Assignment MathCAD 3

- 1. Solve the following quadratic equation using built-in functions.

 - $2x^2 + 5x 9 = 0$
- 2. Solve the systems of linear equations using built-in functions.
- (a) 3x + y + 5z = 20, 2x + 3y z = 5, -x + 4y = 7(b) 6x + 2y + 8z = 14, x + 3y + 4z = 5, 5x + 6y + 2z = 7
- 3. Create a QuickPlot of the function $f(x) = 1 e^{-x}$ Use MathCAD's X-Y Trace dialog to evaluate this function at (a) x = 1, (b) x = 2.5, (c) x = 3.8.
- 4. The equation describing the process of warming a hot tub by adding hot water is

$$T = T_{IN} - (T_{IN} - T_{START})e^{-\frac{Q}{V}t}$$

Where T : temperature of the water in the hot tub

 T_{IN} : temperature of the water flowing into the hot tub (130°F)

 T_{START} : initial temperature of the water in the hot tub (65°F)

Q: hot-water flow rate (% gal. per min.)

V: volume of the hot tub (500 gal)

t: elapsed time since the hot water started flowing.

- (a) Use QuickPlot to see how long it will take the tub to reach 110°F.
- (b) If the hot water flow rate was increased to 10 gal. per min. , how long would it take for the water temperature in the tub to reach 110°F?
- 5. Plot each of the following three data sets to see whether a straight line through each set of points seems reasonable:

X	Y1	Y2	Y3
0	2	0.4	10.2
1	5	3.6	4.2
2	8	10.0	12.6
3	11	9.5	11.7
4	14	12.0	28.5
5	17	17.1	42.3
6	20	20.4	73.6
7	23	21.7	112.1

Use **slope**() and **intercept**() to calculate the regression coefficients for the set, then plot the actual data and the corresponding regression line to compare.