grips hot when subobjects of 2D polyline objects (line or arc segments) are selected.

3 Turns the grips hot when subobjects of
- 3D objects (faces, edges, or vertices) are selected
- 2D polyline objects (line or arc segments) are selected

Setting this system variable to 1 is especially helpful for quickly modifying groups of faces, edges, and vertices on mesh objects.

\section*{GRIPTIPS}

\section*{Quick Reference}

\section*{See also:}

■ Use Grip Modes
```

Type: Integer
Saved in: Registry
Initial value: 1

```
Controls the display of grip tips and Ctrl-cycling tooltips.

Hover your cursor over the multi-functional grips and pause to display grip tips and Ctrl-cycling tooltips.
\begin{tabular}{ll}
0 & Hides grip tips and Ctrl-cycling tooltips. \\
\hline 1 & Displays grip tips and Ctrl-cycling tooltips. \\
\hline
\end{tabular}

\section*{See also:}
- Selection Tab (Options Dialog Box) on page 1348
- Choose a Method to Modify Objects

■ Modify Objects with Multi-Functional Grips

\section*{GTAUTO}

\section*{Quick Reference}

See also:
- Use the Gizmos

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether 3D gizmos are automatically displayed when you select objects before you start a command in a viewport with a 3D visual style.
\(0 \quad\) Gizmos are not displayed automatically when you select objects before starting a command.

1
Gizmos are displayed automatically after you create a selection set.

This system variable affects the display of the 3D Move, 3D Rotate, and 3D Scale gizmos. Gizmos were previously known as "grip tools."

\section*{GTDEFAULT}

\section*{Quick Reference}

See also:
■ Use the Gizmos
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Registry
\end{tabular}

Initial value: 0
Controls whether the 3D Move, 3D Rotate, or 3D Scale operation starts automatically when you start the MOVE, ROTATE, or SCALE command in a viewport with a 3D visual style.

0 Does not automatically start the 3DMOVE, 3DROTATE, or 3DSCALEcommands when the MOVE, ROTATE, or SCALE commands are started in a 3D view.

1 Automatically starts the 3DMOVE, 3DROTATE, or 3DSCALE commands when the MOVE, ROTATE, or SCALE commands are started in a 3D view.

\section*{GTLOCATION}

\section*{Quick Reference}

\author{
See also: \\ - Use the Gizmos \\ Type: Integer \\ Saved in: Registry \\ Initial value: 1
}

Controls the initial location of the 3D Move, 3D Rotate, or 3D Scale gizmo when you select objects before you start a command in a viewport with a 3D visual style.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Places the 3D Move, 3D Rotate, or 3D Scale gizmo at the \\
same location as the UCS icon. The gizmo orientation is \\
aligned with the current UCS.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Places the 3D Move, 3D Rotate, or 3D Scale gizmo at the \\
geometric center of the selection set.
\end{tabular}
\end{tabular}

This system variable affects the display of the 3D Move, 3D Rotate, and 3D Scale gizmos. Gizmos were previously known as "grip tools."

\section*{H System Variables}

HALOGAP

\section*{Quick Reference}

See also:
■ Use a Visual Style to Display Your Model
Type: Integer
Saved in: Drawing
Initial value: 0
Specifies a gap to be displayed where an object is hidden by another object.
The value is specified as a percent of one unit and is independent of the zoom level.

HALOGAP is available only in 2D views. In 3D views, the VSHALOGAP system variable is used.

\section*{HANDLES}

\section*{Quick Reference}

See also:
■ Overview of Command Scripts
(Read-only)
Type: Integer
Saved in: Drawing
Initial value: On
Reports whether object handles can be accessed by applications.
Because handles can no longer be turned off, has no effect except to preserve the integrity of scripts.

\section*{HELPPREFIX}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

■ Files Tab (Options Dialog Box) on page 1316

Type: String
Saved in: Registry
Initial value: \(\mathrm{C}: \backslash\) Program Files \(\backslash\) Autodesk \(\backslash\) AutoCAD
Sets the file path for the Help system.
This system variable determines the default setting in the Options dialog box > Files tab > Help and Miscellaneous File Names option > Help Location option on page 1317 .

\section*{HIDEPRECISION}

\section*{Quick Reference}

See also:
■ Shade a Model and Use Edge Effects

Type: Integer
Saved in: Not-saved Initial value: 0
Controls the accuracy of hides and shades.

Hides can be calculated in double precision or single precision. Setting HIDEPRECISION to 1 produces more accurate hides by using double precision, but this setting also uses more memory and can affect performance, especially when hiding solids.
\begin{tabular}{ll}
\hline 0 & Single precision; uses less memory \\
\hline 1 & Double precision; uses more memory \\
\hline
\end{tabular}

\section*{HIDETEXT}

\section*{Quick Reference}

See also:
- Shade a Model and Use Edge Effects

Type: Switch
Saved in: Drawing
Initial value: On
Specifies whether text objects created by the TEXT or MTEXT command are processed during a HIDE command.
\begin{tabular}{ll}
\hline Off & Text is not hidden and does not hide other objects \\
\hline On & Text is hidden but does not hide other objects \\
\hline
\end{tabular}

\section*{HIGHLIGHT}

\section*{Quick Reference}

See also:
- Customize Object Selection

Type: Integer
Saved in: Not-saved Initial value: 1

Controls object highlighting; does not affect objects selected with grips.
\begin{tabular}{ll}
0 & Turns off object selection highlighting \\
\hline 1 & Turns on object selection highlighting \\
\hline
\end{tabular}

\section*{HPANG}

\section*{Quick Reference}

See also:
- Overview of Hatch Patterns and Fills

Type: Real
Saved in: Not-saved
Initial value: 0.0000
Sets the angle for new hatch patterns.

\section*{HPANNOTATIVE}

\section*{Quick Reference}

See also:
■ Overview of Scaling Annotations

Type: \(\quad\) Integer
Saved in: Drawing
Initial value: 0
Controls whether a new hatch pattern is annotative.
\begin{tabular}{ll}
\hline 0 & Nonannotative \\
\hline 1 & Annotative \\
\hline
\end{tabular}

\section*{HPASSOC}

\section*{Quick Reference}

See also:
- Specify Hatch and Fill Areas

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether hatches and fills are associative.
\(0 \quad\) Hatches and fills are not associated with their defining boundary objects

1 Hatches and fills are associated with their defining boundary objects and are updated when the boundary objects change

\section*{HPBACKGROUNDCOLOR}

\section*{Quick Reference}

\section*{See also:}
- Set Property Overrides for Hatches and Fills

Type: \(\quad\) String
Saved in: Drawing
Initial value: None
Controls the background color for hatch patterns.
Valid values include the following:
■ "None" or "." for no background color
- AutoCAD Color Index (ACI): integer values from 1 to 255 , or a color name from the first seven colors

■ True Colors: RGB or HSL values from 000 to 255 in the form "RGB:130,200,240"
- Color Books: Text from standard PANTONE color books, the DIC color guide, or RAL color sets, for example "DIC COLOR GUIDE(R)\$DIC 43"

\section*{HPBOUND}

\section*{Quick Reference}

See also:
- Specify Hatch and Fill Areas

Type: Integer
Saved in: Not-saved
Initial value: 1
Controls the object type created by HATCH and BOUNDARY.
0
Creates a region

1
Creates a polyline

A polyline or region object is created only if the HPBOUNDRETAIN system variable is turned on.

\section*{HPBOUNDRETAIN}

\section*{Quick Reference}

See also:
- Specify Hatch and Fill Areas

Type: Integer
Saved in: Drawing
Initial value: 0

Controls whether boundary objects are created for new hatches and fills.
\begin{tabular}{ll}
0 & Does not create boundary objects \\
\hline 1 & \begin{tabular}{l} 
Creates boundary objects according to the HPBOUND \\
system variable
\end{tabular} \\
\hline
\end{tabular}

\section*{HPCOLOR}

\section*{Quick Reference}

\section*{See also:}
- Set Property Overrides for Hatches and Fills

Type: String
Saved in: Drawing
Initial value: use current
Sets a default color for new hatches.
Valid values include the following:
■ "." to use the current color set in the CECOLOR system variable
- ByLayer or ByBlock

■ AutoCAD Color Index (ACI): integer values from 1 to 255 , or a color name from the first seven colors

■ True Colors: RGB or HSL values from 000 to 255 in the form "RGB:130,200,240"
- Color Books: Text from standard PANTONE color books, the DIC color guide, or RAL color sets, for example "DIC COLOR GUIDE(R)\$DIC 43"

Values other than the "." (use current) value override the current color (CECOLOR).

\section*{HPDLGMODE}

\section*{Quick Reference}

See also:
- Overview of Hatch Patterns and Fills

Type: \(\quad\) String
Saved in: User-settings
Initial value: 2
Controls the display of the Hatch and Gradient dialog box and the Hatch Edit dialog box.
\(0 \quad\) Hatch and Gradient dialog box is not displayed for HATCH and GRADIENT unless Settings is entered at the Command prompt

1 Hatch and Gradient dialog box is displayed for HATCH and GRADIENT

2 Hatch and Gradient dialog box is not displayed for HATCH and GRADIENT when the ribbon is active (RIBBONSTATE \(=1\) ). When the ribbon is inactive (RIBBONSTATE \(=0\) ), the Hatch and Gradient dialog box is displayed.

\section*{HPDOUBLE}

\section*{Quick Reference}

\section*{See also:}
- Choose a Hatch Pattern or Fill

Type: Integer
Saved in: Not-saved
Initial value: 0
Specifies hatch pattern doubling for user-defined patterns.

Doubling specifies a second set of lines drawn at 90 degrees to the original lines.
\begin{tabular}{ll}
\hline 0 & Turns off hatch pattern doubling \\
\hline 1 & Turns on hatch pattern doubling \\
\hline
\end{tabular}

\section*{HPDRAWORDER}

\section*{Quick Reference}

\section*{See also:}
- Set Property Overrides for Hatches and Fills

Type: \(\quad\) Integer
Saved in: Not-saved
Initial value: 3
Controls the draw order of hatches and fills.
Controls whether hatch and fill objects are displayed in front or behind all other objects, or in front or behind their associated boundaries.
\begin{tabular}{ll}
\hline 0 & None. The hatch or fill is not assigned a draw order. \\
\hline 1 & \begin{tabular}{l} 
Send to back. The hatch or fill is sent to the back of all \\
other objects.
\end{tabular} \\
\hline \begin{tabular}{l} 
Bring to front. The hatch or fill is brought to the front of \\
all other objects.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Send behind boundary. The hatch or fill is sent behind \\
the hatch's boundary objects.
\end{tabular} \\
\begin{tabular}{l} 
Bring in front of boundary. The hatch or fill is brought in \\
front of the hatch's boundary objects.
\end{tabular} \\
\hline
\end{tabular}

\section*{HPGAPTOL}

\section*{Quick Reference}

\section*{See also:}

■ Specify Hatch and Fill Areas

\section*{Type: Real}

Saved in: Registry
Initial value: 0.0000
Treats a set of objects that almost enclose an area as a closed hatch boundary.
The default value, 0 , specifies that the objects enclose the area, with no gaps. Enter a value, in drawing units, from 0 to 5000 to set the maximum size of gaps that can be ignored when the objects serve as a hatch boundary.

\section*{HPINHERIT}

\section*{Quick Reference}

See also:
- Modify Hatch Alignment, Scale, and Rotation

Type: \(\quad\) Integer
Saved in: Drawing Initial value: 0
Controls the hatch origin of the resulting hatch when using Inherit Properties in HATCH and HATCHEDIT.
\begin{tabular}{ll}
0 & The hatch origin is taken from HPORIGIN \\
\hline 1 & The hatch origin is taken from the source hatch object
\end{tabular}

\section*{HPISLANDDETECTION}

\section*{Quick Reference}

See also:
- Specify Hatch and Fill Areas

Type: Integer
Saved in: Drawing
Initial value: 1
Controls how islands within the hatch boundary are treated.
\(0 \quad\) Normal. Hatches islands within islands.

1 Outer. Hatches only areas outside of islands.

2 Ignore. Hatches everything within the boundaries.

An island is an enclosed area within the area to be hatched.

\section*{HPISLANDDETECTIONMODE}

\section*{Quick Reference}

See also:
- Specify Hatch and Fill Areas

Type: Integer
Saved in: Drawing
Initial value: 1
Controls whether internal closed boundaries, called islands, are detected.
```

0 Off
1 On (recommended). Hatches or ignores islands according to HPISLANDDETECTION.

```

\section*{HPLAYER}

\section*{Quick Reference}

See also:
■ Set Property Overrides for Hatches and Fills

Type: String
Saved in: Drawing
Initial value: use current
Specifies a default layer for new hatches and fills.
Values other than the "." (use current) value override the current layer (CELAYER).

\section*{HPMAXLINES}

\section*{Quick Reference}

See also:
■ Control the Scale of Hatch Patterns

Type: Real
Saved in: Registry
Initial value: 1000000
Sets the maximum number of hatch lines that are generated in a hatch operation.

Valid values are from 100 to10,000,000.

\section*{HPNAME}

\section*{Quick Reference}

See also:
- Choose a Hatch Pattern or Fill

Type: String
Saved in: Not-saved
Initial value: ANSI31 (imperial) or ANGLE (metric)
Sets the default hatch pattern name.
Valid names can contain up to 34 characters without spaces. The value "" indicates that there is no default. Enter a period (.) to reset HPNAME to the default value.

\section*{HPOBJWARNING}

\section*{Quick Reference}

See also:
■ Control the Scale of Hatch Patterns

Type: Integer
Saved in: Registry
Initial value: 10000
Sets the number of hatch boundary objects that can be selected before displaying a warning message.

The maximum value can vary, but is significantly larger than 100000000 (one hundred million).

\section*{HPORIGIN}

\section*{Quick Reference}

\section*{See also:}
- Control the Hatch Origin Point

Type: 2D-point
Saved in: Drawing
Initial value: \(0.0000,0.0000\)
Sets the hatch origin point for new hatch patterns relative to the current user coordinate system.

\section*{HPORIGINMODE}

\section*{Quick Reference}

\section*{See also:}
- Control the Hatch Origin Point

Type: Integer
Saved in: Registry
Initial value: 0
Controls how the default hatch origin point is determined.
\begin{tabular}{ll}
\hline 0 & Uses HPORIGIN \\
\hline 1 & \begin{tabular}{l} 
Uses the bottom-left corner of the rectangular extents of \\
the hatch boundaries
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Uses the bottom-right corner of the rectangular extents \\
of the hatch boundaries
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Uses the top-right corner of the rectangular extents of the boundaries \\
hatch boundaries
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Uses the center of the rectangular extents of the hatch rectangular extents of the \\
boundaries
\end{tabular} \\
\hline
\end{tabular}

\section*{HPQUICKPREVIEW}

\section*{Quick Reference}

See also:
- Choose a Hatch Pattern or Fill

Type: Switch

Saved in: User-settings
Initial value: 1
Controls whether to display a preview when specifying internal points for a hatch.
\begin{tabular}{ll}
\hline 0 or OFF & No preview \\
\hline 1 or ON & Quick preview \\
\hline
\end{tabular}

\section*{HPSCALE}

\section*{Quick Reference}

See also:
■ Control the Scale of Hatch Patterns

Type: Real
Saved in: Not-saved
Initial value: 1.0000
Sets the hatch pattern scale factor.

\section*{HPSEPARATE}

\section*{Quick Reference}

\section*{See also:}
- Specify Hatch and Fill Areas

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether a single hatch object or separate hatch objects are created when operating on several closed boundaries.

0 A single hatch object is created

\section*{HPSPACE}

\section*{Quick Reference}

See also:
■ Control the Scale of Hatch Patterns

Type: Real
Saved in: Not-saved
Initial value: 1.0000
Sets the hatch pattern line spacing for user-defined patterns.

\section*{HPTRANSPARENCY}

\section*{Quick Reference}

\section*{See also:}

■ Set Property Overrides for Hatches and Fills
Type: String
Saved in: Drawing
Initial value: use current
Sets the default transparency for new hatches and fills.
Valid values include "use current" (or "."), ByLayer, ByBlock, and integer values
from 0 to 90. The higher the value, the more transparent the hatch.
Values other than "use current" or "." override the current transparency
(CETRANSPARENCY).
Changing this value does not affect existing hatch objects.

\section*{HYPERLINKBASE}

\section*{Quick Reference}

\section*{See also:}
- Use a Hyperlink to Access a File or a Web Page

\section*{Type: String \\ Saved in: Drawing \\ Initial value: ""}

Specifies the path used for all relative hyperlinks in the drawing.
If no value is specified, the drawing path is used for all relative hyperlinks.

\title{
I System Variables
}

IMAGEFRAME

\section*{Quick Reference}

See also:
■ Show and Hide Raster Image Boundaries
Type: Integer
Saved in: Drawing
Initial value: 1
Controls whether image frames are displayed and plotted.
The FRAME system variable overrides the IMAGEFRAME setting. Use the IMAGEFRAME system variable after the FRAME system variable to reset the IMAGE frame settings.

NOTE Normally, when image frames are not displayed, you cannot select images. However, the IMAGECLIP command temporarily turns image frames on.
\begin{tabular}{ll}
\hline 0 & The image frames are not visible and they are not plotted \\
\hline 1 & The image frames are displayed and plotted \\
\hline 2 & The image frames are displayed but not plotted \\
\hline
\end{tabular}

\section*{IMAGEHLT}

\section*{Quick Reference}

\section*{See also:}

■ Improve the Display Speed of Raster Images

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether the entire raster image or only the raster image frame is highlighted.
\begin{tabular}{ll}
\hline 0 & Highlights only the raster image frame \\
\hline 1 & Highlights the entire raster image \\
\hline
\end{tabular}

\section*{IMPLIEDFACE}

\section*{Quick Reference}

See also:
■ Press or Pull Bounded Areas

Type: Integer
Saved in: Registry
Initial value: 1
Controls the detection of implied faces.
\begin{tabular}{ll}
\hline 0 & Implied faces cannot be detected. \\
\hline 1 & Implied faces can be detected.
\end{tabular}

An implied face is a closed area that creates a boundary by intersecting or overlapping a face on a 3D solid object. This variable affects the ability to use implied faces when you press \(\mathrm{Ctrl}+\mathrm{Shift}+\mathrm{E}\) and drag the area inside the boundary to create an extrusion dynamically.

This variable must be set to 1 if you want to select and modify implied faces.

\section*{INDEXCTL}

\section*{Quick Reference}

\section*{See also:}
- Work with Layer and Spatial Indexes

Type: Integer
Saved in: Drawing
Initial value: 0
Controls whether layer and spatial indexes are created and saved in drawing files.

To receive the maximum benefit of demand loading, it is recommended that you save any drawings that are used as xrefs with layer and spatial indexes
\begin{tabular}{ll}
\hline 0 & No indexes are created \\
\hline 1 & Layer index is created \\
\hline 2 & Spatial index is created \\
\hline
\end{tabular}

3
Layer and spatial indexes are created

\section*{INETLOCATION}

\section*{Quick Reference}

See also:
■ Get Started with Internet Access

Type: String
Saved in: Registry
Initial value: \(h t t p: / / w w w . a u t o d e s k . c o m\)

Stores the Internet location used by the BROWSER command and the Browse the Web dialog box.

\section*{INPUTHISTORYMODE}

\section*{Quick Reference}

\section*{See also:}

■ Shortcut Menus
\(\begin{array}{ll}\text { Type: } & \text { Bitcode } \\ \text { Saved in: } & \text { Registry } \\ \text { Initial value: } & 15\end{array}\)
Controls the content and location of the display of a history of user input.
The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & No history of recent input is displayed. \\
\hline 1 & \begin{tabular}{l} 
History of recent input is displayed at the command line \\
or in a dynamic prompt tooltip. Access with the Up Arrow \\
and Down Arrow keys at the Command prompt, or at an \\
input prompt.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
History of recent input for the current command is dis- \\
played in the shortcut menu under Recent Input.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
History of recent input for all commands in the current \\
session is displayed in the shortcut menu under Recent \\
Input.
\end{tabular} \\
\hline 8 & \begin{tabular}{l} 
Markers for recent input of point locations are displayed. \\
a point location.
\end{tabular} \\
\hline
\end{tabular}

\section*{INSBASE}

\section*{Quick Reference}

See also:
■ Insert Blocks

Type: 3D-point
Saved in: Drawing
Initial value: \(0.0000,0.0000,0.0000\)
Stores the insertion base point set by BASE, which gets expressed as a UCS coordinate for the current space.

\section*{INSNAME}

\section*{Quick Reference}

See also:
- Insert Blocks

Type: String
Saved in: Not-saved
Initial value: "
Sets a default block name for the INSERT command.
The name must conform to symbol naming conventions. Returns "" if no default is set. Enter a period (.) to set no default.

\section*{INSUNITS}

\section*{Quick Reference}

See also:
■ Insert Blocks

Type: Integer
Saved in: Drawing
Initial value: 1 (imperial) or 4 (metric)
Specifies a drawing-units value for automatic scaling of blocks, images, or xrefs inserted or attached to a drawing.

\begin{tabular}{ll}
\hline 18 & Astronomical Units \\
\hline 19 & Light Years \\
\hline 20 & Parsecs \\
\hline
\end{tabular}

\section*{INSUNITSDEFSOURCE}

\section*{Quick Reference}

See also:
- Insert Blocks

Type: Integer
Saved in: Registry
Initial value: 1
Sets source content units value when INSUNITS is set to 0 .
Valid range is 0 to 20 .
\begin{tabular}{ll}
\hline 0 & Unspecified (No units) \\
\hline 1 & Inches \\
\hline 2 & Feet \\
\hline 3 & Miles \\
\hline 4 & Millimeters \\
\hline 5 & Centimeters \\
\hline 6 & Meters \\
\hline 7 & Kilometers \\
\hline 8 & Microinches \\
\hline 9 & Mils \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline 10 & Yards \\
\hline 11 & Angstroms \\
\hline 12 & Nanometers \\
\hline 13 & Microns \\
\hline 14 & Decimeters \\
\hline 16 & Dekameters \\
\hline 17 & Hectometers \\
\hline 18 & Astronomical Units \\
\hline 19 & Light Years \\
\hline 20 & Parsecs \\
\hline
\end{tabular}

\section*{INSUNITSDEFTARGET}

\section*{Quick Reference}

See also:
■ Insert Blocks

Type: Integer
Saved in: Registry
Initial value: 1
Sets target drawing units value when INSUNITS is set to 0 .
Valid range is 0 to 20 .
\begin{tabular}{ll}
\hline 0 & Unspecified (No units) \\
\hline 1 & Inches
\end{tabular}
\begin{tabular}{|c|c|}
\hline 2 & Feet \\
\hline 3 & Miles \\
\hline 4 & Millimeters \\
\hline 5 & Centimeters \\
\hline 6 & Meters \\
\hline 7 & Kilometers \\
\hline 8 & Microinches \\
\hline 9 & Mils \\
\hline 10 & Yards \\
\hline 11 & Angstroms \\
\hline 12 & Nanometers \\
\hline 13 & Microns \\
\hline 14 & Decimeters \\
\hline 15 & Dekameters \\
\hline 16 & Hectometers \\
\hline 17 & Gigameters \\
\hline 18 & Astronomical Units \\
\hline 19 & Light Years \\
\hline 20 & Parsecs \\
\hline
\end{tabular}

\section*{INTELLIGENTUPDATE}

\section*{Quick Reference}

\section*{See also:}
- Set Interface Options

Type: Integer
Saved in: Registry
Initial value: 20
Controls the graphics refresh rate.
The default value is 20 frames per second. If you encounter problems related to graphics generation or timing, turn off the variable by setting it to 0 . INTELLIGENTUPDATE works by suppressing the graphics update until the timer expires. Subsequent updates reset the timer.

The performance improvement significantly affects updates for scripts and AutoLISP graphics. Those using regular AutoCAD commands will not see a noticeable difference in performance.

\section*{INTERFERECOLOR}

\section*{Quick Reference}

\section*{See also:}

■ Check 3D Models for Interferences
\begin{tabular}{ll} 
Type: & String \\
Saved in: & Drawing \\
Initial value: & 1
\end{tabular}

Initial value: 1
Sets the color for interference objects.
Valid values include BYLAYER, BYBLOCK, a color name, and integers from 0 to 255 .

Valid values for True Colors are a string of integers each from 0 to 255 separated by commas and preceded by RGB. The True Color setting is entered as follows:

RGB:000,000,000

If you have a color book installed, you can specify any colors that are defined in the book.

\section*{INTERFEREOBJVS}

\section*{Quick Reference}

\section*{See also:}
- Check 3D Models for Interferences

Type: String
Saved in: Drawing
Initial value: Realistic
Sets the visual style for interference objects.
INTERFEREOBJVS can only be set to a visual style that is saved in the drawing.
The visual style specified for INTERFEREOBJVS cannot be removed with the PURGE command.

\section*{INTERFEREVPVS}

\section*{Quick Reference}

See also:
- Check 3D Models for Interferences

Type: String
Saved in: Drawing
Initial value: 3D Wireframe
Specifies the visual style for the viewport during interference checking.
INTERFEREVPVS can only be set to a visual style that is saved in the drawing.
The visual style specified for INTERFEREVPVS cannot be removed with the PURGE command.

\section*{INTERSECTIONCOLOR}

\section*{Quick Reference}

See also:

See also:
■ Control the Display of Edges

Controls the color of polylines at the intersection of 3D surfaces when the visual style is set to 2D Wireframe.

Value 0 designates ByBlock, value 256 designates ByLayer, and value 257 designates ByEntity. Values 1-255 designate an AutoCAD Color Index (ACI) color. True Colors and Color Book colors are also available.

The INTERSECTIONCOLOR setting is visible only if INTERSECTIONDISPLAY is turned on and if the HIDE on page 911 command is used.

\section*{INTERSECTIONDISPLAY}

\section*{Quick Reference}

See also:
See also:
■ Control the Display of Edges

Type: \(\quad\) Switch
Saved in: Drawing Initial value: Off
Controls the display of polylines at the intersection of 3D surfaces when the visual style is set to 2D Wireframe.
\begin{tabular}{ll} 
Off & Turns off the display of intersection polylines \\
\hline On & Turns on the display of intersection polylines \\
\hline
\end{tabular}

\section*{ISAVEBAK}

\section*{Quick Reference}

See also:
■ Set Interface Options

Type: Integer
Saved in: Registry
Initial value: 1
Improves the speed of incremental saves, especially for large drawings.
ISAVEBAK controls the creation of a backup file (BAK). In the operating system, copying the file data to create a BAK file for large drawings takes a major portion of the incremental save time.
\begin{tabular}{ll}
\hline 0 & No BAK file is created (even for a full save) \\
\hline 1 & A BAK file is created
\end{tabular}

WARNING In some cases (such as a power failure in the middle of a save), it's possible that drawing data can be lost.

\section*{ISAVEPERCENT}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Type: Integer
Saved in: Registry
Initial value: 50
Determines the amount of wasted space tolerated in a drawing file.
The value of ISAVEPERCENT is an integer between 0 and 100. The default value of 50 means that the estimate of wasted space within the file does not exceed 50 percent of the total file size. Wasted space is eliminated by periodic
full saves. When the estimate exceeds 50 percent, the next save will be a full save. This resets the wasted space estimate to 0 . If ISAVEPERCENT is set to 0 , every save is a full save.

\section*{ISOLINES}

\section*{Quick Reference}

\section*{See also:}

See also:
Type: \(\quad\) Integer
Saved in: Drawing
Initial value: 8
Specifies the number of contour lines per surface on objects.
Valid settings are integers from 0 to 2047.
NOTE When you create a new drawing that is based on a template, the initial value may differ.

\title{
L System Variables
}

\section*{37}

\section*{LARGEOBJECTSUPPORT}

\section*{Quick Reference}

See also:
- Save a Drawing

Type: Integer
Saved in: Registry
Initial value: 0
Controls large object size limit support when you open and save drawings.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Use legacy object size limits from AutoCAD 2009 and \\
prior
\end{tabular} \\
\hline 1 & Use AutoCAD 2010 object size limits \\
\hline
\end{tabular}

\section*{LASTANGLE}

\section*{Quick Reference}

See also:
- Draw Arcs
(Read-only)
Type: Real
Saved in: Not-saved
Initial value: 0.0000
Stores the end angle of the last arc entered relative to the XY plane of the current UCS for the current space.

\section*{LASTPOINT}

\section*{Quick Reference}

See also:
■ Overview of Coordinate Entry

Type: 3D-point
Saved in: Not-saved
Initial value: \(0.0000,0.0000,0.0000\)
Stores the last point specified, expressed as UCS coordinates for the current space.

You can reference the last point specified by entering the @ symbol at a point prompt. This is equivalent to entering @0,0,0.

\section*{LASTPROMPT}

\section*{Quick Reference}

See also:
- Enter Commands on the Command Line
(Read-only)
Type: String
Saved in: Not-saved
Initial value: ""
Stores the last string echoed to the Command prompt.
This string is identical to the last line seen at the Command prompt and includes any user input.

\section*{LATITUDE}

\section*{Quick Reference}

See also:
- Overview of Geographic Location

Type: Real
Saved in: Drawing
Initial value: 37.7950
Specifies the latitude of the drawing model in decimal format.
The default is the latitude of San Francisco, California. The valid range is -90 to +90 . Positive values represent north latitudes.
This value is affected by the settings of the LUPREC system variable.
This value is not affected by the settings of the AUNITS and AUPREC system variables.

\section*{LAYERDLGMODE}

\section*{Quick Reference}

\section*{See also:}

■ Use Layers to Manage Complexity

\section*{Type: Integer}

Saved in: Registry
Initial value: 1
Sets the flavor of the Layer Properties Manager that is defined for the use of the LAYER command.

The LAYER command is mapped to execute either the CLASSICLAYER or LAYERPALETTE.
Maps the LAYER command to use the modal Layer Prop-
erties Manager

\section*{LAYEREVAL}

\section*{Quick Reference}

\section*{See also:}
- Use New Layer Notification

■ LAYEREVALCTL on page 2381
■ LAYERNOTIFY on page 2383

Type: Integer
Saved in: Drawing
Initial value: 0
Specifies whether the layer list is evaluated for new layers when added to the drawing or to attached xrefs.

The setting is stored in an integer using one of the following values:
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & \begin{tabular}{l} 
Detects when new xref layers have been added in the \\
drawing
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Detects when new layers have been added in the drawing \\
and xrefs
\end{tabular} \\
\hline
\end{tabular}

NOTE LAYEREVALCTL overrides the LAYEREVAL and LAYERNOTIFY setvars when LAYEREVALCTL \(=0\). It acts like a global off (but not a global on). There is no effect even if LAYEREVALCTL is turned on if LAYERNOTIFY \(=0\) or LAYEREVAL \(=0\). LAYEREVALCTL must be set to 1 for LAYERNOTIFY and LAYEREVAL to function correctly.

\section*{LAYEREVALCTL}

\section*{Quick Reference}

\section*{See also:}

■ Use New Layer Notification
- LAYEREVAL on page 2380

■ LAYERNOTIFY on page 2383

Type: Integer
Saved in: User-settings
Initial value: 1
Controls the overall Unreconciled New Layer filter list in Layer Properties Manager which is evaluated for new layers.

This system variable also affects whether the new layer notification is displayed or not.
\begin{tabular}{ll}
\hline 0 & Disables the evaluation and notification of new layers \\
\hline 1 & \begin{tabular}{l} 
Enables the evaluation of new layers on LAYEREVAL settings \\
in DWG file
\end{tabular}
\end{tabular}

NOTE LAYEREVALCTL overrides the LAYEREVAL and LAYERNOTIFY setvars when LAYEREVALCTL \(=0\). It acts like a global off (but not a global on). There is no effect even if LAYEREVALCTL is turned on if LAYERNOTIFY \(=0\) or LAYEREVAL \(=0\). LAYEREVALCTL must be set to 1 for LAYERNOTIFY and LAYEREVAL to function correctly.

\section*{LAYERFILTERALERT}

\section*{Quick Reference}

\section*{See also:}
- Filter and Sort the List of Layers
```

Type: Integer
Saved in: Registry
Initial value: 2
Deletes excessive layer filters to improve performance.
When a drawing has 100 or more layer filters, and the number of layer filters exceeds the number of layers, LAYERFILTERALERT provides a method for deleting layer filters to improve performance.

```
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & \begin{tabular}{l} 
When the Layer Manager is opened, deletes all layer filters; \\
no message is displayed
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
When the Layer Manager is opened, displays a message \\
that states the problem, recommends deleting all filters, \\
and offers a choice: "Do you want to delete all layer filters \\
now?"
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
When the drawing is opened, displays a message that \\
states the problem and offers to display a dialog box where \\
you can choose which filters to delete
\end{tabular} \\
\hline
\end{tabular}

\section*{LAYERMANAGERSTATE}

\section*{Quick Reference}

\section*{See also:}
- Change Layer Settings and Layer Properties
(Read-only)
\begin{tabular}{ll} 
Type: \(\quad\) Integer \\
Saved in: \(\quad\) Not-saved \\
Initial value: & Varies \\
Indicates whether the Layer Properties Manager is open or closed.
\end{tabular}
\(0 \quad\) Closed

1 Open

\section*{LAYERNOTIFY}

\section*{Quick Reference}

\section*{See also:}

■ Use New Layer Notification
- LAYEREVAL on page 2380

■ LAYERNOTIFY on page 2383

Type: Bitcode
Saved in: Drawing
Initial value: 0
Specifies when an alert displays when unreconciled new layers are found.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & Plot \\
\hline 2 & Open \\
\hline 4 & Load/Reload/Attach for xrefs \\
\hline 8 & Restore layer state \\
\hline 16 & Save \\
\hline 32 & Insert
\end{tabular}

NOTE LAYEREVALCTL overrides the LAYEREVAL and LAYERNOTIFY setvars when LAYEREVALCTL \(=0\). It acts like a global off (but not a global on). There is no effect even if LAYEREVALCTL is turned on if LAYERNOTIFY \(=0\) or LAYEREVAL \(=0\). LAYEREVALCTL must be set to 1 for LAYERNOTIFY and LAYEREVAL to function correctly.

\section*{LAYLOCKFADECTL}

\section*{Quick Reference}

\section*{See also:}

■ Use Layers to Manage Complexity

Type: Integer
Saved in: Registry
Initial value: 50
Controls the amount of fading for objects on locked layers.
Fades the objects on locked layers to contrast them with objects on unlocked layers and reduces the visual complexity of a drawing. Objects on locked layers are still visible for reference and for object snapping.


The range for controlling the fading for objects on locked layers is from -90 to 90 .
\begin{tabular}{ll}
\hline 0 & Locked layers are not faded \\
\hline\(>0\) & \begin{tabular}{l} 
When the value is positive, controls the percent of fading \\
up to 90 percent
\end{tabular} \\
\hline\(<0\) & \begin{tabular}{l} 
When the value is negative, locked layers are not faded, \\
but the value is saved for switching to that value by \\
changing the sign
\end{tabular}
\end{tabular}

NOTE The fading value is limited to 90 percent to avoid confusion with layers that are turned off or frozen.

\section*{LAYOUTREGENCTL}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Type: Integer
Saved in: Registry
Initial value: 2
Specifies how the display list is updated in the Model tab and layout tabs.
For each tab, the display list is updated either by regenerating the drawing when you switch to that tab or by saving the display list to memory and regenerating only the modified objects when you switch to that tab. Changing the LAYOUTREGENCTL setting can improve performance.
\begin{tabular}{ll}
0 & The drawing is regenerated each time you switch tabs. \\
\hline 1 & \begin{tabular}{l} 
For the Model tab and the last layout made current, the \\
display list is saved to memory and regenerations are \\
suppressed when you switch between the two tabs. For \\
all other layouts, regenerations still occur when you switch \\
to those tabs.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
The drawing is regenerated the first time you switch to \\
each tab. For the remainder of the drawing session, the \\
display list is saved to memory and regenerations are \\
suppressed when you switch to those tabs.
\end{tabular}
\end{tabular}

The performance gain achieved by changing the LAYOUTREGENCTL setting is dependent on several factors, including the drawing size and type, the objects contained in the drawing, the amount of available memory, and the effect of other open drawings or applications. When LAYOUTREGENCTL is set to 1 or 2, the amount of additional memory used is the size of the Model tab's display list multiplied by the number of viewports in each layout for which the display list is saved.

If LAYOUTREGENCTL is set to 1 or 2 and performance seems slow in general or when you switch between tabs for which the display list is saved, consider changing to a setting of 0 or 1 to find the optimal balance for your work
environment. For additional information about performance settings, see System tab (in the Options dialog box).

Regardless of the LAYOUTREGENCTL setting, if you redefine a block or undo a tab switch, the drawing is regenerated the first time you switch to any tab that contains saved viewports.

\section*{LEGACYCTRLPICK}

\section*{Quick Reference}

\section*{See also:}
- Select Objects Individually

■ SUBOBJSELECTIONMODE on page 2532
- Cycle Through and Filter Subobjects

Type: \(\quad\) Integer
Saved in: Registry
Initial value: 2
Specifies the keys for selection cycling and the behavior for Ctrl+click.
\(0 \quad\) Ctrl+click is used to select subobjects (faces, edges, and vertices) on 3D solids, surfaces, and meshes.
\(1 \quad\) Ctrl+click is used to cycle through overlapping objects. Disallows using Ctrl+click to select subobjects on 3D solids, surfaces, and meshes.

2
Ctrl+click is used to select subobjects (faces, edges, and vertices) on 3D solids, surfaces, and meshes when SUBOBJSELECTIONMODE on page 2532 is set to 0 .If SUBOBJSELECTIONMODE is set to \(1,2,3\), or 4 , it is not necessary to hold down the Ctrl key to select subobjects. If you hold down the Ctrl key when SUBOBJSELECTIONMODE is set to \(1,2,3\), or 4 , the subobject filter is turned off until the Ctrl key is released.

\section*{LENSLENGTH}

\section*{Quick Reference}

See also:
- Create a Camera

Type: Real
Saved in: Drawing
Initial value: 50.0000
Stores the length of the lens (in millimeters) used in perspective viewing.

\section*{LIGHTGLYPHDISPLAY}

\section*{Quick Reference}

See also:
- Control the Display of Lights

Type: Integer
Saved in: Drawing
Initial value: 1
Controls whether light glyphs are displayed
When this system variable is set to Off, the glyphs that represent lights in the drawing are not displayed.

A light glyph is a symbolic representation of a point lights and spotlights.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On
\end{tabular}

\section*{LIGHTINGUNITS}

\section*{Quick Reference}

\section*{See also:}

■ Standard and Photometric Lighting Workflow

Type: Integer
Saved in: Drawing
Initial value: 2
Controls whether generic or photometric lights are used, and specifies the lighting units for the drawing

When this system variable is set to 1 or 2, photometric lighting is enabled; otherwise standard (generic) lighting is used.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
No lighting units are used and standard (generic) lighting \\
is enabled.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
American lighting units (foot-candles) are used and pho- \\
tometric lighting is enabled.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
International lighting units (lux) are used and photometric \\
lighting is enabled.
\end{tabular} \\
\hline
\end{tabular}

\section*{LIGHTLISTSTATE}

\section*{Quick Reference}

See also:
■ Control Light Properties
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0

Indicates whether the Lights in Model window is open.
\begin{tabular}{ll}
\hline 0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{LIGHTSINBLOCKS}

\section*{Quick Reference}

\author{
See also: \\ ■ Incorporate Luminaire Objects
}

\section*{Type: Integer \\ Saved in: Drawing \\ Initial value: 1}

Controls whether lights contained in blocks are used when rendering
By default, this system variable is turned on in AutoCAD drawings. When this system variable is off, lights in blocks do not affect 3D objects in the current viewport when rendering. Previous versions of AutoCAD did not support rendering lights in blocks.
\begin{tabular}{ll}
\hline 0 (Off) & Lights in blocks are disabled \\
\hline 1 (On) & Lights in blocks are enabled \\
\hline
\end{tabular}

\section*{LIMCHECK}

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap

Type: Integer
Saved in: Drawing

Initial value: 0
Controls the creation of objects outside the grid limits.
\begin{tabular}{ll}
\hline 0 & Objects can be created outside the limits \\
\hline 1 & Objects cannot be created outside the limits \\
\hline
\end{tabular}

\section*{LIMMAX}

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap

Type: 2D-point
Saved in: Drawing
Initial value: \(12.0000,9.0000\) (imperial) or 420.0000,297.0000 (metric)
Stores the upper-right grid limits for the current space, expressed as a world coordinate.

LIMMAX is read-only when paper space is active and the paper background or printable area is displayed.

\section*{LIMMIN}

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap
Type: \(\quad\) 2D-point
Saved in: \(\quad\) Drawing
Initial value: \(0.0000,0.0000\)
Stores the lower-left grid limits for the current space, expressed as a world
coordinate.

LIMMIN is read-only when paper space is active and the paper background or printable area is displayed.

\section*{LINEARBRIGHTNESS}

\section*{Quick Reference}

\section*{See also:}

■ Standard and Photometric Lighting Workflow
Type: Integer
Saved in: Drawing
Initial value: 0
Controls the brightness level of the viewport in the standard lighting workflow.
Controls the brightness level of the viewport when standard lighting is enabled (LIGHTINGUNITS system variable is set to 0 ). Valid settings are integers from -10 to 10 . The brightness level in photometric lighting can be controlled by the LOGEXPBRIGHTNESS systems variable.

\section*{LINEARCONTRAST}

\section*{Quick Reference}

See also:
- Standard and Photometric Lighting Workflow

Type: Integer
Saved in: Drawing
Initial value: 0
Controls the contrast level of the viewport in the standard lighting workflow.
Controls the contrast level of the viewport when standard lighting is enabled (LIGHTINGUNITS system variable is set to 0 ). Valid settings are integers from -10 to 10. The contrast level in photometric lighting can be controlled by LOGEXPCONTRAST.

\section*{LOCALE}

\section*{Quick Reference}

See also:
- Switch Between Model Space and Layouts
(Read-only)
Type: String
Saved in: Not-saved
Initial value: Varies by country/region
Displays a code that indicates the current locale.
This code appears as a three-letter abbreviation returned by the Windows GetLocaleInfo function using the LOCALE_SABBREVLANGNAME constant.

\section*{LOCALROOTPREFIX}

\section*{Quick Reference}

See also:
■ Overview of File Organization
(Read-only)
Type: String
Saved in: Registry
Initial value: Varies
Stores the full path to the root folder where local customizable files were installed.

These files are stored in the product folder under the Local Settings folder; for example, "c:\Documents and Settings \username\Local Settings \(\backslash\) Application Data \(\backslash\) application_name \(\backslash\) release_number \(\backslash\) language".

The Template and Textures folders are in this location, and you can add any customizable files that you do not want to roam on the network. See ROAMABLEROOTPREFIX for the location of the roamable files.

\section*{LOCKUI}

\section*{Quick Reference}

See also:
■ Specify the Behavior of Dockable Windows

Type: Bitcode
Saved in: Registry
Initial value: 0
Locks the position and size of toolbars and dockable windows such as the ribbon, DesignCenter, and the Properties palette.

Locked toolbars and windows can still be opened and closed and items can be added and deleted. To unlock them temporarily, hold down Ctrl.

A lock icon in the status bar tray indicates whether toolbars and windows are locked. Right-click the icon to display locking options.

The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & Toolbars and windows not locked \\
\hline 1 & Docked toolbars locked \\
\hline 2 & Docked or anchored windows locked \\
\hline 4 & Floating toolbars locked \\
\hline 8 & Floating windows locked \\
\hline
\end{tabular}

\section*{Quick Reference}

\section*{See also:}

■ Create a Solid or Surface by Lofting.

Type: Real

Saved in: Drawing
Initial value: 90
Sets the draft angle through the first cross section in a loft operation.
The 0 direction is measured outward from the curve on the plane of the curve. The positive direction is measured toward the next cross section. Valid values include 0 to less than 360 .

\section*{LOFTANG2}

\section*{Quick Reference}

See also:
■ Create a Solid or Surface by Lofting.

Type: Real
Saved in: Drawing
Initial value: 90
Sets the draft angle through the last cross section in a loft operation.
The 0 direction is measured outward from the curve on the plane of the curve. The positive direction is measured toward the previous cross section. Valid values include 0 to less than 360.

\section*{LOFTMAG1}

\section*{Quick Reference}

See also:
■ Create a Solid or Surface by Lofting.

Type: Real
Saved in: Drawing
Initial value: 0.0000
Sets the magnitude of the draft angle through the first cross section in a loft operation.

Controls how soon the surface starts bending back toward the next cross section.

\section*{LOFTMAG2}

\section*{Quick Reference}

See also:
■ Create a Solid or Surface by Lofting.

Type: Real
Saved in: Drawing
Initial value: 0.0000
Sets the magnitude of the draft angle through the last cross section in a loft operation.

Controls how soon the surface starts bending back toward the next cross section.

\section*{LOFTNORMALS}

\section*{Quick Reference}

\section*{See also:}

■ Create a Solid or Surface by Lofting.

Type: Integer
Saved in: Drawing Initial value: 1
Controls the normals of a lofted object where it passes through cross sections.
This setting is ignored when specifying a path or guide curves.
These settings can also be specified in the Loft Settings Dialog Box.
\begin{tabular}{ll}
\hline 0 & Ruled \\
\hline 1 & Smooth Fit \\
\hline 2 & Start cross section \\
\hline 3 & End cross section \\
\hline
\end{tabular}
\begin{tabular}{ll}
4 & Start and End cross sections \\
\hline 5 & All cross sections \\
\hline 6 & Use draft angle and magnitude \\
\hline
\end{tabular}

\section*{LOFTPARAM}

\section*{Quick Reference}

See also:
■ Create a Solid or Surface by Lofting

Type: Bitcode
Saved in: Drawing Initial value: 7
Controls the shape of lofted solids and surfaces.
The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 1 & No twist (minimizes the twist between cross sections) \\
\hline 2 & \begin{tabular}{l} 
Align direction (aligns the start to end direction of each \\
cross section curve)
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Simplify (produces simple solids and surfaces, such as a \\
cylinder or plane, instead of spline solids and surfaces)
\end{tabular} \\
\hline 8 & \begin{tabular}{l} 
Close (closes the surface or solid between the first and the \\
last cross sections)
\end{tabular} \\
\hline
\end{tabular}

\section*{LOGEXPBRIGHTNESS}

\section*{Quick Reference}

See also:
- Standard and Photometric Lighting Workflow

Type: Real
Saved in: Drawing
Initial value: 65.0
Controls the brightness level of the viewport when using photometric lighting
Controls the brightness level of the viweport when photometric lighting is enabled (LIGHTINGUNITS system variable is set to 1 or 2 ). Valid range is from 0.0 to 200.0. The brightness level in standard lighting can be controlled by the LINEARBRIGHTNESS systems variable.

\section*{LOGEXPCONTRAST}

\section*{Quick Reference}

See also:
- Standard and Photometric Lighting Workflow

Type: Real
Saved in: Drawing
Initial value: 50.0
Controls the contrast level of the viewport when using photometric lighting
Controls the contrast level of the viewport when photometric lighting is enabled (LIGHTINGUNITS system variable is set to 1 or 2 ). Valid range is from 0.0 to 100.0. The contrast level in standard lighting can be controlled by the LINEARCONTRAST systems variable.

\section*{LOGEXPDAYLIGHT}

\section*{Quick Reference}

\section*{See also:}

■ Standard and Photometric Lighting Workflow

Type: Integer
Saved in: Drawing
Initial value: 2
Controls if the exterior daylight flag is enabled when using photometric lighting

When this system variable is off, exterior daylight is turned off when photometric lighting is enabled (LIGHTINGUNITS system variable is set to 1 or 2 ). When on, the exposure control algorithm in the rendering acts as if there is an extremely bright light source in the scene. Therefore, the default setting of "Auto" is tied directly to the sun setting. Under special circumstances, it may be desirable to manually set this variable due to extremely bright artificial light sources or, conversely, due to a sun-lit scene that it is illuminated only by a small amount of directly visible sunlight.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On \\
\hline 2 & Auto, current sun status is used \\
\hline
\end{tabular}

\section*{LOGEXPMIDTONES}

\section*{Quick Reference}

See also:
■ Standard and Photometric Lighting Workflow

Type: Real
Saved in: Drawing
Initial value: 1.0

Controls the mid tones level of the viewport when using photometric lighting
Controls the mid tones level of the viewport when photometric lighting is enabled (LIGHTINGUNITS system variable is set to 1 or 2). Valid range from 0.01 to 20.0 .

\section*{LOGEXPPHYSICALSCALE}

\section*{Quick Reference}

\author{
See also: \\ - Standard and Photometric Lighting Workflow
}
```

Type: Real
Saved in: Drawing

```

Initial value: 1500.0000
Controls the relative brightness of self-illuminated materials in a photometric environment

This global scale factor is used to adjust the relative brightness of self-illuminated materials in a photometric environment. Valid values range from 0.001 to 200000.

\section*{LOGFILEMODE}

\section*{Quick Reference}

\section*{See also:}
- Specify Application Fonts
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Registry \\
Initial value: & 0
\end{tabular}

Initial value: 0
Specifies whether the contents of the text window are written to a log file.
\begin{tabular}{ll}
0 & Log file is not maintained \\
\hline 1 & Log file is maintained
\end{tabular}

\section*{LOGFILENAME}

\section*{Quick Reference}

See also:
■ Specify Application Fonts
(Read-only)
Type: String
Saved in: Drawing
Initial value: Varies
Specifies the path and name of the text window log file for the current drawing.
The initial value varies depending on the name of the current drawing and the installation folder.

\section*{LOGFILEPATH}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Type: String
Saved in: Registry
Initial value: Varies
Specifies the path for the text window log files for all drawings in a session.
You can also specify the path by using the OPTIONS command. The initial value is based on the installation folder.

\section*{LOGINNAME}

\section*{Quick Reference}

See also:
■ Open a Drawing
(Read-only)
Type: String
Saved in: Not-saved
Initial value: Varies
Displays the Windows login name and is saved with the file properties statistics of DWG and related files.

\section*{LONGITUDE}

\section*{Quick Reference}

\author{
See also: \\ - Overview of Geographic Location
}

Type: Real
Saved in: Drawing
Initial value: - 122.3940
Specifies the longitude of the drawing model in decimal format.
The default is the longitude of San Francisco, California. The valid range is -180 to +180 . Positive values represent east longitudes.

This value is affected by the settings of the LUPREC system variable.
This value is not affected by the settings of the AUNITS and AUPREC system variables.

\section*{LTSCALE}

\section*{Quick Reference}

\section*{See also:}
- Control Linetype Scale

\section*{Type: Real}

Saved in: Drawing
Initial value: 1.0000
Sets the global linetype scale factor.
The linetype scale factor cannot equal zero. This system variable has the same name as a command. Use the SETVAR command to access this system variable.

\section*{LUNITS}

\section*{Quick Reference}

See also:
■ Set the Unit Format Conventions

Type: Integer
Saved in: Drawing
Initial value: 2
Sets linear units.
\begin{tabular}{ll}
\hline 1 & Scientific \\
\hline 2 & Decimal \\
\hline 3 & Engineering \\
\hline 4 & Architectural \\
\hline 5 & Fractional
\end{tabular}

2402 | Chapter 37 L System Variables

\section*{LUPREC}

\section*{Quick Reference}

See also:
- Set the Unit Format Conventions

Type: Integer
Saved in: Drawing
Initial value: 4
Sets the display precision for linear units and coordinates.
However, the internal precision of distance, area, and volume values, and linear coordinates is always maintained, regardless of the display precision. LUPREC does not affect the display precision of dimension text (see DIMSTYLE).

Valid values are integers from 0 to 8 .

\section*{LWDEFAULT}

\section*{Quick Reference}

\section*{See also:}
- Overview of Lineweights

Type: Enum
Saved in: Registry
Initial value: 25
Sets the value for the default lineweight.
The default lineweight can be set to any valid lineweight value in hundredths of millimeters, including: \(0,5,9,13,15,18,20,25,30,35,40,50,53,60,70\), \(80,90,100,106,120,140,158,200\), and 211.

All values must be entered in hundredths of millimeters. (Multiply a value by 2540 to convert values from inches to hundredths of millimeters.)

\section*{LWDISPLAY}

\section*{Quick Reference}

\section*{See also:}

■ Display Lineweights

Type: Integer
Saved in: Drawing
Initial value: OFF
Controls whether the lineweights of objects are displayed.
This setting is controlled separately for model space and for all paper space layouts.
\begin{tabular}{ll}
\hline OFF & Lineweights are not displayed \\
\hline ON & Lineweights are displayed
\end{tabular}

\section*{LWUNITS}

\section*{Quick Reference}

See also:
- Display Lineweights

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether lineweight units are displayed in inches or millimeters.
\begin{tabular}{ll}
\hline 0 & Inches \\
\hline 1 & Millimeters \\
\hline
\end{tabular}

\title{
M System Variables
}

MATBROWSERSTATE

\section*{Quick Reference}

See also:
- Browse Material Libraries

\section*{Type: Switch}

Saved in: User-settings
Initial value: 0
Controls the state of the Materials Browser.
\begin{tabular}{ll}
0 & Materials Browser is closed. \\
\hline 1 & Materials Browser is open. \\
\hline
\end{tabular}

\section*{MATEDITORSTATE}

\section*{Quick Reference}

See also:
■ Create New Materials
(Read-only)
Type: \(\quad\) Integer
Saved in: \(\quad\) Drawing
Initial value: 1 \begin{tabular}{ll} 
Indicates whether the Materials Editor is open or closed. \\
\hline 0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{MATERIALSPATH}

\section*{Quick Reference}

See also:
■ Browse Material Libraries
(Read-only)
Type: String
Saved in: User-settings
Initial value: \(\mathrm{C}: \backslash\) Program Files \(\backslash\) Common Files \(\backslash\) Autodesk
Shared \Materials2011
Specifies the path of the materials libraries.

\section*{MAXACTVP}

\section*{Quick Reference}

See also:
■ Turn Layout Viewports On or Off

Type: Integer
Saved in: Drawing
Initial value: 64
Sets the maximum number of viewports that can be active at one time in a layout.

MAXACTVP has no effect on the number of viewports that are plotted.

\section*{MAXSORT}

\section*{Quick Reference}

See also:
■ Work with Blocks

Type: Integer
Saved in: Registry
Initial value: 1000
Sets the maximum number of symbol names or block names sorted by listing commands.

If the total number of items exceeds this value, no items are sorted.
The value of MAXSORT is an integer between 0 and 32767 .

\section*{MAXTOUCHES}

\section*{Quick Reference}

See also:
■ Draw Freehand Sketches
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Identifies the number of touch points supported by connected digitizers.

\section*{MBUTTONPAN}

\section*{Quick Reference}

See also:
- Pointing Device Buttons
```

Type: Integer
Saved in: Registry

```
Initial value: 1

Controls the behavior of the third button or wheel on the pointing device.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Supports the action defined in the customization (CUIx) \\
file
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Supports panning when you hold and drag the button or \\
wheel
\end{tabular} \\
\hline
\end{tabular}

\section*{MEASUREINIT}

\section*{Quick Reference}

See also:
- Start a Drawing from Scratch

Type: Integer
Saved in: Registry
Initial value: Varies by country/region
Controls whether a drawing you start from scratch uses imperial or metric default settings.

Specifically, MEASUREINIT controls which hatch pattern and linetype files are used. The Drawing1.dwg that opens when you start the program is a drawing that is started from scratch.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Imperial; uses the hatch pattern file and linetype file des- \\
ignated by the ANSIHatch and ANSILinetype registry set- \\
tings
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Metric; uses the hatch pattern file and linetype file desig- \\
nated by the ISOHatch and ISOLinetype registry settings
\end{tabular} \\
\hline
\end{tabular}

\section*{MEASUREMENT}

\section*{Quick Reference}

See also:
■ Start a Drawing from Scratch

Type: Integer
Saved in: Drawing
Initial value: 0 (imperial) or 1 (metric)
Controls whether the current drawing uses imperial or metric hatch pattern and linetype files.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Imperial; uses the hatch pattern file and linetype file des- \\
ignated by the ANSIHatch and ANSILinetype registry set- \\
tings
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Metric; uses the hatch pattern file and linetype file desig- \\
nated by the ISOHatch and ISOLinetype registry settings
\end{tabular}
\end{tabular}

\section*{MENUBAR}

\section*{Quick Reference}

See also:
■ Access the Classic Menu Bar

Controls the display of the menu bar.
\begin{tabular}{ll}
\hline 0 & Hides the menu bar \\
\hline 1 & Displays the menu bar \\
\hline
\end{tabular}

\section*{MENUCTL}

\section*{Quick Reference}

See also:
- Create Screen Menus

Type: Integer
Saved in: Registry
Initial value: 1
Controls the page switching of the screen menu.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Screen menu does not switch pages in response to key- \\
board command entry
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Screen menu does switch pages in response to keyboard \\
command entry
\end{tabular} \\
\hline
\end{tabular}

\section*{MENUECHO}

\section*{Quick Reference}

See also:
- Create Macros

Type: Integer
Saved in: Not-saved
Initial value: 0
Sets menu echo and prompt control bits.
The value is the sum of the following:
\begin{tabular}{ll}
\hline 1 & \begin{tabular}{l} 
Suppresses echo of menu items ( \\
echoing in a menu item toggles
\end{tabular} \\
\hline 2 & Suppresses display of system prompts during menu
\end{tabular}

2410 | Chapter 38 M System Variables

\section*{MENUNAME}

\section*{Quick Reference}

See also:
■ User Interface Customization
(Read-only)
Type: String
Saved in: Registry
Initial value: customization_file_name
Stores the customization file name, including the path for the file name.

\section*{MESHTYPE}

\section*{Quick Reference}

See also:
■ Construct Meshes from Other Objects

Type: Bitcode
Saved in: Drawing
Initial value: 1
Controls the type of mesh that is created by REVSURF, TABSURF, RULESURF and EDGESURF.

0 Creates legacy polygon or polyface mesh when you use REVSURF, TABSURF, RULESURF, or EDGESURF

1 Creates full-featured mesh objects when you use REVSURF, TABSURF, RULESURF, or EDGESURF (recommended)

This option does not affect mesh created using the 3DMESH and PFACE commands.

\section*{MIRRHATCH}

\section*{Quick Reference}

See also:
■ Mirror Objects

Type: Integer
Saved in: Drawing
Initial value: 0
Controls how MIRROR reflects hatch patterns.
\begin{tabular}{ll}
\hline 0 & Retains hatch pattern direction \\
\hline 1 & Mirrors the hatch pattern direction \\
\hline
\end{tabular}

\section*{MIRRTEXT}

\section*{Quick Reference}

See also:
- Mirror Objects

Type: Integer
Saved in: Drawing
Initial value: 0
Controls how the MIRROR command reflects text.
\begin{tabular}{ll}
\hline 0 & Retains text direction \\
\hline 1 & Mirrors the text \\
\hline
\end{tabular}

\section*{MLEADERSCALE}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Leaders

Type: Real
Saved in: Drawing
Initial value: 1.0000
Sets the overall scale factor applied to multileader objects.
Use DIMSCALE to scale leader objects created with the LEADER command.
\(0.0 \quad\) A reasonable default value is computed based on the scaling between the current model space viewport and paper space. If you are in paper space or model space and not using the paper space feature, the scale factor is 1.0.
>0 A scale factor is computed that leads text sizes, arrowhead sizes, and other scaled distances to plot at their face values.

MLEADERSCALE does not affect measured lengths, coordinates, or angles.
When MLEADERSCALE is set to 0 , and the current multileader style is not , the overall multileader scale of multileader objects created in paper space viewports is determined by the viewport scale. When the current multileader style is annotative, the MLEADERSCALE value is set to 0 . Changes to the MLEADERSCALE value are ignored and the value is reset to 0 .

\section*{MODEMACRO}

\section*{Quick Reference}

\section*{See also:}

■ Overview of the MODEMACRO System Variable
Type: \(\quad\) String

Saved in: Not-saved
Initial value: ""
Displays a text string on the status line, such as the name of the current drawing, time/date stamp, or special modes.
Use MODEMACRO to display a string of text, or use special text strings written in the DIESEL macro language to have the macro evaluated from time to time and base the status line on user-selected conditions.

\section*{MSLTSCALE}

\section*{Quick Reference}

See also:
- Display Annotative Objects

Type: Integer
Saved in: Drawing
Initial value: 1
Scales linetypes displayed on the model tab by the
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Linetypes displayed on the Model tab are not scaled by \\
the annotation scale
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Linetypes displayed on the Model tab are scaled by the \\
annotation scale
\end{tabular}
\end{tabular}

NOTE MSLTSCALE is set to 0 when you open drawings created in AutoCAD 2007 and earlier.

\section*{MSMSTATE}

\section*{Quick Reference}

\section*{See also:}
- Overview of Using Markups for Design Review
```

(Read-only)

```

Type: Integer
Saved in: Not-saved
Initial value: Varies
Indicates whether the Markup Set Manager is open or closed.
\begin{tabular}{ll}
\hline 0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{MSOLESCALE}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Importing OLE Objects into Drawings
Type: Real
Saved in: Drawing
Initial value: 1.0000
Controls the size of an OLE object with text that is pasted into model space.
MSOLESCALE controls only the initial size. If the scale factor value is changed, existing OLE objects in the drawing are not affected.

A positive number scales by value. Zero (0) scales by the DIMSCALE value.

\section*{MTEXTCOLUMN}

\section*{Quick Reference}

See also:
■ Create and Edit Columns in Multiline Text

Type: Integer
Saved in: Drawing Initial value: 2

Sets the default column setting for a multiline text (mtext) object.
\(0 \quad\) No column.

1 Dynamic columns with auto height.

2 Dynamic column with manual height.

\section*{MTEXTED}

\section*{Quick Reference}

See also:
■ Overview of Using an Alternate Text Editor

Type: String
Saved in: Registry
Initial value: "Internal"
Sets the application for editing multiline text objects.
You can specify a different text editor for the MTEXT command. If you set MTEXTED to internal or to null (.), the In-Place Text Editor is displayed. If you set MTEXTED to "OldEditor", the Multiline Text Editor is displayed. If you specify a path and the name of the executable file for another text editor or word processor, that path and file name instead are displayed instead.

If the multiline text object is fewer than 80 characters, you can enter :lisped to use the LISP editor.

Text editors other than the internal one show the formatting codes in paragraph text.

\section*{MTEXTFIXED}

\section*{Quick Reference}

See also:
- Overview of Multiline Text
```

Type: Integer
Saved in: Registry

```

Initial value: 2
Sets the display size and orientation of multiline text in a specified text editor.
If MTEXTED is set to "Internal", multiline text is displayed in the In-Place Text Editor, and the setting of MTEXTFIXED has the following results:
\begin{tabular}{ll}
0 or \(1 \quad\)\begin{tabular}{l} 
Displays the In-Place Text Editor and the text within it at \\
the size, position, and rotation of the multiline text object \\
in the drawing.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Displays the In-Place Text Editor and the text within it at \\
the size, position, and rotation of the multiline text object \\
in the drawing. \\
Text that would otherwise be difficult to read (if it is very \\
small, very large, or is rotated) is displayed at a legible size \\
and is oriented horizontally so that you can easily read \\
and edit it.
\end{tabular}
\end{tabular}

If MTEXTED is set to "OldEditor," multiline text is displayed in the Multiline Text Editor, and the setting of MTEXTFIXED has the following results:
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Displays the Multiline Text Editor and the text within it at \\
the size and position of the multiline text object in the \\
drawing. Text too large or too small to be edited is dis- \\
played at a minimum or maximum size. Text that is ro- \\
tated is displayed horizontally.
\end{tabular} \\
\hline 1 or 2 & \begin{tabular}{l} 
Displays the Multiline Text Editor at a fixed position and \\
size based on last use, and displays text in the editor at a \\
fixed height. Text that is rotated is displayed horizontally.
\end{tabular}
\end{tabular}

\section*{MTEXTTOOLBAR}

\section*{Quick Reference}

\section*{See also:}
- Overview of Multiline Text
\begin{tabular}{ll} 
Type: \(\quad\) Integer \\
Saved in: \(\quad\) User-settings \\
Initial value: 2 \\
Controls the display of the Text Formatting toolbar. \\
\hline 0 & The Text Formatting toolbar is never displayed. \\
\hline 1 & \begin{tabular}{l} 
The Text Formatting toolbar is displayed upon selection \\
of an MTEXT object.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
The Text Formatting toolbar does not display when the \\
ribbon is on.
\end{tabular}
\end{tabular}

\section*{MTJIGSTRING}

\section*{Quick Reference}

See also:
■ Overview of Multiline Text

Type: String
Saved in: Registry
Initial value: "abc"
Sets the content of the sample text displayed at the cursor location when the MTEXT command is started.

The text string is displayed in the current text size and font. You can enter any string of up to ten letters or numbers or enter a period (.) to display no sample text.

\section*{MYDOCUMENTSPREFIX}

\section*{Quick Reference}

See also:
- Specify Search Paths and File Locations
(Read-only)
Type: String
Saved in: Registry
Initial value: Varies
Stores the full path to the My Documents folder for the user currently logged on.

These files are stored in the product folder under the Local Settings folder; for example, "c:\Documents and Settings \username\My Documents".

\title{
N System Variables
}

NAVBARDISPLAY

\section*{Quick Reference}

See also:
- Use Navigation Bar

Type: Integer
Saved in: Registry
Initial value: 1
Controls the display of the navigation bar in all viewports.
\begin{tabular}{ll}
0 & Navigation bar is not displayed \\
\hline 1 & Navigation bar is displayed \\
\hline
\end{tabular}

\section*{NAVSWHEELMODE}

\section*{Quick Reference}

See also:
- Navigate with SteeringWheels

Type: Integer

Saved in: Registry
Initial value: 2
Specifies the current mode of the SteeringWheel.
\begin{tabular}{ll}
\hline 0 & Big View Object wheel \\
\hline 1 & Big Tour Building wheel \\
\hline 2 & Big Full Navigation wheel \\
\hline 3 & 2D Navigation wheel \\
\hline 4 & Mini View Object wheel \\
\hline 5 & Mini Tour Building wheel \\
\hline 6 & Mini Full Navigation wheel \\
\hline
\end{tabular}

\section*{NAVSWHEELOPACITYBIG}

\section*{Quick Reference}

See also:
■ Navigate with SteeringWheels

Type: Integer
Saved in: Registry
Initial value: 50
Controls the opacity of the big SteeringWheels.
Valid values are from 25 to 90 percent. When set to 90 , the big wheels appear almost fully opaque against the drawing window and obscure the view of the objects under the wheel. When set to less than 90, the big wheels appear to fade into the drawing window, which results in the objects under the wheel to appear less obscured.

\section*{NAVSWHEELOPACITYMINI}

\section*{Quick Reference}

See also:
■ Navigate with SteeringWheels

Type: Integer
Saved in: Registry
Initial value: 50
Controls the opacity of the mini SteeringWheels.
Valid values are from 25 to 90 percent. When set to 90 , the mini wheels appear almost fully opaque against the drawing window and obscure the view of the objects under the wheel. When set to less than 90, the mini wheels appear to fade into the drawing window, which results in the objects under the wheel to appear less obscured.

\section*{NAVSWHEELSIZEBIG}

\section*{Quick Reference}

See also:
■ Navigate with SteeringWheels

Type: Integer
Saved in: Registry
Initial value: 1
Specifies the size of the big SteeringWheels.
\begin{tabular}{ll}
\hline 0 & Small \\
\hline 1 & Normal \\
\hline 2 & Large \\
\hline
\end{tabular}

\section*{NAVSWHEELSIZEMINI}

\section*{Quick Reference}

See also:
- Navigate with SteeringWheels

Type: Integer
Saved in: Registry
Initial value: 1
Specifies the size of the mini SteeringWheels.
\begin{tabular}{ll}
\hline 0 & Small \\
\hline 1 & Normal \\
\hline 2 & Large \\
\hline 3 & Extra \\
\hline
\end{tabular}

\section*{NAVVCUBEDISPLAY}

\section*{Quick Reference}

See also:
- Use ViewCube

Type: Integer
Saved in: Drawing
Initial value: 3
Controls the display of the ViewCube tool in the current visual style and the current viewport.
\begin{tabular}{ll}
\hline 0 & ViewCube is not displayed in 2D and 3D visual styles \\
\hline 1 & \begin{tabular}{l} 
ViewCube is displayed in 3D visual styles, but not in 2D \\
visual styles
\end{tabular} \\
\hline
\end{tabular}

2424 | Chapter 39 N System Variables

\section*{NAVVCUBELOCATION}

\section*{Quick Reference}

See also:
■ Use ViewCube

Type: Integer
Saved in: Registry
Initial value: 0
Identifies the corner in a viewport where the ViewCube tool is displayed.
\begin{tabular}{ll}
\hline 0 & Upper-right \\
\hline 1 & Upper-left \\
\hline 2 & Lower-left \\
\hline 3 & Lower-right \\
\hline
\end{tabular}

NAVVCUBEOPACITY

\section*{Quick Reference}

See also:
■ Use ViewCube

Type: Integer
Saved in: Registry
Initial value: 50

Controls the opacity of the ViewCube tool when inactive.
Valid values are from 0 to 100 percent. When set to 100, the ViewCube appears fully opaque against the drawing window and obscures all objects under it in the viewport. When set to less than 100, the ViewCube fades into the drawing window, which results in the objects under it to appear less obscured. If set to 0 , the ViewCube is not displayed in the viewport unless the cursor is positioned over top of the ViewCube's location.

\section*{NAVVCUBEORIENT}

\section*{Quick Reference}

See also:
- Use ViewCube

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether the ViewCube tool reflects the current UCS or WCS.
\(0 \quad\) ViewCube is oriented to reflect WCS
\(1 \quad\) ViewCube is oriented to reflect the current UCS

\section*{NAVVCUBESIZE}

\section*{Quick Reference}

See also:
■ Use ViewCube

Type: \(\quad\) Integer
Saved in: Registry
Initial value: 4

Specifies the size of the ViewCube tool.
\begin{tabular}{ll}
\hline 0 & Small \\
\hline 1 & Normal \\
\hline 2 & Large \\
\hline 3 & \begin{tabular}{l} 
Tiny \\
down based on the size of the active viewport, zoom \\
factor of the active layout, or drawing window
\end{tabular} \\
\hline 4 &
\end{tabular}

\section*{NOMUTT}

\section*{Quick Reference}

See also:
■ Set Interface Options

Type: Short
Saved in: Not-saved
Initial value: 0
Suppresses the message display (muttering) when it wouldn't normally be suppressed.

Displaying messages is the normal mode, but message display is suppressed during scripts, AutoLISP routines, and so on.
\begin{tabular}{ll}
\hline 0 & Resumes normal muttering behavior \\
\hline 1 & Suppresses muttering indefinitely \\
\hline
\end{tabular}

\section*{NORTHDIRECTION}

\section*{Quick Reference}

See also:
- Sun and Sky Simulation

Type: Real
Saved in: Drawing
Initial value: 0.0000
Specifies the angle of the sun from north.
This value is affected by the settings of the AUNITS and AUPREC system variables.

NOTE The angle is interpreted in the context of the world coordinate system (WCS). This value is completely separate from surveyor angular units, which are always set relative to the current UCS.

\title{
O System Variables
}

\section*{40}

\section*{OBJECTISOLATIONMODE}

\section*{Quick Reference}

See also:
■ Control the Display of Objects
Type: Integer
Saved in: User-settings
Initial value: 0
Controls whether hidden objects remain hidden between drawing sessions.
OJBECTISOLATIONMODE controls whether objects that are hidden using the ISOLATEOBJECTS on page 956 or HIDEOBJECTS on page 912 command remain hidden after saving and reopening the drawing.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Isolated/hidden objects are temporary for current drawing \\
session
\end{tabular} \\
\hline 1 & Isolated/hidden objects persist between drawing sessions
\end{tabular}

\section*{OBSCUREDCOLOR}

\section*{Quick Reference}

See also:

See also:
- Control the Display of Edges

Type: Integer
Saved in: Drawing
Initial value: 257
Specifies the color of obscured lines.
Value 0 designates ByBlock, value 256 designates ByLayer, and value 257 designates ByEntity. Values 1-255 designate an AutoCAD Color Index (ACI).

An obscured line is a hidden line made visible by changing its color and linetype. OBSCUREDCOLOR is available only in 2D views. In 3D views, the VSOBSCUREDCOLOR system variable is used.

The OBSCUREDCOLOR setting is visible only if the OBSCUREDLTYPE system variable is turned on by setting it to a value other than 0 .

\section*{OBSCUREDLTYPE}

\section*{Quick Reference}

See also:
See also:
■ Control the Display of Edges
Type: \(\quad\) Integer
Saved in: \(\quad\) Drawing
Initial value: 0
Specifies the linetype of obscured lines.

An obscured line is a hidden line made visible by changing its color and linetype. OBSCUREDLTYPE is available only in 2D views. In 3D views, the VSOBSCUREDLTYPE system variable is used.

Obscured linetypes are independent of zoom level, unlike regular linetypes. The linetype values are defined as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0 & \multicolumn{5}{|l|}{Off} \\
\hline 1 & \multicolumn{5}{|l|}{Solid} \\
\hline 2 & \multicolumn{5}{|l|}{Dashed} \\
\hline 3 & \multicolumn{5}{|l|}{Dotted} \\
\hline 4 & \multicolumn{5}{|l|}{Short Dash} \\
\hline 5 & \multicolumn{4}{|l|}{Medium Dash} & - \\
\hline 6 & \multicolumn{5}{|l|}{Long Dash} \\
\hline 7 & \multicolumn{5}{|l|}{Double Short Dash} \\
\hline 8 & \multicolumn{5}{|l|}{Double Medium Dash} \\
\hline 9 & \multicolumn{5}{|l|}{Double Long Dash} \\
\hline 10 & \multicolumn{5}{|l|}{Medium Long Dash} \\
\hline 11 & \multicolumn{5}{|l|}{Sparse Dot} \\
\hline
\end{tabular}
\(\qquad\)

\section*{OFFSETDIST}

\section*{Quick Reference}

See also:
■ Offset an Object

Type: Real
Saved in: Not-saved
Initial value: -1.0000
Sets the default offset distance.
\begin{tabular}{ll}
\(<0\) & Offsets an object through a specified point \\
\hline 0 & Sets the default offset distance \\
\hline
\end{tabular}

\section*{OFFSETGAPTYPE}

\section*{Quick Reference}

See also:
■ Offset an Object

Type: Integer
Saved in: Registry
Initial value: 0
Controls how potential gaps between segments are treated when closed polylines are offset.
\begin{tabular}{ll}
0 & Fills the gaps by extending the polyline segments \\
\hline \(\mathbf{2}\) & \begin{tabular}{l} 
Fills the gaps with filleted arc segments (the radius of each \\
arc segment is equal to the offset distance)
\end{tabular} \\
\hline \begin{tabular}{l} 
Fills the gaps with chamfered line segments (the perpen- \\
dicular distance to each chamfer is equal to the offset \\
distance)
\end{tabular} \\
\hline
\end{tabular}

\section*{OLEFRAME}

\section*{Quick Reference}

See also:
■ Edit OLE Objects in Drawings

Type: Integer
Saved in: Drawing
Initial value: 2
Controls whether a frame is displayed and plotted on all OLE objects in the drawing.

The frame on an OLE object must be displayed in order for grips to be visible.
\begin{tabular}{ll}
\hline 0 & Frame is not displayed and not plotted \\
\hline 1 & Frame is displayed and is plotted \\
\hline 2 & Frame is displayed but is not plotted \\
\hline
\end{tabular}

\section*{OLEHIDE}

\section*{Quick Reference}

\section*{See also:}

■ Overview of Importing OLE Objects into Drawings

Type: Integer
Saved in: Registry
Initial value: 0
Controls the display and plotting of OLE objects.
\begin{tabular}{ll}
\hline 0 & All OLE objects are visible and plot \\
\hline 1 & OLE objects are visible and plot in paper space only
\end{tabular}

\section*{OLEQUALITY}

\section*{Quick Reference}

See also:
■ Overview of Importing OLE Objects into Drawings

Type: Integer
Saved in: Registry
Initial value: 3
Sets the default plot quality for OLE objects.
With OLEQUALITY, you can assign the plot quality for OLE objects to 0 (monochrome), 1 (low graphics), or 2 (high graphics).

When OLEQUALITY is set to 3 , the quality level is assigned automatically based on the type of object. For example, spreadsheets and tables are set to monochrome, color text and pie charts are set to low graphics, and photographs are set to high graphics.
The following table define the value of the plot quality for OLE objects.
\begin{tabular}{ll}
\hline 0 & Monochrome \\
\hline 1 & Low graphics \\
\hline 2 & High graphics \\
\hline 3 & Automatically Select
\end{tabular}

\section*{OLESTARTUP}

\section*{Quick Reference}

See also:
■ Overview of Importing OLE Objects into Drawings

Type: Integer
Saved in: Drawing
Initial value: 0
Controls whether the source application of an embedded OLE object loads when plotting.
Loading the OLE source application may improve the plot quality.
\begin{tabular}{ll}
\hline 0 & Does not load the OLE source application \\
\hline 1 & Loads the OLE source application when plotting
\end{tabular}

\section*{OPENPARTIAL}

\section*{Quick Reference}

See also:
■ Open a Drawing

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether a drawing file can be worked on before it is fully open.
Two conditions must be met for this system variable to have an effect. The drawing must have been saved with paper space displayed (TILEMODE is set to 0 ), and the INDEXCTL system variable must be set to a non-zero value.
\(0 \quad\) Legacy behavior: A drawing must be fully opened before work can begin on it

\section*{OPMSTATE}

\section*{Quick Reference}

\section*{See also:}
- Display and Change the Properties of Objects
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Stores a value that indicates whether the Properties palette is open, closed or hidden.
\begin{tabular}{ll}
\hline 0 & Closed \\
\hline 1 & Open \\
\hline 2 & \begin{tabular}{l} 
Auto-hide: Open but only the title bar is displayed when \\
the cursor moves off the palette
\end{tabular} \\
\hline
\end{tabular}

\section*{ORTHOMODE}

\section*{Quick Reference}

See also:
■ Use Orthogonal Locking (Ortho Mode)

Type: Integer
Saved in: Drawing Initial value: 0
Constrains cursor movement to the perpendicular.

When ORTHOMODE is turned on, the cursor can move only horizontally or vertically relative to the UCS and the current grid rotation angle
\begin{tabular}{ll}
\hline 0 & Turns off Ortho mode \\
\hline 1 & Turns on Ortho mode \\
\hline
\end{tabular}

\section*{OSMODE}

\section*{Quick Reference}

\section*{See also: \\ ■ Use Object Snaps}

Type: Integer
Saved in: Registry
Initial value: 4133
Sets running object snaps
The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & NONe \\
\hline 1 & ENDpoint \\
\hline 2 & MIDpoint \\
\hline 4 & CENter \\
\hline 8 & NODe \\
\hline 16 & QUAdrant \\
\hline 32 & INTersection \\
\hline 64 & INSertion \\
\hline 128 & PERpendicular \\
\hline 256 & TANgent \\
\hline
\end{tabular}
\begin{tabular}{ll}
512 & NEArest \\
\hline 1024 & Clears all object snaps \\
\hline 2048 & APParent Intersection \\
\hline 4096 & EXTension \\
\hline 8192 & PARallel \\
\hline
\end{tabular}

To specify more than one object snap, enter the sum of their values. For example, entering 3 specifies the Endpoint (bitcode 1) and Midpoint (bitcode 2) object snaps. Entering 16383 specifies all object snaps.

When object snaps are switched off using the Osnap button on the status bar, a bitcode of \(16384(0 x 4000)\) is returned, in addition to the normal value of OSMODE. With this additional value, developers can distinguish this mode from Object Snap modes that have been turned off from within the Drafting Settings dialog box. Setting this bit toggles running object snaps off. Setting OSMODE to a value with this bit off toggles running object snaps on.

\section*{OSNAPCOORD}

\section*{Quick Reference}

\section*{See also:}

■ Set Visual Aids for Object Snaps (AutoSnap)
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Registry
\end{tabular}

Initial value: 2
Controls whether coordinates entered on the command line will override running object snaps.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Running object snap settings override keyboard coordinate \\
entry
\end{tabular} \\
\hline 1 & Keyboard entry overrides object snap settings \\
\hline
\end{tabular}

\section*{OSNAPNODELEGACY}

\section*{Quick Reference}

\section*{See also:}
- Change Multiline Text
```

Type: Integer
Saved in: Registry
Initial value: 0

```

Controls whether the Node object snap can be used to snap to multiline text objects.

The number and location of nodes on a multiline text object snap depends on the vertical and horizontal justification of the multiline text object.
\begin{tabular}{ll}
0 & Node object snap can be used with multiline text objects \\
\hline 1 & Node object snap ignores multiline text objects \\
\hline
\end{tabular}

\section*{OSNAPZ}

\section*{Quick Reference}

\author{
See also: \\ - Use Object Snaps \\ Type: Integer \\ Saved in: Not-saved \\ Initial value: 0
}

Controls whether object snaps are automatically projected onto a plane parallel to the XY plane of the current UCS at the current elevation.
\begin{tabular}{ll}
\hline 0 & Osnap uses the \(Z\)-value of the specified point \\
\hline 1 & \begin{tabular}{l} 
Osnap substitutes the \(Z\)-value of the specified point with \\
the elevation (ELEV) set for the current UCS
\end{tabular} \\
\hline
\end{tabular}

\section*{OSOPTIONS}

\section*{Quick Reference}

See also:
■ Use Object Snaps

Type: Bitcode
Saved in: Registry
Initial value: 3
Automatically suppresses object snaps on hatch objects and geometry with negative Z values when using a dynamic UCS.

The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Object snaps operate on hatch objects, and on geometry \\
with negative \(Z\) values when using a dynamic UCS
\end{tabular} \\
\hline 1 & Object snaps ignore hatch objects \\
\hline 2 & \begin{tabular}{l} 
Object snaps ignore geometry with negative \(Z\) values \\
during use of a dynamic UCS
\end{tabular} \\
\hline
\end{tabular}

\section*{P System Variables}


\section*{PALETTEOPAQUE}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

■ Transparency Dialog Box on page 1373
Type: Integer
Saved in: Registry
Initial value: 0
Controls whether palettes can be made transparent.
When transparency is available and turned on, you can use the Transparency option on the shortcut menu to set a different degree of transparency for the current palette or for all palettes.
When transparency is unavailable or turned off, all palettes are opaque. Transparency is unavailable when palettes or windows are docked, when transparency is not supported by the current operating system, or when a hardware accelerator is enabled.
\begin{tabular}{ll}
\hline 0 & Transparency is turned off \\
\hline 1 & Transparency is turned on \\
\hline
\end{tabular}

Transparency is turned off and is not supported by the hardware and/or operating system

3 Transparency is turned on, but is not supported by the hardware and/or operating system

Available settings depend whether hardware acceleration is enabled. When hardware acceleration is enabled, setting 2 and 3 are available; when disabled, setting 0 and 1 are available.

This system variable determines the default setting in the Transparency dialog box > General section > How transparent should the palette be? option on page 1373.

\section*{PAPERUPDATE}

\section*{Quick Reference}

See also:
- Set Paper Size

Type: Integer
Saved in: Registry
Initial value: 0
Controls the display of a warning dialog when attempting to print a layout with a paper size different from the paper size specified by the default for the plotter configuration file.

> \begin{tabular}{ll} 0 & \(\begin{array}{l}\text { Displays a warning dialog box if the paper size specified } \\ \text { in the layout is not supported by the plotter }\end{array}\) \\ \hline 1 & \(\begin{array}{l}\text { Sets paper size to the configured paper size of the plotter } \\ \text { configuration file }\end{array}\) \end{tabular}

\section*{PARAMETERCOPYMODE}

\section*{Quick Reference}

\section*{See also:}
- Apply Dimensional Constraints

Type: Integer
Saved in: Registry
Initial value: 1
Controls how constraints and referenced user parameters are handled when constrained objects are copied between drawings, Model space and layouts, and block definitions.

Parameters and their values apply to the current space only. Model space, individual paper space layouts, and various block definitions in the block editor cannot access each other's parameters. Several commands, including PASTECLIP and EXPLODE, can introduce dimensional constraints and constraint parameters into an environment where referenced user parameters are no longer accessible or are in conflict.
The PARAMETERCOPYMODE system variable provides several options for handling these situations.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Do not copy any dimensional constraints \\
or constraint parameters. Constraints are \\
removed from copied objects.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Copy dimensional constraints and con- \\
straint parameters. Always replace expres- \\
sions with numerical constants. Rename \\
dimensional parameters if there is a nam- \\
ing conflict.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Copy dimensional constraints, constraint \\
parameters, and user parameters. Refer- \\
ence existing user parameters when avail- \\
able, otherwise replace expressions with \\
numerical constants.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Copy dimensional constraints, constraint \\
parameters, and user parameters. Refer-
\end{tabular} \\
\hline
\end{tabular}
ence existing user parameters when available, otherwise create any missing user parameters. Change missing referenced dimensional constraints into user parameters.

Copy all dimensional constraints, constraint parameters, and expressions. Rename the parameters of copied objects if conflicts in value occurs for copied parameters.

\section*{PARAMETERSSTATUS}

\section*{Quick Reference}

See also:
- Apply Dimensional Constraints
(Read-only)
Type: Integer
Saved in: Registry
Initial value: 0
Indicates whether the Parameters Manager is displayed or hidden.
\begin{tabular}{ll}
\hline 0 & Hidden \\
\hline 1 & Displayed \\
\hline
\end{tabular}

\section*{PDFFRAME}

\section*{Quick Reference}

See also:
- Hide and Show Underlay Frames

Type: Integer

\section*{Saved in: Drawing}

\section*{Initial value: 1}

Determines whether the PDF underlay frame is visible.
The FRAME system variable overrides the PDFFRAME setting. Use the PDFFRAME system variable after the FRAME system variable to reset the PDF frame settings.
\begin{tabular}{ll}
\hline 0 & The PDF underlay frame is not visible and it is not plotted \\
\hline 1 & Displays the PDF underlay frame and allows it to be plotted \\
\hline 2 & \begin{tabular}{l} 
Displays the PDF underlay frame but keeps it from being \\
plotted
\end{tabular} \\
\hline
\end{tabular}

\section*{PDFOSNAP}

\section*{Quick Reference}

See also:
- Use Object Snaps with Underlays

Type: Integer
Saved in: Registry
Initial value: 1
Determines whether object snapping is active for geometry in PDF underlays that are attached to the drawing.

The UOSNAP system variable overrides the PDFOSNAP setting.
0
Object snapping is disabled for geometry in all PDF underlay attachments in the drawing

\section*{PDMODE}

\section*{Quick Reference}

See also:
- Divide an Object into Equal Segments

Type: Integer
Saved in: Drawing
Initial value: 0
Controls how point objects are displayed.
For information about values to enter, see the POINT command.

\section*{PDSIZE}

\section*{Quick Reference}

See also:
■ Divide an Object into Equal Segments
\begin{tabular}{ll} 
Type: & Real \\
Saved in: & Drawing \\
Initial value: & 0.0000
\end{tabular}

Initial value: 0.0000
Sets the display size for point objects.
\begin{tabular}{ll}
\hline 0 & Creates a point at 5 percent of the drawing area height \\
\hline\(>0\) & Specifies an absolute size \\
\hline\(<0\) & Specifies a percentage of the viewport size
\end{tabular}

\section*{PEDITACCEPT}

\section*{Quick Reference}

See also:
■ Modify Polylines
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Registry
\end{tabular}

Saved in: Registry
Initial value: 0
Suppresses display of the Object Selected Is Not a Polyline prompt in PEDIT.
The prompt is followed by "Do you want it to turn into one?" Entering y converts the selected object to a polyline. When the prompt is suppressed, the selected object is automatically converted to a polyline.
\begin{tabular}{ll}
\hline 0 & The prompt is displayed \\
\hline 1 & The prompt is suppressed
\end{tabular}

\section*{PELLIPSE}

\section*{Quick Reference}

See also:
- Draw Ellipses

Type: Integer
Saved in: Drawing
Initial value: 0
Controls the ellipse type created with ELLIPSE.
\begin{tabular}{ll}
\hline 0 & Creates a true ellipse object. \\
\hline 1 & Creates a polyline representation of an ellipse \\
\hline
\end{tabular}

\section*{PERIMETER}

\section*{Quick Reference}

\section*{See also:}

■ Obtain Area and Mass Properties Information
(Read-only)
Type: Real
Saved in: Not-saved
Initial value: 0.0000
Stores the last perimeter value computed by the AREA or LIST command.
Also stores perimeter values computed by DBLIST

\section*{PERSPECTIVE}

\section*{Quick Reference}

See also:
■ Define a Perspective Projection (DVIEW)

Type: Integer
Saved in: Drawing
Initial value: Varies
Specifies whether the current viewport displays a perspective view.

0
Perspective view turned off

1
Perspective view turned on

Perspective views are available only in model space, and only with 3D visual styles.

NOTE PERSPECTIVE is set to 0 when the drawing file or DXF file is saved to a file format earlier than AutoCAD 2007.

\section*{PERSPECTIVECLIP}

\section*{Quick Reference}

See also:
- Define a Perspective Projection (DVIEW)

\section*{Type: Real}

Saved in: Registry
Initial value: 5.0000
Determines the location of eyepoint clipping.
The value determines where the eye point clipping occurs as a percentage. Values can range between 0.01 and 10.0. If you select a small value, the \(z\)-values of objects will be compressed at the target view and beyond. If you select a value such as \(0.5 \%\), the clipping will appear very close to the eyepoint of the view. In some extreme cases it might be appropriate to use \(0.1 \%\), but it is recommended to change the setting to a higher value such as \(5 \%\).

\section*{PFACEVMAX}

\section*{Quick Reference}

\section*{See also:}
- Create Custom Mesh (Legacy)
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 4
Sets the maximum number of vertices per face.
This system variable affects only legacy polyface meshes such as those created by PFACE.

\section*{PICKADD}

\section*{Quick Reference}

\section*{See also:}
- Select Multiple Objects

Type: Integer
Saved in: User-settings
Initial value: 2
Controls whether subsequent selections replace the current selection set or add to it.
\(0 \quad\) Turns off PICKADD. The objects and subobjects most recently selected become the selection set. Previously selected objects and subobjects are removed from the selection set. Add more objects or subobjects to the selection set by pressing SHIFT while selecting.

1 Turns on PICKADD. Each object and subobject selected, either individually or by windowing, is added to the current selection set. To remove objects or subobjects from the set, press SHIFT while selecting.

2
Turns on PICKADD. Each object and subobject selected, either individually or by windowing, is added to the current selection set. To remove objects or subobjects from the set, press SHIFT while selecting. Keeps objects selected after the SELECT command ends.

\section*{PICKAUTO}

\section*{Quick Reference}

See also:
- Select Multiple Objects
```

Type: Integer
Saved in: Registry

```

Initial value: 1
Controls automatic windowing at the Select Objects prompt.
\(0 \quad\) Turns off PICKAUTO.

1 Draws a selection window (for either a window or a crossing selection) automatically at the Select Objects prompt

\section*{PICKBOX}

\section*{Quick Reference}

See also:
- Select Objects Individually

Type: Integer
Saved in: Registry
Initial value: 3
Sets the object selection target height, in pixels.
NOTE When PICKBOX is set to 0 , selection previewing of objects is not available.

\section*{PICKDRAG}

\section*{Quick Reference}

See also:
■ Select Multiple Objects

Type: Integer
Saved in: Registry
Initial value: 0

Controls the method of drawing a selection window.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Draws the selection window using two points. Click the \\
pointing device at one corner, and then click to select \\
another corner.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Draws the selection window using dragging. Click one \\
corner and drag the pointing device; release the button \\
at the other corner.
\end{tabular} \\
\hline
\end{tabular}

\section*{PICKFIRST}

\section*{Quick Reference}

\section*{See also:}
- Customize Object Selection

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether you select objects before (noun-verb selection) or after you issue a command.

0
0 Turns off PICKFIRST; you select objects after you issue a command

1
Turns on PICKFIRST; you select objects before you issue a command

\section*{PICKSTYLE}

\section*{Quick Reference}

\section*{See also:}
- Select Objects in Groups

Type: Integer
Saved in: Registry
Initial value: 1
Controls the use of group selection and associative hatch selection.
\begin{tabular}{ll}
\hline 0 & No group selection or associative hatch selection \\
\hline 1 & Group selection \\
\hline 2 & Associative hatch selection \\
\hline 3 & Group selection and associative hatch selection \\
\hline
\end{tabular}

\section*{PLATFORM}

\section*{Quick Reference}

See also:
■ Set Interface Options
(Read-only)
Type: String
Saved in: Not-saved
Initial value: Varies
Indicates which platform is in use.

\section*{PLINECONVERTMODE}

\section*{Quick Reference}

See also:
- Modify Splines

Type: Integer
Saved in: Registry
Initial value: 0

Specifies the fit method used in converting splines to polylines.
\begin{tabular}{ll}
0 & Polylines are created with linear segments \\
\hline 1 & Polylines are created with arc segments \\
\hline
\end{tabular}

\section*{PLINEGEN}

\section*{Quick Reference}

See also:
■ Display Linetypes on Short Segments and Polylines

Type: Integer
Saved in: Drawing
Initial value: 0
Sets how linetype patterns generate around the vertices of a 2 D polyline.
Does not apply to polylines with tapered segments.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Generates polylines to start and end with a dash at each \\
vertex
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Generates the linetype in a continuous pattern around the \\
vertices of the polyline
\end{tabular} \\
\hline
\end{tabular}

\section*{PLINETYPE}

\section*{Quick Reference}

See also:
- Draw Polylines

Type: \(\quad\) Integer
Saved in: Registry Initial value: 2

Specifies whether optimized 2D polylines are used.
PLINETYPE controls both the creation of new polylines with the PLINE command and the conversion of existing polylines in drawings from previous releases.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Polylines in older drawings are not converted when \\
opened; PLINE creates old-format polylines
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Polylines in older drawings are not converted when \\
opened; PLINE creates optimized polylines
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Polylines in AutoCAD Release 14 or older drawings are \\
converted when opened; PLINE creates optimized polylines
\end{tabular} \\
\hline
\end{tabular}

For more information on the two formats, see the CONVERT command.
PLINETYPE also controls the polyline type created with the following commands: BOUNDARY (when object type is set to Polyline), DONUT, PEDIT (when selecting a line or arc), POLYGON, and SKETCH (when SKPOLY is set to 1 ).

\section*{PLINEWID}

\section*{Quick Reference}

\section*{See also:}
- Draw Polylines
```

Type: Real
Saved in: Drawing
Initial value: }0.000
Stores the default polyline width.

```

\section*{PLOTOFFSET}

\section*{Quick Reference}

\section*{See also:}

■ Adjust the Plot Offset of a Layout

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether the plot offset is relative to the printable area or to the edge of the paper.
\(0 \quad\) Sets the plot offset relative to the printable area.
1 Sets the plot offset relative to the edge of the paper

\section*{PLOTROTMODE}

\section*{Quick Reference}

See also:
■ Select a Printer or Plotter

Type: Integer
Saved in: Registry
Initial value: 2
Controls the orientation of plots.
\(0 \quad\) Rotates the effective plotting area so the corner with the Rotation icon aligns with the paper at the lower left for 0 , top left for 90, top right for 180, and lower right for 270. \(X\) and \(Y\) origin offsets are calculated relative to the lowerleft corner.

1 Aligns the lower-left corner of the effective plotting area with the lower-left corner of the paper.

\section*{PLOTTRANSPARENCYOVERRIDE}

\section*{Quick Reference}

See also:
■ Work with Object Properties
Type: Integer
Saved in: User-settings
Initial value: 1
Controls whether object transparency is plotted.
\begin{tabular}{ll}
\hline 0 & Does not plot object transparency \\
\hline 1 & \begin{tabular}{l} 
Uses the setting specified in the Page Setup or the Plot \\
dialog boxes
\end{tabular} \\
\hline 2 & Plots object transparency \\
\hline
\end{tabular}

Setting the PLOTTRANSPARENCYOVERRIDE system variable to 0 or 2 overrides the Plot Transparency option in the Page Setup or the Plot dialog boxes.

WARNING Because this system variable can affect global plot performance, it is strongly advised that you leave the value set to 1 and manage plot transparency from the Page Setup or the Plot dialog boxes.

\section*{PLQUIET}

\section*{Quick Reference}

See also:
■ Switch Between Dialog Boxes and the Command Line
\begin{tabular}{ll} 
Type: \(\quad\) Integer \\
Saved in: \(\quad\) Registry \\
Initial value: & 0 \\
Controls the display of optional plot-related dialog boxes and nonfatal errors \\
for scripts.
\end{tabular}
for scripts.
\begin{tabular}{ll}
\hline 0 & Displays plot dialog boxes and nonfatal errors \\
\hline 1 & \begin{tabular}{l} 
Logs nonfatal errors and doesn't display plot-related dialog \\
boxes
\end{tabular} \\
\hline
\end{tabular}

\section*{POINTCLOUDAUTOUPDATE}

\section*{Quick Reference}

\section*{See also:}

■ Import 3D Point Cloud Files
■ Work with AutoCAD Drawings in AutoCAD LT

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether a point cloud is regenerated automatically after manipulation, panning, zooming, or orbiting.
\begin{tabular}{ll}
0 & The image must be manually regenerated when the view \\
changes. If this value is 0 , then the value for \\
POINTCLOUDRTDENSITY on page 2460 has no impact on \\
the number of points displayed while zooming, panning, \\
or orbiting in real time.
\end{tabular}

\section*{POINTCLOUDDENSITY}

\section*{Quick Reference}

See also:
- Import 3D Point Cloud Files
- Work with AutoCAD Drawings in AutoCAD LT

Type: Integer
Saved in: Drawing
Initial value: 15
Controls the number of points displayed at once for all point clouds in the drawing view.

The system variable value is a percentage of \(1,500,000\), which is the maximum number of points that can exist in a drawing, regardless of the number of point clouds attached to a single drawing.

For example, if the system variable is set to 1 , a maximum of 15,000 points is displayed at one time, even if there are multiple point clouds displayed on the screen. The 15,000 points are evenly distributed between the viewable point clouds.

\section*{POINTCLOUDLOCK}

\section*{Quick Reference}

\author{
See also: \\ ■ Import 3D Point Cloud Files
}

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether an attached point cloud can be manipulated, moved, or rotated.

Sets the default Lock property for new point cloud objects.

NOTE This setting does not affect the Lock property for existing point cloud objects.
\(0 \quad\) New point cloud objects are not locked and can be manipulated. The Lock property is set to No.

1 New point cloud objects are locked for editing and cannot be manipulated. The Lock property is set to Yes.

\section*{POINTCLOUDRTDENSITY}

\section*{Quick Reference}

See also:
- Import 3D Point Cloud Files
- Work with AutoCAD Drawings in AutoCAD LT

Type: Integer
Saved in: Drawing Initial value: 5
Improves performance by degrading the number of points displayed in the drawing view zooming, panning, or orbiting in real time.

Set this system variable to a value less than the value of POINTCLOUDDENSITY on page 2459 in order to improve performance.
The system variable value is a percentage of \(1,500,000\), which is the maximum number of points that can exist in a drawing, regardless of the number of point clouds attached to a single drawing.

For example, if the system variable is set to 1 , a maximum of 15,000 points is displayed while zooming, panning, or orbiting in real time.

NOTE If the value of POINTCLOUDAUTOUPDATE on page 2458 is 0 , then the value for POINTCLOUDRTDENSITY has no impact on the number of points displayed while zooming, panning, or orbiting in real time.

\section*{POLARADDANG}

\section*{Quick Reference}

\section*{See also:}
- Use Polar Tracking and PolarSnap
```

Type: String
Saved in: Registry
Initial value: ""
Stores additional angles for polar tracking and polar snap.

```

You can add up to 10 angles. Each angle can be separated with semicolons (;). The AUNITS system variable sets the format for display of angles.Unlike POLARANG, POLARADDANG angles do not result in multiples of their values.

The bit value for the POLARMODE system variable must have 4 turned on for POLARADDANG to have an effect.

When using fractions of an angle, set the AUPREC system variable (angular precision) to a higher value. Otherwise, the POLARADDANG value will be rounded off.

\section*{POLARANG}

\section*{Quick Reference}

\section*{See also:}
- Use Polar Tracking and PolarSnap

Type: Real
Saved in: Registry
Initial value: 90
Sets the polar angle increment.
Values are \(90,45,30,22.5,18,15,10\), and 5.

\section*{POLARDIST}

\section*{Quick Reference}

See also:
- Use Polar Tracking and PolarSnap

Type: Real
Saved in: Registry
Initial value: 0.0000
Sets the snap increment when the SNAPTYPE is set to 1 (PolarSnap).

\section*{POLARMODE}

\section*{Quick Reference}

See also:
■ Use Polar Tracking and PolarSnap

Type: Integer
Saved in: Registry
Initial value: 0
Controls settings for polar and object snap tracking.
The setting is stored as a bitcode using the sum of the following values:
Polar angle measurements
\begin{tabular}{ll}
\hline 0 & Measure polar angles based on current UCS (absolute) \\
\hline 1 & Measure polar angles from selected objects (relative) \\
\hline
\end{tabular}

Object snap tracking
\begin{tabular}{ll}
\hline 0 & Track orthogonally only \\
\hline 2 & Use polar tracking settings in object snap tracking \\
\hline
\end{tabular}

Use additional polar tracking angles
\begin{tabular}{ll}
\hline 0 & No \\
\hline 4 & Yes \\
\hline
\end{tabular}

Acquire object snap tracking points
\begin{tabular}{ll}
0 & Acquire automatically \\
\hline 8 & Press SHIFT to acquire
\end{tabular}

NOTE In a 3D view, a tracking vector parallel to the \(Z\) axis of the UCS is also displayed, and the tooltip displays \(+Z\) and \(-Z\) for the angle depending on the direction along the \(Z\) axis.

\section*{POLYSIDES}

\section*{Quick Reference}

See also:
- Draw Rectangles and Polygons

Type: Integer
Saved in: Not-saved
Initial value: 4
Sets the default number of sides for the POLYGON command.
The range is 3 to 1024.

\section*{POPUPS}

\section*{Quick Reference}

\section*{See also:}

■ Set Interface Options
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 1
Displays the status of the currently configured display driver.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Does not support dialog boxes, the menu bar, and icon \\
menus
\end{tabular} \\
\hline 1 & Supports these features
\end{tabular}

\section*{PREVIEWEFFECT}

\section*{Quick Reference}

See also:
- Customize Object Selection

Type: Integer
Saved in: Registry
Initial value: 2
Specifies the visual effect used for previewing selection of objects.
\begin{tabular}{ll}
\hline 0 & Dashed lines (the default display for selected objects) \\
\hline 1 & Thickened lines \\
\hline 2 & Dashed and thickened lines \\
\hline
\end{tabular}

\section*{PREVIEWFACEEFFECT}

\section*{Quick Reference}

See also:
- Customize Object Selection
```

Type: Integer
Saved in: Registry

```

Initial value: 1
Specifies the visual effect used for previewing selection of face subobjects.
\begin{tabular}{ll}
\hline 0 & No highlight effect for face \\
\hline 1 & Highlight face with texture fill \\
\hline
\end{tabular}

\section*{PREVIEWFILTER}

\section*{Quick Reference}

See also:
- Customize Object Selection

Type: Bitcode
Saved in: Registry
Initial value: 7
Excludes specified object types from selection previewing.
The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & Excludes nothing \\
\hline 1 & Excludes objects on locked layers \\
\hline 2 & Excludes objects in xrefs \\
\hline 4 & Excludes tables \\
\hline 8 & Excludes multiline text objects \\
\hline 16 & Excludes hatch objects \\
\hline 32 & Excludes objects in groups \\
\hline
\end{tabular}

\section*{PREVIEWTYPE}

\section*{Quick Reference}

See also:
- Save a Drawing

Type: Integer
Saved in: Drawing
Initial value: 0
Controls the view to use for the drawing thumbnail.
\begin{tabular}{ll}
0 & Use last saved view \\
\hline 1 & Use Home view \\
\hline
\end{tabular}

\section*{PRODUCT}

\section*{Quick Reference}

See also:
■ Set Interface Options
(Read-only)
Type: String
Saved in: Not-saved
Initial value: "AutoCAD"
Returns the product name.

\section*{PROGRAM}

\section*{Quick Reference}

See also:
■ Set Interface Options
(Read-only)
Type: String
Saved in: Not-saved
Initial value: "acad"
Returns the program name.

\section*{PROJECTNAME}

\section*{Quick Reference}

\section*{See also:}
- Set Paths to Referenced Drawings

Type: String
Saved in: Drawing
Initial value: ""
Assigns a project name to the current drawing.
Used when an xref, image, or DWF underlay file is not found in its original path. The project name points to a section in the registry that can contain one or more search paths for each project name defined. Project names and their search directories are created from the Files tab of the Options dialog box.

Project names make it easier for users to manage xrefs, images, and DWF underlay when drawings are exchanged between customers, or if users have different drive mappings to the same location on a server.

If the xref, image, or DWF underlay file is not found at the original path, the project paths associated with the project name are searched. If the xref, image, or DWF underlay file is not found there, the AutoCAD search path is searched.

\section*{PROJMODE}

\section*{Quick Reference}

See also:
- Trim or Extend Objects

Type: Integer
Saved in: Registry
Initial value: 1
Sets the current Projection mode for trimming or extending.
\(0 \quad\) True 3D mode (no projection)

1 Project to the \(X Y\) plane of the current UCS
2 Project to the current view plane

\section*{PROXYGRAPHICS}

\section*{Quick Reference}

See also:
■ Work with Custom and Proxy Objects

Type: Integer
Saved in: Drawing
Initial value: 1
Specifies whether images of proxy objects are saved in the drawing.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Does not save image with the drawing; a bounding box \\
is displayed instead
\end{tabular} \\
\hline 1 & Saves image with the drawing \\
\hline
\end{tabular}

\section*{PROXYNOTICE}

\section*{Quick Reference}

See also:
■ Work with Custom and Proxy Objects

Type: Integer
Saved in: Registry
Initial value: 1
Displays a notice when a proxy is created.
A proxy is created when you open a drawing containing custom objects created by an application that is not present. A proxy is also created when you issue a command that unloads a custom object's parent application.
\begin{tabular}{ll}
\hline 0 & No proxy warning is displayed \\
\hline 1 & Proxy warning is displayed
\end{tabular}

\section*{PROXYSHOW}

\section*{Quick Reference}

See also:
■ Work with Custom and Proxy Objects

Type: Integer
Saved in: Registry
Initial value: 1
Controls the display of proxy objects in a drawing.
\begin{tabular}{ll}
\hline 0 & Proxy objects are not displayed \\
\hline 1 & Graphic images are displayed for all proxy objects \\
\hline
\end{tabular}

\section*{PROXYWEBSEARCH}

\section*{Quick Reference}

See also:
- Work with Custom and Proxy Objects

Type: Integer
Saved in: Registry
Initial value: 0
Specifies how the program checks for object enablers.
Object enablers allow you to display and use custom objects in drawings even when the ObjectARX application that created them is unavailable.
PROXYWEBSEARCH is also controlled with the Live Enabler options on the System tab of the Options dialog box.
\(0 \quad\) Prevents checking for object enablers
1 Checks for object enablers only if a live Internet connection is present

\section*{PSLTSCALE}

\section*{Quick Reference}

See also:
■ Scale Linetypes in Layout Viewports

Type: Integer
Saved in: Drawing Initial value: 1

Controls the linetype scaling of objects displayed in paper space viewports.
0 \begin{tabular}{l} 
No special linetype scaling. Linetype dash lengths are \\
based on the drawing units of the space (model or paper) \\
in which the objects were created. Scaled by the global \\
LTSCALE factor. \\
\hline 1
\end{tabular}\(\quad\)\begin{tabular}{l} 
Viewport scaling governs linetype scaling. If TILEMODE is \\
set to 0, dash lengths are based on paper space drawing \\
units, even for objects in model space. In this mode, \\
viewports can have varying magnifications, yet display \\
linetypes identically. For a specific linetype, the dash \\
lengths of a line in a viewport are the same as the dash \\
lengths of a line in paper space. You can still control the \\
dash lengths with LTSCALE
\end{tabular}

When you change PSLTSCALE or use a command such as ZOOM with PSLTSCALE set to 1, objects in viewports are not automatically regenerated with the new linetype scale. Use the REGEN or REGENALL command to update the linetype scales in each viewport.

\section*{PSOLHEIGHT}

\section*{Quick Reference}

\section*{See also:}
- Create a Polysolid

Type: Real
Saved in: Drawing
Initial value: 4.0000 (imperial) or 80.0000 (metric)
Controls the default height for a swept solid object created with the POLYSOLID command.

The value reflects the last entered height value when using the POLYSOLID command. You cannot enter 0 as the value.

\section*{PSOLWIDTH}

\section*{Quick Reference}

See also:
- Create a Polysolid

Type: Real
Saved in: Drawing
Initial value: 0.2500 (imperial) or 5.0000 (metric)
Controls the default width for a swept solid object created with the POLYSOLID command.

The value reflects the last entered height value when using the POLYSOLID command. You cannot enter 0 as the value.

\section*{PSTYLEMODE}

\section*{Quick Reference}

See also:
■ Overview of Plot Styles
(Read-only)
Type: Integer
Saved in: Drawing
Initial value: 1
Indicates whether the current drawing is in a Color-Dependent or Named Plot Style mode.
\begin{tabular}{ll}
0 & Uses named plot style tables in the current drawing \\
\hline 1 & \begin{tabular}{l} 
Uses color-dependent plot style tables in the current \\
drawing
\end{tabular} \\
\hline
\end{tabular}

\section*{PSTYLEPOLICY}

\section*{Quick Reference}

\section*{See also:}
- Overview of Plot Styles

Type: Integer
Saved in: Registry
Initial value: 1
Controls the plot style mode, Color-Dependent or Named, that is used when opening a drawing that was created in a release prior to AutoCAD 2000 or when creating a new drawing from scratch without using a drawing template.
\(0 \quad\) Drawing is set to use named plot styles. The plot style for new objects is set to the default defined in DEFPLSTYLE.
The plot style for new layers is set to the default defined in DEFLPLSTYLE.

1 Drawing is set to use color-dependent plot styles. The plot style for an object is based on the object's color.

\section*{PSVPSCALE}

\section*{Quick Reference}

\section*{See also:}
- Scale Views in Layout Viewports

Type: Real
Saved in: Drawing
Initial value: 0.0000
Sets the view scale factor for all newly created viewports.
The view scale factor is defined by comparing the ratio of units in paper space to the units in newly created model space viewports. The view scale factor you set is used with the VPORTS command. A value of 0 means the scale factor is Scaled to Fit. A scale must be a positive real value.

\section*{PUBLISHALLSHEETS}

\section*{Quick Reference}

See also:

See also:
■ Publish 3D DWF Files

Type: Integer
Saved in: User-settings
Initial value: 1
Specifies whether to load the contents of the active document or of all open documents in the Publish dialog box.
\(0 \quad\) Only the current document's contents (layouts and/or model space) are automatically loaded in the publish list

1 The contents (layouts and/or model space) of all open AutoCAD documents are automatically loaded in the publish list

\section*{PUBLISHCOLLATE}

\section*{Quick Reference}

See also:
- Publish, Transmit, and Archive Sheet Sets

Type: Integer
Saved in: User-settings Initial value: 1

Publishing sheets as a single job requires A plot driver that supports the multi-sheet plotting or printing option
\(0 \quad\) A published sheet set is processed one sheet at a time.
Separate PLT files are created for each sheet. If the sheet set is published, the sheets might be interleaved with other plot jobs.

A published sheet set is processed as a single job. A multisheet PLT file is created. If the sheet set is published, it is never interleaved with other plot jobs.

\section*{PUBLISHHATCH}

\section*{Quick Reference}

See also:
- Publish an Electronic Drawing Set

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether hatch patterns published to DWF or DWFx format are treated as a single object when they are opened in Autodesk Impression.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Treats hatch pattern components as separate objects when \\
published to a DWF or DWFx format
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Treats hatch pattern components as a single object when \\
published to a DWF or DWFx format
\end{tabular} \\
\hline
\end{tabular}

NOTE Autodesk Impression uses this information to improve performance when handling DWF or DWFx files that contain hatches. This variable only affects drawings published to the DWF or DWFx format. It does not affect drawings plotted to the DWF or DWFx format.

\section*{PUCSBASE}

\section*{Quick Reference}

See also:
■ Understand the User Coordinate System (UCS)

Type: String
Saved in: Drawing
Initial value: ""
Stores the name of the UCS that defines the origin and orientation of orthographic UCS settings in paper space only.

\title{
Q System Variables
}

\section*{QCSTATE}

\section*{Quick Reference}

See also:
- Overview of QuickCalc

Type: Integer
Saved in: Drawing
Initial value: Varies
Indicates whether the QuickCalc calculator is open or closed.
\begin{tabular}{ll}
0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{QPLOCATION}

\section*{Quick Reference}

See also:
■ Display and Change the Properties of Objects

Type: Integer

Saved in: Registry
Initial value: 0
Sets the location mode of Quick Properties palette.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Quick Properties palette displays using the Cursor-depend- \\
ent location mode
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Quick Properties palette displays using the Static location \\
mode
\end{tabular}
\end{tabular}

\section*{QPMODE}

\section*{Quick Reference}

\section*{See also:}

■ Display and Change the Properties of Objects

Type: Integer
Saved in: Registry
Initial value: -1
Sets the on or off state of Quick Properties palette.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Turns off the display of the Quick Properties palette for all \\
objects. When turned back on by clicking Quick Properties \\
on the status bar, QPMODE is set to 1.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Turns on the display of the Quick Properties palette for all \\
objects
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Turns on the display of Quick Properties palette only for \\
objects that are defined in the Customize User Interface \\
(CUI) Editor to display properties
\end{tabular}
\end{tabular}

NOTE When this system variable is set to a negative number, the feature is turned off but the value is retained.

\section*{QTEXTMODE}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Polylines, Hatches, Gradient Fills, Lineweights, and Text
```

Type: Integer
Saved in: Drawing
Initial value: 0

```
Controls how text is displayed.
\begin{tabular}{ll}
\hline 0 & Turns off Quick Text mode; displays characters \\
\hline 1 & Turns on Quick Text mode; displays a box in place of text \\
\hline
\end{tabular}

\section*{QVDRAWINGPIN}

\section*{Quick Reference}

See also:
■ Switch Between Open Drawings

Type: Integer
Saved in: Registry
Initial value: 0
Controls the default display state of preview images of drawings.
\begin{tabular}{ll}
0 & Displays preview images of drawings in an unpinned state \\
\hline 1 & Displays preview images of drawings in a pinned state \\
\hline
\end{tabular}

\section*{QVLAYOUTPIN}

\section*{Quick Reference}

See also:
- Switch Between Layouts in the Current Drawing

Type: Integer
Saved in: Registry
Initial value: 0
Controls the default display state of preview images of model space and layouts in a drawing.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Displays preview images of model space and layouts in a \\
drawing in an unpinned state
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Displays preview images of model space and layouts in a \\
drawing in a pinned state
\end{tabular}
\end{tabular}

\title{
R System Variables
}

\section*{RASTERDPI}

\section*{Quick Reference}

See also:
■ Plot to Raster File Formats

Type: Integer
Saved in: Registry
Initial value: 300
Controls paper size and plot scaling when changing from dimensional to dimensionless output devices, or vice versa.

Converts millimeters or inches to pixels, or vice versa. Accepts an integer between 100 and 32,767 as a valid value.

\section*{RASTERPERCENT}

\section*{Quick Reference}

\section*{See also:}

■ Plot to Raster File Formats
Type: \(\quad\) Integer
Saved in: Registry

Initial value: 20
Sets the maximum percentage of available virtual memory that is allowed for plotting a raster image.

\section*{RASTERPREVIEW}

\section*{Quick Reference}

See also:
- Save a Drawing
```

Type: Integer
Saved in: Registry
Initial value: 1

```

Controls whether BMP preview images are saved with the drawing.
\(0 \quad\) No preview image is created
1 Preview image created

\section*{RASTERTHRESHOLD}

\section*{Quick Reference}

See also:
■ Plot to Raster File Formats

Type: Integer
Saved in: Registry
Initial value: 20
Specifies a raster threshold in megabytes.
If the plotted raster image exceeds this threshold, the availability of system memory is checked. The plot is aborted if the image is too big for the available memory.

\section*{REBUILD2DCV}

\section*{Quick Reference}

\section*{See also:}
- CVREBUILD on page 402
- Rebuild NURBS Surfaces and Curves

Type: Integer
Saved in: Registry
Initial value: 6
Sets the number of control vertices when rebuilding a spline.
Valid values are from 2 to 32767.

\section*{REBUILD2DDEGREE}

\section*{Quick Reference}

See also:
- CVREBUILD on page 402
- Rebuild NURBS Surfaces and Curves

Type: Integer
Saved in: Registry
Initial value: 3
Sets the global degree when rebuilding a spline.
Valid values are 1 to 11 .


A curve with a degree of 1 is a straight line and a curve with a degree of 2 has one bend. A Bezier curve has a degree of 3 . Higher degrees create more complex curves, but require computations.

\section*{REBUILD2DOPTION}

\section*{Quick Reference}

See also:
- CVREBUILD on page 402

■ Rebuild NURBS Surfaces and Curves

Type: Switch
Saved in: Registry
Initial value: 1
Controls whether to delete the original curve when rebuilding a spline.
\begin{tabular}{ll}
\hline 0 & Retains original curve \\
\hline 1 & Deletes original curve
\end{tabular}

\section*{REBUILDDEGREEU}

\section*{Quick Reference}

\section*{See also:}
- CVREBUILD on page 402
- Rebuild NURBS Surfaces and Curves

Type: Integer
Saved in: Registry
Initial value: 3
Sets the degree in the \(U\) direction when rebuilding a NURBS surface.
Valid values are 2to 11.

\section*{REBUILDDEGREEV}

\section*{Quick Reference}

See also:
- CVREBUILD on page 402
- Rebuild NURBS Surfaces and Curves

Type: Integer
Saved in: Registry
Initial value: 3
Sets the degree in the V direction when rebuilding a NURBS surface.
Valid values are 2 to 11 .

\section*{REBUILDOPTIONS}

\section*{Quick Reference}

See also:
- CVREBUILD on page 402

■ Rebuild NURBS Surfaces and Curves

Type: Integer
Saved in: Registry
Initial value: 1
Controls deletion and trimming options when rebuilding a NURBS surface.
\begin{tabular}{ll}
\hline Value & When you use CVREBUILD: \\
\hline 0 & \begin{tabular}{l} 
The original surface is not deleted and trimmed areas are not applied \\
to the rebuilt object.
\end{tabular} \\
\hline \(\mathbf{l}\)\begin{tabular}{l} 
The original surface is deleted and trimmed areas are not applied to \\
the rebuilt object.
\end{tabular} \\
\hline \begin{tabular}{l} 
The original surface is not deleted and trimmed areas are applied to \\
the rebuilt object.
\end{tabular} \\
\begin{tabular}{ll} 
The original surface is deleted and trimmed areas are applied to the \\
rebuilt object.
\end{tabular}
\end{tabular}

\section*{REBUILDU}

\section*{Quick Reference}

See also:
- CVREBUILD on page 402

■ Rebuild NURBS Surfaces and Curves

Type: Integer
```

Saved in: Registry
Initial value: }
Sets the number of grid lines in the U direction when rebuilding a NURBS
surface.
Enter a value from 2 to 32767 to increase or decrease the number of U direction grid lines used to rebuild the ASM solid or surface.

```

\section*{REBUILDV}

\section*{Quick Reference}

See also:
- CVREBUILD on page 402
- Rebuild NURBS Surfaces and Curves

Type: Integer
Saved in: Registry
Initial value: 6
Sets the number of grid lines in the \(V\) direction when rebuilding a NURBS surface.

Valid values are 2 to 32767 to increase or decrease the number of \(V\) direction grid lines used to rebuild the ASM solid or surface.

\section*{RECOVERAUTO}

\section*{Quick Reference}

\author{
See also: \\ - Repair a Damaged Drawing File
}

Type: Bitcode
Saved in: Registry
Initial value: 0

Controls the display of recovery notifications before or after opening a damaged drawing file.

0 Displays a task dialog to recover damaged files while opening a drawing that needs recovery. The task dialog interrupts any running scripts.

1 Automatically recovers the damaged files, opens the drawing, and displays a task dialog with the information of the recovered files. If a script is running, the task dialog is suppressed.

2
Automatically recovers the damaged files and opens the drawing without displaying any task dialog. The information of the recovered files is displayed at the command prompt.

\section*{RECOVERYMODE}

\section*{Quick Reference}

\section*{See also:}
- Recover from a System Failure

Type: Integer
Saved in: Registry
Initial value: 2
Controls whether drawing recovery information is recorded after a system failure.

0 Recovery information is not recorded, the Drawing Recovery window does not display automatically after a system failure, and any recovery information in the system registry is removed

1 Recovery information is recorded, but the Drawing Recovery window does not display automatically after a system failure

\section*{REFEDITNAME}

\section*{Quick Reference}

\section*{See also:}

■ Edit Selected Objects in Referenced Drawings and Blocks
(Read-only)
Type: String
Saved in: Not-saved
Initial value: ""
Displays the name of the reference being edited.

\section*{REGENMODE}

\section*{Quick Reference}

See also:
- Control the Display of Polylines, Hatches, Gradient Fills, Lineweights, and Text

Type: Integer
Saved in: Drawing
Initial value: 1
Controls automatic regeneration of the drawing.
\begin{tabular}{ll}
\hline 0 & Turns off the REGENAUTO command \\
\hline 1 & Turns on the REGENAUTO command \\
\hline
\end{tabular}

\section*{RE-INIT}

\section*{Quick Reference}

See also:
■ Digitizing Tablets

Type: Integer
Saved in: Not-saved
Initial value: 0
Reinitializes the digitizer, digitizer port, and acad.pgp file.
The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
1 & Digitizer input/output port reinitialization \\
\hline 4 & Digitizer reinitialization \\
\hline 16 & PGP file reinitialization (reload)
\end{tabular}

To specify more than one reinitialization, enter the sum of the bitcode values. For example, enter 5 to specify both digitizer port (1) and digitizer reinitialization (4).

\section*{REMEMBERFOLDERS}

\section*{Quick Reference}

See also:
■ Open a Drawing
Type: Integer
Saved in: Registry
Initial value: 1
Controls the default path displayed in standard file selection dialog boxes.

0
Restores the behavior of AutoCAD 2000 and previous re-
leases. When you start the program by double-clicking a
shortcut icon, if a Start In path is specified in the icon properties, that path is used as the default for all standard file selection dialog boxes.

The default path in each standard file selection dialog box is the last path used in that dialog box. The Start In folder specified for the AutoCAD shortcut icon is not used.

\section*{RENDERPREFSSTATE}

\section*{Quick Reference}

See also:
■ Use the Render Settings Palette
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Indicates whether the Render Settings palette is open or closed.
\begin{tabular}{ll}
0 & Closed \\
\hline 1 & Open
\end{tabular}

\section*{RENDERUSERLIGHTS}

\section*{Quick Reference}

See also:
- Use the Render Settings Palette

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether to override the setting for viewport lighting during rendering.

Provides a way of overriding the DEFAULTLIGHTING system variable for rendering while retaining the setting for working in a viewport.
\(0 \quad\) The current lights in the viewport are used in the rendered scene, either default lights or user lights, as specified by the DEFAULTLIGHTING system variable.

\section*{REPORTERROR}

\section*{Quick Reference}

\section*{See also:}
- Recover from a System Failure

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether an error report can be sent to Autodesk if the program closes unexpectedly.
Error reports help Autodesk diagnose problems with the software.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
The Error Report message is not displayed, and no report \\
can be sent to Autodesk.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
The Error Report message is displayed, and an error report \\
can be sent to Autodesk.
\end{tabular}
\end{tabular}

An error report can be sent to Microsoft if REPORTERROR is set to 0 and Windows is set to allow error reports.

\section*{RIBBONCONTEXTSELECT}

\section*{Quick Reference}

\section*{See also:}
- Display and Organize the Ribbon

Type: Integer
Saved in: User-settings
Initial value: 1
Controls how ribbon contextual tabs are displayed when you single- or double-click an object.

0 When an object or selection set is single- or double-clicked, focus is not automatically switched to ribbon contextual tabs defined in contextual tab states.

1
When an object or selection set is single-clicked, focus is switched to the first ribbon contextual tab defined in contextual tab states.

2 When an object or selection set is double-clicked, focus is switched to the first ribbon contextual tab defined in contextual tab states.

\section*{RIBBONCONTEXTSELLIM}

\section*{Quick Reference}

\section*{See also:}
- Display and Organize the Ribbon

Type: Integer
Saved in: User-settings
Initial value: 2500
Limits the number of objects that can be changed at one time with the ribbon property controls or a contextual tab.

The valid range is 0 to 32767 . When set to 0 , the limit is turned off.
Selecting a large number of objects and changing them with the Properties panel or a contextual tab on the ribbon can result in slow response time. This system variable prevents such an occurrence, especially on a computer with limited memory.

If the limit is exceeded, the specified property of the selected objects will not be changed, but the setting for the current property will be changed instead.

NOTE The Properties palette is not affected by this system variable.

\section*{RIBBONDOCKEDHEIGHT}

\section*{Quick Reference}

\section*{See also:}

■ Content reference to: Display and Organize the Ribbon

Type: Integer
Saved in: Registry
Initial value: 100
Determines whether the horizontally docked ribbon is set to the height of the current tab or a predetermined height.

The valid range is from 0 to 500 . When set to 0 , the ribbon will always size itself to the height of the selected tab. When set to any value between 1 to 500 , the ribbon will always be that number of pixels high.

\section*{RIBBONSELECTMODE}

\section*{Quick Reference}

See also:
■ Content reference to: Display and Organize the Ribbon

Type: Integer
Saved in: User-settings

Initial value: 1
Determines whether a pickfirst selection set remains selected after a ribbon contextual tab is invoked and the command is completed.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
The pickfirst selection set does not remain selected \\
after a command is executed from a ribbon contextual \\
tab.
\end{tabular} \\
& \begin{tabular}{l} 
NOTE There may be exceptions for some commands. \\
mand is executed from a ribbon contextual tab.
\end{tabular} \\
\hline &
\end{tabular}

\section*{RIBBONSTATE}

\section*{Quick Reference}

See also:
- Content reference to: Overview of the Ribbon
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 1
Indicates whether the ribbon palette is open or closed.
\begin{tabular}{ll}
\hline 0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{ROAMABLEROOTPREFIX}

\section*{Quick Reference}

See also:
- Overview of File Organization
(Read-only)
Type: String
Saved in: Registry
Initial value: Varies
Stores the full path to the root folder where roamable customizable files were installed.

If you are working on a network that supports roaming, when you customize files that are in your roaming profile they are available to you regardless of which machine you are currently using.

These files are stored in the product folder under the Application Data folder; for example, "c:\Documents and Settings \username \(\backslash\) Application
Data \(\backslash\) productname \(\backslash\) version \language".

\section*{ROLLOVEROPACITY}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

■ Transparency Dialog Box on page 1373

Type: Integer
Saved in: Registry
Initial value: 100
Controls the transparency of a palette while the cursor moves over the palette.
\begin{tabular}{ll}
0 & Fully transparent \\
\hline 100 & Fully opaque \\
\hline
\end{tabular}

Enter a value from 0-100 to set the transparency level.
This system variable determines the default setting in the Transparency dialog box \(>\) Rollover section \(>\) How transparent should the palette be on mouse-over? option on page 1373.

\section*{ROLLOVERTIPS}

\section*{Quick Reference}

See also:
■ Set Interface Options

Type: Integer
Saved in: Registry
Initial value: 1
Controls the display of rollover tooltips in the application.
The content in tooltips can be customized in the Customize User Interface (CUI) Editor.
\begin{tabular}{ll}
\hline 0 & Object rollover tooltips are not displayed \\
\hline 1 & Object rollover tooltips are displayed
\end{tabular}

ROLLOVERTIPS is saved in the current profile.

\section*{RTDISPLAY}

\section*{Quick Reference}

See also:
■ Pan or Zoom a View

Type: Integer
Saved in: Registry
Initial value: 1
Controls the display of raster images and OLE objects during Realtime ZOOM or PAN.
\begin{tabular}{ll}
\hline 0 & Displays raster image and OLE content \\
\hline 1 & Displays outline only \\
\hline
\end{tabular}

RTDISPLAY is saved in the current profile.

\title{
S System Variables
}

\section*{SAVEFIDELITY}

\section*{Quick Reference}

See also:
- Save a Drawing

Type: Bitcode
Saved in: Registry
Initial value: 1
Controls whether the drawing is saved with visual fidelity.
The setting is stored as a bitcode using the sum of the following values:

0
Saved without visual fidelity.

1 Annotation objects assigned annotative scales are saved to separate layers for each scale used. Only affects drawings when saving to AutoCAD 2007 or earlier file formats.

See also:
■ Save with Visual Fidelity for Annotative Objects

\section*{SAVEFILE}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area
(Read-only)
Type: String
Saved in: Registry
Initial value: Varies
Stores the current automatic save file name.

\section*{SAVEFILEPATH}

\section*{Quick Reference}

See also:
- Set Up the Drawing Area

Type: \(\quad\) String
Saved in: Registry
Initial value: Varies
Specifies the path to the directory for all automatic save files for the current session.

You can also change the path on the Files tab in the Options dialog box.

\section*{SAVENAME}

\section*{Quick Reference}

See also:
- Obtain General Drawing Information
(Read-only)
Type: String
Saved in: Not-saved
Initial value: ""
Displays the file name and directory path of the most recently saved drawing.

\section*{SAVETIME}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Type: Integer
Saved in: Registry
Initial value: 10
Sets the automatic save interval, in minutes.
\begin{tabular}{ll}
\hline 0 & Turns off automatic saving. \\
\hline\(>0\) & \begin{tabular}{l} 
Saves the drawing at intervals specified by the nonzero \\
integer automatically
\end{tabular} \\
\hline
\end{tabular}

The value of SAVETIME is an integer between 0 and 600.
The SAVETIME timer starts as soon as you make a change to a drawing. It is reset and restarted by a manual QSAVE, SAVE, or SAVEAS. The current drawing is saved to the path specified by the SAVEFILEPATH system variable. The file name is stored in the SAVEFILE system variable.

\section*{SCREENBOXES}

\section*{Quick Reference}

See also:
- Create Screen Menus
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Stores the number of boxes in the screen menu area of the drawing area.
If the screen menu is turned off, SCREENBOXES is zero. On platforms that permit the drawing area to be resized or the screen menu to be reconfigured during an editing session, the value of this variable might change during the editing session.

\section*{SCREENMENU}

\section*{Quick Reference}

\section*{See also:}

■ Display Tab (Options Dialog Box) on page 1321
```

Type: Switch
Saved in: Registry
Initial value: 0

```
Controls whether screen menus display.
\begin{tabular}{ll}
\hline 0 & Screen menus off \\
\hline 1 & Screen menus on
\end{tabular}

This system variable determins the default setting in the Options dialog box \(>\) Display tab \(>\) Windows Elements section \(>\) Display screen menu option on page 1323.

\section*{SCREENMODE}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 3
Indicates the state of the display.
The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & Text screen is displayed \\
\hline 1 & Drawing area is displayed \\
\hline 2 & Dual-screen display is configured \\
\hline
\end{tabular}

\section*{SCREENSIZE}

\section*{Quick Reference}

See also:
- Switch Between Model Space and Layouts
(Read-only)
Type: 2D-point
Saved in: Not-saved
Initial value: Varies
Stores current viewport size in pixels ( X and Y ).

\section*{SELECTIONANNODISPLAY}

\section*{Quick Reference}

See also:
- Display Annotative Objects

Type: Integer
Saved in: Registry
Initial value: 1

Controls whether alternate are temporarily displayed in a dimmed state when an object is selected
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On \\
\hline
\end{tabular}

The dimming intensity is controlled by the XFADECTL system variable.

\section*{SELECTIONAREA}

\section*{Quick Reference}

See also:
- Customize Object Selection

Type: Integer
Saved in: Registry
Initial value: 1
Controls the display of effects for selection areas.
Selection areas are created by the Window, Crossing, WPolygon, and CPolygon options of SELECT.
\begin{tabular}{ll}
0 & Off \\
\hline 1 & On \\
\hline
\end{tabular}

\section*{SELECTIONAREAOPACITY}

\section*{Quick Reference}

See also:
- Customize Object Selection
\(\begin{array}{ll}\text { Type: } & \text { Integer } \\ \text { Saved in: } & \text { Registry }\end{array}\)

2504 | Chapter 44 S System Variables

Initial value: 25
Controls the transparency of the selection area during window and crossing selection.

The valid range is 0 to 100 . The lower the setting, the more transparent the area. A value of 100 makes the area opaque. The SELECTIONAREA system variable must be on.

\section*{SELECTIONCYCLING}

\section*{Quick Reference}

See also:
- Select Objects Individually
- Use 3D Subobject Grips
- Modify 3D Subobjects

Type: Integer
Saved in: Registry
Initial value: 2
Turns selection cycling on and off.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On (the list dialog does not display) \\
\hline 2 & \begin{tabular}{l} 
On (the list dialog displays the selected objects that you \\
can cycle through)
\end{tabular} \\
\hline
\end{tabular}

\section*{SELECTIONPREVIEW}

\section*{Quick Reference}

See also:
- Customize Object Selection
```

Type: Bitcode
Saved in: Registry
Initial value: 3
Controls the display of selection previewing
Objects are highlighted when the pickbox cursor rolls over them. This selection previewing indicates that the object would be selected if you clicked. The setting is stored as a bitcode using the sum of the following values:

```
\(0 \quad\) Off
\begin{tabular}{ll}
1 & On when no commands are active \\
\hline 2 & On when a command prompts for object selection
\end{tabular}

\section*{SELECTSIMILARMODE}

\section*{Quick Reference}

See also:
- Select Objects by Properties

Type: Bitcode
Saved in: User-settings
Initial value: 130
Controls which properties must match for an object of the same type to be selected with SELECTSIMILAR.

The default value is 130 . Objects of the same type are considered similar if they are on the same layer, and, for referenced objects, have the same name.
The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & Object type \\
\hline 1 & Color \\
\hline 2 & Layer \\
\hline 4 & Linetype \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline 8 & Linetype scale \\
\hline 16 & Lineweight \\
\hline 32 & Plot style \\
\hline 64 & \begin{tabular}{l} 
Object style (such as text styles, dimension styles, and \\
table styles)
\end{tabular} \\
\hline 128 & \begin{tabular}{l} 
Name (for referenced objects, such as blocks, xrefs, and \\
images)
\end{tabular} \\
\hline
\end{tabular}

\section*{SETBYLAYERMODE}

\section*{Quick Reference}

\section*{See also:}
- Display and Change the Properties of Objects

Type: Integer
Saved in: Registry
Initial value: 255
Controls which properties are selected for the SETBYLAYER command.
The setting is stored as an integer using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & No properties are selected \\
\hline 1 & Color property \\
\hline 2 & Linetype property \\
\hline 4 & Lineweight property \\
\hline 8 & Material property \\
\hline 16 & Plot Style property \\
\hline 32 & Changes ByBlock to ByLayer \\
\hline
\end{tabular}
\begin{tabular}{ll}
64 & Includes blocks when changing ByBlock to ByLayer \\
\hline 128 & Transparency property \\
\hline
\end{tabular}

\section*{SHADEDGE}

\section*{Quick Reference}

See also:
See also:
■ Use a Visual Style to Display Your Model

Type: Integer
Saved in: Drawing
Initial value: 3
Controls the shading of edges in rendering.
\begin{tabular}{ll}
\hline 0 & Faces shaded, edges not highlighted \\
\hline 1 & Faces shaded, edges drawn in background color \\
\hline 2 & Faces not filled, edges in object color \\
\hline 3 & Faces in object color, edges in background color
\end{tabular}

\section*{SHADEDIF}

\section*{Quick Reference}

See also:
See also:
■ Use a Visual Style to Display Your Model

Type: Integer

\section*{Saved in: Drawing}

\section*{Initial value: 70}

Sets the ratio of diffuse reflective light to ambient light.
The ratio is a percentage of diffuse reflective light when SHADEDGE is set to 0 or 1 .

\section*{SHADOWPLANELOCATION}

\section*{Quick Reference}

\section*{See also:}
- Display Backgrounds and Shadows

Type: Real
Saved in: Drawing
Initial value: 0.0000
Controls the location of an invisible ground plane used to display shadows.
The value is a location on the current Z axis. The ground plane is invisible, but it casts and receives shadows. Objects that are located below the ground plane are shadowed by it. The ground plane is used when the VSSHADOWS system variable is set to display either full shadows or ground shadows.

\section*{SHORTCUTMENU}

\section*{Quick Reference}

\section*{See also:}
- Set Up the Drawing Area

Type: Integer
Saved in: Registry
Initial value: 11
Controls whether Default, Edit, and Command mode shortcut menus are available in the drawing area.

The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Disables all Default, Edit, and Command mode shortcut \\
menus, restoring AutoCAD Release 14 behavior.
\end{tabular} \\
\hline 1 & Enables Default mode shortcut menus. \\
\hline 2 & \begin{tabular}{l} 
Enables Edit mode shortcut menus. \\
command is active.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Enables Command mode shortcut menus only when \\
command options are currently available at the Command \\
prompt.
\end{tabular} \\
\hline 16 & \begin{tabular}{l} 
Enables display of a shortcut menu when the right button \\
on the pointing device is held down longer
\end{tabular} \\
\hline
\end{tabular}

\section*{SHOWHIST}

\section*{Quick Reference}

\section*{See also:}

■ Display Original Forms of Composite Solids

Type: Integer
Saved in: Drawing
Initial value: 1
Controls the Show History property for solids in a drawing.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Sets the Show History property to No (read-only) for all \\
solids. Overrides the individual Show History property \\
settings for solids. You cannot view the original objects \\
that were used to create the solid.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Does not override the individual Show History property \\
settings for solids.
\end{tabular} \\
\hline
\end{tabular}

\section*{SHOWLAYERUSAGE}

\section*{Quick Reference}

See also:
- Overview of Layers

Type: Integer
Saved in: Registry
Initial value: 0
Displays icons in the Layer Properties Manager to indicate whether layers are in use.

Setting this system variable to Off improves performance in the Layer Properties Manager.
\(0 \quad\) Off
1 On

\section*{SHOWMOTIONPIN}

\section*{Quick Reference}

See also:
■ Content reference to: Overview of ShowMotion

Type: Integer
Saved in: Registry
Initial value: 1

Controls the default state of the thumbnail shots.
\begin{tabular}{ll}
0 & Displays thumbnail shots in an unpinned state \\
\hline 1 & Displays thumbnail shots in a pinned state
\end{tabular}

\section*{SHOWPALETTESTATE}

\section*{Quick Reference}

See also:
- Set Interface Options
(Read-only)
Type: Integer
Saved in: Registry
Initial value: 1
Indicates whether the palettes, including the ribbon and the Command window, are displayed or hidden.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Indicates that the palettes, including the ribbon and the \\
Command window, are hidden
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Indicates that the palettes, including the ribbon and the \\
Command window, are displayed
\end{tabular} \\
\hline
\end{tabular}

\section*{SHPNAME}

\section*{Quick Reference}

See also:
- Shape Descriptions

Type: String
Saved in: Not-saved Initial value: " "

Sets a default shape name that must conform to symbol- naming conventions.
If no default is set, it returns "". Enter a period (.) to set no default.

\section*{SIGWARN}

\section*{Quick Reference}

\section*{See also:}
- View Digital Signature Details

\section*{Type: Integer \\ Saved in: Registry \\ Initial value: 1}

Controls whether a warning is presented when a file with an attached digital signature is opened.
If the system variable is on and you open a file with a valid signature, the digital signature status is displayed. If the variable is off and you open a file, the digital signature status is displayed only if a signature is invalid. You can set the variable using the Display Digital Signature Information option on the Open and Save tab of the Options dialog box.
\(0 \quad\) Warning is not presented if a file has a valid signature
1 Warning is presented

\section*{SKETCHINC}

\section*{Quick Reference}

See also:
- Draw Freehand Sketches

Type: Real
Saved in: Drawing
Initial value: 0.1000 (imperial) or 1.0000 (metric)

Sets the record increment for the SKETCH command.

\section*{SKPOLY}

\section*{Quick Reference}

See also:
- Draw Freehand Sketches

Type: Integer
Saved in: Drawing
Initial value: 0
Determines whether the SKETCH command generates lines, polylines, or splines.
\begin{tabular}{ll}
\hline 0 & Generates lines \\
\hline 1 & Generates polylines \\
\hline 2 & Generates splines
\end{tabular}

\section*{SKTOLERANCE}

\section*{Quick Reference}

See also:
- Draw Freehand Sketches

Type: Real
Saved in: Drawing
Initial value: 0.5
Determines how closely the spline fits to the freehand sketch.
Valid values are between 0 and 1 .

\section*{SKYSTATUS}

\section*{Quick Reference}

\section*{See also:}
- Sun and Sky Simulation

Type: Integer
Saved in: Drawing
Initial value: 0
Determines if the sky illumination is computed at render time.
This has no impact on the viewport illumination or the background. It only makes the sky available as a gathered light source for rendering.
\begin{tabular}{ll}
\hline 0 & Sky off \\
\hline 1 & Sky background \\
\hline 2 & Sky background and illumination
\end{tabular}

\section*{SMOOTHMESHCONVERT}

\section*{Quick Reference}

See also:
- Create 3D Solids from Objects

Type: Bitcode
Saved in: User-settings
Initial value: 0
Sets whether mesh objects that you convert to 3D solids or surfaces are smoothed or faceted, and whether their faces are merged.
\(0 \quad\) Creates a smooth model. Coplanar faces are optimized, or merged.

1 Creates a smooth model. Original mesh faces are retained in the converted object.

2
Creates a model with flattened faces. Coplanar faces are optimized, or merged.

3
Creates a model with flattened faces. Original mesh faces are retained in the converted object.

This system variable sets the default value for operations that use CONVTOSOLID and CONVTOSURFACE commands.

\section*{SMOOTHMESHGRID}

\section*{Quick Reference}

\section*{See also:}

■ Change Mesh Smoothness Levels
```

Type: Integer
Saved in: User-settings
Initial value: 3

```

Sets the maximum level of smoothness at which the underlying mesh facet grid is displayed on 3D mesh objects.
\begin{tabular}{ll}
\hline 0 & Never displays the underlying mesh facet grid \\
\hline 1 & Displays the facet grid for smoothing levels 0 and 1 \\
\hline 2 & Displays the facet grid for smoothing levels 2 and lower \\
\hline 3 & Displays the facet grid for levels 3 and lower \\
\hline
\end{tabular}

Use this variable to help visualize smooth surfaces. By setting limits, you can simplify the display of the underlying facet grid when you work with extremely dense mesh objects.

You can enter any number, depending on the number of smoothing levels you expect. This variable does not affect the smoothing level of the mesh. Its value cannot exceed the value of SMOOTHMESHMAXLEV.

If the VSLIGHTINGQUALITY system variable is 0 , this system variable is ignored and all smoothness levels are displayed as faceted.

\section*{SMOOTHMESHMAXFACE}

\section*{Quick Reference}

\section*{See also:}
- Change Mesh Smoothness Levels

Type: Integer
Saved in: User-settings
Initial value: 1000000
Sets the maximum number of faces permitted for mesh objects.
The initial value of this system variable is adjusted for best performance based on your system configuration. Permissible values are from 1 to \(16,000,000\).
Use this limit to prevent creating extremely dense meshes that might affect program performance.

\section*{SMOOTHMESHMAXLEV}

\section*{Quick Reference}

See also:
- Change Mesh Smoothness Levels

Type: Integer
Saved in: User-settings
Initial value: 4
Sets the maximum smoothness level for mesh objects.
Permissible values are from 1 to 255 . The recommended range is \(1-5\). Use this limit to prevent creating extremely dense meshes that might affect program performance.

\section*{SNAPANG}

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap

\section*{Type: Real}

Saved in: Drawing
Initial value: 0.0000
Sets the snap and grid rotation angle for the current viewport relative to the current UCS.

When SNAPANG is set to a value other than 0 , the lined grid will not display.

\section*{SNAPBASE}

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap

Type: 2D-point
Saved in: Drawing
Initial value: \(0.0000,0.0000\)
Sets the snap and grid origin point for the current viewport relative to the current UCS.

\section*{SNAPISOPAIR}

\section*{Quick Reference}

See also:
■ Set Isometric Grid and Snap

Type: Integer
Saved in: Drawing
Initial value: 0
Controls the isometric plane for the current viewport.
\begin{tabular}{ll}
\hline 0 & Left \\
\hline 1 & Top \\
\hline 2 & Right \\
\hline
\end{tabular}

\section*{SNAPMODE}

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap

Type: Integer
Saved in: Drawing
Initial value: 0
Turns the Snap mode on and off.

0 Snap off

1 Snap on for the current viewport

SNAPSTYL

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap

Type: Integer
Saved in: Drawing

Initial value: 0
Sets the snap style for the current viewport.
\begin{tabular}{ll}
\hline 0 & Standard (rectangular snap) \\
\hline 1 & Isometric snap \\
\hline
\end{tabular}

\section*{SNAPTYPE}

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap

Type: Integer
Saved in: Registry
Initial value: 0
Sets the type of snap for the current viewport.
\begin{tabular}{ll}
0 & Grid, or standard snap. \\
\hline 1 & \begin{tabular}{l} 
PolarSnap. Snaps along polar angle increments. Use Po- \\
larSnap with polar and object snap tracking.
\end{tabular} \\
\hline
\end{tabular}

\section*{SNAPUNIT}

\section*{Quick Reference}

See also:
- Adjust Grid and Grid Snap

Type: 2D-point
Saved in: Drawing
Initial value: \(0.5000,0.5000\) (imperial) or 10.0000,10.0000 (metric)
Sets the snap spacing for the current viewport.

If SNAPSTYL is set to 1 , the X value of SNAPUNIT is adjusted automatically to accommodate the isometric snap.

Changes to this system variable are not reflected in the grid until the display is refreshed.

\section*{SOLIDCHECK}

\section*{Quick Reference}

\section*{See also: \\ - Clean and Check 3D Solids}
```

Type: Integer
Saved in: Not-saved
Initial value: 1

```

Turns 3D solid validation on and off for the current session.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On
\end{tabular}

\section*{SOLIDHIST}

\section*{Quick Reference}

\section*{See also:}

■ Display Original Forms of Composite Solids

Type: Integer
Saved in: Drawing
Initial value: 1
Controls the default history property setting for solid objects.

When set to 1 , composite solids retain a "history" of the original objects contained in the composite.
\(0 \quad\) Sets the History property to None for all solids. No history is retained.

1 Sets the History property to Record for all solids. All solids retain a history of their original objects.

\section*{SORTENTS}

\section*{Quick Reference}

\section*{See also:}

■ Control How Overlapping Objects Are Displayed

Type: Integer
Saved in: Drawing
Initial value: 127
Controls object sorting in support of draw order for several operations.
The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & Turns off all object sorting \\
\hline 1 & Sorts for object selection \\
\hline 2 & Sorts for object snaps \\
\hline 4 & Obsolete, has no effect \\
\hline 8 & Obsolete, has no effect \\
\hline 16 & Sorts for REGEN commands \\
\hline 32 & Sorts for plotting \\
\hline 64 & Obsolete, has no effect \\
\hline
\end{tabular}

\section*{SPLDEGREE}

\section*{Quick Reference}
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 3
Stores the last-used degree setting for splines and sets the default degree setting for the SPLINE command when specifying control vertices.

Enter a value from 1 to 5 .

NOTE SPLDEGREE defaults to 3 when AutoCAD starts.

\section*{SPLFRAME}

\section*{Quick Reference}

See also:
■ Overview of Creating Meshes

Type: Integer
Saved in: Drawing
Initial value: 0
Controls the display of helixes and smoothed mesh objects.

0 ■ Does not display the control polygon for helixes.
- Displays smoothed mesh objects if they have been smoothed.
- Does not display the invisible edges of 3D faces or polyface meshes.

1
Displays the control polygon for helixes.
■ Displays unsmoothed mesh objects, even if they have been smoothed.
- Displays the edges of 3D faces and polyface meshes.

NOTE To control the display for splines, use the CVSHOW on page 407 and the CVHIDE on page 401 commands.

\section*{SPLINESEGS}

\section*{Quick Reference}

See also:
- Modify Polylines

\begin{abstract}
Type: Integer
Saved in: Drawing
Initial value: 8
Sets the number of line segments to be generated for each spline-fit polyline generated by the Spline option of the PEDIT command.

Enter a non-zero integer between -32768 to 32767. If you set SPLINESEGS to a negative value, segments are generated using the absolute value of the setting and then a fit-type curve is applied to those segments. Fit-type curves use arcs as the approximating segments. Using arcs yields a smoother generated curve when few segments are specified, but the curve can take longer to generate.
\end{abstract}

\section*{SPLINETYPE}

\section*{Quick Reference}

See also:
■ Modify Polylines

Type: Integer
Saved in: Drawing
Initial value: 6
Sets the type of curve generated by the Spline option of the PEDIT command.
\begin{tabular}{ll}
5 & Quadratic B-spline \\
\hline 6 & Cubic B-spline
\end{tabular}

\section*{SPLKNOTS}

\section*{Quick Reference}

\section*{Type: Integer \\ Saved in: Not-saved \\ Initial value: 0}

Stores the last-used knot parameterization for splines and sets the default knot setting for the SPLINE command when specifying fit points.
\begin{tabular}{ll}
0 & Chord \\
\hline 1 & Square root chord \\
\hline 2 & Uniform
\end{tabular}

NOTE SPLKNOTS always defaults to 0 when AutoCAD starts.

\section*{SPLMETHOD}

\section*{Quick Reference}

Type: Integer
Saved in: Not-saved
Initial value: 0
Stores the last-used spline method and sets the default method for the SPLINE command.
\begin{tabular}{ll}
\hline 0 & Fit \\
\hline 1 & Control Vertices
\end{tabular}

NOTE SPLMETHOD always defaults to 0 when AutoCAD starts.

\section*{SSFOUND}

\section*{Quick Reference}

\section*{See also:}
- Publish, Transmit, and Archive Sheet Sets
(Read-only)
Type: String
Saved in: Not-saved
Initial value: ""
Displays the sheet set path and file name if a search for a sheet set is successful.
SSLOCATE must be set to 1 and the drawing file must be open for a successful search.

\section*{SSLOCATE}

\section*{Quick Reference}

See also:
■ Create and Modify Sheets

Type: Integer
Saved in: User-settings Initial value: 1
Controls whether the sheet set associated with a drawing is located and opened when the drawing is opened.
\begin{tabular}{ll}
0 & Does not open a drawing's sheet set with the drawing \\
\hline 1 & Opens a drawing's sheet set with the drawing \\
\hline
\end{tabular}

SSMAUTOOPEN and SSLOCATE must both be set to 1 to open a sheet set automatically in the Sheet Set Manager.

\section*{SSMAUTOOPEN}

\section*{Quick Reference}

See also:
- Create and Modify Sheets

Type: Integer
Saved in: User-settings
Initial value: 1
Controls the display behavior of the Sheet Set Manager when a drawing associated with a sheet is opened.

0 Does not open the Sheet Set Manager automatically
1
Opens the Sheet Set Manager automatically

SSMAUTOOPEN and SSLOCATE must both be set to 1 to open a sheet set automatically in the Sheet Set Manager.

\section*{SSMPOLLTIME}

\section*{Quick Reference}

See also:
■ Create and Modify Sheets

Type: Integer
Saved in: Registry
Initial value: 60
Controls the time interval between automatic refreshes of the status data in a sheet set.

The SSMPOLLTIME timer sets the time in seconds between automatic refreshes of the status data of sheets in a sheet set. Valid values are 20-600. The SSMSHEETSTATUS system variable must be set to 2 for the timer to operate.

\section*{SSMSHEETSTATUS}

\section*{Quick Reference}

\section*{See also:}
- Create and Modify Sheets

Type: Integer
Saved in: Registry
Initial value: 2
Controls how the status data in a sheet set is refreshed.
The status data for sheets in the current sheet set includes whether a sheet is locked and whether a sheet is missing (or found in an unexpected location). This status data can be updated automatically for all sheets.

To refresh the sheet set manually, use the Refresh Sheet Status button on the Sheet List tab of the Sheet Set Manager.

0 Do not automatically refresh the status data in a sheet set
1 Refresh the status data when the sheet set is loaded or updated

2 Refresh the status data when the sheet set is loaded or updated, or at a time interval set by SSMPOLLTIME

\section*{SSMSTATE}

\section*{Quick Reference}

See also:
■ Create a Sheet Set
(Read-only)
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Not-saved \\
Initial value: & Varies
\end{tabular}

Indicates whether the Sheet Set Manager window is open or closed.
\begin{tabular}{ll}
0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{STANDARDSVIOLATION}

\section*{Quick Reference}

\section*{See also:}

■ Overview of CAD Standards

Type: Integer
Saved in: Registry
Initial value: 2
Specifies whether a user is notified of standards violations in the current drawing when a nonstandard object is created or modified.

Changes to the value of this system variable take effect only when Display Icons from Services is checked in the Tray Settings dialog box. To display the Tray Settings dialog box, click the down arrow at the right end of the tray on the status bar, and then click Tray Settings on the shortcut menu.
\begin{tabular}{ll}
\hline 0 & Notification is turned off \\
\hline 1 & \begin{tabular}{l} 
An alert is displayed when a standards violation occurs in \\
the drawing
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
An icon is displayed in the status bar tray when you open \\
a file associated with a standards file and when you create \\
or modify nonstandard objects
\end{tabular} \\
\hline
\end{tabular}

\section*{STARTUP}

\section*{Quick Reference}

See also:
- Start a Drawing from Scratch

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether the Create New Drawing dialog box is displayed when a new drawing is started with NEW or QNEW.

Also controls whether the Startup dialog box is displayed when the application is started.

If the FILEDIA system variable is set to 0 , file dialog boxes are not displayed.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Displays the Select Template dialog box, or uses a default \\
drawing template file set in the Options dialog box, on \\
the Files tab.
\end{tabular} \\
1 & \begin{tabular}{l} 
Displays the Startup and the Create New Drawing dialog \\
boxes
\end{tabular}
\end{tabular}

\section*{STATUSBAR}

\section*{Quick Reference}

See also:
- Application Status Bar

Type: Integer
Saved in: Registry
Initial value: 1
Controls the display of the application and drawing status bars
\(0 \quad\) Hides both the application and drawing status bars
\begin{tabular}{ll}
1 & Displays only the application status bar \\
\hline 2 & Displays both the application and drawing status bars \\
\hline 3 & Displays only the drawing status bar \\
\hline
\end{tabular}

\section*{STEPSIZE}

\section*{Quick Reference}

See also:
■ Walk and Fly Through a Drawing

Type: Real
Saved in: Drawing
Initial value: 6.0000
Specifies the size of each step when in walk or fly mode, in drawing units.
You can enter any real number from 1E-6 to 1E+6.

\section*{STEPSPERSEC}

\section*{Quick Reference}

\section*{See also:}

■ Walk and Fly Through a Drawing

Type: Real
Saved in: Drawing
Initial value: 2.0000
Specifies the number of steps taken per second when you are in walk or fly mode.
You can enter any real number from 1 to 30 .

\section*{SUBOBJSELECTIONMODE}

\section*{Quick Reference}

\section*{See also:}
- Cycle Through and Filter Subobjects

■ LEGACYCTRLPICK on page 2386

Type: Integer
Saved in: Not-saved
Initial value: 0
Filters whether faces, edges, vertices or solid history subobjects are highlighted when you roll over them.

In busy 3D environments with many objects, it can be helpful to filter certain subobjects out of the selection highlighting.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
When subobject filtering is off, press Ctrl+click to select a face, edge, vertex or \\
a history subobject. (Shift + F1)
\end{tabular} \\
\hline 1 & Only vertices are available for selection (Shift + F2) \\
\hline 2 & Only edges are available for selection. (Shift + F3) \\
\hline 3 & Only faces are available for selection. (Shift + F4) \\
\hline 4 & \begin{tabular}{l} 
Only history subobjects of compound objects are available for selection. (Shift \\
+ F5)
\end{tabular}
\end{tabular}

Turn off subobject filtering if you want to select the entire object. You can also press Ctrl+click to select faces, edges, and vertices.


When filtering is set for vertices, you cannot select faces, edges, or history subobjects.


When filtering is set for edges, you cannot select faces, vertices, or history subobjects.


When filtering is set for faces, you cannot select edges, vertices, or history subobjects.


When filtering is set for history subobjects, you can only select the wireframe representations of portions of objects removed during a union, subtract, or intersect operation.


\section*{Subobject Selection Filter Cursors}

When a subobject selection filter is set, the following images are displayed next to the cursor:

\(\qquad\)

\section*{SUNPROPERTIESSTATE}

\section*{Quick Reference}

See also:
- Sun and Sky Simulation
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Indicates whether the Sun Properties window is open or closed.
\begin{tabular}{ll}
\hline 0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{SUNSTATUS}

\section*{Quick Reference}

See also:
- Sun and Sky Simulation

Type: Integer
Saved in: Drawing
Initial value: 0
Turns on and off the lighting effects of the sun in the current viewport.
Only the lights from sources other than the sun affect the view in the current viewport.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On
\end{tabular}

\section*{SURFACEASSOCIATIVITY}

\section*{Quick Reference}

See also:
■ Create Surfaces from Objects

Type: Integer
Saved in: Drawing
Initial value: 1
Controls whether surfaces maintain a relationship with the objects from which they were created.

When associativity is on, surfaces automatically adjust to modifications made to other, related surfaces.
\begin{tabular}{ll}
\hline 0 & Surfaces are created with no associativity to other surfaces \\
\hline 1 & Surfaces are created with associativity to other surfaces \\
\hline
\end{tabular}

When set to 1 , the DELOBJ on page 2216 system variable is ignored. Defining geometry are not deleted when an associative surface is created.

\section*{SURFACEASSOCIATIVITYDRAG}

\section*{Quick Reference}

See also:
- Create Associative Surfaces

Type: Switch
Saved in: Registry
Initial value: 1
Sets the dragging preview behavior of associative surfaces to increase performance.

Controls whether to preview the movement of all related associative surfaces when a related object. Disabling the preview can increase performance.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Displays no preview. The display refreshes after dragging is \\
complete.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Previews only the movement of the first associated surface. \\
All other associated surfaces do not move until after dragging \\
is complete.
\end{tabular} \\
\hline 2 & Previews the movement of all associated surfaces. \\
\hline
\end{tabular}

\section*{SURFACEAUTOTRIM}

\section*{Quick Reference}

See also:
■ Trim and Untrim Surfaces

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether surfaces are automatically trimmed when you project geometry onto them.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Surfaces are not trimmed when you project geometry \\
onto them.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Surfaces are automatically trimmed to geometry that is \\
projected using PROJECTGEOMETRY on page 1533.
\end{tabular} \\
\hline
\end{tabular}

\section*{SURFACEMODELINGMODE}

\section*{Quick Reference}

See also:
- Create Solids and Surfaces from Lines and Curves
- Create Surfaces

Type: Switch
Saved in: Not-saved
Initial value: 0
Controls whether surfaces are created as procedural surfaces or NURBS surfaces.
\(0 \quad\) Creates a procedural surface when creating surfaces.

1
Creates a NURBS surface when creating surfaces.

\section*{SURFTAB1}

\section*{Quick Reference}

See also:
■ Construct Meshes from Other Objects

Type: Integer
Saved in: Drawing
Initial value: 6
Sets the number of tabulations to be generated for the RULESURF and TABSURF commands.

Also sets the mesh density in the M direction for the REVSURF and EDGESURF commands.

\section*{SURFTAB2}

\section*{Quick Reference}

See also:
■ Construct Meshes from Other Objects

Type: Integer
Saved in: Drawing
Initial value: 6
Sets the mesh density in the N direction for the REVSURF and EDGESURF commands.

\section*{SURFTYPE}

\section*{Quick Reference}

See also:
- Modify Polylines

Type: Integer
Saved in: Drawing
Initial value: 6
Controls the type of surface-fitting to be performed by the Smooth option of the PEDIT command.
\begin{tabular}{ll}
\hline 5 & Quadratic B-spline surface \\
\hline 6 & Cubic B-spline surface \\
\hline 8 & Bezier surface \\
\hline
\end{tabular}

\section*{SURFU}

\section*{Quick Reference}

\section*{See also:}
- Modify Polylines

\section*{Type: Integer \\ Saved in: Drawing \\ Initial value: 6}

Sets the surface density for PEDIT Smooth in the \(M\) direction and the \(U\) isolines density on surface objects.
Valid values are 0 through 200. Meshes are always created with a minimum surface density of 2 .

\section*{SURFV}

\section*{Quick Reference}

\author{
See also: \\ ■ Modify Polylines
}

Type: Integer
Saved in: Drawing Initial value: 6
Sets the surface density for PEDIT Smooth in the N direction and the V isolines density on surface objects.

Valid values are 0 through 200. Meshes are always created with a minimum surface density of 2 .

\section*{SYSCODEPAGE}

\section*{Quick Reference}

See also:
■ Use Text Fonts for International Work
(Read-only)
Type: String
Saved in: Not-saved
Initial value: Varies
Indicates the system code page, which is determined by the operating system.
To change the code page, see Help in your operating system.

\title{
T System Variables
}

\section*{TABLEINDICATOR}

\section*{Quick Reference}

See also:
- Create and Modify Tables
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Registry
\end{tabular}

Saved in: Registry
Initial value: 1
Controls the display of row numbers and column letters when the In-Place Text Editor is open for editing a table cell.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On \\
\hline
\end{tabular}

\section*{TABLETOOLBAR}

\section*{Quick Reference}

See also:
- Create and Modify Tables

Type: Integer
Saved in: Registry
Initial value: 2
Controls the display of the Table toolbar.
\begin{tabular}{ll}
\hline 0 & The Table toolbar is never displayed. \\
\hline 1 & \begin{tabular}{l} 
The Table toolbar is displayed upon selection of a table \\
cell.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
The Table toolbar is not displayed when the ribbon is \\
turned on.
\end{tabular} \\
\hline
\end{tabular}

\section*{TABMODE}

\section*{Quick Reference}

See also:
- Digitizing Tablets

Type: Integer
Saved in: Not-saved
Initial value: 0
Controls the use of the tablet.
For more information on using and configuring a tablet, see the TABLET command.
\begin{tabular}{ll}
0 & Off \\
\hline 1 & On \\
\hline
\end{tabular}

\section*{TARGET}

\section*{Quick Reference}

\section*{See also:}
- Overview of Parallel and Perspective Views
(Read-only)
Type: 3D-point
Saved in: Drawing
Initial value: \(0.0000,0.0000,0.0000\)
Stores the location (as a UCS coordinate) of the target point for the current viewport.

\section*{TBCUSTOMIZE}

\section*{Quick Reference}

\author{
See also: \\ ■ Customize Tool Palettes
}
\begin{tabular}{ll} 
Type: & Switch \\
Saved in: & Registry \\
Initial value: 1
\end{tabular}

Initial value: 1
Controls whether tool palette groups can be customized.
Controls whether the CUSTOMIZE command is enabled or disabled for tool palette group customization, and if the Customize option from the toolbar shortcut menu is displayed or not.
\begin{tabular}{ll}
\hline 0 & Disables access to customization \\
\hline 1 & Enables access to customization \\
\hline
\end{tabular}

\section*{TDCREATE}

\section*{Quick Reference}

See also:
- Add Identifying Information to Drawings
(Read-only)
Type: Real
Saved in: Drawing
Initial value: Varies
Stores the local time and date the drawing was created.

\section*{TDINDWG}

\section*{Quick Reference}

See also:
- Add Identifying Information to Drawings
(Read-only)
Type: Real
Saved in: Drawing
Initial value: Varies
Stores the total editing time, which is the total elapsed time between saves of the current drawing.

The format is:
<number of days>.<decimal fraction of a day>
To compute the number of seconds, multiply the decimal fraction in TDINDWG by 86400 seconds.

\section*{TDUCREATE}

\section*{Quick Reference}
```

See also:

- Add Identifying Information to Drawings
(Read-only)
Type: Real
Saved in: Drawing
Initial value: Varies
Stores the universal time and date that the drawing was created.

```

\section*{TDUPDATE}

\section*{Quick Reference}

See also:
- Add Identifying Information to Drawings
(Read-only)
Type: Real
Saved in: Drawing
Initial value: Varies
Stores the local time and date of the last update/save.
TDUSRTIMER

\section*{Quick Reference}
```

See also:
■ Add Identifying Information to Drawings
(Read-only)
Type: Real

```

Saved in: Drawing
Initial value: Varies
Stores the user-elapsed timer.

\section*{TDUUPDATE}

\section*{Quick Reference}

See also:
- Add Identifying Information to Drawings
(Read-only)
Type: Real
Saved in: Drawing
Initial value: Varies
Stores the universal time and date of the last update or save.

\section*{TEMPOVERRIDES}

\section*{Quick Reference}

See also:
■ Override Object Snap Settings

Type: Integer
Saved in: Registry
Initial value: 1
Turns temporary override keys on and off.
A temporary override key is a key that you can hold down to temporarily turn on or turn off one of the drawing aids that are set in the Drafting Settings dialog box; for example, Ortho mode, object snaps, or Polar mode.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On \\
\hline
\end{tabular}

2548 | Chapter 45 T System Variables

\section*{TEMPPREFIX}

\section*{Quick Reference}

See also:
- Specify Search Paths and File Locations
(Read-only)
Type: String
Saved in: Not-saved
Initial value: Varies
Contains the directory name (if any) configured for placement of temporary files, with a path separator appended.

Windows has a character limit of 255 for the combined file name and path length of temporary files. You can modify this limit from the Options dialog box, Files tab, under Temporary Drawing File Location.

\section*{TEXTED}

\section*{Quick Reference}

See also:
■ Change Single-Line Text

Type: Integer
Saved in: Registry
Initial value: 2
Specifies the user interface displayed for editing single-line text.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Displays the In-Place Text Editor when creating or editing \\
single-line text.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Displays the Edit Text dialog box when editing single-line \\
text.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Displays the In-Place Text Editor when creating or editing \\
single-line text. Repeats the command automatically.
\end{tabular} \\
\hline
\end{tabular}

\section*{TEXTEVAL}

\section*{Quick Reference}

\section*{See also:}
- Create Single-Line Text

Type: Integer
Saved in: Not-saved
Initial value: 0
Controls how text strings entered with TEXT (using AutoLISP) or with -TEXT are evaluated.

0
All responses to prompts for text strings and attribute
values are taken literally.

1
All text starting from an opening parenthesis [(] or an exclamation mark [!] is evaluated as an AutoLISP expression, as for nontextual input.

The TEXT command takes all input literally regardless of the setting of TEXTEVAL unless it is executed completely with a script or AutoLISP expression. The -TEXT command honors the setting of TEXTEVAL.

\section*{TEXTFILL}

\section*{Quick Reference}

See also:
- Use TrueType Fonts

Type: Integer
Saved in: Registry
Initial value: 1
Controls the filling of TrueType fonts while plotting.
0 Displays text as outlines

2550 | Chapter 45 T System Variables

\section*{TEXTOUTPUTFILEFORMAT}

\section*{Quick Reference}

See also:
■ Share Drawing Files Internationally

Type: Integer
Saved in: Registry
Initial value: 0
Provides Unicode options for plot and text window log files.
\begin{tabular}{ll}
\hline 0 & ANSI format \\
\hline 1 & UTF-8 (Unicode) \\
\hline 2 & UTF-16LE (Unicode) \\
\hline 3 & UTF-16BE (Unicode) \\
\hline
\end{tabular}

\section*{TEXTQLTY}

\section*{Quick Reference}

See also:
- Use TrueType Fonts

Sets the resolution tessellation fineness of text outlines.
Type: Integer
Saved in: Not-saved
Initial value: 50

Sets the resolution tessellation fineness of text outlines for TrueType fonts while plotting and rendering. 0 represents no effort to refine the smoothness of the text; 100 represents a maximum effort to smooth text characters. Lower values decrease resolution and increase plotting speed. Higher values increase resolution and decrease plotting speed.

Sets the resolution of TrueType fonts while plotting. Use integer values from 0 to 100. Lower values decrease resolution and increase plotting speed. Higher values increase resolution and decrease plotting speed.

\section*{TEXTSIZE}

\section*{Quick Reference}

\section*{See also:}
- Set Text Height

Type: Real
Saved in: Drawing
Initial value: 0.2000 (imperial) or 2.5000 (metric)
Sets the default height for new text objects drawn with the current text style.
TEXTSIZE has no effect if the current text style has a fixed height.

\section*{TEXTSTYLE}

\section*{Quick Reference}

See also:
■ Overview of Text Styles

Type: String
Saved in: Drawing
Initial value: Standard
Sets the name of the current text style.

\section*{THICKNESS}

\section*{Quick Reference}

\section*{See also:}
- Add 3D Thickness to Objects

Type: Real
Saved in: Drawing
Initial value: 0.0000
Sets the current 3D thickness.

\section*{THUMBSIZE}

\section*{Quick Reference}

See also:
■ Content reference to: Overview of ShowMotion

Type: Integer
Saved in: Registry
Initial value: 1
Specifies the maximum generated size for thumbnail previews in pixels.
\begin{tabular}{ll}
\hline 0 & \(64 \times 64\) \\
\hline 1 & \(128 \times 128\) \\
\hline 2 & \(256 \times 256\)
\end{tabular}

\section*{TILEMODE}

\section*{Quick Reference}

See also:
- Set Model Space Viewports

Type: Integer
Saved in: Drawing
Initial value: 1
Makes the Model tab or the last layout tab current.
\(0 \quad\) Makes the last active layout tab (paper space) active
1 Makes the Model tab active

\section*{TIMEZONE}

\section*{Quick Reference}

See also:
■ Overview of Geographic Location

Type: Enum
Saved in: Drawing
Initial value: -8000
Sets the time zone for the sun in the drawing.
The values in the table are expressed as hours and minutes away from Greenwich Mean Time. The geographic location you set also sets the time zone. If the time zone is not accurate, you can correct it in the Geographic Location dialog box or set the TIMEZONE system variable.
\begin{tabular}{ll}
\hline-12000 & International Date Line West \\
\hline-11000 & Midway Island, Samoa
\end{tabular}

2554 | Chapter 45 T System Variables
\begin{tabular}{ll}
\hline-10000 & Hawaii \\
\hline-9000 & Alaska \\
\hline-8000 & Pacific Time (US \& Canada), Tijuana \\
\hline-7000 & Arizona \\
\hline-7000 & Chihuahua, La Paz, Mazatlan \\
\hline-7001 & Arizona \\
\hline-7002 & Mazatlan \\
\hline-6000 & Central America \\
\hline-6001 & Central Time (US \& Canada) \\
\hline-6002 & Guadalajara, Mexico City, Monterrey (US \& Canada) \\
\hline-6003 & Saskatchewan \\
\hline-5000 & Eastern Time (US \& Canada) \\
\hline-5001 & Indiana (East) \\
\hline-5002 & Bogota, Lima, Quito \\
\hline-4000 & Atlantic Time (Canada) \\
\hline-4001 & Caracas, La Paz \\
\hline-4002 & Santiago \\
\hline-3300 & Newfoundland \\
\hline-3000 & Brasilia \\
\hline-3001 & Buenos Aires, Georgetown \\
\hline-3002
\end{tabular}
\begin{tabular}{|c|c|}
\hline -2000 & Mid-Atlantic \\
\hline -1000 & Azores \\
\hline -1001 & Cape Verde Is. \\
\hline 0 & Universal Coordinated Time \\
\hline 1 & Greenwich Mean Time \\
\hline 2 & Casablanca, Monrovia \\
\hline +1000 & Amsterdam, Berlin, Bern, Rome, Stockholm \\
\hline +1001 & Brussels, Madrid, Copenhagen, Paris \\
\hline +1002 & Belgrade, Bratislava, Budapest, Ljubljana, Prague \\
\hline +1003 & Sarajevo, Skopje, Warsaw, Zagreb \\
\hline +1004 & West Central Africa \\
\hline +2000 & Athens, Beirut, Istanbul, Minsk \\
\hline +2001 & Bucharest \\
\hline +2002 & Cairo \\
\hline +2003 & Harare, Pretoria \\
\hline +2004 & Helsinki, Kyiv, Sofia, Talinn, Vilnius \\
\hline +2005 & Jerusalem \\
\hline +3000 & Moscow, St. Petersburg, Volograd \\
\hline +3001 & Kuwait, Riyadh \\
\hline +3002 & Baghdad \\
\hline +3003 & Nairobi \\
\hline +3300 & Tehran \\
\hline
\end{tabular}
\begin{tabular}{ll}
+4000 & Abu Dhabi, Muscat \\
\hline+4001 & Baku, Tbilisi, Yerevan \\
\hline+4300 & Kabul \\
\hline+5000 & Ekaterinburg \\
\hline+5001 & Islamabad, Karachi, Tashkent \\
\hline+5300 & Chennai, Kolkata, Mumbai, New Delhi \\
\hline+5450 & Kathmandu \\
\hline+6000 & Almaty, Novosibirsk \\
\hline+6001 & Astana, Dhaka \\
\hline+6002 & Sri Jayawardenepura \\
\hline+6300 & Rangoon \\
\hline+7000 & Bangkok, Hanoi, Jakarta \\
\hline+7001 & Krasnoyarsk \\
\hline+8000 & Beijing, Chongqing, Hong Kong, Urumqi \\
\hline+8001 & Kuala Lumpur, Singapore \\
\hline+8002 & Taipei \\
\hline+8003 & Irkutsk, Ulaan Bataar \\
\hline+8004 & Perth \\
\hline+9000 & Osaka, Sapporo, Tokyo \\
\hline+9001 & Seoul \\
\hline+9002 & Yakutsk \\
\hline+900 & Adelaide \\
\hline+1
\end{tabular}
\begin{tabular}{ll}
+9301 & Darwin \\
\hline+10000 & Canberra, Melbourne, Sydney \\
\hline+10001 & Guam, Port Moresby \\
\hline+10002 & Brisbane \\
\hline+10003 & Hobart \\
\hline+10004 & Vladivostok \\
\hline+11000 & Magadan, Solomon Is., New Caledonia \\
\hline+12000 & Auckland, Wellington \\
\hline+12001 & Fiji, Kamchatka, Marshall Is. \\
\hline+13000 & Nuku'alofa \\
\hline
\end{tabular}

\section*{TOOLTIPMERGE}

\section*{Quick Reference}

\section*{See also:}
- Set Interface Options

Type: Switch
Saved in: Registry
Initial value: 0
Combines drafting tooltips into a single tooltip.
The appearance of the merged tooltip is controlled by the settings in the Tooltip Appearance dialog box.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On
\end{tabular}
\(\qquad\)

\section*{TOOLTIPS}

\section*{Quick Reference}
See also:
■ Set Interface Options
Type: Integer
Saved in: Registry
Initial value: 1
Controls the display of tooltips on the ribbon, toolbars, and other user interface elements.
\begin{tabular}{ll}
\hline 0 & Turns off the display of tooltips \\
\hline 1 & Turns on the display of tooltips \\
\hline
\end{tabular}

\section*{TPSTATE}

\section*{Quick Reference}

See also:
■ Customize Tool Palettes
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: Varies
Indicates whether the Tool Palettes window is open or closed.
\begin{tabular}{ll}
0 & Closed \\
\hline 1 & Open \\
\hline
\end{tabular}

\section*{TRACEWID}

\section*{Quick Reference}

See also:
■ Draw Lines

Type: Real
Saved in: Drawing
Initial value: 0.0500 (imperial) or 1.0000 (metric)
Sets the default trace width.

\section*{TRACKPATH}

\section*{Quick Reference}

See also:
■ Use Polar Tracking and PolarSnap

Type: Integer
Saved in: Registry
Initial value: 0
Controls the display of polar and object snap tracking alignment paths.
\begin{tabular}{ll}
\hline 0 & Displays full-screen polar and object snap tracking paths \\
\hline 1 & \begin{tabular}{l} 
Displays full-screen polar tracking path; displays object \\
snap tracking path only between the alignment point and \\
the From point to the cursor location
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Displays full-screen object snap tracking path; does not \\
display polar tracking path
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Does not display polar tracking path; displays object snap \\
tracking path only between the alignment point and the \\
From point to the cursor location
\end{tabular} \\
\hline
\end{tabular}

\section*{TRANSPARENCYDISPLAY}

\section*{Quick Reference}

See also:
■ Control the Display Properties of Certain Objects

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether the object transparency is displayed.
\begin{tabular}{ll}
\hline 0 & Object transparency is not displayed \\
\hline 1 & Object transparency is displayed \\
\hline
\end{tabular}

\section*{TRAYICONS}

\section*{Quick Reference}

See also:
■ Update Referenced Drawing Attachments

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether a tray is displayed on the status bar.
\begin{tabular}{ll}
\hline 0 & Does not display a tray \\
\hline 1 & Displays a tray \\
\hline
\end{tabular}

\section*{TRAYNOTIFY}

\section*{Quick Reference}

See also:
■ Update Referenced Drawing Attachments

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether service notifications are displayed in the status bar tray.
\(0 \quad\) Does not display notifications

1 Displays notifications

\section*{TRAYTIMEOUT}

\section*{Quick Reference}

See also:
- Update Referenced Drawing Attachments
\(\begin{array}{ll}\text { Type: } & \text { Integer } \\ \text { Saved in: } & \text { Registry }\end{array}\)
Saved in: Registry
Initial value: 0
Controls the length of time (in seconds) that service notifications are displayed.
Valid values are 0 to 10 .

\section*{TREEDEPTH}

\section*{Quick Reference}

\section*{See also:}

■ Work with Layer and Spatial Indexes

Type: Integer
Saved in: Drawing
Initial value: 3020
Specifies the maximum depth, that is, the number of times the tree-structured spatial index can divide into branches.

0 Suppresses the spatial index entirely, eliminating the performance improvements it provides in working with large drawings. This setting assures that objects are always processed in database order.
\(>0 \quad\) Turns on spatial indexing. An integer of up to five digits is valid. The first three digits refer to model space, and the remaining two digits refer to paper space.
\(<0 \quad\) Treats model space objects as 2D ( \(Z\) coordinates are ignored), as is always the case with paper space objects. Such a setting is appropriate for 2D drawings and makes more efficient use of memory without loss of performance

You cannot use TREEDEPTH transparently.

\section*{TREEMAX}

\section*{Quick Reference}

\section*{See also:}
- Work with Layer and Spatial Indexes

Type: Integer
Saved in: Registry

Initial value: 10000000
Limits memory consumption during drawing regeneration by limiting the number of nodes in the spatial index (oct-tree).

By imposing a fixed limit with TREEMAX, you can load drawings created on systems with more memory than your system and with a larger TREEDEPTH than your system can handle. These drawings, if left unchecked, have an oct-tree large enough to eventually consume more memory than is available to your computer. TREEMAX also provides a safeguard against experimentation with inappropriately high TREEDEPTH values.

The initial default for TREEMAX is 10000000 ( 10 million), a value high enough to effectively disable TREEMAX as a control for TREEDEPTH. The value to which you should set TREEMAX depends on your system's available RAM. You get about 15,000 oct-tree nodes per megabyte of RAM.

If you want an oct-tree to use up to, but no more than, 2 megabytes of RAM, set TREEMAX to 30000 ( \(2 \times 15,000\) ). If the program runs out of memory allocating oct-tree nodes, restart, set TREEMAX to a smaller number, and try loading the drawing again.
The program might occasionally run into the limit you set with TREEMAX. Follow the resulting prompt instructions. Your ability to increase TREEMAX depends on your computer's available memory.

\section*{TRIMMODE}

\section*{Quick Reference}

\section*{See also:}
- Create Chamfers

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether selected edges for chamfers and fillets are trimmed.
\begin{tabular}{ll}
\hline 0 & Leaves selected edges intact \\
\hline 1 & \begin{tabular}{l} 
Trims selected edges to the endpoints of chamfer lines \\
and fillet arcs
\end{tabular}
\end{tabular}

\section*{TSPACEFAC}

\section*{Quick Reference}

See also:
- Specify the Line Spacing Within Multiline Text

Type: Real
Saved in: Not-saved
Initial value: 1.0000
Controls the multiline text line-spacing distance measured as a factor of text height.

Valid values are 0.25 to 4.0.

\section*{TSPACETYPE}

\section*{Quick Reference}

\section*{See also:}
- Specify the Line Spacing Within Multiline Text

Type: Integer
Saved in: Registry
Initial value: 1
Controls the type of line spacing used in multiline text.
At Least adjusts line spacing based on the tallest characters in a line. Exactly uses the specified line spacing, regardless of individual character sizes.
\begin{tabular}{ll}
\hline 1 & At Least \\
\hline 2 & Exactly \\
\hline
\end{tabular}

\section*{TSTACKALIGN}

Quick Reference
See also:
■ Create Stacked Characters Within Multiline Text

Type: Integer
Saved in: Drawing
Initial value: 1
Controls the vertical alignment of stacked text.
\begin{tabular}{ll}
\hline 0 & Bottom aligned \\
\hline 1 & Center aligned \\
\hline 2 & Top aligned
\end{tabular}

\section*{TSTACKSIZE}

\section*{Quick Reference}

See also:
■ Create Stacked Characters Within Multiline Text

Type: Integer
Saved in: Drawing
Initial value: 70
Controls the percentage of stacked text fraction height relative to selected text's current height.

Valid values are from 25 to 125.

\title{
U System Variables
}

\section*{46}

\section*{UCSAXISANG}

\section*{Quick Reference}

See also:
- Understand the User Coordinate System (UCS)

Type: Integer
Saved in: Registry
Initial value: 90
Stores the default angle when rotating the UCS around one of its axes using the X, Y, or Z option of the UCS command.

Its value must be entered as an angle in degrees (valid values are: 5, 10, 15, 18, \(22.5,30,45,90,180)\).

\section*{UCSBASE}

\section*{Quick Reference}

\section*{See also:}

■ Understand the User Coordinate System (UCS)

Type: \(\quad\) String
Saved in: Drawing

Initial value: " "
Stores the name of the UCS that defines the origin and orientation of orthographic UCS settings.

Valid values include any named UCS.

\section*{UCSDETECT}

\section*{Quick Reference}

See also:
■ Use the Dynamic UCS with Solid Models

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether dynamic UCS acquisition is active or not.
\begin{tabular}{ll}
\hline 0 & Not active \\
\hline 1 & Active
\end{tabular}

\section*{UCSFOLLOW}

\section*{Quick Reference}

\section*{See also:}
- Understand the User Coordinate System (UCS)

Type: Integer
Saved in: Drawing
Initial value: 0
Generates a plan view whenever you change from one UCS to another.
The UCSFOLLOW setting is saved separately for each viewport. If UCSFOLLOW is on for a particular viewport, a plan view is generated in that viewport whenever you change coordinate systems.

Once the new UCS has been established, you can use DVIEW, PLAN, VIEW, or VPOINT to change the view of the drawing. It will change to a plan view again the next time you change coordinate systems.
\begin{tabular}{ll}
\hline 0 & UCS does not affect the view \\
\hline 1 & \begin{tabular}{l} 
Any UCS change causes a change to the plan view of the \\
new UCS in the current viewport
\end{tabular}
\end{tabular}

The setting of UCSFOLLOW is maintained separately for paper space and model space and can be accessed in either, but the setting is ignored while in paper space (it is always treated as if set to 0 ). Although you can define a non-world UCS in paper space, the view remains in plan view to the world coordinate system.

\section*{UCSICON}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of the User Coordinate System Icon

Type: Integer
Saved in: Drawing
Initial value: 3
Displays the UCS icon for the current viewport or layout.
This system variable has the same name as a command. Use the SETVAR command to access this system variable.

The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & No icon is displayed \\
\hline 1 & \begin{tabular}{l} 
On; the icon is displayed in the lower-left corner of the \\
current viewport or layout
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Origin; if the icon is on, the icon is displayed at the UCS \\
origin, if possible
\end{tabular} \\
\hline
\end{tabular}

The setting of this system variable is viewport and layout specific.

\section*{UCSNAME}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of the User Coordinate System Icon
(Read-only)
Type: String
Saved in:Drawing
Stores the name of the current coordinate system for the current viewport in the current space.

Returns a null string if the current UCS is unnamed.

\section*{UCSORG}

\section*{Quick Reference}

See also:
See also:
(Assign User Coordinate System Orientations to Viewports
\(\begin{aligned} & \text { (Read-only) } \\ & \text { Type: } \quad \text { 3D-point } \\ & \text { Saved in: Drawing } \\ & \text { Initial value: } 0.0000,0.0000 \\ & \text { Stores the origin point of the current coordinate system for the current } \\ & \text { viewport in the current space. } \\ & \text { This value is always stored as a world coordinate. }\end{aligned}\) l

\section*{UCSORTHO}

\section*{Quick Reference}

See also:
- Understand the User Coordinate System (UCS)

Type: Integer
Saved in: Registry
Initial value: 1
Determines whether the related orthographic UCS setting is restored automatically when an orthographic view is restored.

0 Specifies that the UCS setting remains unchanged when an orthographic view is restored

1 Specifies that the related orthographic UCS setting is restored automatically when an orthographic view is restored

\section*{UCSVIEW}

\section*{Quick Reference}

\section*{See also:}
- Save and Restore Views

Type: Integer
Saved in: Registry
Initial value: 1
Determines whether the current UCS is saved with a named view.
\begin{tabular}{ll}
\hline 0 & Does not save current UCS with a named view \\
\hline 1 & Saves current UCS whenever a named view is created \\
\hline
\end{tabular}

\section*{UCSVP}

\section*{Quick Reference}

\section*{See also:}

■ Assign User Coordinate System Orientations to Viewports

Type: Integer
Saved in: Drawing
Initial value: 1
Determines whether the UCS in viewports remains fixed or changes to reflect the UCS of the current viewport.

The setting of this system variable is viewport specific.
\begin{tabular}{ll}
\hline 0 & Unlocked; UCS reflects the UCS of the current viewport \\
\hline 1 & \begin{tabular}{l} 
Locked; UCS stored in viewport, and is independent of \\
the UCS of the current viewport
\end{tabular} \\
\hline
\end{tabular}

\section*{UCSXDIR}

\section*{Quick Reference}

\section*{See also:}
- Understand the User Coordinate System (UCS)
(Read-only)
Type: \(\quad\) 3D-point
Saved in: \(\quad\) Drawing
Initial value:
1.0000,0.0000, 0.0000
Stores the X direction of the current UCS for the current viewport in the
current space.

The setting of this system variable is viewport specific.

\section*{UCSYDIR}

\section*{Quick Reference}

See also:
- Understand the User Coordinate System (UCS)
(Read-only)
Type: 3D-point
Saved in: Drawing
Initial value: \(0.0000,1.0000,0.0000\)
Stores the Y direction of the current UCS for the current viewport in the current space.

The setting of this system variable is viewport specific.

\section*{UNDOCTL}

\section*{Quick Reference}

\section*{See also:}

■ Correct Mistakes
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 53
Indicates the state of the Auto, Control, and Group options of the UNDO command.

The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & UNDO is turned off \\
\hline 1 & UNDO is turned on \\
\hline 2 & Only one command can be undone
\end{tabular}

\section*{UNDOMARKS}

\section*{Quick Reference}

See also:
- Correct Mistakes
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Stores the number of marks placed in the UNDO control stream by the Mark option.
The Mark and Back options are not available if a group is currently active.

\section*{UNITMODE}

\section*{Quick Reference}

See also:
■ Specify Units and Unit Formats

Type: Integer
Saved in: Drawing Initial value: 0
Controls the display format for units.

By default, the format for displaying measured values differs slightly from the format used for entering them. (You cannot include spaces when entering measured values.)

0 Displays fractional, feet-and-inches, and surveyor's angles in "report" format using spaces as delimiters

1
Displays fractional, feet-and-inches, and surveyor's angles in "input" format without including spaces and, in some cases, substituting dashes for spaces

\section*{UOSNAP}

\section*{Quick Reference}

\section*{See also:}

■ Use Object Snaps with Underlays
```

Type: Integer
Saved in: Registry
Initial value: }

```

Determines whether object snapping is active for geometry in DWF, DWFx, PDF, and DGN underlays that are attached to the drawing.
UOSNAP overrides the DWFOSNAP, PDFOSNAP, and DGNOSNAP settings. Conversely, you can override the UOSNAP setting for DWF, DWFx, PDF, and DGN underlays by issuing the necessary DWFOSNAP, PDFOSNAP, or DGNOSNAP system variables.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Object snapping is disabled for geometry in all underlay \\
attachments in the drawing
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Object snapping is enabled for geometry in all underlay \\
attachments in the drawing
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
The individual setting varies for all underlays in the current \\
drawing: DWF, DWFx and DGN.
\end{tabular} \\
\hline
\end{tabular}

\section*{UPDATETHUMBNAIL}

\section*{Quick Reference}

\section*{See also:}

■ Set Interface Options

Type: Bitcode
Saved in: Drawing
Initial value: 15
Controls updating of the thumbnail previews in the Sheet Set Manager and Quick View.

The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Does not update thumbnail previews for sheet views, \\
model space views, sheets, or Quick View images
\end{tabular} \\
\hline 1 & Updates model space view thumbnail previews \\
\hline 2 & Updates sheet view thumbnail previews \\
\hline 4 & \begin{tabular}{l} 
Updates thumbnail previews when sheets or views are \\
created, modified, or restored
\end{tabular} \\
\hline 8 & Updates thumbnail previews when the drawing is saved
\end{tabular}

\section*{USERIT-5}

\section*{Quick Reference}

See also:
■ DIESEL Expressions in Macros
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Drawing
\end{tabular}

Initial value: 0
Provides storage and retrieval of integer values.
There are five system variables: USERI1, USERI2, USERI3, USERI4, and USERI5.

\section*{USERR1-5}

\section*{Quick Reference}

\section*{See also:}
- DIESEL Expressions in Macros

Type: Real
Saved in: Drawing
Initial value: 0.0000
Provides storage and retrieval of real numbers.
There are five system variables: USERR1, USERR2, USERR3, USERR4, and USERR5.

\section*{USERS1-5}

\section*{Quick Reference}
```

See also:

- DIESEL Expressions in Macros
Type: String
Saved in: Not-saved
Initial value: " "
Provides storage and retrieval of text string data.
There are five system variables: USERS1, USERS2, USERS3, USERS4, and USERS5.

```

\title{
V System Variables
}

\section*{47}

\section*{VIEWCTR}

\section*{Quick Reference}

See also:
■ Pan or Zoom a View
(Read-only)
Type: 3D-point
Saved in: Drawing
Initial value: Varies
Stores the center of view in the current viewport.
Expressed as a UCS coordinate.

\section*{VIEWDIR}

\section*{Quick Reference}

See also:
See also:
■ Define a 3D View with a Camera
(Read-only)
```

Type: 3D-vector
Saved in: Drawing
Initial value: 0.0000,0.0000,1.0000
Stores the viewing direction in the current viewport, expressed in UCS
coordinates.

```

This describes the camera point as a 3D offset from the target point.

\section*{VIEWMODE}

\section*{Quick Reference}

See also:
■ Save and Restore Views
(Read-only)
Type: Integer
Saved in: Drawing
Initial value: 0
Stores the View mode for the current viewport.
The setting is stored as a bitcode using the sum of the following values:
\begin{tabular}{ll}
\hline 0 & Turned off. \\
\hline 1 & Perspective view active. \\
\hline 2 & Front clipping on \\
\hline 4 & Back clipping on. \\
\hline 16 & \begin{tabular}{l} 
Front clip not at eye. If on, the front clip distance \\
(FRONTZ) determines the front clipping plane. If off, \\
FRONTZ is ignored, and the front clipping plane is set to \\
pass through the camera point (vectors behind the camera \\
are not displayed). This flag is ignored if the front-clipping \\
bit (2) is off.
\end{tabular} \\
\hline
\end{tabular}

\section*{VIEWSIZE}

\section*{Quick Reference}

\section*{See also:}

■ Save and Restore Views
(Read-only)
Type: Real
Saved in: Drawing
Initial value: Varies
Stores the height of the view displayed in the current viewport, measured in drawing units.

\section*{VIEWTWIST}

\section*{Quick Reference}

\section*{See also:}
- Rotate Views in Layout Viewports
(Read-only)
Type: Real
Saved in: Drawing
Initial value: 0.0000
Stores the view rotation angle for the current viewport measured relative to the WCS.

\section*{VISRETAIN}

\section*{Quick Reference}

See also:
■ Attach Drawing References (Xrefs)
\begin{tabular}{l}
\begin{tabular}{l} 
Type: \(\quad\) Integer \\
Saved in: \(\quad\) Drawing \\
Initial value: 1
\end{tabular} \\
Controls the properties of xref-dependent layers. \\
Controls visibility, color, linetype, lineweight, and plot styles. \\
\hline 0 \\
\begin{tabular}{l} 
The layer table, as stored in the reference drawing (xref), \\
takes precedence. Changes made to xref-dependent layers \\
in the current drawing are valid in the current session only \\
and are not saved with the drawing. When the current \\
drawing is reopened, the layer table is reloaded from the \\
reference drawing, and the current drawing reflects all of \\
those layer property settings.
\end{tabular} \\
\hline \begin{tabular}{l} 
Xref-dependent layer changes made in the current drawing \\
take precedence. Layer settings are saved with the current \\
drawing's layer table and persist from session to session.
\end{tabular} \\
\hline
\end{tabular}

\section*{VPLAYEROVERRIDES}

\section*{Quick Reference}

See also:
- Override Layer Properties in Viewports
(Read-only)
Type: Integer
Saved in: Drawing
Initial value: 0
Indicates if there are any layers with viewport (VP) property overrides for the current layout viewport.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Current viewport does not have any associated layer \\
property overrides
\end{tabular} \\
\hline 1 & Current viewport has associated layer property overrides \\
\hline
\end{tabular}

\section*{VPLAYEROVERRIDESMODE}

\section*{Quick Reference}

See also:
- Override Layer Properties in Viewports

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether layer property overrides for layout viewports are displayed and plotted.
\(0 \quad\) Layer property overrides are not displayed in layout viewports or plotted

1
Layer property overrides are displayed in layout viewports and plotted

\section*{VPMAXIMIZEDSTATE}

\section*{Quick Reference}

\section*{See also:}

■ Access Model Space from a Layout Viewport
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Indicates whether the viewport is maximized or not.
The maximized viewport state is canceled if you start the PLOT command.
\begin{tabular}{ll}
\hline 0 & Not maximized \\
\hline 1 & Maximized
\end{tabular}

\section*{VPROTATEASSOC}

\section*{Quick Reference}

See also:
■ Rotate Views in Layout Viewports

Type: Integer
Saved in: Registry
Initial value: 1
Controls whether the view within a viewport is rotated with the viewport when the viewport is rotated.
\(0 \quad\) When a viewport is rotated, the view inside is not rotated.
1 When a viewport is rotated, the view inside is rotated to match the rotation of the viewport.

NOTE After rotating a viewport, VPROTATEASSOC is set to 0 for a new viewport created in the same layout.

\section*{VSACURVATUREHIGH}

\section*{Quick Reference}

See also:
- ANALYSISOPTIONS on page 112

■ ANALYSISOPTIONS - Curvature Tab on page 114
\(\begin{array}{ll}\text { Type: } & \text { Real } \\ \text { Saved in: } & \text { Drawing } \\ \text { Initial value: } & 1\end{array}\)
Sets the value at which a surface displays as green during curvature analysis (ANALYSISCURVATURE on page 110).

The default value for this system variable is 1 .

\section*{VSACURVATURELOW}

\section*{Quick Reference}

See also:
- ANALYSISOPTIONS on page 112
- ANALYSISOPTIONS - Curvature Tab on page 114

Type: Real
Saved in: Drawing
Initial value: -1
Sets the value at which a surface displays as blue during curvature analysis (ANALYSISCURVATURE on page 110).

The default value for this system variable is -1 .

\section*{VSACURVATURETYPE}

\section*{Quick Reference}

\section*{See also:}
- ANALYSISOPTIONS on page 112
- ANALYSISOPTIONS - Curvature Tab on page 114

Type: Integer
Saved in: Drawing
Initial value: 0
Controls which type of curvature analysis is used with the (ANALYSISCURVATURE on page 110).
\begin{tabular}{ll}
\hline 0 & Gaussian curvature (evaluates areas of high and low curvature) \\
\hline 1 & \begin{tabular}{l} 
Mean curvature (evaluates the mean curvature of the \(U\) and \\
\(V\) surface curvature values)
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Maximum curvature (evaluates the maximum curvature of \\
the \(U\) and \(V\) surface curvature values)
\end{tabular} \\
\hline
\end{tabular}

\section*{VSADRAFTANGLEHIGH}

\section*{Quick Reference}

See also:
- ANALYSISOPTIONS on page 112
- ANALYSISOPTIONS - Draft Analysis Tab on page 115

Type: Real
Saved in: Drawing
Initial value: 3
Sets the value at which a model displays as green during draft analysis (ANALYSISDRAFT on page 111).
Draft angle is the angle in degrees between the surface normal and the UCS plane. High value is set by this system variable.
\begin{tabular}{ll}
\hline-90 & \begin{tabular}{l} 
Surface is parallel to the UCS with surface normal fa- \\
cing the opposite direction as the construction plane
\end{tabular} \\
\hline 0 & Surface is perpendicular to the construction plane \\
\hline 90 & \begin{tabular}{l} 
Surface is parallel to the construction plane with sur- \\
face normal facing the same direction as the UCS
\end{tabular} \\
\hline
\end{tabular}

\section*{VSADRAFTANGLELOW}

\section*{Quick Reference}

\section*{See also:}
- ANALYSISOPTIONS on page 112

■ ANALYSISOPTIONS - Draft Analysis Tab on page 115
```

Type: Real
Saved in: Drawing
Initial value: -3

```
Sets the value at which a model displays as blue during draft analysis
(ANALYSISDRAFT on page 111).

Draft angle is the angle in degrees between the surface normal and the UCS plane. Low value set by this system variable.
\begin{tabular}{ll}
\hline-90 & \begin{tabular}{l} 
Surface is parallel to the UCS with surface normal fa- \\
cing the opposite direction as the construction plane.
\end{tabular} \\
\hline 0 & Surface is perpendicular to the construction plane. \\
\hline 90 & \begin{tabular}{l} 
Surface is parallel to the construction plane with sur- \\
face normal facing the same direction as the UCS.
\end{tabular} \\
\hline
\end{tabular}

\section*{VSAZEBRACOLOR1}

\section*{Quick Reference}

\section*{See also:}
- ANALYSISOPTIONS on page 112

■ ANALYSISOPTIONS - Zebra Analysis Tab on page 113

Type: \(\quad\) String
Saved in: Drawing
Initial value: RGB : \(255,255,255\)
Sets the first color of the zebra stripes displayed during zebra analysis (ANALYSISZEBRA).

Values 1-255 designate an AutoCAD Color Index (ACI) color.
Values for RGB True Color are represented as a comma-separated string of integers 000 to 255 . The default value is RGB:255,255,255.

NOTE When a color book is installed, any colors defined in the book can be used.

\section*{VSAZEBRACOLOR2}

\section*{Quick Reference}

See also:
- ANALYSISOPTIONS on page 112

■ ANALYSISOPTIONS - Zebra Analysis Tab on page 113

Type: String
Saved in: Drawing
Initial value: RGB: \(0,0,0\)
Sets the second (contrasting) color of the zebra stripes displayed during zebra analysis (ANALYSISZEBRA).

Values 1-255 designate an AutoCAD Color Index (ACI) color.
Values for RGB True Color are represented as a comma-separated string of integers 000 to 255 . The default value is RGB:0,0,0.

NOTE When a color book is installed, any colors defined in the book can be used.

\section*{VSAZEBRADIRECTION}

\section*{Quick Reference}

See also:
- ANALYSISOPTIONS on page 112

■ ANALYSISOPTIONS - Zebra Analysis Tab on page 113

Type: Integer
Saved in: Drawing Initial value: 90
Controls whether zebra stripes display horizontally, vertically, or at an angle during zebra analysis (ANALYSISBRA).
\(0 \quad\) Horizontal

NOTE Enter a value between 0 and 90 degrees to set Zebra stripes at an angle.

\section*{VSAZEBRASIZE}

\section*{Quick Reference}

See also:
- ANALYSISOPTIONS on page 112

■ ANALYSISOPTIONS - Zebra Analysis Tab on page 113

Type: Integer
Saved in: Drawing
Initial value: 45
Controls the width of the zebra stripes displayed during zebra analysis (ANALYSISZEBRA).
Valid values are from 1 to 100.

\section*{VSAZEBRATYPE}

\section*{Quick Reference}

See also:
- ANALYSISOPTIONS on page 112
- ANALYSISOPTIONS - Zebra Analysis Tab on page 113

Type: Integer
Saved in: Drawing Initial value: 1
Sets the type of zebra display when using zebra analysis (ANALYSISZEBRA).

\section*{\(0 \quad\) Chrome Ball}

\section*{VSBACKGROUNDS}

\section*{Quick Reference}

See also:
- Display Backgrounds and Shadows

Type: Integer
Saved in: Drawing
Initial value: 1
Controls whether backgrounds are displayed in the visual style applied to the current viewport.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSEDGECOLOR}

\section*{Quick Reference}

See also:
■ Control the Display of Edges

Type: \(\quad\) String
Saved in: Drawing
Initial value: BYENTITY
Sets the color of edges in the visual style in the current viewport.

Value 0 designates ByBlock, value 256 designates ByLayer, and value 257 designates ByEntity. Values 1-255 designate an AutoCAD Color Index (ACI) color. True Colors and Color Book colors are also available.

Valid values for True Colors are a string of integers each from 0 to 255 separated by commas and preceded by RGB. The True Color setting is entered as follows:

RGB:000,000,000
If you have a color book installed, you can specify any colors that are defined in the book.
\(\overline{\text { NOTE Existing visual styles are not changed when you enter a new value for this }}\) system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSEDGEJITTER}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Edges

Type: Integer
Saved in: Drawing
Initial value: -2
Makes edges on 3D objects appear wavy, as though they were sketched with a pencil.

The amount of jitter can be set to low, medium, or high. Negative numbers store the value but turn off the effect. Plot styles are not available for objects with the Jitter edge modifier applied.


NOTE Plot styles are not available for objects with the Jitter edge modifier applied.
NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSEDGELEX}

\section*{Quick Reference}

See also:
- Control the Display of Edges

Type: Integer
Saved in: Drawing

Initial value: -6
Makes edges on 3D objects extend beyond their intersection for a hand-drawn effect.

The range is 1 to 100 pixels. Turn off the line extensions effect by preceding the setting with a minus sign (-).

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSEDGEOVERHANG}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Edges

\section*{Type: Integer}

Saved in: Drawing
Initial value: -6
Makes edges on 3D objects extend beyond their intersection for a hand-drawn effect.

The amount of overhang can be set between 1 and 100 pixels. Negative numbers store the value but turn off the effect.


NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSEDGES}

\section*{Quick Reference}

See also:
■ Control the Display of Edges

Type: Integer
Saved in: Drawing Initial value: 1
Controls the types of edges that are displayed in the viewport.

isolines displayed


\section*{facet edges displayed}
\begin{tabular}{ll}
\hline 0 & No edges are displayed \\
\hline 1 & Isolines are displayed \\
\hline
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSEDGESMOOTH}

\section*{Quick Reference}

See also:
■ Control the Display of Edges

Type: Integer
Saved in: Drawing
Initial value: 1
Specifies the angle at which crease edges are displayed.
The range is 0 to 180 .
NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSFACECOLORMODE}

\section*{Quick Reference}

See also:
- Shade and Color Faces
\(\begin{array}{ll}\text { Type: } & \text { Integer } \\ \text { Saved in: } & \text { Drawing } \\ \text { Initial value: } 0\end{array}\)

Controls how the color of faces is calculated.
\begin{tabular}{ll}
\hline 0 & Normal: Does not apply a face color modifier \\
\hline 1 & \begin{tabular}{l} 
Monochrome: Displays all faces in the color that is spe- \\
cified in the VSMONOCOLOR system variable.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Tint: Uses the color that is specified in the VSMONOCOL- \\
OR system variable to shade all faces by changing the hue \\
and saturation values of the color.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Desaturate: Softens the color by reducing its saturation \\
component by 30 percent
\end{tabular} \\
\hline
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSFACEHIGHLIGHT}

\section*{Quick Reference}

\section*{See also:}
- Shade and Color Faces

Type: Integer
Saved in: Drawing
Initial value: -30
Controls the level of transparency for 3D objects.
The range is -100 to 100 . The higher the number, the larger the highlight. Objects with materials attached ignore the setting of VSFACEHIGHLIGHT when VSMATERIALMODE is on.

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSFACEOPACITY}

\section*{Quick Reference}

\section*{See also:}
- Shade and Color Faces

Type: Integer
Saved in: Drawing
Initial value: -60
Turns on and off a preset level of transparency for 3D objects.
The level of transparency for 3D solids and surfaces can be set between 100 percent opaque and 0 percent opaque. Negative numbers store the value but turn off the effect.


NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSFACESTYLE}

\section*{Quick Reference}

See also:
■ Shade and Color Faces

Type: Integer
Saved in: Drawing
Initial value: 0
Controls how faces are displayed in the current viewport.
\begin{tabular}{ll}
\hline 0 & No style applied \\
\hline 1 & \begin{tabular}{l} 
Real: as close as possible to how the face would appear in \\
the real world
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Gooch: uses cool and warm colors instead of dark and \\
light to enhance the display of faces that might be shad- \\
owed and difficult to see in a realistic display
\end{tabular} \\
\hline
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSHALOGAP}

\section*{Quick Reference}

See also:
■ Use a Visual Style to Display Your Model

Type: Integer
Saved in: Drawing
Initial value: 0
Sets the halo gap in the visual style applied to the current viewport.
The range is 0 to 100 .

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSHIDEPRECISION}

\section*{Quick Reference}

See also:
- Shade and Color Faces

Type: Integer
Saved in: Not-saved
Initial value: 0
Controls the accuracy of hides and shades in the visual style applied to the current viewport.
\begin{tabular}{ll}
0 & Single precision; uses less memory \\
\hline 1 & Double precision; uses more memory
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSINTERSECTIONCOLOR}

\section*{Quick Reference}

See also:
- Control the Display of Edges

Type: Integer
Saved in: Drawing Initial value: 7

Specifies the color of intersection polylines in the visual style applied to the current viewport.

The initial value is 7 , which is a special value that inverts the color (black or white) based on the background color.
Value 0 designates ByBlock, value 256 designates ByLayer, and value 257 designates ByEntity. Values 1-255 designate an AutoCAD Color Index (ACI) color. True Colors and Color Book colors are also available.

NOTE INTERSECTIONCOLOR controls the color of intersection polylines when the visual style is set to 2D Wireframe.

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSINTERSECTIONEDGES}

\section*{Quick Reference}

\section*{See also:}

■ Control the Display of Edges

Type: Switch
Saved in: Drawing
Initial value: 0
Controls the display of intersection edges in the visual style applied to the current viewport.

NOTE INTERSECTIONDISPLAY controls the color of intersection polylines when the visual style is set to 2D Wireframe.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSINTERSECTIONLTYPE}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Edges

Type: Integer
Saved in: Drawing
Initial value: 1
Sets the linetype for intersection lines in the visual style applied to the current viewport.

The range is 1 to 11 .
\begin{tabular}{ll}
\hline 1 & Solid \\
\hline 2 & Dashed \\
\hline 3 & Dotted \\
\hline 4 & Short Dash \\
\hline 5 & Medium Dash \\
\hline 6 & Long Dash \\
\hline 7 & Double Short Dash \\
\hline 8 & Double Medium Dash \\
\hline 9 & Double Long Dash \\
\hline 10 & Medium Long Dash \\
\hline 11 & Sparse Dot
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSISOONTOP}

\section*{Quick Reference}

See also:
■ Control the Display of Edges

Type: Integer
Saved in: Drawing
Initial value: 0
Displays isolines on top of shaded objects in the visual style applied to the current viewport.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On \\
\hline
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSLIGHTINGQUALITY}

\section*{Quick Reference}

See also:
■ Use a Visual Style to Display Your Model

Type: Integer
Saved in: Drawing
Initial value: 1
Sets the lighting quality in the current viewport.

0
Faceted. A single color is computed for each face of a surface or 3D solid.
\begin{tabular}{ll}
1 & \begin{tabular}{l} 
Smooth. The colors are computed as a gradient between \\
the vertices of the faces.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Smoothest. If the Per-Pixel Lighting setting is turned on \\
in the Manual Performance Tuning dialog box, then the \\
colors are computed for individual pixels. If not, the \\
Smooth setting is used instead.
\end{tabular}
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSMATERIALMODE}

\section*{Quick Reference}

\section*{See also:}

■ Use a Visual Style to Display Your Model

Type: Integer
Saved in: Drawing Initial value: 0
Controls the display of materials in the current viewport.
Turn off the display of materials and textures to maximize performance during unrelated operations.

Turn off the display of textures to modify materials, or to increase performance during unrelated operations.
After turning them off, you can restore the display of materials and textures.
\begin{tabular}{ll}
\hline 0 & No materials are displayed \\
\hline 1 & Materials are displayed, textures are not displayed \\
\hline 2 & Materials and textures are displayed \\
\hline
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSMAX}

\section*{Quick Reference}

\section*{See also:}

■ Save and Restore Model Tab Viewport Arrangements
(Read-only)
Type: 3D-point
Saved in: Drawing
Initial value: Varies
Stores the upper-right corner of the current viewport's virtual screen.
Expressed as a UCS coordinate.

\section*{VSMIN}

\section*{Quick Reference}

See also:
■ Save and Restore Model Tab Viewport Arrangements
(Read-only)
Type: 3D-point
Saved in: Drawing
Initial value: Varies
Stores the lower-left corner of the current viewport's virtual screen.
Expressed as a UCS coordinate.

\section*{VSMONOCOLOR}

\section*{Quick Reference}

\section*{See also:}
- Shade and Color Faces

Type: String
Saved in: Drawing
Initial value: \(255,255,255\)
Sets the color for monochrome and tint display of faces in the visual style applied to the current viewport.

The initial value is white.

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSOBSCUREDCOLOR}

\section*{Quick Reference}

See also:
■ Control the Display of Edges

Type: String
Saved in: Drawing
Initial value: BYENTITY
Specifies the color of obscured (hidden) lines in the visual style applied to the current viewport.

Valid values include ByLayer (256), ByBlock (0), ByEntity (257), and any AutoCAD Color Index (ACI) color (an integer from 1 to 255).

You can also specify a true color or a color book color. Valid values for true colors are a string of integers each from 1 to 255 separated by commas and preceded by RGB. The True Color setting is entered as follows:

RGB:000,000,000

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSOBSCUREDEDGES}

\section*{Quick Reference}

\author{
See also: \\ ■ Control the Display of Edges
}

\section*{Type: Integer \\ Saved in: Drawing \\ Initial value: 1}

Controls whether obscured (hidden) edges are displayed.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSOBSCUREDLTYPE}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Edges

Type: Integer
Saved in: Drawing
Initial value: 1
Specifies the linetype of obscured (hidden) lines in the visual style applied to the current viewport.

The range is 1 to 11 .


The initial value of VSOBSCUREDLTYPE varies on the current visual style.
\begin{tabular}{ll}
\hline Visual Style (VSCURRENT) & Initial Value \\
\hline 2D Wireframe & 1 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Visual Style (VSCURRENT) & Initial Value \\
\hline Conceptual & 1 \\
\hline Hidden & 2 \\
\hline Shaded & 1 \\
\hline Shaded with Edges & 1 \\
\hline Shades of Gray & 1 \\
\hline Sketchy & 1 \\
\hline Wireframe & 1 \\
\hline X-ray & 1 \\
\hline Realistic & \\
\hline
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSOCCLUDEDCOLOR}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Edges

\section*{Type: String}

Saved in: Drawing
Initial value: ByEntity
Specifies the color of occluded (hidden) lines in the visual style applied to the current viewport.

Valid values include ByLayer (256), ByBlock (0), ByEntity (257), and any AutoCAD Color Index (ACI) color (an integer from 1 to 255).

You can also specify a true color or a color book color. Valid values for true colors are a string of integers each from 1 to 255 separated by commas and preceded by RGB. The True Color setting is entered as follows:

RGB:000,000,000
NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSOCCLUDEDEDGES}

\section*{Quick Reference}

See also:
■ Control the Display of Edges

Type: Integer
Saved in: Drawing
Initial value: 1
Controls whether occluded (hidden) edges are displayed.
\(0 \quad\) Off

1 On

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSOCCLUDEDLTYPE}

\section*{Quick Reference}

See also:
■ Control the Display of Edges

Type: Integer
Saved in: Drawing
Initial value: 1
Specifies the linetype of occluded (hidden) lines in the visual style applied to the current viewport.
The range is 1 to 11 .
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & \multicolumn{5}{|l|}{Solid} \\
\hline 2 & \multicolumn{5}{|l|}{Dashed} \\
\hline 3 & \multicolumn{5}{|l|}{Dotted} \\
\hline 4 & \multicolumn{5}{|l|}{Short Dash} \\
\hline & - - - & - & - & - & - \\
\hline 5 & \multicolumn{5}{|l|}{Medium Dash} \\
\hline 6 & \multicolumn{5}{|l|}{Long Dash} \\
\hline 7 & \multicolumn{5}{|l|}{Double Short Dash} \\
\hline 8 & \multicolumn{5}{|l|}{Double Medium Dash} \\
\hline 9 & \multicolumn{5}{|l|}{Double Long Dash} \\
\hline 10 & \multicolumn{5}{|l|}{Medium Long Dash} \\
\hline 11 & \multicolumn{5}{|l|}{Sparse Dot} \\
\hline & - . & & - & & \\
\hline
\end{tabular}

The initial value of VSOCCLUDEDLTYPE varies on the current visual style.
\begin{tabular}{ll}
\hline Visual Style (VSCURRENT) & Initial Value \\
\hline 2D Wireframe & 1 \\
\hline Conceptual & 1 \\
\hline Hidden & 2 \\
\hline Shaded & 1 \\
\hline Shaded with Edges & 1 \\
\hline Shades of Gray & 1 \\
\hline Sketchy & 1 \\
\hline Wireframe & 1 \\
\hline X-ray & 1 \\
\hline Realistic & \\
\hline
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSSHADOWS}

\section*{Quick Reference}

See also:
- Display Backgrounds and Shadows

Type: Integer
Saved in: Drawing
Initial value: 0

2612 | Chapter 47 V System Variables

Controls whether a visual style displays shadows.
\begin{tabular}{ll}
\hline 0 & No shadows are displayed \\
\hline 1 & Ground shadows only are displayed \\
\hline 2 & Full shadows are displayed \\
\hline
\end{tabular}

NOTE To display full shadows, hardware acceleration is required. When Geometry Acceleration is off, full shadows cannot be displayed. (To access these settings, enter 3dconfig at the Command prompt. In the Adaptive Degradation and Performance Tuning dialog box, click Manual Tune.)

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSSILHEDGES}

\section*{Quick Reference}

\section*{See also:}
- Control the Display of Edges

Type: Integer
Saved in: Drawing
Initial value: 0
Controls display of silhouette edges of solid objects in the visual style applied to the current viewport.
\begin{tabular}{ll}
\hline 0 & Off \\
\hline 1 & On \\
\hline
\end{tabular}


The initial value of VSSILHEDGES depends on the current visual style.
\begin{tabular}{ll}
\hline Visual Style (VSCURRENT) & Initial Value \\
\hline 2D Wireframe & 0 \\
\hline 3D Wireframe & 0 \\
\hline 3D Hidden & 1 \\
\hline Realistic & 0 \\
\hline Conceptual & 1 \\
\hline
\end{tabular}

NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSSILHWIDTH}

\section*{Quick Reference}

See also:
■ Control the Display of Edges

Type: Integer
Saved in: Drawing
Initial value: 5
Specifies the width in pixels of silhouette edges in the current viewport.
The range is 1 to 25 .
NOTE Existing visual styles are not changed when you enter a new value for this system variable. Any new value entered for this system variable temporarily creates an unsaved new visual style.

\section*{VSSTATE}

\section*{Quick Reference}

\section*{See also:}

■ Use a Visual Style to Display Your Model
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 0
Indicates whether the Visual Styles window is open or closed.

\section*{VTDURATION}

\section*{Quick Reference}

See also:
- Set Interface Options

Type: Integer
Saved in: Registry
Initial value: 750
Sets the duration of a smooth view transition, in milliseconds.
The valid range is 0 to 5000 .

\section*{VTENABLE}

\section*{Quick Reference}

See also:
- Set Interface Options

Type: Integer
Saved in: Registry
Initial value: 3
Controls when smooth view transitions are used.
Smooth view transitions can be on or off for panning and zooming, for changes of view angle, or for scripts. The valid range is 0 to 7 .
\begin{tabular}{llll}
\hline Setting & For pan/zoom & For rotation & For scripts \\
\hline 0 & Off & Off & Off \\
\hline 1 & On & Off & Off \\
\hline 2 & Off & On & Off \\
\hline 3 & On & On & Off \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Setting & For pan/zoom & For rotation & For scripts \\
\hline 4 & Off & Off & On \\
\hline 5 & On & Off & On \\
\hline 6 & Off & On & On \\
\hline 7 & On & On & On \\
\hline
\end{tabular}

\section*{VTFPS}

\section*{Quick Reference}

\section*{See also:}

■ Set Interface Options
Type: Integer
Saved in: Registry
Initial value: 7
Sets the minimum speed of a smooth view transition, in frames per second.
When a smooth view transition cannot maintain this speed, an instant transition is used. The valid range is 1 to 30 .

\title{
W System Variables
}

\section*{WHIPARC}

\section*{Quick Reference}

See also:
■ Draw Curved Objects

Type: Integer
Saved in: Registry
Initial value: 0
Controls whether the display of circles and arcs is smooth.
\begin{tabular}{ll}
0 & \begin{tabular}{l} 
Circles and arcs are not smooth, but rather are displayed \\
as a series of vectors
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Circles and arcs are smooth, displayed as true circles and \\
arcs
\end{tabular}
\end{tabular}

\section*{WHIPTHREAD}

\section*{Quick Reference}

See also:
■ Pan or Zoom a View
\begin{tabular}{l}
\begin{tabular}{l} 
Type: \(\quad\) Integer \\
Saved in: \(\quad\) Registry \\
Initial value: 1
\end{tabular} \\
\begin{tabular}{l} 
Controls whether to use an additional processor to improve the \\
operations such as ZOOM that redraw or regenerate the drawi
\end{tabular} \\
WHIPTHREAD has no effect on single processor machines. \\
\hline 0
\end{tabular} \begin{tabular}{l} 
No multithreaded processing; restricts regeneration and \\
redraw processing to a single processor. This setting re- \\
stores the behavior of AutoCAD 2000 and previous re- \\
leases. \\
\hline \begin{tabular}{l} 
Regeneration multithreaded processing only; regeneration \\
processing is distributed across two processors on a multi- \\
processor machine.
\end{tabular} \\
\hline 2
\end{tabular}

When multithreaded processing is used for redraw operations (value 2 or 3 ), the order of objects specified with the DRAWORDER command is not guaranteed to be preserved for display but is preserved for plotting.

\section*{WINDOWAREACOLOR}

\section*{Quick Reference}

\section*{See also:}
- Customize Object Selection

Type: \(\quad\) Integer
Saved in: Registry
Initial value: 150
Controls the color of the transparent selection area during window selection.

The valid range is 1 to 255 . SELECTIONAREA must be on.

\section*{WMFBKGND}

\section*{Quick Reference}

See also:
- Import Other File Formats

Type: Integer
Saved in: Not-saved
Initial value: Off
Controls the background display when objects are inserted in Windows metafile (WMF) format.

The objects may be inserted using any of the following methods:
■ Output to a Windows metafile using WMFOUT
- Copied to the Clipboard and pasted as a Windows metafile
- Dragged as a Windows metafile

Off The background color is transparent. The foreground color depends on the setting of WMFFOREGND.

On The background color is the same as the current background color in the drawing, whether in model space or in a layout. The foreground color remains unchanged.

\section*{WMFFOREGND}

\section*{Quick Reference}

\section*{See also:}
- Import Other File Formats
```

Type: Integer
Saved in: Not-saved
Initial value: Off
Controls the assignment of the foreground color when objects are inserted in Windows metafile (WMF) format

```

The objects may be inserted using any of the following methods:
- Output to a Windows metafile using WMFOUT

■ Copied to the Clipboard and pasted as a Windows metafile
■ Dragged as a Windows metafile

WMFFOREGND applies only when WMFBKGND is set to Off.
\begin{tabular}{ll}
\hline Off & \begin{tabular}{l} 
The foreground and background colors are swapped if \\
necessary to ensure that the foreground color is darker \\
than the background color
\end{tabular} \\
\hline On & \begin{tabular}{l} 
The foreground and background colors are swapped if \\
necessary to ensure that the foreground color is lighter \\
than the background color
\end{tabular} \\
\hline
\end{tabular}

\section*{WORLDUCS}

\section*{Quick Reference}

\section*{See also:}

See also:
- Understand the User Coordinate System in 3D
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 1
Indicates whether the UCS is the same as the WCS.

0
UCS differs from the WCS

\section*{WORLDVIEW}

\section*{Quick Reference}

\section*{See also:}

■ Define a 3D View with Coordinate Values or Angles

Type: Integer
Saved in: Drawing
Initial value: 1
Determines whether input to the DVIEW and VPOINT commands is relative to the WCS (default) or the current UCS.
\begin{tabular}{ll}
\hline 0 & UCS remains unchanged \\
\hline 1 & \begin{tabular}{l} 
UCS changes to the WCS for the duration of the com- \\
mand; the command input is relative to the current UCS
\end{tabular}
\end{tabular}

\section*{WRITESTAT}

\section*{Quick Reference}

\section*{See also:}

■ Overview of AutoLISP and Visual LISP
(Read-only)
Type: Integer
Saved in: Not-saved
Initial value: 1
Indicates whether a drawing file is read-only or can be revised.
For developers who need to determine write status through AutoLISP.
\(0 \quad\) Can't write to the drawing

\section*{WSAUTOSAVE}

\section*{Quick Reference}

See also:
■ Create Task-Based Workspaces
■ Workspace Settings Dialog Box on page 2103

Type: Switch
Saved in: Registry
Initial value: 0
Saves changes you made to a workspace when you switch to another work space.
\(0 \quad\) Autosave on

1 Autosave off

This system variable determines the default setting in the Workspace Settings dialog box > When Switching Workspaces section on page 2104.

\section*{WSCURRENT}

\section*{Quick Reference}

See also:
■ Create Task-Based Workspaces

Type: String
Saved in: Not-saved
Initial value: Name of current workspace
Returns the current workspace name at the Command prompt and sets a workspace to current.

\section*{X System Variables}

\section*{XCLIPFRAME}

\section*{Quick Reference}

See also:
- Update Referenced Drawing Attachments

Type: Integer
Saved in: Drawing
Initial value: 2
Determines whether xref clipping boundaries are visible or plotted in the current drawing.

The FRAME system variable overrides the XCLIPFRAME setting.Use the XCLIPFRAME system variable after the FRAME system variable to reset the XCLIP frame settings
\begin{tabular}{ll}
\hline 0 & The xclip frame is not visible and it is not plotted \\
\hline 1 & The xclip frame is displayed and plotted \\
\hline 2 & The xclip frame is displayed but not plotted \\
\hline
\end{tabular}

\section*{XDWGFADECTL}

\section*{Quick Reference}

\section*{See also:}
- Attach Drawing References (Xrefs)

Type: Integer
Saved in: Registry
Initial value: 70
Controls the dimming for all DWG xref objects.
The valid XDWGFADECTL system variable value is between -90 and 90. When XDWGFADECTL is set to a negative value, the Xref Fading feature is not turned on, but the setting is stored.
\begin{tabular}{ll}
0 & DWG xref objects are not faded. \\
\hline\(>0\) & \begin{tabular}{l} 
When the value is positive, controls the percent of fading \\
up to 90 percent.
\end{tabular} \\
\hline\(<0\) & \begin{tabular}{l} 
When the value is negative, xref objects are not faded, \\
but the value is saved for switching to that value by \\
changing the sign.
\end{tabular}
\end{tabular}

\section*{XEDIT}

\section*{Quick Reference}

See also:
- Update Referenced Drawing Attachments

Type: Integer
Saved in: Drawing
Initial value: 1

Controls whether the current drawing can be edited in-place when being referenced by another drawing.
\begin{tabular}{ll}
\hline 0 & Can't use in-place reference editing \\
\hline 1 & Can use in-place reference editing \\
\hline
\end{tabular}

\section*{XFADECTL}

\section*{Quick Reference}

\section*{See also:}
- Attach Drawing References (Xrefs)

Type: Integer
Saved in: Registry
Initial value: 50
Controls the amount of fading within a reference being edited in place. This setting affects only the objects that are not being edited in the reference.

Valid values are from 0 to 90.
Also controls the fading intensity percentage of alternate object representations that display in a dimmed state, such as alternate scale representations of objects.

SELECTIONANNODISPLAY controls whether or not alternate scale representations of annotative objects are displayed.

\section*{XLOADCTL}

\section*{Quick Reference}

\section*{See also:}

■ Work with Demand Loading
\begin{tabular}{ll} 
Type: & Integer \\
Saved in: & Registry
\end{tabular}

Initial value: 2
Turns xref demand-loading on and off, and controls whether it opens the referenced drawing or a copy.
\begin{tabular}{ll}
\hline 0 & Turns off demand-loading; the entire drawing is loaded. \\
\hline 1 & \begin{tabular}{l} 
Turns on demand-loading. Referenced drawings are kept \\
open and locked.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Turns on demand-loading. Copies of referenced drawings \\
are opened and locked; referenced drawings are not \\
locked
\end{tabular} \\
\hline
\end{tabular}

When XLOADCTL is set to 2, a copy of each referenced drawing file is stored in the folder specified by the XLOADPATH system variable or the temporary files folder (set in the Options dialog box). Additionally, xrefs load faster when you work across a network: the performance enhancement is most pronounced when you open drawings with many xrefs.

\section*{XLOADPATH}

\section*{Quick Reference}

\section*{See also:}
- Set Paths for Temporary Xref File Copies

Type: \(\quad\) String
Saved in: Registry
Initial value: Varies
Creates a path for storing temporary copies of demand-loaded xref files.
For more information, see XLOADCTL on page 2627.

\section*{XREFCTL}

\section*{Quick Reference}

See also:
■ Track External Reference Operations (Log File)
Type: Integer

Saved in: Registry
Initial value: 0
Controls whether external reference \(\log\) (XLG) files are created.
\(0 \quad\) Does not write log files

1 Writes log files

\section*{XREFNOTIFY}

\section*{Quick Reference}

See also:
■ Update Referenced Drawing Attachments

Type: Integer
Saved in: Registry
Initial value: 2
Controls the notification for updated or missing xrefs.
0 Disables xref notification

1 Enables xref notification. Notifies you that xrefs are attached to the current drawing by displaying the xref icon in the lower-right corner of the application window (the notification area of the status bar tray). When you open a drawing, alerts you to missing xrefs by displaying the xref icon with a yellow alert symbol (!).

Enables xref notification and balloon messages. Displays the xref icon as in 1 above. Also displays balloon messages in the same area when xrefs are modified. The number of minutes between checking for modified xrefs is controlled by the system registry variable XNOTIFYTIME.

\section*{XREFTYPE}

\section*{Quick Reference}

See also:
■ Nest and Overlay Referenced Drawings

Type: Integer
Saved in: Registry
Initial value: 0
Controls the default reference type when attaching or overlaying an external reference.
\begin{tabular}{ll}
0 & Attachment is the default \\
\hline 1 & Overlay is the default \\
\hline
\end{tabular}

\title{
Z System Variables
}

\section*{ZOOMFACTOR}

\section*{Quick Reference}

See also:
- Pointing Device Buttons

\section*{Type: Integer}

Saved in: Registry
Initial value: 60
Controls how much the magnification changes when the mouse wheel moves forward or backward.

Accepts an integer between 3 and 100 as a valid value. The higher the number, the more the change.

\section*{ZOOMWHEEL}

\section*{Quick Reference}

\section*{See also:}
- Pointing Device Buttons

Type: \(\quad\) Integer
Saved in: Registry

Initial value: 0
Toggles the direction of transparent zoom operations when you scroll the middle mouse wheel.
\begin{tabular}{ll}
\hline 0 & \begin{tabular}{l} 
Moves wheel forward zooms in; moving wheel backwards \\
zooms out.
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Move wheel forward zooms out; moving wheel backwards \\
zooms in.
\end{tabular}
\end{tabular}

\section*{Utilities}

This section describes the AutoCAD \({ }^{\circledR}\) utilities. You run these utilities separately from AutoCAD.

\section*{Attach Digital Signatures}

\section*{Quick Reference}

See also:
- Overview of Digital Signatures

Attaches a digital signature to files.
\(\$\) Menu: Start menu (Windows) \(>\) Programs \(>\) Autodesk \(>\) AutoCAD \(>\) Attach Digital Signatures

The Attach Digital Signatures dialog box is displayed.

\section*{Attach Digital Signatures Dialog Box}

\section*{Quick Reference}

See also:
■ Overview of Digital Signatures
Selects the files for attachment of digital signatures.

\section*{Files to Be Signed}

Lists the names of the files to be signed, the folder in which each file resides, and the current status of the file.

\section*{Add Files}

Opens the Select File dialog box, where you select the files for digital signature.

\section*{Search Folders}

Opens the Search Folders dialog box, where you can search for files in the folder you specify.

\section*{Remove}

Removes selected files from the Files to Be Signed list.

\section*{Clear List}

Removes all files from the Files to Be Signed list.

\section*{Number of Files to Sign}

Displays the number of files that the Attach Digital Signatures program will attempt to sign.

\section*{Select a Digital ID (Certificate)}

Displays a list of digital IDs that you can use to sign files. Includes information about the organization or individual to whom the digital ID was issued, the digital ID vendor who issued the digital ID, and when the digital ID expires.

\section*{Signature Information}

Provides a list of time services you can use to add a time stamp to your digital signature, the status of the time server connection, and a Comments area (to include information relevant to the digital signature or to the files you are signing).

\section*{Get Time Stamp From}

Provides a list of time servers you can use to time stamp your digital signature and includes the connection status of the time server.

\section*{Time Service Status}

Displays the connection status (Successfully Contacted Time Server or Could Not Contact Time Server) of the time service.

\section*{Comment}

Provides a place to include information relevant to the digital signature or to the files you are signing.

\section*{Sign Files}

Attaches a digital signature to every file listed in this dialog box.

\section*{Search Folders Dialog Box}

\section*{Quick Reference}

See also:
■ Overview of Digital Signatures

Searches for folders that contain files you want to digitally sign.

\section*{Start in Folder}

Enters the name of the folder where you want to begin the search for files you want to sign.

Include Subfolders
Searches subfolders of the folder in the Start in Folder box.

\section*{Browse}

Opens the Browse for Folder dialog box, where you can choose a folder to search.

\section*{Search for Files Named}

Searches for the file type you specify.
You can specify DWG, DWS, and DWT files, as well as EXE and ZIP files generated by eTransmit.

\section*{Batch Standards Checker}

\section*{Quick Reference}

See also:
■ Check Drawings for Standards Violations

Audits a set of drawings for standards violations
\$ Menu: Start menu (Windows) \(>\) Programs \(>\) Autodesk \(>\) AutoCAD \(>\) Batch Standards Checker

The Batch Standards Checker Window is displayed.

\section*{Batch Standards Checker Window}

\section*{Quick Reference}

\section*{See also:}

■ Check Drawings for Standards Violations

The Batch Standards Checker audits a series of drawings for standards violations and creates an XML-based summary report detailing all violations. To use the Batch Standards Checker, you must first create a standards check file that specifies the drawings to audit and the standards files used for the audit.

The Batch Standards Checker contains the following tabs:
■ Drawings on page 2637
■ Standards on page 2637
- Plug-ins on page 2638
- Notes on page 2638
- Progress on page 2638

The Batch Standards Checker toolbar contains additional options.

\section*{Drawings Tab (Batch Standards Checker)}

Allows you to create a list of drawings to audit for standards violations.
Drawings to Check Lists the drawings to audit for standards violations. To add a drawing, click Add Drawing. To remove a drawing, click Remove Drawing. An exclamation mark precedes any drawings that the Batch Standards Checker can't locate. Drawings are audited in the order in which they are listed. To reorder drawings in the list, click Move Up or Move Down.

Add Standards File Opens a standard file selection dialog box, where you can locate and select a drawing to audit.

Remove Drawing Removes a drawing from the list displayed in Drawings to Check.

Move Up Moves the currently selected drawing up one position in the list displayed in Drawings to Check.

Move Down Moves a standards file down one position in the list displayed in Standards Used for Checking All Drawings.
Description Provides summary information about the drawing file currently selected in Drawings to Check.

Check External References of Listed Drawings Determines if external references (xrefs) are added to the Drawings to Check list. If checked, external references are added to the list as soon as you start a batch standards audit.

\section*{Standards Tab (Batch Standards Checker)}

Allows you to specify what standards files are used to verify named objects during the batch standards audit.

Check Each Drawing Using Its Associated Standards Files Specifies auditing each drawing using the standards files that are associated with it. If this option is selected, the remaining options on the tab are not available.

Check All Drawings Using the Following Standards Files Specifies ignoring the standards files that are associated with individual drawings and using the ones you select in Standards Used for Checking All Drawings instead.

Standards Used for Checking All Drawings Lists the standards files used to audit the drawings. To add a standards file, click Add Standards File. To remove a standards file, click Remove Standards File. If conflicts arise between multiple standards in this list (for example, if two standards files specify layers of the same name but with different properties), the standards file that is shown first
in the list takes precedence. To change the position of a standards file in the list, select it and click Move Up or Move Down.

Add Standards File Adds a standards file to the list displayed in Standards Used for Checking All Drawings.

Remove Standards File Removes a standards file from the list displayed in Standards Used for Checking All Drawings.

Move Up Moves a standards file up one position in the list displayed in Standards Used for Checking All Drawings.

Move Down Moves a standards file down one position in the list displayed in Standards Used for Checking All Drawings.

Description Provides summary information about the standards file currently selected in the list.

\section*{Plug-ins Tab (Batch Standards Checker)}

Lists the standards plug-ins that are installed on the current system. A standards plug-in is installed for each of the named objects for which standards can be defined (layers, dimension styles, linetypes, and text styles). In the future, it is expected that third-party applications will be able to install additional plug-ins.

Plug-ins Used When Checking Standards Displays a list of all the standards plug-ins on the current system. You specify at least one plug-in to use when auditing a drawing by selecting from the list. The selected plug-ins are used when checking standards for the entire series of drawings.

Description Provides summary information about the plug-in currently selected in the list.

\section*{Notes Tab (Batch Standards Checker)}

Allows you to add notes to the XML report.
Enter Notes to Include in Report Allows you to enter additional notes for inclusion in the report.

\section*{Progress Tab (Batch Standards Checker)}

Provides summary information about the status of the current batch standards audit.

Batch Standards Checker Toolbar
\(\left.\begin{array}{ll}\hline \text { New } & \begin{array}{l}\text { Creates a new standards } \\
\text { check file with a .chx file } \\
\text { name extension. Standards } \\
\text { check files specify what } \\
\text { drawings and standards } \\
\text { files are used by the batch } \\
\text { audit. }\end{array} \\
\hline \text { Open } & \begin{array}{l}\text { Opens a standard file selec- } \\
\text { tion dialog box, where you } \\
\text { can select a standards } \\
\text { check file. }\end{array} \\
\hline \text { Save } & \begin{array}{l}\text { Saves the current standards } \\
\text { check file. }\end{array} \\
\hline \text { Stop Check } & \begin{array}{l}\text { Opens a standard file save }\end{array} \\
\hline \text { Displays an HTML report } \\
\text { summarizing the results of } \\
\text { the batch audit. This but- }\end{array}\right\}\)\begin{tabular}{l} 
Start box, where you can \\
specify a name and loca- \\
tion to save a standards \\
check file.
\end{tabular}
\begin{tabular}{ll} 
& \begin{tabular}{l} 
ton is available when a \\
batch audit report is avail- \\
able for viewing. The con- \\
tents of the report are in- \\
cluded with the standards \\
check file.
\end{tabular} \\
\hline Export Report & \begin{tabular}{l} 
Exports an HTML report \\
that can be distributed to \\
other users. This button is \\
available only when a batch \\
audit has been completed \\
and a report is available to \\
export. This button also al- \\
lows you to optimize exist- \\
ing XML reports that were \\
created with a previous \\
version of the CAD Stand- \\
ards feature, in order to \\
improve report printing
\end{tabular} \\
\begin{tabular}{ll} 
quality.
\end{tabular} \\
\hline
\end{tabular}

\section*{SLIDELIB}

\section*{Quick Reference}

\section*{See also:}

■ Create and View Slide Libraries

Compiles slide files listed in an ASCII file into a slide library file.
You can construct slide library (SLB) files from slide (SLD) files by using the SLIDELIB utility program supplied in the main program folder. The following operating system command prompt syntax constructs a slide library:
slidelib library [ < slidelist ]
where
library specifies the slide library file (extension .slb) into which the slide files (extension .sld) are added. slidelist specifies a list of slide files. If you want to specify a file extension, it must be .sld.
SLIDELIB reads a list of slide file names. This list is normally supplied by redirecting a list of files (one per line in another file created using a text editor or a user-supplied utility program) to standard input.

The operating system commands shown below will create a slidelist file that can be used with SLIDELIB. All the slide files you want to compile into a slide library should be placed in a single directory. At a DOS prompt (version 5.0 or newer), enter the following:

\section*{dir *.sld /b > mylist}

This creates the mylist file, which you can pass to SLIDELIB. You can also create the mylist file with a text editor by listing the slide file names (and paths, if necessary), such as lobby, \(d: \backslash\) slides loffice, and \aec \slides \stairs. The slide file name, but not the drive and directory information, is saved in the library file. Because only the file name is included, a library can contain slides with the same name from different directories, but only one of the slides can be accessed.

To generate the slide library mlib from mylist, enter the following:

\section*{slidelib mlib < mylist}

This entry creates the file mlib.slb, which contains the names and definitions of the slides listed in mylist.

WARNING Do not delete your original slides. SLIDELIB has no provision for updating a slide library once it is created. If you want to add or delete a slide, update the slidelist file and re-create the library with SLIDELIB. All the original slides must be present in order to do this.

\section*{Glossary}

Commands associated with definitions are shown in parentheses at the end of the definition.
3D mesh primitive Basic mesh forms such as boxes, cones, cylinders, pyramids, wedges, spheres, and tori.

3D view Any view where the UCS icon appears in rendered colored form; current visual style is not 2D Wireframe, and the model is being viewed from an isometric view.

3Dconnexion Set of navigation tools used to reorient the current view of a model with a 3Dconnexion device.
absolute coordinates Coordinate values measured from a coordinate system's origin point. See also origin, relative coordinates, user coordinate system (UCS), world coordinates, and world coordinate system (WCS).
acquired point In the tracking or object snap tracking methods of locating a point, an intermediate location used as a reference.
acquisition marker During tracking or object snap tracking, the temporary plus sign displayed at the location of an acquired point.
action The smallest task or user interaction that can be recorded with the Action Recorder.
Action bar Toolbar-like UI that displays the actions associated with a parameter object.
action macro A series of recorded actions that can be played back in the active drawing.
action macro file A file that stores all the actions contained in an action macro. Action macro files have the file extension .actm.

Action tree A control used to display the recorded actions in an action macro.
activate Part of the Autodesk software registration process. It allows you to run a product in compliance with the product's end-user license agreement.
adaptive degradation A method of controlling performance that turns off features in a certain order when performance falls below a specified level.
adaptive sampling A method to accelerate the anti-aliasing process within the bounds of the sample matrix size. See also anti-aliasing.
adjacent cell selection A selection of table cells that share at least one boundary with another cell in the same selection.
affine calibration A tablet calibration method that provides an arbitrary linear transformation in two-dimensional space. Affine calibration requires three calibration points to allow a tablet transformation that combines translation, independent \(X\) and \(Y\) scaling, rotation, and some skewing. Use affine calibration if a drawing has been stretched differently in the horizontal or vertical direction. (TABLET)
alias A shortcut for a command. For example, \(C P\) is an alias for COPY, and \(Z\) is an alias for ZOOM. You define aliases in the acad.pgp file.
aliasing The effect of discrete picture elements, or pixels, aligned as a straight or curved edge on a fixed grid appearing to be jagged or stepped. See also anti-aliasing.
aligned dimension A dimension that measures the distance between two points at any angle. The dimension line is parallel to the line connecting the dimension's definition points. (DIMALIGNED)
alpha channel Alpha is a type of data, found in 32-bit bitmap files, that assigns transparency to the pixels in the image.
A 24-bit truecolor file contains three channels of color information: red, green, and blue, or RGB. Each channel of a truecolor bitmap file is defined by 8 bits, providing 256 levels of intensity. The intensity of each channel determines the color of the pixel in the image. Thus, an RGB file is 24 -bit with 256 levels each of red, green, and blue.
By adding a fourth, alpha channel, the file can specify the transparency, or opacity, of each of the pixels. An alpha value of 0 is transparent, an alpha value of 255 is opaque, and values in between are semi-transparent. An RGBA file (red, green, blue, alpha) is 32-bit, with the extra 8 bits of alpha providing 256 levels of transparency.
To output a rendered image with alpha, save in an alpha-compatible format such as PNG, TIFF, or Targa.
ambient color A color produced only by ambient light. Ambient color is the color of an object where it is in shadow. This color is what the object reflects when illuminated by ambient light rather than direct light.
ambient light Light that illuminates all surfaces of a model with equal intensity. Ambient light has no single source or direction and does not diminish in intensity over distance.
angular dimension A dimension that measures angles or arc segments and consists of text, extension lines, and leaders. (DIMANGULAR)
angular unit The unit of measurement for an angle. Angular units can be measured in decimal degrees, degrees/minutes/seconds, grads, and radians.
annotation scale A setting that is saved with model space, layout viewports, and model views. When you create annotative objects, they are scaled based on the current annotation scale setting and automatically displayed at the correct size.
annotational constraint Dimensional constraint used to control the size of the geometry as well as annotate the drawing.
See also parameter constraint, and dynamic constraint
annotations Text, dimensions, tolerances, symbols, notes, and other types of explanatory symbols or objects that are used to add information to your model.
annotative A property that belongs to objects that are commonly used to annotate drawings. This property allows you to automate the process of scaling annotations. Annotative objects are defined at a paper height and display in layout viewports and model space at the size determined by the annotation scale set for those spaces.
anonymous block An unnamed block created by a number of features, including associative and nonassociative dimensions.
anti-aliasing A method that reduces aliasing by shading the pixels adjacent to the main pixels that define a line or boundary. See also aliasing.
application button The button that is displayed in the top-left corner of the application. If you click the application button, the application menu is displayed.
application menu The menu that is displayed when you click the application button. The application menu contains common tools for creating, saving, and publishing a file.
approximation points Point locations that a B-spline must pass near, within a fit tolerance. See also fit points and interpolation points.
array 1. Multiple copies of selected objects in a rectangular or polar (radial) pattern. (ARRAY) 2. A collection of data items, each identified by a subscript or key, arranged so a computer can examine the collection and retrieve data with the key.
arrowhead A terminator, such as an arrowhead, slash, or dot, at the end of a dimension line showing where a dimension begins and ends.

aspect ratio Ratio of display width to height.
associative dimension A dimension that automatically adapts as the associated geometry is modified. Controlled by the DIMASSOC system variable. See also nonassociative dimension and exploded dimension.
associative hatch Hatching that conforms to its bounding objects such that modifying the bounding objects automatically adjusts the hatch. (BHATCH)
associative surfaces Associative surfaces automatically adjust their location and shape when the geometric objects associated with them are modified. Controlled by the SURFACEASSOCIATIVITY on page 2537 system variable.
attenuation The diminishing of light intensity over distance.
attribute definition An object that is included in a block definition to store alphanumeric data. Attribute values can be predefined or specified when the block is inserted. Attribute data can be extracted from a drawing and inserted into external files. (ATTDEF)
attribute extraction file A text file to which extracted attribute data is written. The contents and format are determined by the attribute extraction template file. See also attribute extraction template file.
attribute extraction template file A text file that determines which attributes are extracted and how they are formatted when written to an attribute extraction file. See also attribute extraction file.
attribute prompt The text string displayed when you insert a block with an attribute whose value is undefined. See also attribute definition, attribute tag, and attribute value.
attribute tag A text string associated with an attribute that identifies a particular attribute during extraction from the drawing database. See also attribute definition, attribute prompt, and attribute value.
attribute value The alphanumeric information associated with an attribute tag. See also attribute definition, attribute prompt, and attribute tag.

AutoCAD library search path The order in which looks for a support file: current directory, drawing directory, directory specified in the support path, and directory containing the executable file, acad.exe.

AutoCAD window The drawing area, its surrounding menus, and the command line.
axis tripod Icon with \(X, Y\), and \(Z\) coordinates that is used to visualize the viewpoint (view direction) of a drawing without displaying the drawing. (VPOINT)

B-spline curve A blended piecewise polynomial curve passing near a given set of control points. See also Bezier curve. (SPLINE)
back face The opposite side of a front face. Back faces are not visible in a rendered image. See also front faces.
base point 1. In the context of editing grips, the grip that changes to a solid color when selected to specify the focus of the subsequent editing operation. 2. A point for relative distance and angle when copying, moving, and rotating objects. 3 . The insertion base point of the current drawing. (BASE) 4. The insertion base point for a block definition. (BLOCK)
baseline An imaginary line on which text characters appear to rest. Individual characters can have descenders that drop below the baseline. See also baseline dimension.
baseline dimension Multiple dimensions measured from the same baseline. Also called parallel dimensions. See also baseline.
basic tooltip Displays a brief description for the tooltip.
basic wheels A reference to the View Object wheel and Tour Building wheel.
Bezier curve A polynomial curve defined by a set of control points, representing an equation of an order one less than the number of points being considered. A Bezier curve is a special case of a B-spline curve. See also B-spline curve.
big wheels The large version of the SteeringWheels. Labels are displayed on each wheel wedge and they are larger than the size of the cursor.
bitmap The digital representation of an image having bits referenced to pixels. In color graphics, a different value represents each red, green, and blue component of a pixel.
blips Temporary screen markers displayed in the drawing area when you specify a point or select objects. (BLIPMODE)
block A generic term for one or more objects that are combined to create a single object. Commonly used for either block definition or block reference. See also block definition and block reference. (BLOCK)
block action Defines how the geometry of a dynamic block reference will move or change when the custom properties of a block reference are manipulated in a drawing. A dynamic block definition usually contains at least one action that is associated with a parameter. (BACTION)
block authoring object A dimensional constraint, parameter, or action that adds intelligence to a block definition.
block authoring palettes Tool palettes used in the Block Editor to add actions and parameters to dynamic block definitions.
block authoring tools Actions, parameters, and parameter sets on the tabs of the Block Authoring Palettes window. Used in the Block Editor to create dynamic blocks.
block constraint parameter A dimensional constraint that has block authoring information associated with it.
See also: dynamic constraint
See also: annotational constraint
block definition The name, base point, and set of objects that are combined and stored in the symbol table of a drawing. See also block and block reference.
block definition table The nongraphical data area of a drawing file that stores block definitions. See also named object.
block instance See block reference.
block properties table A table that enables users to define different values for a set of properties for the block definition. Replacement for lookup properties in the future.
block reference A compound object that is inserted in a drawing and displays the data stored in a block definition. Also called instance. See also block and block definition. (INSERT)
bounded area A closed area that consists of a single object (such as a circle) or of multiple, coplanar objects that overlap. You can insert hatch fills within bounded areas.
Bounded areas are also used to create 3D objects through extrusion by using the PRESSPULL command.
bump map A map in which brightness values are translated into apparent changes in the height of the surface of an object.
button menu The menu for a pointing device with multiple buttons. Each button on the pointing device (except the pick button) can be defined in the customization file (acad.cui).

BYBLOCK A special object property used to specify that the object inherits the color or linetype of any block containing it. See also BYLAYER.

BYLAYER A special object property used to specify that the object inherits the color or linetype associated with its layer. See also BYBLOCK.
callout block A block used as symbol to reference another sheet. Callout blocks have many industry-specific terms, such as reference tags, detail keys, detail markers, and so on. See also label block.
camera Defines the current eye-level position in a 3D model. A camera has a location \(X Y Z\) coordinate, a target \(X Y Z\) coordinate, and a field of view or lens length, which determines the magnification or zoom factor.
camera target Defines the point you are viewing by specifying the coordinate at the center of the view.
candela The SI unit of luminous intensity (perceived power emitted by a light source in a particular direction) (Symbol: cd). Cd/Sr
category See view category.
cell The smallest available table selection.
cell boundary The four gridlines surrounding a table cell. An adjacent cell selection can be surrounded with a cell boundary.
cell style A style that contains specific formatting for table cells.
chain actions In a dynamic block definition, a property of point, linear, polar, XY, and rotation parameters. When set to Yes, a change in an action that contains the parameter in the action's selection set triggers any actions associated with that parameter, just as if you had edited the parameter in the block reference through a grip or custom property.
circular external reference An externally referenced drawing (xref) that references itself directly or indirectly. The xref that creates the circular condition is ignored.
clipping planes The boundaries that define or clip the field of view.
CMYK For cyan, magenta, yellow, and key color. A system of defining colors by specifying the percentages of cyan, magenta, yellow, and the key color, which is typically black.

Color bleed scale Increases or decreases the saturation of the reflected color from the material.
color map A table defining the intensity of red, green, and blue (RGB) for each displayed color.
column A vertically adjacent table cell selection spanning the height of the table. A single column is one cell in width.
command line A text area reserved for keyboard input, prompts, and messages.

\section*{compass}

A visual aid that indicates the directions North, South, East, and West in the current model.
composite solid A solid created from two or more individual solids. (UNION, SUBTRACT, INTERSECT)
constraint bar Displays the geometric constraints associated with objects or with points on objects.
constraint point Point on an object that can be geometrically and/or dimensionally constrained (for example, an endpoint or an insertion point).
constraints Form of parametric design.
Rules that govern the position, slope, tangency, dimensions, and relationships among objects in a geometry.
construction plane See workplane.
contextual ribbon tab
A ribbon tab that is displayed only when a particular type of object or when a particular command is executed. For example, selecting a hatch or table, or executing the mtext command brings up the corresponding contextual menu.
continued dimension A type of linear dimension that uses the second extension line origin of a selected dimension as its first extension line origin, breaking one long dimension into shorter segments that add up to the total measurement. Also called chain dimension.
(DIMCONTINUE)
control frame A series of point locations used as a mechanism to control the shape of a B-spline. These points are connected by a series of line segments for visual clarity and to distinguish the control frame from fit points. The CVSHOW and CVHIDE commands must be turned on to display and hide control frames.
control point See control frame.
Coons patch In 3D surface meshes, the bicubic surface (one curved in the M direction and another in the N direction) interpolated between four edges.
coordinate filters Functions that extract individual \(X, Y\), and \(Z\) coordinate values from different points to create a new, composite point. Also called \(X, Y, Z\) point filters.
crease A sharpened ridge that defines one or more edges of a mesh face subobject. (MESHCREASE)
cross sections Generally, curves or lines that define the profile (shape) of a lofted solid or surface. Cross sections can be open or closed. A lofted solid or surface is drawn in the space between the cross sections. (LOFT)
crosshairs A type of cursor consisting of two lines that intersect.

crossing selection A rectangular area drawn to select objects fully or partly within its borders.
CTB file SA color-dependent plot style table.
ctrl-cycle Method for cycling between different behaviors while editing geometry, either in a command or when grip-editing. Pressing and releasing the CTRL key cycles the behavior. For constrained geometry, CTRL-cycling switches between enforcing and relaxing constraints.
current drawing A drawing file that is open in the program, and receives any command or action that you enter.
cursor See pointer and crosshairs.
cursor menu See shortcut menu.
curve-fit A smooth curve consisting of arcs joining each pair of vertices. The curve passes through all vertices of the polyline and uses any tangent direction you specify.
custom grips In a dynamic block reference, used to manipulate the geometry and custom properties.
custom object A type of object that is created by an ObjectARX application and that typically has more specialized capabilities than standard objects. Custom objects include parametric solids (AutoCAD Mechanical Desktop), intelligently interactive door symbols (AutoCAD Architecture), polygon objects (AutoCAD Map 3D), and associative dimension objects (AutoCAD and AutoCAD LT). See also proxy object and object enabler.
customization (CUI) file An XML-based file that stores customization data. You modify a customization file through the Customize User Interface dialog box. CUI files replace MNU, MNS, and MNC files that were used to define menus in earlier releases.
data link A connection between a table and an external source of data.
decimal degrees A notation for specifying latitude and longitude. For example, \(35.1234^{\circ}\), \(100.5678^{\circ}\).
Latitude always precedes longitude
default drawing See initial environment.
default lighting The lighting in a shaded viewport when the sun and user lights are turned off. Faces are lighted by two distant light sources that follow the viewpoint as you move around the model.
default value The value that is accepted when you press ENTER at a sub-prompt. The default value is displayed in angle brackets <>. See also default.
definition points Points for creating a dimension. The program refers to the points to modify the appearance and value of a nonassociative dimension when the dimensioned object is modified. Also called defpoints and stored on the special layer DEFPOINTS.
definition table The nongraphical data area of a drawing file that stores block definitions.
dependency highlighting In a dynamic block definition, how associated objects are displayed when you select a parameter, grip, or action.
dependent named objects (in xrefs) Named objects brought into a drawing by an external reference. See also named object and symbol table.
dependent symbols See dependent named objects (in xrefs).
DGN underlay See underlay.
DIESEL For Direct Interpretively Evaluated String Expression Language. A macro language for altering the status line with the MODEMACRO system variable and for customizing menu items.
diffuse color An object's predominant color.
dimension line arc An arc (usually with arrows at each end) spanning the angle formed by the extension lines of an angle being measured. The dimension text near this arc sometimes divides it into two arcs. See also angular dimension.
dimension style A named group of dimension settings that determines the appearance of the dimension and simplifies the setting of dimension system variables. (DIMSTYLE)
dimension text The measurement value of dimensioned objects.
dimension variables A set of numeric values, text strings, and settings that control dimensioning features. (DIMSTYLE)
dimensional constraint Parametric dimensions that control the size, angle, or position of geometry relative to the drawing or other objects. When dimensions are changed, the object resizes.
direct distance entry A method to specify a second point by first moving the cursor to indicate direction and then entering a distance.
dithering Combining color dots to give the impression of displaying more colors than are actually available.
dockable window A user interface element that can be either docked, anchored, or floating in the drawing area. Dockable windows include the command window, tool palettes, Properties Palette, and so on.
drawing area The area in which your drawings are displayed and modified. The size of the drawing area varies, depending on the size of the AutoCAD window and on how many toolbars and other elements are displayed. See also AutoCAD window.
drawing extents The smallest rectangle that contains all objects in a drawing, positioned on the screen to display the largest possible view of all objects. (ZOOM)

drawing limits See grid limits.
drawing set A collection of drawings assembled using the Publish dialog box.
drawing state A collection of known settings that define the behavioral properties of the drawing environment and/or drawing at a known period of time, such as when an action macro was recorded or before the playback of an action macro.
drawing template A drawing file with preestablished settings for new drawings such as acad.dwtand acadiso.dwt however, any drawing can be used as a template. See also initial environment.
driven constraint A non-parametric dimension enclosed in parentheses that shows the current value of geometry. The value is updated when the geometry changes size, but it does not control geometry.
driving dimension A parametric dimension that determines the size of geometry and resizes the object when its value changes.
driving property A lookup property is considered invertible when a manual change in the lookup value for a block reference causes other properties values change.

DSD For drawing set descriptions. A file format for saving a description of a drawing set that has been assembled using the Publish dialog box.

DST For sheet set data. The XML file format used to store the associations and information that define a sheet set.

\section*{DWF}

An open, published, and secure file format developed by Autodesk, DWF enables you to combine and publish rich 2D- and 3D-design data and share it with others.

DWF underlay See underlay.

\section*{DWFx}

A version of DWF based on the XML Paper Specification (XPS) from Microsoft. DWFx enables DWF files to be viewed using the free Microsoft XPS Viewer. Generically referred to as DWF.

DWG Standard file format for saving vector graphics. See also DWF and DXF.
DXF For drawing interchange format. An ASCII or binary file format of a drawing file for exporting drawings to other applications or for importing drawings from other applications. See also DWF and DWG.
dynamic constraint Dimensional constraint (Constraint Form property = "dynamic") that displays the constraints only when you select the constrained object.
See also: parameter constraint
See also: annotational constraint
dynamic dimension Temporary dimensions that appear on objects, including dynamic block references, when they are grip edited.
edge The boundary of a face.
edge modifiers Effects such as overhang and jitter that control how edges are displayed in a shaded model.
electronic drawing set The digital equivalent of a set of plotted drawings. You create an electronic drawing set by publishing drawings to a DWF file.
elevation The default \(Z\) value above or below the \(X Y\) plane of the current user coordinate system, which is used for entering coordinates and digitizing locations. (ELEV)

embed To use object linking and embedding (OLE) information from a source document in a destination document. An embedded object is a copy of the information from a source document that is placed in the destination document and has no link to the source document. See also link.
empty selection set A selection set that contains no objects.
enterprise customization file A CUI file that is typically controlled by a CAD manager. It is often accessed by many users and is stored in a shared network location. The file is read-only to users to prevent the data in the file from being changed. A CAD manager creates an enterprise CUI file by modifying a main CUI file and then saving the file to the support location defined in the Options dialog box, Files tab.
environment map A bitmap that is used to simulate reflections in materials that have reflective properties. The map is "wrapped" around the scene and any reflective object will show the appropriate portion of the map in the reflective parts of its material.
environment variable A setting stored in the operating system that controls the operation of a program.

\section*{expanded panel}

An area on the ribbon associated with a ribbon panel. An expanded panel contains additional tools and controls. See also ribbon panel and ribbon.
explode To disassemble a complex object, such as a block, dimension, solid, or polyline, into simpler objects. In the case of a block, the block definition is unchanged. The block reference is replaced by the components of the block. See also block, block definition, and block reference. (EXPLODE)
exploded dimension Independent objects that have the appearance of a dimension but are not associated with the dimensioned object or each other. Controlled by the DIMASSOC system variable. See also associative dimension, nonassociative dimension, and explode. (EXPLODE)
extended tooltips When hovered over the tooltip for a period of time, displays additional information.
extents See drawing extents.
external reference (xref) A drawing file referenced by another drawing. (XREF)
extrusion A 3D solid created by sweeping an object that encloses an area along a linear path.
face A triangular or quadrilateral portion of a surface object.
face color mode A setting in the visual style that controls how color is displayed on a face.
face style A setting in the visual style that defines the shading on a face.
facet The underlying structure of the face of a 3D solid, surface, or mesh. Facets can be quadrilateral or triangular. Smoothing a mesh object increases the number of facets for each face.
feature control frame The tolerance that applies to specific features or patterns of features. Feature control frames always contain at least a geometric characteristic symbol to indicate the type of control and a tolerance value to indicate the amount of acceptable variation.
fence A multisegmented line specified to select objects it passes through.
field A specialized text object set up to display data that may change during the life cycle of the drawing. When the field is updated, the latest value of the field is displayed. (FIELD)
fill A solid color covering an area bounded by lines or curves. (FILL)
filters See coordinate filters.
final gathering Final gathering is an optional, additional step to calculating global illumination. Using a photon map to calculate global illumination can cause rendering artifacts such as dark corners and low-frequency variations in the lighting. You can reduce or eliminate these artifacts by turning on final gathering, which increases the number of rays used to calculate global illumination.
Final gathering can greatly increase rendering time. It is most useful for scenes with overall diffuse lighting, less useful for scenes with bright spots of indirect illumination.
You turn on final gathering on the Advanced Render Settings palette. See also global illumination.

First Contact balloon The interactive graphical tooltip that is displayed when the SteeringWheel is pinned during startup.
fit points Locations that a B-spline must pass through exactly or within a fit tolerance. See also interpolation points and approximation points.
fit tolerance The setting for the maximum distance that a B-spline can pass for each of the fit points that define it.

\section*{floating panel}

A ribbon panel that is not attached to the rest of the ribbon or file window.
floating viewports See layout viewports.
font A character set, made up of letters, numbers, punctuation marks, and symbols of a distinctive proportion and design.
footcandle The American unit of illuminance (symbol: fc). \(\mathrm{Lm} / \mathrm{ft}^{\wedge} 2\).
footcandle The American unit of illuminance (symbol: fc). \(\mathrm{Lm} / \mathrm{ft}^{\wedge} 2\)
frame An individual, static image in an animated sequence. See also motion path.
freeze A setting that suppresses the display of objects on selected layers. Objects on frozen layers are not displayed, regenerated, or plotted. Freezing layers shortens regenerating time. See also thaw. (LAYER)
front faces Faces with their normals pointed outward.
general property Properties that are common between a selection of objects. These include Color, Layer, Linetype, Linetype scale, Plot style, Lineweight, Hyperlink, and Thickness.
generic surface A 3D surface object with no control vertices, history, or analytic information. Generic surfaces cannot be associative and they are created when associative analytic surfaces are separated or by using the BREP on page 272 command. See also procedural surface and NURBS surface.
geographic elevation The relative height along the specified up-direction defined for a geographic marker.
geographic marker Visual representation of geographic location information.
geometric constraint Rules that define the geometric relationships of objects (or points of objects) elements and control how an object can change shape or size.
Geometric constraints are coincident, collinear, concentric, equal, fix, horizontal, parallel, perpendicular, tangent, and vertical.
geometry All graphical objects such as lines, circles, arcs, polylines, and dimensions.
Nongraphical objects, such as linetypes, lineweights, text styles, and layers are not considered geometry. See also named object.
gizmo A tool that permits you to manipulate a 3D object uniformly or along a specified axis or plane. Examples of gizmos include the 3D Move, 3D Rotate, and 3D Scale gizmos. They are displayed when you select a 3D object.
global illumination An indirect illumination technique that allows for effects such as color bleeding. As light hits a colored object in the model, photons bounce to adjacent objects and tint them with the color of the original object.

Gooch shading A type of shading that uses a transition from cool to warm colors rather than from dark to light.
graphics area See drawing area.
graphics window See AutoCAD window and drawing area.
grid An area covered with regularly spaced dots or lines to aid drawing. The grid spacing is adjustable. The grid dots are never plotted. See also grid limits. (GRID)
grid limits The user-defined rectangular boundary of the drawing area covered by dots when the grid is turned on. Also called drawing limits. (LIMITS)

grip modes The editing capabilities activated when grips are displayed on an object: stretching, moving, rotating, scaling, and mirroring.
grip tool An icon that you use in a 3D view to easily constrain the movement or rotation of a selection set of objects to an axis or a plane. (3DMOVE, 3DROTATE)
grips Small squares and triangles that appear on objects you select. After selecting the grip, you edit the object by dragging it with the pointing device instead of entering commands.
ground plane The XY plane of the user coordinate system when perspective projection is turned on. The ground plane displays with a color gradient between the ground horizon (nearest to the horizon) and the ground origin (opposite the horizon). See also sky and underground.
guide curves Lines or curves that intersect each cross section of a lofted solid or surface and that define the form by adding additional wireframe information to the object. (LOFT)
handle A unique alphanumeric tag for an object in the program's database.
HDI For Heidi Device Interface. An interface for developing device drivers that are required for peripherals to work with the program and other Autodesk products.
heads-up display (HUD) The process of transparently displaying user interface elements on top of or over the drawing area without obscuring the view of the objects drawn on the drawing area.
helix An open 2D or 3D spiral. (HELIX)
Help menu The legacy way to access online Help. In the current version of AutoCAD, you can find Help on the InfoCenter toolbar or by pressing F1.

HLS For hue, lightness, and saturation. A system of defining color by specifying the amount of hue, lightness, and saturation.

Home view A special view saved with the drawing that is controlled through the ViewCube tool. The Home view is similar in concept to the default, initial view presented when a drawing is first opened.
horizontal landing An optional line segment connecting the tail of a leader line with the leader content.

\section*{horizontal ribbon}

The ribbon, when it is oriented across the top of the file window.
i-drop A method by which a drawing file can be dragged from a Web page and inserted into another drawing.

IGES For Initial Graphics Exchange Specification. A standard format for digital representation and exchange of information between CAD/CAM systems. In AutoCAD-based products, the commands to import and export IGES files are available only in AutoCAD Mechanical.

Illuminance In photometry, illuminance is the total luminous flux incident on a surface per unit area.
indirect bump scale Scales the effect of the base material's bump mapping in areas lit by indirect light.
indirect illumination Illumination techniques such as global illumination and final gathering, that enhance the realism of a scene by simulating radiosity, or the interreflection of light between objects in a scene.
initial environment The variables and settings for new drawings as defined by the default drawing template, such as acad.dwg or acadiso.dwg. See also template drawing.
input property In a dynamic block definition, a parameter property other than that of a lookup, alignment, or base point parameter that you can add as a column to a lookup table. When the parameter values in a dynamic block reference match a row of input property values, the corresponding lookup property values in that table row are assigned to the block reference. (BLOOKUPTABLE)
interface element A user interface object that can be customized, such as a toolbar, pull-down menu, shortcut key, dockable window, and so on.
interpolation points Defining points that a B-spline passes through. See also approximation points and fit points.
island An enclosed area within another enclosed area. Islands may be detected as part of the process of creating hatches, polylines, and regions. (BHATCH, BOUNDARY)

ISO For International Standards Organization. The organization that sets international standards in all fields except electrical and electronics. Headquarters are in Geneva, Switzerland.
isometric snap style A drafting option that aligns the cursor with two of three isometric axes and displays grid, making 2D isometric drawings easier to create.
key point In a dynamic block definition, the point on a parameter that drives its associated action when edited in the block reference.
label block A block used to label views and details. Labels contain data, such as a title, view number, and scale, that is associated with the referenced view. See also callout block.
landing The portion of a leader object that acts as a pointer to the object being called out. A landing can either be a straight line or a spline curve.
landing gap An optional space between a leader tail and the leader content.
layer A logical grouping of data that are like transparent acetate overlays on a drawing. You can view layers individually or in combination. (LAYER)
layer index A list showing the objects on each layer. A layer index is used to locate what portion of the drawing is read when you partially open a drawing. Saving a layer index with a drawing also enhances performance when you work with external references. The INDEXCTL system variable controls whether layer and spatial indexes are saved with a drawing.
layer translation mappings Assignments of a set of layers to another set of layers that defines standards. These standards include layer names and layer properties. Also called layer mappings.
layout The environment in which you create and design paper space layout viewports to be plotted. Multiple layouts can be created for each drawing.
layout viewports Objects that are created in paper space that display views. See also paper space. (VPORTS)
leader tail The portion of a leader line that is connected to the annotation.
lens length Defines the magnification properties of a camera's lens. The greater the lens length, the narrower the field of view.
level of smoothness The property assigned to a mesh object to control how much the edges of the object are smoothed. Level 0 (zero) represents the least rounded shape for a specified mesh object. Higher levels result in increased smoothness.
light glyph The graphic representation of a point light or a spotlight.
limits See drawing limits.
line font See linetype.
linetype How a line or type of curve is displayed. For example, a continuous line has a different linetype than a dashed line. Also called line font. (LINETYPE)
lineweight A width value that can be assigned to all graphical objects except TrueType \({ }^{\circledR}\) fonts and raster images.
link To use object linking and embedding (OLE) to reference data in another file. When data is linked, any changes to it in the source document are automatically updated in any destination document. See also embed.

LL84 coordinate system Common latitude longitudinal-based coordinate system where latitude and longitude are both measured from -90 to 90 degrees.
Longitude begins at 0 degrees at the Prime Meridian in Greenwich, England and is measured from -180 to 180 .
Latitude is 0 degrees at the equator and is measured from -90 to 90 .
lofted solid/surface A solid or surface that is drawn through a set of two or more cross-section curves. The cross sections define the profile (shape) of the resulting solid or surface. Cross sections (generally, curves or lines) can be open or closed. (LOFT)
lookup property In a dynamic block definition, a lookup parameter that you add to a lookup table. The lookup parameter label is used as the property name. When the parameter
values in a dynamic block reference match a row of input property values, the corresponding lookup property values in that table row are assigned to the block reference.
(BLOOKUPTABLE)
lookup table Defines properties for and assigns property values to a dynamic block. Assigns property values to the dynamic block reference based on how the block is manipulated in a drawing. (BLOOKUPTABLE)
lumen The SI unit of luminous flux (Symbol: lm). Cd * Sr
luminaire This refers to the aggregation of a lamp or lamps and its fixture. The fixture may be a simple can or a complex armature with constrained joints.
luminance Luminance is the value of light reflected off a surface. It is a measure of how bright or dark we perceive the surface.
luminous flux The perceived power in per unit of solid angle. The total luminous flux for a lamp is the perceived power emitted in all directions.
lux The SI unit of illuminance (symbol: lx). Lm/m^2
macro-derived selection A selection set of all the objects that have been created during the playback of an action macro up to the command that is requesting a selection set.
main customization file A writable CUI file that defines most of the user interface elements (including the standard menus, toolbars, keyboard accelerators, and so on). The acad.cui file (the default main CUI file) is automatically loaded when you start AutoCAD.
markup A single comment or a redline geometry correction inserted into a DWF file using Autodesk Design Review.
markup set A group of markups contained within a single DWF file.
merge In tables, an adjacent cell selection that has been combined into a single cell.
mesh A tessellated, or subdivided object type that is defined by faces, edges, and vertices. Mesh can be smoothed to achieve a more rounded appearance and creased to introduce ridges. Before AutoCAD 2010, only the less modifiable polygon and polyface mesh was available.
mini wheels The small version of SteeringWheels. No labels are displayed on any of the wedges and they are often the size of the cursor.
mirror To create a new version of an existing object by reflecting it symmetrically with respect to a prescribed line or plane. (MIRROR)
mode A software setting or operating state.
model A two- or three-dimensional representation of an object.
model space One of the two primary spaces in which objects reside. Typically, a geometric model is placed in a three-dimensional coordinate space called model space. A final layout of specific views and annotations of this model is placed in paper space. See also paper space. (MSPACE)
model viewports A type of display that splits the drawing area into one or more adjacent rectangular viewing areas. See also layout viewports, TILEMODE, and viewport. (VPORTS)
motion path Defines the path or target of a camera. A path can be a line, arc, elliptical arc, circle, polyline, 3D polyline, or spline.
multi-sheet DWF A DWF file that contains multiple sheets.
multileader A leader object that creates annotations with multiple leader lines.
named object Describes the various types of nongraphical information, such as styles and definitions, stored with a drawing. Named objects include linetypes, layers, dimension styles, text styles, block definitions, layouts, views, and viewport configurations. Named objects are stored in definition (symbol) tables.
named objects, dependent See dependent named objects (in xrefs).
named path A saved motion path object that is linked to a camera or target.
named range A tool in Microsoft Excel that provides a method to assign a meaningful name to a single cell or a range of cells.
named view A view saved for restoration later. (VIEW)
navigation bar Navigation tools that are common across multiple Autodesk programs. The unified navigation tools include Autodesk \({ }^{\circledR}\) ViewCube \({ }^{\circledR}\), SteeringWheels \({ }^{\circledR}\), ShowMotion \({ }^{\circledR}\), and 3Dconnexion \({ }^{\circledR}\).
node An object snap specification to locate points, dimension definition points, and dimension text origins.
nonassociative dimension A dimension that does not automatically change as the associated geometry is modified. Controlled by the DIMASSOC system variable. See also associative dimension and exploded dimension.
normal A normal is a vector that defines which way a face is pointing. The direction of the normal indicates the front, or outer surface of the face.
noun-verb selection Selecting an object first and then performing an operation on it rather than entering a command first and then selecting the object.

NURBS For nonuniform rational B-spline curve. A B-spline curve or surface defined by a series of weighted control points and one or more knot vectors. See also B-spline curve.

NURBS surface Surfaces that are have control vertices in the \(U\) and \(V\) directions. NURBS surfaces cannot be associative. See also procedural surface and generic surface.
object One or more graphical elements, such as text, dimensions, lines, circles, or polylines, treated as a single element for creation, manipulation, and modification. Formerly called entity.
object enabler A tool that provides specific viewing and standard editing access to a custom object when the ObjectARX application that created the custom object is not present. See also custom object and proxy object.

Object Snap mode Methods for selecting commonly needed points on an object while you create or edit a drawing. See also running object snap and object snap override.
object snap override Turning off or changing a running Object Snap mode for input of a single point. See also Object Snap mode and running object snap.

ObjectARX (AutoCAD Runtime Extension) A compiled-language programming
environment for developing AutoCAD applications.
OLE For object linking and embedding. An information-sharing method in which data from a source document can be linked to or embedded in a destination document. Selecting the data in the destination document opens the source application so that the data can be edited. See also embed and link.
opacity map Projection of opaque and transparent areas onto objects, creating the effect of a solid surface with holes or gaps.
origin The point where coordinate axes intersect. For example, the origin of a Cartesian coordinate system is where the \(X, Y\), and \(Z\) axes meet at \(0,0,0\).

Ortho mode A setting that limits pointing device input to horizontal or vertical (relative to the current snap angle and the user coordinate system). See also snap angle and user coordinate system (UCS).
orthogonal Having perpendicular slopes or tangents at the point of intersection.
output property A lookup property whose value is determined by input properties (other parameter properties) through the use of a lookup table.
page setup A collection of plot device and other settings that affect the appearance and format of the final output. These settings can be modified and applied to other layouts.
pan To shift the view of a drawing without changing magnification. See also zoom. (PAN)
paper space One of two primary spaces in which objects reside. Paper space is used for creating a finished layout for printing or plotting, as opposed to doing drafting or design work. You design your model using the Model tab. See also model space and viewport. (PSPACE)
parameter In a dynamic block definition, defines custom properties for the dynamic block by specifying positions, distances, and angles for geometry in the block.
parameter set A tool on the Parameter Sets tab of the Block Authoring Palettes window that adds one or more parameters and one or more associated actions to the dynamic block definition.
parametric design Ability to establish relationships between objects, to drive the size and orientation of geometry with model and user-defined parameters.
parametric drawing Feature in AutoCAD that assigns constraints to objects, establishing the distance, location, and orientation of objects with respect to other objects.
partial customization file Any CUI file that is not defined as the main CUI file. You can load and unload partial CUI files as you need them during a drawing session.
path curve Defines the direction and length that a profile curve is lofted, swept, or extruded to create a solid or surface. (SWEEP, LOFT, EXTRUDE)

PC2 file Complete plotter configuration file. PC2 files contain all plot settings and device-specific settings that were saved in previous versions. See also PCP file and PC3 file.

PC3 file Partial plotter configuration file. PC3 files contain plot settings information such as the device driver and model, the output port to which the device is connected, and various device-specific settings, but do not include any custom plotter calibration or custom paper size information. See also PMP file, STB file, and CTB file.

PCP file Partial plotter configuration file. PCP files contain basic plot specifications and pen parameters that were saved in previous versions. Plot settings that are stored in a PCP file include pen assignments, plotting units, paper size, plot rotation, plot origin, scale factor, and pen optimization level. See also PC2 file and PC3 file.
performance tuning A method of optimizing 3D graphics performance. The performance tuner examines your graphics card and 3D display driver and decides whether to use software or hardware implementation for features that support both.
personalization Customizes the executable file during installation with the user name, company, and other information.
perspective view Objects in 3D seen by an observer positioned at the viewpoint looking at the view center. Objects appear smaller when the distance from the observer (at the view point) to the view center increases. Although a perspective view appears realistic, it does
not preserve the shapes of objects. Parallel lines seemingly converge in the view. The program has perspective view settings for VPORTS table entries as well as viewport objects.
photometric lights Photometric lights are physically-correct lights. Physically correct lights attenuate as the square of the distance. Photometry is the science of measurement of visible light in terms of its perceived brightness.
photon map A technique to generate the indirect illumination effects of global illumination used by the renderer. When it calculates indirect illumination, the renderer traces photons emitted from a light. The photon is traced through the model, being reflected or transmitted by objects, until it strikes a diffuse surface. When it strikes a surface, the photon is stored in the photon map.
photorealistic rendering Rendering that resembles a photograph.
pick button The button on a pointing device that is used to select objects or specify points on the screen. For example, on a two-button mouse, it is the left button by default.
pick points Clicking and acquiring a point on an object in the drawing.
pick-first The selection of objects before an action macro or command is issued.
pick-first set A selection set of objects that are selected prior to the execution of an action macro or a command. See also pre-selection set.
plan view A view orientation from a point on the positive \(Z\) axis toward the origin \((0,0,0)\). (PLAN)

planar face A flat face that can be located anywhere in 3D space.
planar projection Mapping of objects or images onto a plane.
planar surface A flat surface that can be located anywhere in 3D space. (PLANESURF)
playback The process of executing the actions stored in a previously recorded action macro.
pline See polyline.
plot style An object property that specifies a set of overrides for color, dithering, gray scale, pen assignments, screening, linetype, lineweight, endstyles, joinstyles, and fill styles. Plot styles are applied at plot time.
plot style table A set of plot styles. Plot styles are defined in plot style tables and apply to objects only when the plot style table is attached to a layout or viewport.
plug-ins Plug-ins are libraries of reuseable content that extend the functionality of AutoCAD. Plug-ins are created by third party developers and can be accessed from the Featured Technologies and Content channel of the Communications Center.

PMP file Plot Model Parameter. File containing custom plotter calibration and custom paper size information associated with plotter configuration file.
point 1. A location in three-dimensional space specified by \(X, Y\), and \(Z\) coordinate values. 2. An object consisting of a single coordinate location. (POINT)
point filters See coordinate filters.
pointer A cursor on a video display screen that can be moved around to place textual or graphical information. See also crosshairs.
polar array Objects copied around a specified center point a specified number of times. (ARRAY)

Polar Snap A precision drawing tool used to snap to incremental distances along the polar tracking alignment path. See also polar tracking on page 2667.
polar tracking A precision drawing tool that displays temporary alignment paths defined by user-specified polar angles. See also Polar Snap.
polyface and polygon mesh Legacy mesh types that were available before AutoCAD 2010. Although you can continue to create polygonal and polyface mesh (for example, by setting MESHTYPE to 0 ), the newer, more modifiable mesh type is recommended.
polygon window selection A multisided area specified to select objects in groups. See also crossing selection and window selection.
polyline An object composed of one or more connected line segments or circular arcs treated as a single object. Also called pline. (PLINE, PEDIT)
polysolid A swept solid that is drawn the same way you draw a polyline or that is based on an existing line. By default, a polysolid always has a rectangular profile. You can specify the height and width of the profile. (POLYSOLID)
pre-playback drawing environment The drawing state prior to the playback of an action macro.
pre-selection set A selection set of objects that is defined prior to the execution of an action macro.
primary table fragment The fragment of a broken table that contains the beginning set of rows up to the first table break.
primitive Basic 3D forms such as boxes, cones, cylinders, pyramids, wedges, spheres, and tori. You can create primitive meshes and primitive 3D solid objects.
procedural materials Materials that generate a 3D pattern in two or more colors, and apply it to an object. These include marble and wood. Also called template materials.
procedural surface A 3D surface object that has history and analytic information, but no control vertices. Procedural surfaces are the only type of surface that can be associative. See also generic surface and NURBS surface.
profile curve An object that is swept, extruded, or revolved and defines the shape of the resulting solid or surface. (SWEEP, EXTRUDE, REVOLVE)
prompt A message on the command line or in a tooltip that asks for information or requests action such as specifying a point.
proxy object A substitute for a custom object when the ObjectARX application that created the custom object is not available. See also custom object and object enabler.
push pin A push pin-shaped button used on the ribbon and in the application menu. On the ribbon, push pins are used to keep a ribbon panel expanded. In the application menu, push pins keep an item in the list of recently opened items.

PWT A template file format used to publish drawings to the Web.
Quick View image A thumbnail image of a drawing, layout or model space that is displayed using Quick View tools.

Quick View tool A tool to preview and switch between open drawings and layouts in a drawing.
ray tracing The renderer can generate reflections and refractions. Ray tracing traces the path of rays sampled from the light source. Reflections and refractions generated this way are physically accurate.
You turn on ray tracing on the Advanced Render Settings palette.
ray-traced shadows A way that the renderer can generate shadows. Ray tracing traces the path of rays sampled from the light source. Shadows appear where rays have been blocked by objects. Ray-traced shadows have sharp edges.
Ray-traced shadows are active when Shadow Map is turned off on the Advanced Render Settings palette.
recorded value The input captured during the recording of an action macro for a sub-prompt of a command.
rectangular break To break a table into multiple parts that are evenly spaced and set at a user-specified height using the table breaking grips.
redraw To quickly refresh or clean up blip marks in the current viewport without updating the drawing's database. See also regenerate. (REDRAW)
reference A definition, known as an external reference or block reference, that is used and stored in the drawing. See also block (BLOCK) and external reference (xref). (XREF)
refine To quadruple the number of faces in a mesh object as you reset the baseline level of smoothness. (You cannot make a mesh courser than its baseline level.) You can also refine specified mesh faces without resetting the baseline level of smoothness for the object.

\section*{(MESHREFINE)}
reflectance scale Increases or decreases the amount of energy the material reflects.
reflection color The color of a highlight on shiny material. Also called specular color.
reflection line In a dynamic block reference, the axis about which a flip action's selection set flips when the associated parameter is edited through a grip or the Properties palette.
reflection mapping Creates the effect of a scene reflected on the surface of a shiny object.
refraction How light distorts through an object.
regenerate To update a drawing's screen display by recomputing the screen coordinates from the database. See also redraw. (REGEN)
region Two-dimensional enclosed areas that have physical properties such as centroids or centers of mass. You can create regions from objects that form closed loops. They area commonly created in order to apply hatching and shading. (REGION)
relative coordinates Coordinates specified in relation to previous coordinates.
relax constraints Ability to temporarily ignore constraints while editing geometry. After the geometry is edited, the constraints are either removed or retained based on whether the constraint is still valid for the edited geometry.
request user input An item that is assigned to an action node that pauses the playback of an action macro so a user can provide some form of input before playback resumes.
reverse lookup Adds a lookup grip to a dynamic block reference. When you click this grip, a drop-down list of the lookup values for that lookup property (column in the lookup table) is displayed. When you select a value from the list, the corresponding input property values
are assigned to the block reference. Depending on how the block was defined, this usually results in a change in the block reference's geometry. (BLOOKUPTABLE)
rewind Restores the previous view or movement path created by the Autodesk \({ }^{\circledR}\) ViewCube \({ }^{\circledR}\) navigation tool, SteeringWheels, and other navigation tools.

RGB For red, green, and blue. A system of defining colors by specifying percentages of red, green, and blue.
ribbon A palette that displays buttons and controls used for both 2D drawing and annotation and 3D modeling, viewing, and rendering. See also ribbon tab and ribbon panel and slide-out panel. (RIBBON)

\section*{ribbon panel}

A set of labeled controls, related to a task, grouped together in a ribbon. Multiple ribbon panels, belonging to one workflow, are grouped together under a ribbon tab.
ribbon tab
Highest level of ribbon grouping, based on an action. A ribbon tab contains groups of multiple ribbon panels, each belonging to one workflow. A ribbon panel contains buttons and controls, related to a task.
roll arrows Curved arrows located above the ViewCube tool with which you can rotate the current view 90 degrees clockwise or counterclockwise.
roughness Value to simulate how light hitting a face is reflected back to the user. A high roughness value simulates a non-shiny or rough object (sandpaper/carpet). A low roughness value simulates a very shiny object (metals, some plastics.)
row A horizontally adjacent table cell selection spanning the width of the table. A single row is one cell in height.

RSS feed Information published by a website to which you subscribe. Usually allows users to receive notifications when new content (articles) are posted. RSS stands for Rich Site Summary (or Really Simple Syndication).
rubber-band line A line that stretches dynamically on the screen with the movement of the cursor. One endpoint of the line is attached to a point in your drawing, and the other is attached to the moving cursor.
running object snap Setting an Object Snap mode so it continues for subsequent selections. See also Object Snap mode and object snap override. (OSNAP)
sampling Sampling is an antialiasing technique. It provides a "best guess" color for each rendered pixel. The renderer first samples the scene color at locations within the pixel or along the pixel's edge, then uses a filter to combine the samples into a single pixel color.
save back To update the objects in the original reference (external or block reference) with changes made to objects in a working set during in-place reference editing.
scale representation The display of an annotative object based on the annotation scales that the object supports. For example, if an annotative object supports two annotations scales, it has two scale representations
script file A set of commands executed sequentially with a single SCRIPT command. Script files are created outside the program using a text editor, saved in text format, and stored in an external file with the file extension .scr.
search tag A user-defined keyword used to search for commands in the menu browser.
secondary table fragment Any fragment of a broken table that does not contain the beginning set of rows.
selection node A specific type of action tree node that is used to handle selection activities.
selection sensitivity The ability to define the pivot point for reorienting a model based on the current selection.
selection set One or more selected objects that a command can act upon at the same time. In a dynamic block definition, the geometry associated with an action.
shadow maps A shadow map is a bitmap that the renderer generates during a pre-rendering pass of the scene. Shadow maps don't show the color cast by transparent or translucent objects. On the other hand, shadow maps can have soft-edged shadows, which ray-traced shadows cannot.
Shadow mapped shadows provide softer edges and can require less calculation time than ray-traced shadows, but are less accurate. On the Advanced Render Settings palette, shadow mapped shadows are active when Shadow Map is turned on.

ShapeManager ShapeManager is the Autodesk technology that provides 3D solid modeling to AutoCAD and other products.
sheet A layout selected from a drawing file and assigned to a sheet set. See also sheet set.
sheet list table A table listing all sheets in a sheet set. A sheet list table can be generated automatically with the Sheet Set Manager.
sheet selection A named selection of sheets in a sheet set that can be conveniently recalled for archiving, transmitting, and publishing operations.
sheet set An organized and named collection of sheets from several drawing files. See also sheet. (SHEETSET)
shortcut keys Keys and key combinations that start commands; for example, CTRL+S saves a file. The function keys (F1, F2, and so on) are also shortcut keys. Also known as accelerator keys.
shortcut menu The menu displayed at your cursor location when you right-click your pointing device. The shortcut menu and the options it provides depend on the pointer location and other conditions, such as whether an object is selected or a command is in progress.
shot A saved view that can later be restored by name or with ShowMotion. A shot can contain a static thumbnail of the saved view or camera motion that can be played back as an animation.

ShowMotion User interface element where you can access named views (shots) that are stored in the current drawing. The named views (shots) are organized by sequences and can contain movements.
sky The background color of the drawing area when perspective projection is turned on. The sky displays with a color gradient between the sky horizon (nearest to the horizon) and the sky zenith (opposite the horizon). See also ground plane.
slide file A file that contains a raster image or snapshot of the objects displayed in the drawing area. Slide files have the file extension .sld. (MSLIDE, VSLIDE)
slide library A collection of slide files organized for convenient retrieval and display. Slide library names have the extension.\(s l b\) and are created with the slidelib.exe utility.
slide-out panel An area on the ribbon associated with a ribbon panel. A slide-out panel contains additional tools and controls. See also ribbon panel and ribbon.
smooth shading Smoothing of the edges between polygon faces.
smoothness A property of mesh objects that controls the roundness of the object. Objects with higher levels of smoothness have more faces, or tessellations.
snap angle The angle that the snap grid is rotated.
snap grid The invisible grid that locks the pointer into alignment with the grid points according to the spacing set by Snap. Snap grid does not necessarily correspond to the visible grid, which is controlled separately by GRID. (SNAP)

Snap mode A mode for locking a pointing device into alignment with an invisible rectangular grid. When Snap mode is on, the screen crosshairs and all input coordinates are snapped to the nearest point on the grid. The snap resolution defines the spacing of this grid. See also Object Snap mode. (SNAP)
snap resolution The spacing between points of the snap grid.
solid history A property of a solid that allows you to see and modify the original forms of the solid.
solid object An object that represents the entire volume of an object, for example a box.
solid primitive A basic solid form. Solid primitives include: box, wedge, cone, cylinder, sphere, torus, and pyramid.
spatial index A list that organizes objects based on their location in space. A spatial index is used to locate what portion of the drawing is read when you partially open a drawing. Saving a spatial index with a drawing also enhances performance when working with external references. The INDEXCTL on page 2365 system variable controls whether layer and spatial indexes are saved with a drawing.
specular reflection The light in a narrow cone where the angle of the incoming beam equals the angle of the reflected beam.
spline-fit Uses the vertices of the selected polyline as the control points, or frame, of a curve approximating a B-spline. This curve, called a spline-fit polyline, passes through the first and last control points unless the original polyline was closed.
split face A mesh face that has been subdivided along a specified vector.
STB file For plot style table file. Contains plot styles and their characteristics.
SteeringWheels Tool set that provides access to 2D and 3D navigation tools.
stretch frame In a dynamic block definition that contains a stretch action or a polar stretch action, determines how the objects within or crossed by the frame are edited in the block reference.
sub-prompt A command prompt that instructs for a form of input to complete a command or alter a property.
subdivision A division, or tessellation in a mesh object. As a mesh object is smoothed, the number of subdivisions increases.
subobject A part of a composite object.
Subscription Center Subscription members can access the latest releases of Autodesk software, incremental product enhancements, personalized web support, and self-paced e-Learning in InfoCenter. To access Subscription Center, go to the InfoCenter toolbar and click the Key button.
subset A named collection of sheets in a sheet set that is often organized by discipline or workflow stage. See also view category.
surface A surface is a 3D object that is a thin shell. Surfaces do not have mass or volume as 3D solids do. There are 3 types of surfaces: analytic, generic, and NURBS.
surface associativity See associative surfaces
surface normal Positive direction perpendicular to the surface of an object.
swept solid/surface A solid or surface created in the shape of the specified profile (the swept object) swept along the specified path. (SWEEP)
symbol A representation of an item commonly used in drawings. Symbols are inserted in drawings as blocks.
symbol library A collection of block definitions stored in a single drawing file.
symbol table See definition table and block definition table.
system variable A name that is recognized as a mode, size, or limit. Read-only system variables, such as DWGNAME, cannot be modified directly by the user.
table A rectangular array of cells that contain annotation, primarily text but also blocks. In the AEC industry, tables are often referred to as "schedules" and contain information about the materials needed for the construction of the building being designed. In the manufacturing industry, they are often referred to as "BOM" (bills of materials). (TABLE)
table break The point at the bottom of a table row where the table will be split into a supplementary table fragment.
table style A style that contains a specific table format and structure. A table style contains at least 3 cell styles.
temporary files Data files created during an program session. The files are deleted by the time you end the session. If the session ends abnormally, such as during a power outage, temporary files might be left on the disk.
tessellation lines Lines that help you visualize a curved surface.


In a 3D mesh object, tessellations indicate the boundaries of the mesh faces.
text style A named, saved collection of settings that determines the appearance of text characters-for example, stretched, compressed, oblique, mirrored, or set in a vertical column.
texture map The projection of an image (such as a tile pattern) onto an object (such as a chair).
thaw A setting that displays previously frozen layers. See also freeze. (LAYER)
thickness The distance certain objects are extruded to give them a 3D appearance. (PROPERTIES, CHPROP, ELEV, THICKNESS)
tiled viewports See model viewports.
TILEMODE A system variable that controls whether viewports can be created as movable, resizable objects (layout viewports), or as nonoverlapping display elements that appear side-by-side (model viewports). See also viewport.
tool message
A small instructional message that appears over the drawing window and is specific to the active navigation tool from the SteeringWheels.
toolbar Part of the interface containing icons that represent commands.
tooltip A small box of text that identifies or explains an object or interface element when the cursor hovers near or over it.
tracking A way to locate a point relative to other points on the drawing.
tracking menu
A cluster of buttons that follows the cursor as you move it over the window.
translucency How light is scattered through an object.
transmittance scale Increases or decreases the amount of energy a transparent material transmits out to the scene.
transparency A quantity defining how much light is let through an object.
transparent command A command started while another is in progress. Precede transparent commands with an apostrophe.
two sided material The positive and negative normal of the material will be considered during the rendering process.

UCS See user coordinate system (UCS).
UCS icon An icon that indicates the orientation of the UCS axes. (UCSICON)

underconstrained geometry Objects with unsolved degrees of freedom are underconstrained.
underground The XY plane of the user coordinate system when perspective projection is turned on and when viewed from below ground. The underground plane displays with a color gradient between the earth horizon (nearest to the horizon) and the earth azimuth (opposite the horizon). See also ground plane and sky.
underlay A DWF, or DGN file used to provide visual context in a drawing file. Underlays cannot be edited, and do not provide the full range of notification. Underlays cannot be bound to a drawing. See also external reference (xref).
up direction A vector defining what direction is Up. By default this is the positive Z - axis (0,0,+1).
The up direction and the north direction are always constrained such that they are perpendicular to each other.
user coordinate system (UCS) A user-defined coordinate system that defines the orientation of the \(X, Y\), and \(Z\) axes in 3D space. The UCS determines the default placement of geometry in a drawing. See also world coordinate system (WCS).
user parameter Named user-defined variable (real number or an expression) that can be used in expressions for dimensional constraints or other user parameters.

UVW The material's coordinate space. Used instead of XYZ because that is usually reserved for the world coordinate system (WCS). Most material maps are a 2D plane assigned to a 3D surface. The \(\mathrm{U}, \mathrm{V}\), and W coordinates parallel the relative directions of \(\mathrm{X}, \mathrm{Y}\), and Z coordinates. If you look at a 2D map image, \(U\) is the equivalent of \(X\), and represents the horizontal direction of the map. V is the equivalent of Y , and represents the vertical direction of the map. W is the equivalent of Z and represents a direction perpendicular to the UV plane of the map.
value node A specific type of action node that is used to handle requests for user input and hold the recorded value that was captured during the recording of an action macro.
value set In a dynamic block definition, a range or list of values specified for a linear, polar, XY, or rotation parameter.
vector A mathematical object with precise direction and length but without specific location. vertex A location where edges or polyline segments meet.

\section*{vertical ribbon}

The ribbon when it is oriented vertically, usually on the left or right of the file window.
view A graphical representation of a model from a specific location (viewpoint) in space. See also viewpoint and viewport. (3DORBIT, VPOINT, DVIEW, VIEW)
view category A named collection of views in a sheet set that is often organized by function. See also subset.

ViewCube User interface element that displays the current orientation of a model, and allows you to interactively rotate the current view or restore a preset view.
viewpoint The location in 3D model space from which you are viewing a model. See also view and viewport. (3DORBIT, DVIEW, VPOINT)
viewport A bounded area that displays some portion of the model space of a drawing. The TILEMODE system variable determines the type of viewport created. 1. When TILEMODE is off ( 0 ), viewports are objects that can be moved and resized on a layout. (MVIEW) 2. When TILEMODE is on (1), the entire drawing area is divided into nonoverlapping model viewports. See also TILEMODE, view, and viewpoint. (VPORTS)
viewport configuration A named collection of model viewports that can be saved and restored. (VPORTS)
virtual screen display The area in which the program can pan and zoom without regenerating the drawing.
visibility mode Displays or does not display geometry (in a dimmed state) that is invisible for a visibility state. (BVMODE)
visibility state In a dynamic block, a custom property that allows only specified geometry to display in the block reference. (BVSTATE)
visual style A collection of settings that control the display of edges and shading in a viewport.
volumetric shadows A photorealistically rendered volume of space cast by the shadow of an object.
watertight A closed 3D solid or mesh that has no gaps.
WCS See world coordinate system (WCS).

\section*{wheel}

A reference to one of the individual user interface elements that make up SteeringWheels. See also SteeringWheels.

\section*{wheel surface}

Area of a SteeringWheels that is used to organize wedges and other buttons.

\section*{wheel wedge}

A section on the surface of a SteeringWheels that is designated for a specific navigation or orientation tool.
window selection A rectangular area specified in the drawing area to select multiple objects at the same time. See also crossing selection, polygon window selection.
wipeout object A polygonal area that masks underlying objects with the current background color. This area is bounded by the wipeout frame, which you can turn on for editing and turn off for plotting.
wireframe model The representation of an object using lines and curves to represent its boundaries.
working drawing A drawing for manufacturing or building purposes.
working set A group of objects selected for in-place reference editing.
workplane Another name for the XY plane of the user coordinate system. See also elevation and user coordinate system (UCS).
workspace A set of menus, toolbars and dockable windows (such as the Properties palette, DesignCenter, and the Tool palettes window) that are grouped and organized so that you can work in a custom, task-oriented drawing environment.
world coordinate system (WCS) A coordinate system used as the basis for defining all objects and other coordinate systems. See also user coordinate system (UCS).
world coordinates Coordinates expressed in relation to the world coordinate system (WCS).

\section*{wrap around}

Behavior where the cursor wraps around the window and appears on the opposite side to allow the continuation of a drag operation instead of stopping at the edge of the drawing area.
\(X, Y, Z\) point filters See coordinate filters.
xref See external reference (xref).
zoom To reduce or increase the apparent magnification of the drawing area. (ZOOM)

\section*{Index}

3D command 3
3D DWF Publish dialog box 30
3D Edit Bar shortcut menu 36
3D Free Orbit curson icons 42
3D Modeling tab (Options dialog box) 1346
3D Move Gizmo shortcut menu 48
3D Rotate Gizmo shortcut menu 64
3D Scale Gizmo shortcut menu 67
3D Studio File Import Options dialog box 70
3DALIGN command 15
3DARRAY command 17
3DCLIP command 19
3DCONFIG command
about 21
Adaptive Degradation and Performace Tuning dialog box 22
Performance Tuner Log 25
3Dconnexion Settings dialog box
3DCONVERSIONMODE system variable 2142
3DCORBIT command 28
3DDISTANCE command 29
3DDWF command 30
3DDWFPREC system variable 2142
3DEDITBAR command 32
3DFACE command
3DFLY command
3DFORBIT command 41
3DMESH command 43
3DMOVE command 45
3DORBIT command 49
3DORBIT shortcut menu 50
3DORBITCTR command 53
3DOSMODE system variable 2143
3DOSNAP command 54
3DPAN command 55
3DPOLY command 56
3DPRINT command 58
Create STL File dialog box 61, 1851
3DROTATE command 62

3DSCALE command 65
3DSELECTIONMODE system
variable 2144
3DSIN command 69
3DSWIVEL command 72
3DWALK command
about
Animation panel 74
Animation Settings dialog box 75
Position Locator window 76
Walk and Fly Navigation Mappings dialog box 78
3DZOOM command 79

\section*{A}

ABOUT command 81
ACADLSPASDOC system variable 2145
ACADPREFIX system variable 2146
ACADVER system variable 2146
ACISIN command 82
ACISOUT command 82
ACISOUTVER system variable 2147
ACTBASEPOINT command 83
Action Macro dialog box 90
Action Macro Manager dialog box 85
Action Recorder Preferences dialog box 87
Actions tab (Block Authoring Palettes window) 236
ACTMANAGER command 84
ACTPATH system variable 2147
ACTRECORD command 86
ACTRECORDERSTATE system variable 2148
ACTRECPATH system variable 2148
ACTSTOP command 88
ACTUI system variable 2149
ACTUSERINPUT command 92
ACTUSERMESSAGE command 93

Adaptive Degradation and Performance
Tuning dialog box 22
ADCCLOSE command 94
ADCENTER command about
DesignCenter window 95
Search dialog box 100
ADCNAVIGATE command 103
ADCSTATE system variable 2149
Add Actions dialog box 1960
Add Angle Value dialog box 1541
Add Custom Property dialog box 713, 1766
Add Distance Value dialog box 1541
Add Folder Options dialog box 426
Add Page Setup dialog box 1473
Add Parameter Properties dialog box 254, 279
Add Profile dialog box 1372
Add Scale dialog box 1696
Add Scales to Object dialog box 1283
Add-a-Plot-Style-Table wizard 1860
Add-a-Plotter wizard 1495
Add/Modify FTP Locations dialog box 1308
Additional Format dialog box 438, 1921
ADDSELECTED command 104
Adjust Background Image dialog box 2041
Adjust Clipping Planes shortcut menu 19
Adjust Clipping Planes window 19
ADJUST command 105
Adjust Render Exposure dialog box 1644
Adjust Sun \& Sky Background dialog box 2039
Advanced Options dialog box 1484, 1721
Advanced Preview Options dialog box 1371
Advanced Render Settings palette 1672
Advanced Settings for COM Port dialog box 1510
Advanced Setup wizard 1275
Advanced tab (Search dialog box) 102

Aerial View window
about 683
AFLAGS system variable 2150
ALIGN command 107
Alternate Font dialog box 1356
Alternate Units tab (New Dimension Style dialog box) 637
AMECONVERT command 109
Analysis Options dialog box 113
ANALYSISCURVATURE command 110
ANALYSISDRAFT command 112
ANALYSISOPTIONS command 113
ANALYSISZEBRA command 116
ANGBASE system variable 2150
ANGDIR system variable 2151
Animation panel 74
Animation Preview dialog box 122
Animation Settings dialog box 75
ANIPATH command
about 118
Animation Preview dialog box 122
Motion Path Animation dialog box 119
ANNOALLVISIBLE system variable 2151
ANNOAUTOSCALE system variable 2153
ANNORESET command 124
Annotation tab (Leader Settings dialog box) 1579
Annotative Object Scale dialog box 1282
ANNOTATIVEDWG system
variable 2153
ANNOUPDATE command 124
APBOX system variable 2154
APERTURE command 125
APERTURE system variable 2154
Appearance tab (Materials Editor) 1086
APPLOAD command
about 126
Load/Unload Applications dialog box 127
Startup Suite dialog box 129
APPLYGLOBALOPACITIES system variable 2155
APSTATE system variable 2155
ARC command 130
Archive - Set Password dialog box 144

Archive a Sheet Set dialog box 135
ARCHIVE command
about 135
Archive - Set Password dialog box 144
Archive a Sheet Set dialog box 135
Modify Archive Setup dialog
box 139
AREA command 145
AREA system variable 2156
ARRAY command 148
Array dialog box 150
ARX command 157
ATTACH command 159
Attach DGN Underlay dialog box 532
Attach Digital Signatures dialog box 2633
Attach Digital Signatures utility 2633
Attach DWF Underlay dialog box 696
Attach External Reference dialog box 2107
Attach PDF Underlay dialog box 1429
Attach Point Cloud dialog box 1516
Attachment tab (Leader Settings dialog box) 1581
ATTACHURL command 162
ATTDEF command 163
ATTDIA system variable 2156
ATTDISP command 171
ATTEDIT command 172
ATTEXT command 178
ATTIPE system variable 2157
ATTIPEDIT command 181
ATTMODE system variable 2157
ATTMULTI system variable 2158
ATTREDEF command 182
ATTREQ system variable 2158
Attribute Definition dialog box 164
Attribute Extraction dialog box 179
Attribute Order dialog box 213
Attribute tab (Edit Attribute dialog box) 207
Attribute tab (Enhanced Attribute Editor) 717
ATTSYNC command 183
AUDIT command

AUDITCTL system variable 2159
AUNITS system variable 2159
AUPREC system variable 2160
Auto Publish Options dialog box 187
AutoCAD Macro Virus Protection dialog box 2011
AUTOCONSTRAIN command 185
Autoconstrain tab (Constraint Settings dialog box) 354
AUTODWFPUBLISH system variable 2160
AUTOMATICPUB system variable 2161
AUTOPUBLISH command 186
AUTOSNAP system variable 2162
AutoStack Properties dialog box 1239

\section*{B}

Background dialog box 2037
Background Mask dialog box 1234
BACKGROUNDPLOT system variable 2164
BACKZ system variable 2164
BACTION command 189
BACTIONBAR command 194
BACTIONBARMODE system variable 2165
BACTIONCOLOR system variable 2165
BACTIONSET command 195
BACTIONTOOL command 196
BASE command 202
BASSOCIATE command 202
Batch Standards Checker 2636
Batch Standards Checker toolbar 2639
BATTMAN command
about 204
Block Attribute Manager 204
Block Attribute Settings dialog box 212
Edit Attribute dialog box 207
BATTORDER command 213
BAUTHORPALETTE command 214
BAUTHORPALETTECLOSE
command 215
BCLOSE command 215

BCONSTATUSMODE system variable 2166
BCONSTRUCTION command 216
BCPARAMETER command 217
BCYCLEORDER command 221
BDEPENDENCYHIGHLIGHT system variable 2166
BEDIT command
about 223
Block Editor 231
Block Editor Ribbon contextual tab 226
Edit Block Definition dialog box 225
BESETTINGS command 241
BGRIPOBJCOLOR system variable 2167
BGRIPOBJSIZE system variable 2167
BGRIPSET command 244
BHATCH command 245
Bind Xrefs dialog box 2123
BINDTYPE system variable 2168
BLIPMODE command 245
BLIPMODE system variable 2168
Block Attribute Manager about 204
Block Attribute Settings dialog box 212
Block Authoring Palettes window 231
BLOCK command 246
Block Definition dialog box 247
Block Editor
about 231
Parameters Manager 1408
Block Editor Ribbon contextual tab (Block Editor) 226
Block Editor Settings dialog box 242
Block Editor toolbar 233
Block Properties Table dialog box 278
Block Template Options dialog box 1562
BLOCKEDITLOCK system variable 2169
BLOCKEDITOR system variable 2169
BLOCKICON command 252
BLOCKTESTWINDOW system variable 2170
BLOOKUPTABLE command
about 252
Add Parameter Properties dialog box 254

Property Lookup Table dialog box 253
BMP Image Options dialog box 1630
BMPOUT command 256
BOUNDARY command 257
Boundary Creation dialog box 258
BOX command 260
BPARAMETER command 263
BPARAMETERCOLOR system
variable 2170
BPARAMETERFONT system variable 2171
BPARAMETERSIZE system variable 2171
BPTEXTHORIZONTAL system
variable 2172
BREAK command 270
BREP command 272
BROWSER command 273
BSAVE command 273
BSAVEAS command 274
BTABLE command 276
BTESTBLOCK command 281
BTMARKDISPLAY system variable 2172
Button Editor dialog box 388
Buzzsaw Location Shortcuts dialog box 1300
BVHIDE command 282
BVMODE system variable 2173
BVSHOW command 283
BVSTATE command
about 284
New Visibility State dialog box 286
Visibility States dialog box 285

\section*{C}

CAD Standards Settings dialog box 1846
CAL command 289
CALCINPUT system variable 2175
CAMERA command 311
Camera Glyph Appearance dialog box 1361
Camera Preview dialog box 313
CAMERADISPLAY system variable 2176
CAMERAHEIGHT system variable 2176
CANNOSCALE system variable 2177

2682 | Index

CANNOSCALEVALUE system variable 2177
CAPTURETHUMBNAILS system variable 2178
Category Definition dialog box 1593
CBARTRANSPARENCY system variable 2178
CCONSTRAINTFORM system variable 2178
CDATE system variable 2179
CECOLOR system variable 2180
Cell Border Properties dialog box 1539
Cell shortcut menu 462
CELTSCALE system variable 2180
CELTYPE system variable 2181
CELWEIGHT system variable 2181
CENTERMT system variable 2182
CETRANSPARENCY system variable 2183
CHAMFER command 314
CHAMFERA system variable 2183
CHAMFERB system variable 2183
CHAMFERC system variable 2184
CHAMFERD system variable 2184
CHAMFEREDGE command 317
CHAMMODE system variable 2184
CHANGE command 319
Change Icon dialog box 1291
Change Profile dialog box 1372
Change to Layer dialog box 1008
Changes to a Printer Configuration File dialog box 1397, 1473
Character tab (Label Template dialog box) 484
Check Spelling dialog box 1820
Check Spelling Settings dialog box 1822
Check Standards dialog box 322
Checker Map Property Settings dialog box 1090
CHECKSTANDARDS command 322
CHPROP command 324
CHSPACE command 325
CIRCLE command 326
CIRCLERAD system variable 2185
CLASSICIMAGE command 329
CLASSICKEYS system variable 2185

CLASSICLAYER command 330
CLASSICXREF command 330
CLAYER system variable 2186
CLEANSCREENOFF command 332
CLEANSCREENON command 331
CLEANSCREENSTATE system variable 2186
CLIP command 332
CLISTATE system variable 2187
CLOSE command 335
CLOSEALL command 336
CMATERIAL system variable 2187
CMDACTIVE system variable 2188
CMDDIA system variable 2188
CMDECHO system variable 2189
CMDINPUTHISTORYMAX system variable 2189
CMDNAMES system variable 2190
CMLEADERSTYLE system variable 2190
CMLJUST system variable 2191
CMLSCALE system variable 2191
CMLSTYLE system variable 2192
Color Books tab (Select Color dialog box) 343
COLOR command 337
Color tab (Modify DGN Mapping Setup dialog box) 566
Column Label shortcut menu 975
Column Settings dialog box 1233
Column shortcut menu 462
Column Values dialog box 474
Columns menu 1231
Command Line Window Font dialog box 1359
COMMANDLINE command 345
COMMANDLINEHIDE command 346
Compare Dimension Styles dialog box 645
COMPASS system variable 2192
COMPILE command 346
CONE command 347
Configure a Data Source dialog box 475
Configure LPT Port dialog box 1508
Configure Standards dialog box 1844
Confirm DWF Password dialog box 1564
Confirm Password dialog box 1720

Constraint Settings dialog box 353
CONSTRAINTBAR command
CONSTRAINTBARDISPLAY system variable 2193
CONSTRAINTBARMODE system variable 2194
CONSTRAINTINFER system variable 2194
CONSTRAINTNAMEFORMAT system variable 2195
CONSTRAINTRELAX system variable 2196
Constraints tab (Block Authoring Palettes window) 238
CONSTRAINTSETTINGS command 352
CONSTRAINTSOLVEMODE system variable 2196
Content tab (Modify Multileader Style dialog box) 1187
CONVERT command 356
Convert dialog box 1290
Convert Mesh panel (Mesh Object Ribbon) 1131
CONVERTCTB command 357
CONVERTOLDLIGHTS command 358
CONVERTOLDMATERIALS command 358
CONVERTPSTYLES command 359
CONVTOMESH command 361
CONVTONURBS command 363
CONVTOSOLID command 364
CONVTOSURFACE command 366
Coordinate Filters command modifier 2133
Coordinate System Already Defined dialog box 843
COORDS system variable 2197
COPY command 369
Copy Render Preset dialog box 1654
Copy To Layer dialog box 374
COPYBASE command 370
COPYCLIP command 371
COPYHIST command 372
COPYLINK command 372
COPYMODE system variable 2197
COPYTOLAYER command 373

CPLOTSTYLE system variable 2198
CPROFILE system variable 2199
Crease panel (Mesh Subobject Ribbon) 1132
Create a Buzzsaw Location Shortcut dialog box 1303
Create New Cell Style dialog box 1917
Create New Dimension Style dialog box 615
Create New Drawing dialog box 1270
Create New Multileader Style dialog box 1190
Create New Multiline Style dialog box 1205
Create New Table Style dialog box 1910
Create New Visual Style dialog box 2060
Create STL File dialog box 61, 1851
Create Transmittal dialog box
about 732
Files Table tab 734
Files Tree tab 733
Sheets tab 733
CROSSINGAREACOLOR system variable 2199
CSHADOW system variable 2200
CTAB system variable 2200
CTABLESTYLE system variable 2201
CUI command
about 376
Button Editor dialog box 388
Find and Replace dialog box 392
Image Manager dialog box 390
CUIEXPORT command 393
CUIIMPORT command 394
CUILOAD command 394
CUIUNLOAD command 396
CULLINGOBJ system variable 2201
CULLINGOBJSELECTION system variable 2202
Current Plot Style dialog box 1490
CURSORSIZE system variable 2203
Curvature tab (Analysis Options dialog box) 115
Custom tab (Drawing Properties dialog box) 712
CUSTOMIZE command

Customize dialog box 398
Customize Layer Columns dialog box 989
Customize tab (Customize User Interface dialog box) 378
Customize User Interface dialog box
Customize tab 378
Transfer tab 387
CUTCLIP command 400
CVADD command 400
CVHIDE command 402
CVPORT system variable 2203
CVREBUILD command
about 403
Rebuild Curve dialog box 405
Rebuild Surface dialog box 404
CVREMOVE command 406
CVSHOW command 408
CYLINDER command 409

\section*{D}

Data Extraction wizard

\section*{about 414}

Data Extraction-Additional Settings dialog box 428
Data Extraction-Out of Date Table dialog box 443
Data Link Manager 446
Data Objects shortcut menu 457
Data Sources Node shortcut menu 457
Data View and Query Options dialog box 476
Data View Grid window 461
Data View Print Preview window 465
Data View window 459
Database Objects shortcut menu 456
DATAEXTRACTION command
about 413
Add Folder Options dialog box 426
Additional Format dialog box 438
Data Extraction - Additional Settings dialog box 428
Data Extraction - Out of Date Table dialog box 443
Data Extraction wizard 414

Edit Formula Column dialog box 440
Filter Column dialog box 442
Insert Formula Column dialog box 435
New Drawings Found dialog box 430
Set Cell Format dialog box 437
Sort Columns dialog box 433
DATALINK command
about 445
Data Link Manager 446
New and Modify Excel Link dialog
box 448
DATALINKNOTIFY system variable 2206
DATALINKUPDATE command 451
Date Modified tab (Find dialog box) 1306
Date Modified tab (Search dialog box) 102
DATE system variable 2207
DBCONNECT command
about 452
Column Values dialog box 474
Configure a Data Source dialog box 475
Data View and Query Options dialog box 476
Data View window 459
dbConnect Manager 454
Export Links dialog box 478
Export Query Set dialog box 479
Export Template Set dialog box 480
Find dialog box 480
Format dialog box 481
Import Query Set dialog box 482
Import Template Set dialog box 483
Label Template dialog box 484
Label Template Properties dialog box 489
Link Conversion dialog box 490
Link Manager 494
Link Select dialog box 495
Link Template dialog box 498
Link Template Properties dialog box 500

New Label Template dialog box 501
New Link Template dialog box 502
New Query dialog box 503
Query Editor 466
Replace dialog box 504
Select a Database Object dialog box 505
Select Data Object dialog box 506
Sort dialog box 506
Synchronize dialog box 508
dbConnect Manager
about 454
DBCSTATE system variable 2207
DBLCLKEDIT system variable 2208
DBLIST command 509
DBMOD system variable 2208
DCALIGNED command 509
DCANGULAR command 511
DCCONVERT command 513
DCDIAMETER command 514
DCDISPLAY command 515
DCFORM command 516
DCHORIZONTAL command 517
DCLINEAR command 518
DCRADIUS command 519
DCTCUST system variable 2209
DCTMAIN system variable 2210
DCVERTICAL command 520
DDEDIT command
about 521
Edit Attribute Definition dialog box 523
Edit Text dialog box 522
DDPTYPE command 524
DDVPOINT command 526
Default Scale List dialog box 1375
DEFAULTGIZMO system variable 2211
DEFAULTLIGHTING system variable 2214
DEFAULTLIGHTINGTYPE system variable 2214
Define Geographic Location dialog box 841
DEFLPLSTYLE system variable 2215
DEFPLSTYLE system variable 2216
DELAY command 528

DELCONSTRAINT command 529
Delete Layers dialog box 965
DELOBJ system variable 2217
DEMANDLOAD system variable 2218
DesignCenter window 95
DETACHURL command 529
Device and Document Settings tab (Plotter Configuration Editor) 1499
DGN Mapping Setups dialog box 560
DGN Underlay Ribbon contextual tab 534
DGNADJUST command 530
DGNATTACH command
about 531
Attach DGN Underlay dialog
\[
\text { box } 532
\]

DGN Underlay Ribbon contextual tab 534
DGNCLIP command 537
DGNEXPORT command 539
DGNFRAME system variable 2218
DGNIMPORT command 548
DGNIMPORTMAX system variable 2219
DGNLAYERS command 558
DGNMAPPING command
about 559
DGN Mapping Setups dialog box 560
Modify DGN Mapping Setup dialog box 564
New Mapping Setup dialog box 562
DGNMAPPINGPATH system variable 2219
DGNOSNAP system variable 2220
DIASTAT system variable 2221
Dictionaries dialog box 1824
Digital Signature Contents dialog box 1779
Digital Signature tab (Security Options dialog box) 1719
DIGITIZER system variable 2221
DIM and DIM1 commands 569
DIMADEC system variable 2222
DIMALIGNED command 572
DIMALT system variable 2222
DIMALTD system variable 2223

DIMALTF system variable 2223
DIMALTRND system variable 2224
DIMALTTD system variable 2224
DIMALTTZ system variable 2225
DIMALTU system variable 2226
DIMALTZ system variable 2226
DIMANGULAR command 575
DIMANNO system variable 2227
DIMAPOST system variable 2227
DIMARC command 578
DIMARCSYM system variable 2228
DIMASSOC system variable 2229
DIMASZ system variable 2229
DIMATFIT system variable 2230
DIMAUNIT system variable 2231
DIMAZIN system variable 2231
DIMBASELINE command 579
DIMBLK system variable 2233
DIMBLK1 system variable 2234
DIMBLK2 system variable 2234
DIMBREAK command 582
DIMCEN system variable 2235
DIMCENTER command 583
DIMCLRD system variable 2235
DIMCLRE system variable 2236
DIMCLRT system variable 2236
DIMCONSTRAINT command 584
DIMCONSTRAINTICON system variable 2237
DIMCONTINUE command 586
DIMDEC system variable 2237
DIMDIAMETER command 588
DIMDISASSOCIATE command 589
DIMDLE system variable 2238
DIMDLI system variable 2238
DIMDSEP system variable 2239
DIMEDIT command 590
Dimension Input Settings dialog box 680
Dimension Style Manager
about 612
Dimensional tab (Constraint Settings dialog box) 353
DIMEXE system variable 2239
DIMEXO system variable 2239
DIMFRAC system variable 2240

DIMFXL system variable 2240
DIMFXLON system variable 2241
DIMGAP system variable 2241
DIMINSPECT command 592
DIMJOGANG system variable 2242
DIMJOGGED command 596
DIMJOGLINE command 598
DIMJUST system variable 2242
DIMLDRBLK system variable 2243
DIMLFAC system variable 2244
DIMLIM system variable 2244
DIMLINEAR command 599
DIMLTEX1 system variable 2245
DIMLTEX2 system variable 2245
DIMLTYPE system variable 2245
DIMLUNIT system variable 2246
DIMLWD system variable 2247
DIMLWE system variable 2247
DIMORDINATE command 603
DIMOVERRIDE command 605
DIMPOST system variable 2248
DIMRADIUS command 606
DIMREASSOCIATE command 608
DIMREGEN command 609
DIMRND system variable 2248
DIMSAH system variable 2249
DIMSCALE system variable 2249
DIMSD1 system variable 2250
DIMSD2 system variable 2250
DIMSE1 system variable 2251
DIMSE2 system variable 2251
DIMSOXD system variable 2252
DIMSPACE command 610
DIMSTYLE command
about 611
Compare Dimension Styles dialog box 645
Create New Dimension Style dialog box 615
Dimension Style Manager 612
Modify Dimension Style dialog box 616
New Dimension Style dialog box 616
Override Dimension Style dialog box 616

DIMSTYLE system variable 2252
DIMTAD system variable 2253
DIMTDEC system variable 2254
DIMTEDIT command 649
DIMTFAC system variable 2254
DIMTFILL system variable 2255
DIMTFILLCLR system variable 2255
DIMTIH system variable 2256
DIMTIX system variable 2256
DIMTM system variable 2257
DIMTMOVE system variable 2257
DIMTOFL system variable 2258
DIMTOH system variable 2258
DIMTOL system variable 2259
DIMTOLJ system variable 2259
DIMTP system variable 2260
DIMTSZ system variable 2260
DIMTVP system variable 2261
DIMTXSTY system variable 2261
DIMTXT system variable 2262
DIMTZIN system variable 2263
DIMUPT system variable 2263
DIMZIN system variable 2264
Direct Distance Entry command modifier 2135
Direction Control dialog box 2004
Display tab (Options dialog box) 1322
DISPSILH system variable 2265
DIST command 651
DISTANCE system variable 2265
DISTANTLIGHT command 653
DIVIDE command 655
DIVMESHBOXHEIGHT system variable 2266
DIVMESHBOXLENGTH system variable 2267
DIVMESHBOXWIDTH system variable 2267
DIVMESHCONEAXIS system variable 2268
DIVMESHCONEBASE system variable 2269
DIVMESHCONEHEIGHT system variable 2270
DIVMESHCYLAXIS system variable 2271
DIVMESHCYLBASE system variable 2272

DIVMESHCYLHEIGHT system variable 2273
DIVMESHPYRBASE system variable 2274
DIVMESHPYRHEIGHT system variable 2275
DIVMESHPYRLENGTH system variable 2276
DIVMESHSPHEREAXIS system variable 2277
DIVMESHSPHEREHEIGHT system variable 2277
DIVMESHTORUSPATH system variable 2278
DIVMESHTORUSSECTION system variable 2279
DIVMESHWEDGEBASE system variable 2280
DIVMESHWEDGEHEIGHT system variable 2281
DIVMESHWEDGELENGTH system variable 2282
DIVMESHWEDGESLOPE system variable 2283
DIVMESHWEDGEWIDTH system variable 2284
DONUT command 657
DONUTID system variable 2284
DONUTOD system variable 2285
Draft Analysis tab (Analysis Options dialog box) 116
Draft Angle Handle 1058
Drafting Settings dialog box 664
Drafting tab (Options dialog box) 1343
DRAGMODE command 658
DRAGMODE system variable 2286
DRAGP1 system variable 2286
DRAGP2 system variable 2286
DRAGVS system variable 2287
Drawing Nodes shortcut menu 455
Drawing Properties dialog box 706
Drawing Recovery Manager about 660
Drawing Units dialog box 2001
Drawing Window Colors dialog box 1358

DRAWINGRECOVERY command
about 659
Drawing Recovery Manager 660
DRAWINGRECOVERYHIDE
command 661
Drawings tab (Batch Standards
Checker) 2637
DRAWORDER command 662
DRAWORDERCTL system variable 2288
DRSTATE system variable 2288
DSETTINGS command
about 663
Dimension Input Settings dialog box 680
Pointer Input Settings dialog box 679
Tooltip Appearance dialog box 682
DSVIEWER command 683
DVIEW command 686
DWF Password dialog box 1563
DWF Underlay Ribbon contextual tab 699
DWFADJUST command 105, 694
DWFATTACH command
about 695
Attach DWF Underlay dialog box 696
DWF Underlay Ribbon contextual tab 699
Substitute DWF Name dialog box 699
DWFCLIP command 702
DWFFORMAT command 704
DWFFRAME system variable 2289
DWFLAYERS command 704
DWFOSNAP system variable 2290
DWG Options tab (Saveas Options dialog box) 1688
DWGCHECK system variable 2291
DWGCODEPAGE system variable 2291
DWGNAME system variable 2292
DWGPREFIX system variable 2292
DWGPROPS command
about 705
Add Custom Property dialog box 713

Drawing Properties dialog box 706
DWGTITLED system variable 2293
DXBIN command 714
DXEVAL system variable 2294
DXF Options tab (Saveas Options dialog box) 1689
Dynamic Input tab (Drafting Settings dialog box) 674
DYNCONSTRAINMODE system variable 2294
DYNDIGRIP system variable 2295
DYNDIVIS system variable 2296
DYNMODE system variable 2297
DYNPICOORDS system variable 2297
DYNPIFORMAT system variable 2298
DYNPIVIS system variable 2298
DYNPROMPT system variable 2299
DYNTOOLTIPS system variable 2299

\section*{E}

E-mail Address tab (Insert Hyperlink dialog box) 917
EATTEDIT command 715
EATTEXT command 720
EDGE command 722
EDGEMODE system variable 2302
EDGESURF command 723
Edit a Buzzsaw Location Shortcut dialog box 1303
Edit Attribute Definition dialog box 523
Edit Attribute dialog box 207
Edit Attributes dialog box 173
Edit Block Definition dialog box 225
Edit Face panel (Mesh Subobject Ribbon) 1132
Edit Formula Column dialog box 440
Edit Hyperlink dialog box 919
Edit Layer dialog box 1024
Edit Layer State dialog box 1001
Edit Lineweights dialog box 1868
Edit Name and Description dialog box 2060
Edit Reference Ribbon contextual tab 1609
Edit Scale dialog box 1697

Edit Scale List dialog box 1694
Edit Sheet List Table Settings dialog box 1761
Edit Text dialog box 522
EDITSHOT command 725
ELEV command 726
ELEVATION system variable 2302
ELLIPSE command 727
Enhanced Attribute Editor 716
ENTERPRISEMENU system variable 2302
ERASE command 731
ERHIGHLIGHT system variable 2303
ERRNO system variable 2304
ERSTATE system variable 2304
ETRANSMIT command 732
Create Transmittal dialog box 732
Import Transmittal Setups dialog box 738
Modify Transmittal dialog box 739
Transmittal - Set Password dialog box 744
Transmittal Setups dialog box 736
Existing File or Web Page tab (Insert Hyperlink dialog box) 916
EXPERT system variable 2305
EXPLMODE system variable 2308
EXPLODE command 746
EXPORT command 748
Export DGN Settings dialog box 540
Export Layout to Model Space Drawing dialog box 765
Export Links dialog box 478
Export Query Set dialog box 479
Export Template Set dialog box 480
Export to DWF/PDF Options palette 753
Export to DWF/PDF ribbon panel 758
EXPORTDWF command
about 751
Export to DWF/PDF Options palette 753
Export to DWF/PDF ribbon panel 758
New Precision Preset dialog box 757
Page Setup Override dialog box 755
Precision Presets Manager 756
Save as DWF dialog box 752

Save as DWFx dialog box 760
EXPORTDWFX command about 760
EXPORTEPLOTFORMAT system variable 2306
EXPORTLAYOUT command 764
EXPORTMODELSPACE system variable 2306
EXPORTPAGESETUP system variable 2307
EXPORTPAPERSPACE system variable 2307
EXPORTPDF command
about 762
Save as PDF dialog box 762
EXPORTSETTINGS command 765
EXPORTTOAUTOCAD command 766
EXTEND command 768
External Reference Ribbon contextual tab 2109
External References palette
about 773
EXTERNALREFERENCES command 771
EXTERNALREFERENCESCLOSE command 781
EXTMAX system variable 2308
EXTMIN system variable 2309
EXTNAMES system variable 2309
EXTRUDE command

\section*{F}

FACETERDEVNORMAL system variable 2311
FACETERDEVSURFACE system variable 2312
FACETERGRIDRATIO system variable 2313
FACETERMAXEDGELENGTH system variable 2313
FACETERMAXGRID system variable 2314
FACETERMESHTYPE system variable 2315
FACETERMINUGRID system variable 2315

2690 | Index

FACETERMINVGRID system variable 2316
FACETERPRIMITIVEMODE system variable 2316
FACETERSMOOTHLEV system variable 2317
FACETRATIO system variable 2318
FACETRES system variable 2319
FBX Export Options dialog box 788
FBX Import Options dialog box 792
FBXEXPORT command 787
FBXIMPORT command 791
FIELD command 795
Field dialog box 797
Field Update Settings dialog box 1367
FIELDDISPLAY system variable 2319
FIELDEVAL system variable 2320
FILEDIA system variable 2321
Files tab (Options dialog box) 1316
Files Table tab (Archive a Sheet Set dialog box) 137
Files Table tab (Create Transmittal dialog box) 734
Files Tree tab (Archive a Sheet Set dialog box) 136
Files Tree tab (Create Transmittal dialog box) 733
FILL command 799
FILLET command 801
FILLETEDGE command 804
FILLETRAD system variable 2321
FILLETRAD3D system variable 2321
FILLMODE system variable 2322
Filter Column dialog box 442
FILTER command 806
Find and Replace dialog box
(commands) 392
Find and Replace dialog box (mtext) 1235
Find and Replace dialog box (text) 810
FIND command 809
Find dialog box (DBCONNECT) 480
Find dialog box (OPEN) 1305
Find/Replace tab (Label Template dialog box) 487

Fit tab (New Dimension Style dialog box) 629
FLATSHOT command 814
Flatshot dialog box 815
FONTALT system variable 2323
FONTMAP system variable 2323
Form View tab (Plot Style Table Editor) 1864
Format dialog box 481
FRAME system variable 2324
FREESPOT command 817
FREEWEB command 820
FRONTZ system variable 2325
FULLOPEN system variable 2325
FULLPLOTPATH system variable 2325

\section*{G}

GCCOINCIDENT command 825
GCCOLLINEAR command 827
GCCONCENTRIC command 828
GCEQUAL command 829
GCFIX command 830
GCHORIZONTAL command 832
GCPARALLEL command 834
GCPERPENDICULAR command 834
GCSMOOTH command 835
GCSYMMETRIC command 836
GCTANGENT command 838
GCVERTICAL command 839
General tab (Drawing Properties dialog box) 707
General tab (Plot Style Table Editor) 1862
General tab (Plotter Configuration Editor) 1496
Generate Section / Elevation dialog box 1717
Geographic Location dialog box 844
GEOGRAPHICLOCATION command
about 840
Coordinate System Already Defined dialog box 843
Define Geographic Location dialog box 841
Geographic Location dialog box 844

Location Already Exists dialog box 842
Location Picker dialog box 847
GEOLATLONGFORMAT system variable 2328
GEOMARKERVISIBILITY system variable 2328
GEOMCONSTRAINT command 848
Geometric tab (Constraint Settings dialog box) 353
Geometric Tolerance dialog box 1948
GFANG system variable 2329
GFCLR1 system variable 2329
GFCLR2 system variable 2330
GFCLRLUM system variable 2330
GFCLRSTATE system variable 2331
GFNAME system variable 2331
GFSHIFT system variable 2332
GLOBALOPACITY system variable 2333
GOTOURL command 850
GRADIENT command 850
Gradient Property Settings dialog box 1091
Gradient tab (Hatch and Gradient dialog box) 878
GRAPHICSCONFIG command 851
GRAPHSCR command 859
GRID command 859
Grid Header shortcut menu 464
GRIDDISPLAY system variable 2333
GRIDMAJOR system variable 2334
GRIDMODE system variable 2334
GRIDSTYLE system variable 2335
GRIDUNIT system variable 2335
Grip Colors dialog box 1353
GRIPBLOCK system variable 2336
GRIPCOLOR system variable 2336
GRIPCONTOUR system variable 2337
GRIPDYNCOLOR system variable 2337
GRIPHOT system variable 2338
GRIPHOVER system variable 2338
GRIPMULTIFUNCTIONAL system variable 2339
GRIPOBJLIMIT system variable 2339
GRIPS system variable 2340
GRIPSIZE system variable 2341

GRIPSUBOBJMODE system variable 2341
GRIPTIPS system variable 2342
GROUP command
about 861
Object Grouping dialog box 862
Order Group dialog box 865
GTAUTO system variable 2342
GTDEFAULT system variable 2343
GTLOCATION system variable 2344

\section*{H}

HALOGAP system variable 2345
HANDLES system variable 2346
HATCH command
about 869
Hatch Creation ribbon contextual tab 882
Hatch Pattern Palette dialog box 888
Hatch Creation ribbon contextual tab 882
Hatch Edit dialog box 898
Hatch Editor ribbon contextual tab 898
Hatch Pattern Palette dialog box 888
Hatch tab (Hatch and Gradient dialog box) 875
HATCHEDIT command 897
HATCHGENERATEBOUNDARY
command 906
HATCHSETBOUNDARY command 907
HATCHSETORIGIN command 907
HATCHTOBACK command 908
HELIX command 909
HELP command 911
HELPPREFIX system variable 2346
Hidden Message Settings dialog box 1374
HIDE command 911
HIDEOBJECTS command 913
HIDEPALETTES command 913
HIDEPRECISION system variable 2347
HIDETEXT system variable 2347
HIGHLIGHT system variable 2348
HLSETTINGS command 914
\begin{tabular}{|c|c|}
\hline HPANG system variable 2348 & IMAGE command 924 \\
\hline HPANNOTATIVE system variable 2349 & Image Manager dialog box 390 \\
\hline HPASSOC system variable 2349 & Image ribbon contextual tab 934 \\
\hline HPBACKGROUNDCOLOR system & IMAGEADJUST command 927 \\
\hline variable 2350 & IMAGEATTACH command \\
\hline HPBOUND system variable 2350 & about 931 \\
\hline HPBOUNDRETAIN system variable 2351 & Attach Image dialog box 932 \\
\hline HPCOLOR system variable 2352 & Image ribbon contextual tab 934 \\
\hline HPDLGMODE system variable 2352 & IMAGECLIP command 935 \\
\hline HPDOUBLE system variable 2353 & IMAGEFRAME system variable 2364 \\
\hline HPDRAWORDER system variable 2354 & IMAGEHLT system variable 2364 \\
\hline HPGAPTOL system variable 2354 & IMAGEQUALITY command 937 \\
\hline HPINHERIT system variable 2355 & IMPLIEDFACE system variable 2364 \\
\hline HPISLANDDETECTION system & IMPORT command 938 \\
\hline variable 2355 & Import DGN Settings dialog box 549 \\
\hline HPISLANDDETECTIONMODE system variable 2356 & Import Layouts as Sheets dialog box 1755 \\
\hline HPLAYER system variable 2356 & Import Page Setups dialog box 1398 \\
\hline HPMAXLINES system variable 2356 & Import Query Set dialog box 482 \\
\hline HPNAME system variable 2357 & Import Template Set dialog box 483 \\
\hline HPOBJWARNING system variable 2357 & Import Transmittal Setups dialog \\
\hline HPORIGIN system variable 2358 & box 738 \\
\hline HPORIGINMODE system variable 2358 & IMPRINT command 939 \\
\hline HPQUICKPREVIEW system & In-Place Text Editor \\
\hline variable 2359 & about 1222 \\
\hline HPSCALE system variable 2359 & Index Color tab (Select Color dialog \\
\hline HPSEPARATE system variable 2360 & box) 338 \\
\hline HPSPACE system variable 2360 & INDEXCTL system variable 2365 \\
\hline HPTRANSPARENCY system & INETLOCATION system variable 2366 \\
\hline variable 2361 & Information tab (Materials Editor) 1087 \\
\hline HYPERLINK command & Initial Setup dialog box 1376 \\
\hline about 914 & INPUTHISTORYMODE system \\
\hline Edit Hyperlink dialog box 919 & variable 2367 \\
\hline Insert Hyperlink dialog box 915 & INSBASE system variable 2367 \\
\hline Select Place in Document dialog box 920 & Insert a Block in a Table Cell dialog
\[
\text { box } 1946
\] \\
\hline HYPERLINKBASE system variable 2361 & INSERT command 940 \\
\hline HYPERLINKOPTIONS command 922 & Insert dialog box 941 \\
\hline & Insert Formula Column dialog box 435 \\
\hline & Insert Hyperlink dialog box 915 \\
\hline & INSERT Object dialog box 947 \\
\hline i-drop Options dialog box 1731 & Insert Sheet List Table dialog box 1756 \\
\hline ID command 923 & Insert Table dialog box 1896 \\
\hline Identity Reference tab (Reference Edit & Table Ribbon contextual tab 1900 \\
\hline \[
\text { dialog box) } 1610
\] & Insertion Cycling Order dialog box 222 \\
\hline Image Adjust dialog box 928 & INSERTOBJ command 946 \\
\hline
\end{tabular}

HPANG system variable 2348
HPANNOTATIVE system variable 2349
HPASSOC system variable 2349
variable 2350
HPBOUND system variable 2350
位

HPDLGMODE system variable 2352
HPDOUBLE system variable 2353
diph sutem variable
HPINHERIT system variable 2355
HPINHERIT system variable 2355 variable 2355

HpISLANDDETECTONMODE system variable 2356
HPLAYER system variable 2356
HPMAXLINES system variable 2356
HPNAME system variable 2357
HPOBJWARNING system variable 2357
HPORIGIN system variable 2358
HPORIGINMODE system variable 2358
HPQUICKPREVIEW system variable 2359
HPSCALE system variable 2359
HPSEPARATE system variable 2360
HPSPACE system variable 2360
HPTRANSPARENCY system variable 2361
about 914
Edit Hyperlink dialog box 919
Insert Hyperlink dialog box 915
Select Place in Document dialog box 920
HYPERLINKBASE system variable 2361
HYPERLINKOPTIONS command 922

I
i-drop Options dialog box 1731
ID command 923
Identity Reference tab (Reference Edit dialog box) 1610
Image Adjust dialog box 928

IMAGE command 924
Image Manager dialog box 390
Image ribbon contextual tab 93
IMAGEATTACH command
about 931
Attach Image dialog box 932
Image ribbon contextual tab 934
IMAGECLIP command 935
IMAGEFRAME system variable 2364

IMPLIEDFACE system variable 2364
MPORT command 938

Import Layouts as Sheets dialog box 1755
Import Page Setups dialog box 1398
Import Query Set dialog box 482
Import Template Set dialog box 483
Import Transmittal Setups dialog box 738
IMPRINT command 939
In-Place Text Editor
about 1222
Index Color tab (Select Color dialog box) 338
INDEXCTL system variable 2365
INETLOCATION system variable 2366
Initial Setup dialog box 1376
variable 2367
INSBASE system variable 2367
Insert a Block in a Table Cell dialog box 1946
INSERT command 940
Insert dialog box 941
Insert Formula Column dialog box 435
Insert Hyperlink dialog box 915
Insert Sheet List Table dialog box 1756
Insert Table dialog box 1896
Table Ribbon contextual tab 1900

INSERTOBJ command 946

INSNAME system variable 2367 Inspection Dimension dialog box
INSUNITS system variable 2369
INSUNITSDEFSOURCE system variable 2370
INSUNITSDEFTARGET system variable 2372
INTELLIGENTUPDATE system variable 2372
INTERFERE command
about 948
Interference Checking dialog box 952
Interference Settings dialog box 951
INTERFERECOLOR system variable 2373
Interference Checking dialog box 952
Interference Settings dialog box 951
INTERFEREOBJVS system variable 2373
INTERFEREVPVS system variable 2374
INTERSECT command 955
INTERSECTIONCOLOR system variable 2374
INTERSECTIONDISPLAY system variable 2375
ISAVEBAK system variable 2375
ISAVEPERCENT system variable 2376
ISOLATEOBJECTS command 956
ISOLINES system variable 2376
ISOPLANE command 957
J
JOGSECTION command
(SECTIONPLANEJOG) 1707
JOIN command 959
JPEG Image Options dialog box 1635
JPGOUT command 961
JUSTIFYTEXT command 962
L
Label Fields tab (Label Template dialog box) 487
Label Offset tab (Label Template dialog box) 488
Label Template dialog box 484

Label Template Properties dialog box 489
Lamp Color dialog box 1549
Lamp Intensity dialog box 1547
LARGEOBJECTSUPPORT system variable 2377
LASTANGLE system variable 2378
LASTPOINT system variable 2378
LASTPROMPT system variable 2379
LATITUDE system variable 2379
LAYCUR command 963
LAYDEL command 964
LAYER command
about 966
Customize Layer Columns dialog box 989
Edit Layer State dialog box 1001
Layer Filter Properties dialog box 978
Layer Properties Manager 968
Layer Settings dialog box 986
Layer Transparency dialog box 984
Lineweight dialog box 983
New Layer State to Save dialog box 999
Select Layer States dialog box 1003
Select Layers to Add to Layer State dialog box 1002
Select Linetype dialog box 982
Layer Filter Properties dialog box 978
Layer Properties Manager
about 968
Layer Settings dialog box 986
Layer shortcut menu 976
Layer States Manager
about 997
Layer tab (Modify DGN Mapping Setup dialog box) 564
Layer Translator 1020
Layer Transparency dialog box 984
LAYERCLOSE command 993
LAYERDLGMODE system variable 2380
LAYEREVAL system variable 2381
LAYEREVALCTL system variable 2381
LAYERFILTERALERT system
variable 2382

LAYERMANAGERSTATE system variable 2383
LAYERNOTIFY system variable 2384
LAYERP command 994
LAYERPALETTE command 994
LAYERPMODE command 995
LAYERSTATE command
about 995
Layer States Manager 997
LayerWalk dialog box 1029
LAYFRZ command 1004
LAYISO command 1006
LAYLCK command 1009
LAYLOCKFADECTL system variable 2385
LAYMCH command 1007
LAYMCUR command 1010
LAYMRG command
about 1011
Merge Layers dialog box 1012
Merge to Layer dialog box 1013
LAYOFF command 1014
LAYON command 1016
LAYOUT command 1016
Layout Wizard
about 1018
LAYOUTREGENCTL system variable 2386
LAYOUTWIZARD command 1018
LAYTHW command 1019
LAYTRANS command
about 1020
Edit/New Layer dialog box 1024
Layer Translator 1020
Settings dialog box 1023
LAYULK command 1025
LAYUNISO command 1026
LAYVPI command 1027
LAYWALK command 1029
LEADER command 1032
Leader Format tab (Modify Multileader Style dialog box) 1185
Leader Line \& Arrow tab (Leader Settings dialog box) 1580
Leader Settings dialog box 1578

Leader Structure tab (Modify Multileader Style dialog box) 1186
LEGACYCTRLPICK system variable 2387
LENGTHEN command 1035
LENSLENGTH system variable 23872388
LIGHT command 1037
Light Glyph Appearance dialog box 1360
LIGHTGLYPHDISPLAY system variable 2387
Lighting Properties dialog box 1542
LIGHTINGUNITS system variable 2388
LIGHTLIST command 1038
LIGHTLISTCLOSE command 1040
LIGHTLISTSTATE system variable 2389
Lights in Model palette 1039
LIGHTSINBLOCKS system variable 2389
LIMCHECK system variable 2390
LIMITS command 1040
LIMMAX system variable 2390
LIMMIN system variable 2391
LINE command 1041
LINEARBRIGHTNESS system variable 2391
LINEARCONTRAST system variable 2392
Lines and Arrows tab (New Dimension Style dialog box) 617, 621
LINETYPE command
about 1043
Linetype Manager 1044
Load or Reload Linetypes dialog box 1047
Linetype Manager
about 1044
Linetype tab (Modify DGN Mapping Setup dialog box) 564
Lineweight dialog box 983
Lineweight Settings dialog box 1063
Lineweight tab (Modify DGN Mapping Setup dialog box) 565
Link Conversion dialog box 490
Link Manager
about 494
Link Select dialog box 495
Link Template dialog box 498

Link Template Properties dialog box 500
Links dialog box 1289
LIST command 1049
List of Blocks dialog box 1774
List View shortcut menu 975
LIVESECTION command 1050
LOAD command 1051
Load Multiline Styles dialog box 1210
Load or Reload Linetypes dialog box 1047
Load/Unload Applications dialog box 127
Load/Unload Customizations dialog box 395
LOCALE system variable 2392
LOCALROOTPREFIX system variable 2393
Location Already Exists dialog box 842
Location Picker dialog box 847
LOCKUI system variable 2393
LOFT command 1052
Loft Handle 1058
Loft Settings dialog box 1057
LOFTANG1 system variable 2394
LOFTANG2 system variable 2394
LOFTMAG1 system variable 2395
LOFTMAG2 system variable 2395
LOFTNORMALS system variable 2396
LOFTPARAM system variable 2397
Log In to Buzzsaw dialog box 1302
LOGEXPBRIGHTNESS system variable 2397
LOGEXPCONTRAST system variable 2398
LOGEXPDAYLIGHT system variable 2398
LOGEXPMIDTONES system variable 2399
LOGEXPPHYSICALSCALE system variable 2399
LOGFILEMODE system variable 2400
LOGFILENAME system variable 2400
LOGFILEOFF command 1060
LOGFILEON command 1060
LOGFILEPATH system variable 2401
LOGINNAME system variable 2401

LONGITUDE system variable 2402
LTSCALE command 1061
LTSCALE system variable 2402
LUNITS system variable 2403
LUPREC system variable 2403
LWDEFAULT system variable 2404
LWDISPLAY system variable 2404
LWEIGHT command 1062
LWUNITS system variable 2404

\section*{M}

Macros dialog box 2017
Magnitude Handle 1058
Manage Cell Content dialog box 1905
Manage Cell Styles dialog box 1918
Manage Custom Dictionaries dialog box 1826
Manual Performance Tuning dialog box 853
Map Property Settings dialog box 1089
Marble Property Settings dialog box 1093
MARKUP command 1067
Markup Set Manager
about 1068
Markup shortcut menu 1070
MARKUPCLOSE command 1073
MASSPROP command 1074
MATBROWSERCLOSE command 1078
MATBROWSEROPEN command 1078
MATBROWSERSTATE system variable 2405
MATCHCELL command 1080
MATCHPROP command 1081
MATEDITORCLOSE command 1085
MATEDITOROPEN command
about 1086
Map Property Settings dialog box 1089
Material Tool Property Editor 1099
Materials Editor 1086
Nested Map Navigation display 1098
Texture Editor 1088
MATEDITORSTATE system variable 2406

Material Attachment Options dialog box 1101
Material Condition dialog box 1953
Material Tool Property Editor 1099
MATERIALASSIGN command 1100
MATERIALATTACH command
about 1100
Material Attachment Options dialog box 1101
MATERIALMAP command 1102
Materials Browser about 1079
MATERIALS command about 1107
Materials Editor
about 1086
Material Tool Property Editor 1099
Nested Map Navigation 1098
Texture Editor 1088
MATERIALSCLOSE command 1107
MAXACTVP system variable 2407
MAXSORT system variable 2407
MAXTOUCHES system variable 2407
MBUTTONPAN system variable 2408
MEASURE command 1108
MEASUREGEOM command 1110
MEASUREINIT system variable 2409
MEASUREMENT system variable 2409
MENU command 1114
MENUBAR system variable 2410
MENUCTL system variable 2410
MENUECHO system variable 2411
MENUNAME system variable 2411
Merge Layers dialog box 1012
Merge to Layer dialog box 1013
MESH command 1115
Mesh Object Ribbon contextual panels 1130
Mesh Subobject ribbon contextual panels 1132
Mesh Object Ribbon contextual panels 1130
Mesh Primitive Options dialog box 1147
Mesh Subobject ribbon contextual panels 1132

Mesh Tessellation Options dialog box 1143
MESHCAP command 1133
MESHCOLLAPSE command 1135
MESHCREASE command 1136
MESHEXTRUDE command 1137
MESHMERGE command 1141
MESHOPTIONS command 1142
MESHPRIMITIVEOPTIONS
command 1146
MESHREFINE command 1157
MESHSMOOTH command 1158
MESHSMOOTHLESS command 1159
MESHSMOOTHMORE command 1160
MESHSPIN command 1161
MESHSPLIT command 1163
MESHTYPE system variable 2412
MESHUNCREASE command 1165
MIGRATEMATERIALS command 1165
MINSERT command 1166
MIRRHATCH system variable 2412
MIRROR command 1170
MIRROR3D command 1172
MIRRTEXT system variable 2413
Missing Texture Maps dialog box 1627
MLEADER command 1175
MLEADERALIGN command 1177
MLEADERCOLLECT command 1179
MLEADEREDIT command 1180
MLEADERSCALE system variable 2413
MLEADERSTYLE command
about 1181
Create New Multileader Style dialog box 1190
Modify Multileader Style dialog box 1184
Multileader Style Manager 1182
MLEDIT command 1191
MLINE command 1200
MLSTYLE command
about 1202
Create New Multiline Style dialog box 1205
Load Multiline Styles dialog box 1210

Modify Multiline Style dialog box 1206
Multiline Style dialog box 1204
New Multiline Style dialog box 1206
MODEL command 1210
Model Views tab (Sheet Set
Manager) 1744
MODEMACRO system variable 2414
Modify Archive Setup dialog box 139
Modify DGN Mapping Setup dialog box 564
Modify Dimension Style dialog box 616
Modify FTP Locations dialog box 1308
Modify Multileader Style dialog box 1184
Modify Multiline Style dialog box 1206
Modify Table Style dialog box 1911
Modify Transmittal dialog box 739
More Options tab (Hatch and Gradient dialog box) 879
Motion Path Animation dialog box 119
MOVE command 1211
MREDO command 1212
MSLIDE command 1213
MSLTSCALE system variable 2414
MSMSTATE system variable 2415
MSOLESCALE system variable 2415
MSPACE command 1214
MTEDIT command 1214
MTEXT command
about 1215
AutoStack Properties dialog box 1239
Background Mask dialog box 1234
Column Settings dialog box 1233
Columns menu 1231
Find and Replace dialog box 1235
In-Place Text Editor 1222
MTEXT ribbon contextual tab 1216
Paragraph dialog box 1230
Stack Properties dialog box 1237
MTEXT ribbon contextual tab 1216
MTEXTCOLUMN system variable 2416
MTEXTED system variable 2416
MTEXTFIXED system variable 2417
MTEXTTOOLBAR system variable 2418

MTJIGSTRING system variable 2418
MTP command modifier 2135
Multileader Style Manager 1182
Multiline Edit Tools dialog box 1192
Multiline Style dialog box 1204
MULTIPLE command 1247
MVIEW command 1248
MVSETUP command 1251
MYDOCUMENTSPREFIX system variable 2419

\section*{N}

Name and Location tab (Find dialog box) 1305
Named UCSs tab (UCS dialog box) 1986
Named Viewports tab (Viewports dialog box) 2072
NAVBAR command 1257
NAVBARDISPLAY system variable 2421
NAVSMOTION command 1259
NAVSMOTIONCLOSE command 1260
NAVSWHEEL command 1261
NAVSWHEELMODE system variable 2422
NAVSWHEELOPACITYBIG system variable 2423
NAVSWHEELOPACITYMINI system variable 2423
NAVSWHEELSIZEBIG system variable 2424
NAVSWHEELSIZEMINI system variable 2424
NAVVCUBE command 1265
NAVVCUBEDISPLAY system variable 2425
NAVVCUBELOCATION system variable 2425
NAVVCUBEOPACITY system variable 2426
NAVVCUBEORIENT system variable 2426
NAVVCUBESIZE system variable 2427
Nested Map Navigation display 1098
NETLOAD command 1268

New and Modify Excel Link dialog box 448
NEW command
about 1269
Advanced Setup wizard 1275
Create New Drawing dialog
box 1270
Quick Setup wizard 1273
New Dimension Style dialog box 616
New Drawings Found dialog box 430
New Label Template dialog box 501
New Layer dialog box 1024
New Layer Name dialog box 1714
New Layer State to Save dialog box 999
New Link Template dialog box 502
New Mapping Setup dialog box 562
New Multiline Style dialog box 1206
New Page Setup dialog box 1388
New Parameter dialog box 280
New Precision Preset dialog box 757
New Query dialog box 503
New Sheet dialog box 1750
New Sheet Selection dialog box 1770
New Table Style dialog box 1911
New View dialog box
about 2029
Shot Properties tab 2034
View Properties tab 2030, 2032
New Viewports tab (Viewports dialog box)
New Visibility State dialog box 286
NEWSHEETSET command 1278
NEWSHOT command 1278
NEWVIEW command 1279
Noise Property Settings dialog box 1093
NOMUTT system variable 2428
NORTHDIRECTION system variable 2428
Notes tab (Batch Standards Checker) 2638

\section*{0}

Object Grouping dialog box 862
Object Selection Filters dialog box 806

Object Snap tab (Drafting Settings dialog box) 669
Object Snaps command modifier 2136
OBJECTISOLATIONMODE system variable 2430
OBJECTSCALE command
about 1281
Add Scales to Object dialog box 1283
Annotative Object Scale dialog box 1282
OBSCUREDCOLOR system variable 2430
OBSCUREDLTYPE system variable 2432
OFFSET command 1286
OFFSETDIST system variable 2432
OFFSETGAPTYPE system variable 2433
OLE Text Size dialog box 1293
OLEFRAME system variable 2433
OLEHIDE system variable 2434
OLELINKS command
about 1288
Change Icon dialog box 1291
Convert dialog box 1290
Links dialog box 1289
OLEQUALITY system variable 2435
OLESCALE command 1292
OLESTARTUP system variable 2435
OOPS command 1294
Open and Save tab (Options dialog
box) 1327
OPEN command
about 1295
Add/Modify FTP Locations dialog box 1308
Buzzsaw Location Shortcuts dialog box 1300
Create a Buzzsaw Location Shortcut dialog box 1303
Edit a Buzzsaw Location Shortcut dialog box 1303
Find dialog box 1305
Log In to Buzzsaw dialog box 1302
Partial Open dialog box 1310
Select a Buzzsaw Location dialog box 1304
Open Reference Files dialog box 2119


OPENPARTIAL system variable 2436
OPENSHEETSET command 1314
OPMSTATE system variable 2436
OPTIONS command
about 1314
rofile dialog box - 1372 box 1371
Alternate Font dialog box 1356
Camera Glyph Appearance dialog box 1361
Change Profile dialog box 1372 box 1359
Default Scale List dialog box 1375
Drawing Window Colors dialog box 1358
Field Update Settings dialog box 1367
Grip Colors dialog box 1353
Hidden Message Settings dialog box 1374
Initial Setup dialog box 1376
Light Glyph Appearance dialog box 1360
Options dialog box 1315
Plot Style Table Settings dialog box 1363
Ribbon Contextual Tab State Options dialog box 1370
Right-Click Customization dialog box 1365
Thumbnail Preview Settings dialog box 1362
Transparency dialog box 1373
Visual Effect Settings dialog box 1368
Options dialog box 1315
Order Group dialog box 865
ORTHO command 1379
Orthographic UCS Depth dialog
box 1990

ORTHOMODE system variable 2437

OSMODE system variable 2438
OSNAP command 1380
OSNAPCOORD system variable 2439
OSNAPNODELEGACY system variable 2439
OSNAPZ system variable 2440
OSOPTIONS system variable 2440
Output Size dialog box 1680
Override Dimension Style dialog box 616

\section*{P}

Page Setup dialog box 1390
Page Setup Manager
about 1384
Page Setup dialog box 1390
Page Setup Override dialog box 755
PAGESETUP command
about 1383
Changes to a Printer Configuration
File dialog box 1397
Import Page Setups dialog box 1398
New Page Setup dialog box 1388
Page Setup dialog box 1390
Page Setup Manager 1384
PALETTEOPAQUE system variable 2442
PAN command 1399
Pan shortcut menu 1402
PAPERUPDATE system variable 2443
Paragraph dialog box 1230
Parameter Sets tab (Block Authoring Palettes window) 237
PARAMETERCOPYMODE system variable 2444
PARAMETERS command
about 1403
Parameters Manager (Block Editor) 1408
Parameters Manager (Drawing Editor) 1404
Parameters Manager (Block Editor) 1408
Parameters Manager (Drawing Editor) 1404
Parameters tab (Block Editor Authoring Palettes) 234

PARAMETERSCLOSE command 1414
PARAMETERSSTATUS system variable 2444
Partial Load dialog box 1415
Partial Open dialog box 1310
PARTIALOAD command 1414
PARTIALOPEN command 1418
Password tab (Security Options dialog box) 1719
Paste Special dialog box 1424
PASTEASHYPERLINK command 1420
PASTEBLOCK command 1421
PASTECLIP command 1422
PASTEORIG command 1423
PASTESPEC command 1423
PCINWIZARD command 1425
PCX Image Options dialog box 1631
PDF Underlay ribbon contextual tab 1432
PDFADJUST command 1426
PDFATTACH command
about 1427
Attach PDF Underlay dialog box 1429
PDF Underlay ribbon contextual tab 1432
PDFCLIP command 1433
PDFFRAME system variable 2445
PDFLAYERS command 1434
PDFOSNAP system variable 2446
PDMODE system variable 2446
PDSIZE system variable 2447
PEDIT command 1435
PEDITACCEPT system variable 2447
PELLIPSE system variable 2448
Performance Tuner Log 25
PERIMETER system variable 2448
PERSPECTIVE system variable 2449
PERSPECTIVECLIP system variable 2449
PFACE command 1449
PFACEVMAX system variable 2450
PICKADD system variable 2450
PICKAUTO system variable 2451
PICKBOX system variable 2451
PICKDRAG system variable 2452
PICKFIRST system variable 2452

PICKSTYLE system variable 2453
PLAN command 1451
PLANESURF command 1452
PLATFORM system variable 2453
PLINE command 1454
PLINECONVERTMODE system variable 2454
PLINEGEN system variable 2454
PLINETYPE system variable 2455
PLINEWID system variable 2456
Plot and Publish Details dialog box 2047
Plot and Publish Status Bar Icon shortcut menu 2048
Plot and Publish tab (Options dialog box) 1331
PLOT command
about 1460
Add Page Setup dialog box 1473
Changes to a Printer Configuration File dialog box 1473
Plot dialog box 1461
Plot Job Progress dialog box 1474
Update PC3 File with New Printer dialog box 1475
Plot dialog box 1461
Plot Job Progress dialog box 1474
Plot Stamp dialog box 1481
Plot Style Table Editor
about 1861
Form View tab 1864
General tab 1862
Table View tab 1864
Plot Style Table Settings dialog box 1363
PLOTOFFSET system variable 2456
PLOTROTMODE system variable 2457
PLOTSTAMP command
about 1480
Advanced Options dialog box 1484
Plot Stamp dialog box 1481
User Defined Fields dialog box 1483
PLOTSTYLE command
about 1489
Current Plot Style dialog box 1490
Select Plot Style dialog box 1492
Plotter Configuration Editor 1495

PLOTTERMANAGER command
about 1494
Add-a-Plotter wizard 1495
Advanced Settings for COM dialog
box 1510
Configure LPT Port dialog box 1508
Plotter Configuration Editor 1495
Settings for COM Port dialog box 1509
PLOTTRANSPARENCYOVERRIDE system variable 2457
PLQUIET system variable 2458
Plug-ins tab (Batch Standards
Checker) 2638
Plug-ins tab (Configure Standards dialog box) 1845
PNG Image Options dialog box 1636
PNGOUT command 1511
POINT command 1512
Point Style dialog box 525
POINTCLOUD command 1514
POINTCLOUDATTACH command 1515
POINTCLOUDAUTOUPDATE system variable 2459
POINTCLOUDDENSITY system variable 2459
POINTCLOUDINDEX command 1518
POINTCLOUDLOCK system variable 2460
POINTCLOUDRTDENSITY system variable 2461
Pointer Input Settings dialog box 679
POINTLIGHT command 1519
Polar Tracking tab (Drafting Settings dialog box) 668
POLARADDANG system variable 2461
POLARANG system variable 2462
POLARDIST system variable 2462
POLARMODE system variable 2463
POLYGON command 1523
POLYSIDES system variable 2463
POLYSOLID command 1525
POPUPS system variable 2464
Ports tab (Plotter Configuration Editor) 1497
Position Locator window 76

Precision Presets Manager 756
PRESSPULL command 1529
PREVIEW command 1531
PREVIEWEFFECT system variable 2464
PREVIEWFACEEFFECT system variable 2465
PREVIEWFILTER system variable 2466
PREVIEWTYPE system variable 2466
Primary Units tab (New Dimension Style dialog box) 633
PRODUCT system variable 2467
Profiles tab (Options dialog box) 1354
PROGRAM system variable 2467
Progress tab (Batch Standards Checker) 2638
PROJECTGEOMETRY command 1533
PROJECTNAME system variable 2468
PROJMODE system variable 2468
PROPERTIES command about 1535
Add Angle Value dialog box 1541
Add Distance Value dialog box 1541
Cell Border Properties dialog box 1539
Lamp Color dialog box 1549
Lamp Intensity dialog box 1547
Lighting Properties dialog box 1542
Properties palette 1536
Properties palette
about 1536
general properties 1538
Properties tab (Edit Attribute dialog box) 210
Properties tab (Enhanced Attribute Editor) 719
Properties tab (Label Template dialog box) 486
PROPERTIESCLOSE command 1550
Property Lookup Table dialog box 253
Property Settings dialog box 1082
PROXYGRAPHICS system variable 2469
PROXYNOTICE system variable 2469
PROXYSHOW system variable 2470
PROXYWEBSEARCH system
variable 2470
PSETUPIN command 1550


PSOLHEIGHTsystem variable 2472
OLH system variable 2472

PSTYLEMODE system variable 2473
PSTYLEPOLICY system variable 2473
Publish Block Template dialog box 1560
PUBLISH command
about 1552
Block Template Options dialog box 1562 box 1564
DWF Password dialog box 1563
Publish Block Template dialog box 1560
Publish dialog box 1553
Publish Job Progress dialog box 1564

Publish dialog box 1553
Publish Job Progress dialog box 1564
Publish Options dialog box 1558
Publish Sheets dialog box 1748
Publish to Web wizard 1567
PUBLISHALLSHEETS system variable 2474
PUBLISHCOLLATE system variable 2475
PUBLISHHATCH system variable 2476
PUBLISHTOWEB command 1566
PUCSBASE system variable 2476
RGE command - 1568
Purge dialog box 1569
PYRAMID command 1572

\section*{Q}

QCCLOSE command 1575
QDIM command 1576
QLEADER command
about 1577
Leader Settings dialog box 1578
QPLOCATION system variable 2478

QPMODE system variable 2479
QSAVE command 1584
QSELECT command 1585
QTEXT command 1588
QTEXTMODE system variable 2479
Query Builder tab (Query Editor) 469
Query Editor
about 466
Query Builder tab 469
Quick Query tab 467
Range Query tab 468
SQL Query tab 472
Quick Properties tab (Drafting Settings dialog box) 675
Quick Query tab (Query Editor) 467
Quick Select dialog box 1586
Quick Setup wizard 1273
QuickCalc calculator
about 1589
Category Definition dialog box 1593
Variable Definition dialog box 1592
QUICKCALC command 1588
QUICKCUI command 1594
QUIT command 1595
QVDRAWING command 1595
QVDRAWINGCLOSE command 1596
QVDRAWINGPIN system variable 2480
QVLAYOUT command 1597
QVLAYOUTCLOSE command 1597
QVLAYOUTPIN system variable 2480

\section*{R}

Range Query tab (Query Editor) 468
RASTERDPI system variable 2481
RASTERPERCENT system variable 2482
RASTERPREVIEW system variable 2482
RASTERTHRESHOLD system
variable 2483
RAY command 1599
RE-INIT system variable 2490
Re-initialization dialog box 1618
Rebuild Curve dialog box 405
Rebuild Surface dialog box 404
REBUILD2DCV system variable 2483

REBUILD2DDEGREE system variable 2484
REBUILD2DOPTION system variable 2485
REBUILDDEGREEU system variable 2485
REBUILDDEGREEV system variable 2486
REBUILDOPTIONS system variable 2486
REBUILDU system variable 2487
REBUILDV system variable 2487
Record shortcut menu 463
RECOVER command 1601
RECOVERALL command
RECOVERAUTO system variable 2488
RECOVERYMODE system variable 2489
RECTANG command 1602
REDEFINE command 1604
REDO command 1604
REDRAW command 1605
REDRAWALL command 1606
REFCLOSE command 1606
REFEDIT command
about 1608
Edit Reference Ribbon contextual tab 1609
Reference Edit dialog box 1609
REFEDITNAME system variable 2489
Reference Edit dialog box 1609
REFSET command 1613
REGEN command 1614
REGENALL command 1615
REGENAUTO command 1616
REGENMODE system variable 2490
REGION command 1617
REINIT command 1618
Reload Linetypes dialog box 1047
REMEMBERFOLDERS system variable 2491
Rename \& Renumber Sheet dialog box 1752
Rename \& Renumber View dialog box 1754
RENAME command 1619
Rename dialog box 1620
RENDER command
about 1622

BMP Image Options dialog box 1630
JPEG Image Options dialog box 1635
Missing Texture Maps dialog box 1627
PCX Image Options dialog box 1631
PNG Image Options dialog box 1636
Render Output File dialog box 1628
Render window 1623
Targa Image Options dialog box 1632
TIFF Image Options dialog box 1633
Render Environment dialog box 1641
Render Output File dialog box 1628
Render Presets Manager 1646
Render window 1623
RENDERCROP command 1639
RENDERENVIRONMENT
command 1640
RENDEREXPOSURE command 1643
RENDERPREFSSTATE system variable 2491
RENDERPRESETS command
about 1645
Copy Render Preset dialog box 1654
Render Presets Manager 1646
RENDERUSERLIGHTS system
variable 2492
RENDERWIN command 1655
Replace dialog box (DBCONNECT) 504
Replace tab (Find and Replace dialog box) 391
REPORTERROR system variable 2493
RESETBLOCK command 1655
Resource Drawing Locations dialog box 1768
RESUME command 1656
REVCLOUD command 1657
REVERSE command 1658
REVOLVE command
REVSURF command 1662
RIBBON command 1665-1666
Ribbon Contextual Tab State Options dialog box 1370

RIBBONCONTEXTSELECT system variable 2493
RIBBONCONTEXTSELLIM system variable 2494
RIBBONDOCKEDHEIGHT system variable 2494
RIBBONSELECTMODE system variable 2495
RIBBONSTATE system variable 2495
Right-Click Customization dialog box 1365
ROAMABLEROOTPREFIX system variable 2496
ROLLOVEROPACITY system variable 2497
ROLLOVERTIPS system variable 2497
ROTATE command 1666
ROTATE3D command 1667
RPREF command
about 1670
Advanced Render Settings palette 1672
Output Size dialog box 1680
RPREFCLOSE command 1681
RSCRIPT command 1681
RTDISPLAY system variable 2498
RULESURF command 1682

\section*{S}

Save as DWF dialog box 752
Save as DWFx dialog box 760
Save as PDF dialog box 762
Save Block As dialog box 275
SAVE command 1685
Save Workspace dialog box 2102
SAVEAS command
about 1686
Saveas Options dialog box 1688
Template Options dialog box 1687
Saveas Options dialog box 1688
SAVEFIDELITY system variable 2500
SAVEFILE system variable 2500
SAVEFILEPATH system variable 2500
SAVEIMG command 1691
SAVENAME system variable 2501

SAVETIME system variable 2501
SCALE command 1691
SCALELISTEDIT command about 1693 Add Scale dialog box 1696
Edit Scale dialog box 1697
Edit Scale List dialog box 1694
SCALETEXT command 1698
SCREENBOXES system variable 2502
SCREENMENU system variable 2502
SCREENMODE system variable 2503
SCREENSIZE system variable 2503
SCRIPT command 1700
Search dialog box 100
Search Folders dialog box 2635
Search tabs (Search dialog box) 101
SECTION command 1700
Section Settings dialog box 1709
SECTIONPLANE command 1704
SECTIONPLANEJOG command 1707
SECTIONPLANESETTINGS command
about 1708
New Layer Name dialog box 1714
Section Settings dialog box 1709
SECTIONPLANETOBLOCK command
about 1715
Generate Section / Elevation dialog box 1717
Security Options dialog box 1719
SECURITYOPTIONS command about 1718
Advanced Options dialog box 1721
Confirm Password dialog box 1720
Security Options dialog box 1719
SEEK command 1722
Select a Buzzsaw Location dialog box 1304
Select a Database Object dialog box 505
Select Block dialog box 1775
Select Color dialog box
about 337
Color Books tab 343
Index Color tab 338
True Color tab 340
SELECT command 1722
Select Data Object dialog box 506

Select Layer States dialog box 1003
Select Layers to Add to Layer State dialog box 1002
Select Layout as Sheet Template dialog box 1749
Select Linetype dialog box 982
Select Place in Document dialog box 920
Select Plot Style dialog box 1492
Select Project dialog box 2019
Select Similar Settings dialog box 1727
Selection Cycling tab (Draft settings dialog box) 677
Selection Modes command modifier 2137
Selection tab (Options dialog box) 1349
SELECTIONANNODISPLAY system variable 2504
SELECTIONAREA system variable 2504
SELECTIONAREAOPACITY system variable 2505
SELECTIONCYCLING system variable 2505
SELECTIONPREVIEW system variable 2506
SELECTSIMILAR command 1727
SELECTSIMILARMODE system variable 2507
Send to 3D Print Service dialog box 59
Set Cell Format dialog box 437
Set Default i-drop Content Type dialog box 1731
SETBYLAYER command 1728
SetByLayer dialog box 1729
SETBYLAYERMODE system variable 2508
SETIDROPHANDLER command
about 1730
i-drop Options dialog box 1731
Set Default i-drop Content Type dialog box 1731
Settings dialog box 1023
Settings for COM Port dialog box 1509
Settings tab (Reference Edit dialog box) 1611
Settings tab (UCS dialog box) 1989
SETVAR command 1732

SHADEDGE system variable 2508
SHADEDIF system variable 2509
SHADEMODE command 1733
SHADOWPLANELOCATION system variable 2509
SHAPE command 1734
Share with Autodesk Seek dialog box 1736
SHAREWITHSEEK command 1735
Sheet List tab (Sheet Set Manager) 1739
Sheet Properties dialog box 1769
Sheet Selection dialog box 1771
Sheet Set Custom Properties dialog box 1765
Sheet Set Manager
about 1738
Model Views tab 1744
Sheet List tab 1739
Sheet Views tab 1743
Sheet Set Properties dialog box 1764
Sheet Views tab (Sheet Set Manager) 1743
Sheets tab (Archive a Sheet Set dialog box) 136
Sheets tab (Create Transmittal dialog box) 733
SHEETSET command
about 1737
Add Custom Property dialog box 1766
Edit Sheet List Table Settings dialog box 1761
Import Layouts as Sheets dialog box 1755
Insert Sheet List Table dialog box 1756
List of Blocks dialog box 1774
New Sheet dialog box 1750
New Sheet Selection dialog box 1770
Publish Sheets dialog box 1748
Rename \& Renumber Sheet dialog box 1752
Rename \& Renumber View dialog box 1754

Resource Drawing Locations dialog box 1768
Select Block dialog box 1775
Select Layout as Sheet Template dialog box 1749
Sheet Properties dialog box 1769
Sheet Selection dialog box 1771
Sheet Set Custom Properties dialog box 1765
Sheet Set Manager 1738
Sheet Set Properties dialog box 1764
Subset Properties dialog box 1746
View Category dialog box 1773
SHEETSETHIDE command 1776
SHELL command 1776
SHORTCUTMENU system variable 2510
Shot Properties tab (New View dialog box) 2034
SHOWHIST system variable 2511
SHOWLAYERUSAGE system variable 2511
SHOWMOTIONPIN system variable 2512
SHOWPALETTES command 1777
SHPNAME system variable 2513
SIGVALIDATE command
about 1777
Digital Signature Contents dialog box 1779
Validate Digital Signatures dialog box 1778
SIGWARN system variable 2513
SKETCH command 1781
SKETCHINC system variable 2514
SKPOLY system variable 2514-2515
SKYSTATUS system variable 2515
SLICE command 1783
SLIDELIB utility 2640
Smooth panel (Mesh Object
Ribbon) 1131
SMOOTHMESHCONVERT system variable 2516
SMOOTHMESHGRID system variable 2516
SMOOTHMESHMAXFACE system variable 2517

SMOOTHMESHMAXLEV system variable 2517
Snap and Grid tab (Drafting Settings dialog box) 664
SNAP command 1789
SNAPANG system variable 2518
SNAPBASE system variable 2518
SNAPISOPAIR system variable 2519
SNAPMODE system variable 2519
SNAPSTYL system variable 2520
SNAPTYPE system variable 2520
SNAPUNIT system variable 2521
SOLDRAW command 1791
SOLID command
SOLIDCHECK system variable 2521
SOLIDEDIT command 1794
SOLIDHIST system variable 2522
SOLPROF command 1811
SOLVIEW command 1813
Sort Columns dialog box 433
Sort dialog box 506
SORTENTS system variable 2523
SPACETRANS command 1818
Speckle Property Settings dialog box 1095
SPELL command about 1819
Check Spelling dialog box 1820
Check Spelling Settings dialog box 1822
Dictionaries dialog box 1824
Manage Custom Dictionaries dialog box 1826
SPHERE command 1827
SPLDEGREE system variable 2523
SPLFRAME system variable 2524
SPLINE command 1829
SPLINEDIT command 1834
SPLINESEGS system variable 2524
SPLINETYPE system variable 2525
SPLKNOTS system variable 2525
SPLMETHOD system variable 2526
SPOTLIGHT command 1840
SQL Query tab (Query Editor) 472
SSFOUND system variable 2526
SSLOCATE system variable 2527

SSMAUTOOPEN system variable 2527
SSMPOLLTIME system variable 2528
SSMSHEETSTATUS system variable 2528
SSMSTATE system variable 2529
Stack Properties dialog box 1237
Standard File Selection dialog boxes 1296
STANDARDS command
about 1843
CAD Standards Settings dialog box 1846
Configure Standards dialog box 1844
Standards tab (Batch Standards Checker) 2637
Standards tab (Configure Standards dialog box) 1844
STANDARDSVIOLATION system variable 2530
Startup Suite dialog box 129
STARTUP system variable 2530
Statistics tab (Drawing Properties dialog box) 710
STATUS command 1848
STATUSBAR system variable 2531
SteeringWheels Settings dialog box 1262
STEPSIZE system variable 2531
STEPSPERSEC system variable 2532
STLOUT command 1850
STRETCH command 1852
STYLE command 1854
STYLESMANAGER command
about 1859
Add-a-Plot-Style-Table wizard 1860
Edit Lineweights dialog box 1868
Plot Style Table Editor 1861
SUBOBJSELECTIONMODE system variable 2532
Subset Properties dialog box 1746
Subsets and Sheets tab (Insert Sheet List Table Dialog Box) 1760
Substitute DWF Name dialog box 699
SUBTRACT command 1869
Summary tab (Drawing Properties dialog box) 708
Sun Properties window 1873

SUNPROPERTIES command 1871
SUNPROPERTIESCLOSE command 1875
SUNPROPERTIESSTATE system
variable 2536
SUNSTATUS system variable 2537
SURFACEASSOCIATIVITY system variable 2537
SURFACEASSOCIATIVITYDRAG system variable 2538
SURFACEAUTOTRIM system variable 2539
SURFACEMODELINGMODE system variable 2539
SURFBLEND command 1876
SURFFILLET command 1878
SURFNETWORK command 1879
SURFOFFSET command 1881
SURFPATCH command 1884
SURFSCULPT command 1885
SURFTAB1 system variable 2540
SURFTAB2 system variable 2540
SURFTRIM command 1887
SURFTYPE system variable 2541
SURFU system variable 2541
SURFUNTRIM command 1889
SURFV system variable 2542
SWEEP command 1890
Symbol dialog box 1952
Synchronize dialog box 508
SYSCODEPAGE system variable 2542
System tab (Options dialog box) 1336
SYSWINDOWS command 1893

\section*{T}

Table Cell Format dialog box 1919
TABLE command
about 1895
Insert Table dialog box 1896
Manage Cell Content dialog box 1905
Table Data tab (Insert Sheet List Table Dialog Box) 1758
Table Ribbon contextual tab (Insert Table dialog box) 1900
Table Style dialog box 1909

Table View tab (Plot Style Table Editor) 1864
TABLEDIT command 1907
TABLEEXPORT command 1907
TABLEINDICATOR system variable 2543
TABLESTYLE command
about 1908
Additional Format dialog box 1921
Create New Cell Style dialog box 1917
Create New Table Style dialog box 1910
Manage Cell Styles dialog box 1918
Modify Table Style dialog box 1911
New Table Style dialog box 1911
Table Cell Format dialog box 1919
Table Style dialog box 1909
TABLET command 1922
TABLETOOLBAR system variable 2544
TABMODE system variable 2545
TABSURF command 1926
Targa Image Options dialog box 1632
TARGET system variable 2545
TARGETPOINT command 1928
TASKBAR command 1931
TBCUSTOMIZE system variable 2546
TDCREATE system variable 2546
TDINDWG system variable 2547
TDUCREATE system variable 2547
TDUPDATE system variable 2547
TDUSRTIMER system variable 2548
TDUUPDATE system variable 2548
Template Options dialog box 1687
TEMPOVERRIDES system variable 2549
TEMPPREFIX system variable 2549
TEXT command 1932
Text Formatting toolbar 1223
Text Options tab (Edit Attribute dialog box) 209
Text Options tab (Enhanced Attribute Editor) 718
Text shortcut menu 1936
Text Style dialog box 1855
Text tab (New Dimension Style dialog box) 624
TEXTED system variable 2550

TEXTEDIT command 1940
TEXTEVAL system variable 2550
TEXTFILL system variable 2551
TEXTOUTPUTFILEFORMAT system variable 2551
TEXTQLTY system variable 2552
TEXTSCR command 1941
TEXTSIZE system variable 2552
TEXTSTYLE system variable 2553
TEXTTOFRONT command 1941
Texture Editor
about 1088
Map Property Settings dialog box 1089
THICKEN command 1942
THICKNESS system variable 2553
Thumbnail Preview Settings dialog box 1362
THUMBSIZE system variable 2554
TIFF Image Options dialog box 1633
TIFOUT command 1943
TILEMODE system variable 2554
Tiles Property Settings dialog box 1095
TIME command
TIMEZONE system variable 2558
TINSERT command 1945
TOLERANCE command
about 1947
Geometric Tolerance dialog box 1948
Material Condition dialog box 1953
Symbol dialog box 1952
Tolerances tab (New Dimension Style dialog box) 640
Tool Properties dialog box 1959
TOOLBAR command 1954
TOOLPALETTES command
about 1956
Add Actions dialog box 1960
Tool Properties dialog box 1959
View Options dialog box 1958
TOOLPALETTESCLOSE command 1961
Tooltip Appearance dialog box 682
TOOLTIPMERGE system variable 2559
TOOLTIPS system variable 2559
TORUS command 1961

TPNAVIGATE command 1963
TPSTATE system variable 2560
TRACE command 1963
TRACEWID system variable 2560
Tracking command modifier 2136
TRACKPATH system variable 2561
Transfer tab (Customize User Interface dialog box) 387
Transmittal - Set Password dialog box 744
Transmittal Setups dialog box 736
TRANSPARENCY command 1964
Transparency dialog box 1373
TRANSPARENCYDISPLAY system variable 2561
Tray Settings dialog box 1966
TRAYICONS system variable 2562
TRAYNOTIFY system variable 2562
TRAYSETTINGS command 1965
TRAYTIMEOUT system variable 2563
Tree View shortcut menu 971
TREEDEPTH system variable 2563
TREEMAX system variable 2564
TREESTAT command 1967
TRIM command 1968
TRIMMODE system variable 2565
True Color tab (Select Color dialog box) 340
TSPACEFAC system variable 2565
TSPACETYPE system variable 2566
TSTACKALIGN system variable 2566
TSTACKSIZE system variable 2566

\section*{U}

U command 1973
UCS command 1974
UCS Details dialog box 1991
UCS dialog box 1986
UCS Icon dialog box 1984
UCSAXISANG system variable 2567
UCSBASE system variable 2568
UCSDETECT system variable 2568
UCSFOLLOW system variable 2569
UCSICON command 1981
UCSICON system variable 2570

UCSMAN command
about 1985
Orthographic UCS Depth dialog box 1990
UCS Details dialog box 1991
UCS dialog box 1986
UCSNAME system variable 2570
UCSORG system variable 2571
UCSORTHO system variable 2571
UCSVIEW system variable 2572
UCSVP system variable 2572
UCSXDIR system variable 2573
UCSYDIR system variable 2573
ULAYERS command 1992
UNDEFINE command 1993
Underlay Layers dialog box 1993
UNDO command 1995
UNDOCTL system variable 2574
UNDOMARKS system variable 2574
UNION command 1998
UNISOLATEOBJECTS command 1999
UNITMODE system variable 2575
UNITS command
about 2000
Direction Control dialog box 2004
Drawing Units dialog box 2001
Unload Customizations dialog box 395
UOSNAP system variable 2575
Update PC3 File with New Printer dialog box 1475
UPDATEFIELD command 2006
UPDATETHUMBNAIL system variable 2576
UPDATETHUMBSNOW command 2007
User Defined Fields dialog box 1483
User Preferences tab (Options dialog box) 1339
USERI1-5 system variable 2577
USERR1-5 system variable 2577
USERS1-5 system variable 2577

\section*{V}

Validate Digital Signatures dialog box 1778
Variable Definition dialog box 1592

VBA Manager about 2014
VBA Options dialog box 2020
VBAIDE command 2009
VBALOAD command 2010
VBAMAN command 2013
VBARUN command
about 2016
Macros dialog box 2017
Select Project dialog box 2019
VBA Options dialog box 2020
VBASTMT command 2022
VBAUNLOAD command 2022
View Category dialog box 1773
VIEW command
about 2023
Adjust Background Image dialog box 2041
Adjust Sun \& Sky Background dialog box 2039
Background dialog box 2037
New View dialog box 2029
View Manager 2024
View Manager 2024
View of This Drawing tab (Insert Hyperlink dialog box) 917
View Options dialog box 1958
View Properties tab (New View dialog box) 2030, 2032
View Transitions dialog box 2080
VIEWCTR system variable 2579
ViewCube Settings dialog box 1266
VIEWDIR system variable 2580
VIEWGO command 2045
VIEWMODE system variable 2581
VIEWPLAY command 2046
VIEWPLOTDETAILS command
about 2046
Plot and Publish Details dialog box 2047
Plot and Publish Status Bar Icon shortcut menu 2048
Viewpoint Presets dialog box 527
Viewports dialog box 2070
VIEWRES command 2049
VIEWSIZE system variable 2581

VIEWTWIST system variable 2581
Visibility States dialog box 285
VISRETAIN system variable 2582
Visual Effect Settings dialog box 1368
Visual Styles Manager 2052
VISUALSTYLES command
about 2050
Create New Visual Style dialog box 2060
Edit Name and Description dialog box 2060
Visual Styles Manager 2052
VISUALSTYLESCLOSE command 2062
VLISP command 2062
VPCLIP command 2063
VPLAYER command 2064
VPLAYEROVERRIDES system variable 2583
VPLAYEROVERRIDESMODE system variable 2583
VPMAX command 2067
VPMAXIMIZEDSTATE system variable 2584
VPMIN command 2067
VPOINT command 2068
VPORTS command 2070
VPROTATEASSOC system variable 2584
VSACURVATUREHIGH system variable 2585
VSACURVATURELOW system variable 2585
VSACURVATURETYPE system variable 2586
VSADRAFTANGLEHIGH system variable 2586
VSADRAFTANGLELOW system variable 2587
VSAZEBRACOLOR1 system variable 2588
VSAZEBRACOLOR2 system variable 2588
VSAZEBRADIRECTION system variable 2589
VSAZEBRASIZE system variable 2589
VSAZEBRATYPE system variable 2590
VSBACKGROUNDS system variable 2590

VSCURRENT command 2077
VSEDGECOLOR system variable 2591
VSEDGEJITTER system variable 2592
VSEDGELEX system variable 2593
VSEDGEOVERHANG system
variable 2594
VSEDGES system variable 2596
VSEDGESMOOTH system variable 2596
VSFACECOLORMODE system variable 2597
VSFACEHIGHLIGHT system variable 2598
VSFACEOPACITY system variable 2599
VSFACESTYLE system variable 2599
VSHALOGAP system variable 2600
VSHIDEPRECISION system variable 2600
VSINTERSECTIONCOLOR system variable 2601
VSINTERSECTIONEDGES system variable 2602
VSINTERSECTIONLTYPE system variable 2603
VSISOONTOP system variable 2603
VSLIDE command 2079
VSLIGHTINGQUALITY system variable 2604
VSMATERIALMODE system variable 2605
VSMAX system variable 2605
VSMIN system variable 2606
VSMONOCOLOR system variable 2606
VSOBSCUREDCOLOR system variable 2607
VSOBSCUREDEDGES system variable 2607
VSOBSCUREDLTYPE system variable 2609
VSOCCLUDEDCOLOR system variable 2610
VSOCCLUDEDEDGES system variable 2610
VSOCCLUDEDLTYPE system variable 2612
VSSAVE command 2079
VSSHADOWS system variable 2613
VSSILHEDGES system variable 2615

VSSILHWIDTH system variable 2615
VSSTATE system variable 2616
VTDURATION system variable 2616
VTENABLE system variable 2617
VTFPS system variable 2617
VTOPTIONS command 2080

\section*{w}

Walk and Fly Navigation Mappings dialog box 78
Walk and Fly Settings dialog box 2084
WALKFLYSETTINGS command
Waves Property Settings dialog box 1096
WBLOCK command 2086
WEBLIGHT command 2090
WEDGE command 2093
WHIPARC system variable 2619
WHIPTHREAD system variable 2620
WHOHAS command 2095
WINDOWAREACOLOR system
variable 2621
WIPEOUT command 2096
WMF In Options dialog box 2100
WMFBKGND system variable 2621
WMFFOREGND system variable 2622
WMFIN command 2097
WMFOPTS command 2100
WMFOUT command 2101
Wood Property Settings dialog box 1097
WORKSPACE command 2101
Workspace Settings dialog box 2103
WORLDUCS system variable 2623
WORLDVIEW system variable 2623
Write Block dialog box 2087
WRITESTAT system variable 2624
WSAUTOSAVE system variable 2624
WSCURRENT system variable 2625
WSSAVE command 2102
WSSETTINGS command 2103

\section*{X}

XATTACH command
about 2105
\begin{tabular}{|c|c|}
\hline Attach External Reference dialog & XOPEN command 2118 \\
\hline box 2107 & XPLODE command 2120 \\
\hline External Reference Ribbon contextual & XREF command 2122 \\
\hline tab 2109 & XREFCTL system variable 2629 \\
\hline XBIND command 2110 & XREFNOTIFY system variable 2630 \\
\hline Xbind dialog box 2111 & XREFTYPE system variable 2630 \\
\hline XCLIP command 2113 & \\
\hline XCLIPFRAME system variable 2626 & 7 \\
\hline XDWGFADECTL system variable 2626 & Z \\
\hline XEDGES command 2115 & Zebra Analysis tab (Analysis Options dialog \\
\hline XEDIT system variable 2627 & box) 114 \\
\hline XFADECTL system variable 2627 & ZOOM command 2127 \\
\hline XLINE command 2116 & Zoom shortcut menu 2132 \\
\hline XLOADCTL system variable 2628 & ZOOMFACTOR system variable 2631 \\
\hline XLOADPATH system variable 2629 & ZOOMWHEEL system variable 2632 \\
\hline
\end{tabular}```


[^0]:    Access Methods
    $\$$ Ribbon: Block Editor contextual tab $>$ Manage panel $>$ Dialog Box Launcher ${ }^{\otimes}$
    㝶 Command entry: besettings

