Assignment MathCAD 2

\# 1. Write the following sets of simultaneous equations in matrix form, and solve if possible.
(a) $3 x+y+5 z=20,2 x+3 y-z=5, \quad-x+4 y=7$
(b) $6 x+2 y+8 z=14, x+3 y+4 z=5,5 x+6 y+2 z=7$
\# 2. Create three matrices like the following
flow $=\left|\begin{array}{c}2 \\ 5 \\ 10 \\ 15 \\ 20\end{array}\right| \frac{\mathrm{kg}}{\min }$

Then solve for all five $\mathrm{Q}_{\text {CoLD }}$ values, using element-by-element matrix multiplication. The resulting equation looks like this: $\quad q_{\text {cold }}=\overrightarrow{f l o w \cdot C_{p} \cdot T_{\text {cold }}}$
\# 3. Write the grades as a column vector. (a) Use $\operatorname{sort}()$ function to sort the 15 scores (elements 0 to 14) listed below, (b) then display the value of $7^{\text {th }}$ element in the sorted array. $7^{\text {th }}$ element $=$ median (c) Check your result from part (b) by using Mathcad's median() function on the original vector of grades.

Grades $=\left[\begin{array}{lllllllllllllll}78 & 85 & 43 & 67 & 65 & 98 & 56 & 87 & 90 & 86 & 65 & 79 & 80 & 69 & 71\end{array}\right]$
\# 4. Find the angle of refraction in degrees using the formula, $n_{\text {water }} \sin (A)=n_{\text {air }} \sin (B)$
$\begin{array}{ll}\mathrm{A}=\text { angle of incidence }=\pi / 4 & \mathrm{~B}=\text { angle of refraction, to be found } \\ \mathrm{n}_{\text {water }}=1.33 & \mathrm{n}_{\text {air }}=1\end{array}$

$$
\mathrm{n}_{\mathrm{air}}=1
$$

Note: inverse of trigonometric functions $\operatorname{are} \operatorname{asin}(\mathbf{z}), \operatorname{acos}(\mathbf{z}), \operatorname{atan}(\mathbf{z}), \operatorname{asec}(\mathbf{z}), \operatorname{acsc}(\mathbf{z}), \operatorname{acot}(\mathbf{z})$
\# 5. Voltage of a circuit can be calculated by $\mathbf{V}=I^{*} \mathbf{R}$, where I is the current and \mathbf{R} is the resistance. Use $0.1,0.2,0.3,0.4,0.5$ A for currents I and $3.1,2.8,2.5,2.4,1.5 \mathrm{k} \Omega$ for resistances \mathbf{R}. Calculate the voltage for the given currents and resistances. Apply matrix Element-by-Element operation.

