MathCAD Fundamentals

Lecture 1

MATHCAD

- Mathematical problem solver
- Unit converter
- Communicator of results
- Design tool

MathCad as a Mathematical Problem Solver

- Numerical problems solutions
- Symbolic problem solutions
- Collection of Built-in-Functions
- Matrix operations
- Calculation of derivatives
- Evaluation of Integrals
- Laplace Transforms
- Iterative Solutions

MathCad as a Unit Converter

- Allows you to put units in your equations.!!

MathCad for Presenting Results

- MathCad spreadsheets show equations, calculations and results in a report format.

MathCad as a Design Tool

- Variable definitions
- Equations
- Text Regions
- Graphs

Objectives:

- The MathCAD workspace
- Four different EQUAL SIGNS
- Entering an equation
- Working with units
- Entering and Editing text
- Examples

MathCad workspace

- Title bar
- Menu bar
- Math Toolbar: provides functions and mathematical symbols
- Matrix Toolbar: displays a collection of functions for performing matrix operations.
- Worksheet: area available to enter your equations, graphs, etc.

Gif Mathcad - [Untitled:1]
@ File Edit View Insert Format Tools Symbolics Window Help

Order of equations

- Placement of your equations: controls the order of your solution
- Evaluates equations from left to right and top to bottom

Four Kinds of $=$ Signs

- Assignment (:=)
- Entered by using colon key [:]
- Display your result or the value of a variable (=)
- Plain = sign
- Symbolic equality (=)
- Entered by pressing [Ctrl =]
- Global assignment (三)
- Entered by typing [\sim]

Entering an Equation

- Position the cursor (crosshair) where you want the equation to be written.
- The equation is displayed as you entered.
- MathCad creates an equation region and displays the equation.
- To see the results type =
- Be careful with exponents!!

Predefined values

- π [Ctrl-Shift-p]
- e [e]
- g [g]
- \% [\%]
- Exponent ^ [Shift-6]

$$
\begin{aligned}
& \mathrm{r}:=5 \\
& \text { area }:=\pi \cdot \mathrm{r}^{2} \\
& \text { area }=78.54
\end{aligned}
$$

Text Subscripts and Index Subscripts

- Text Subscripts (.): as a part of a variable name. For exp: $A_{\text {circle }}$, $A_{\text {sphere }}$
- Index Subscripts ([): indicate a particular element of an array. First element of an array in MathCad is zero.

Text Subscripts:

- Used to differentiate variables.
- Exp. Compute the areas of a circle and a square given $r=5 \mathrm{~cm}$ and $\mathrm{L}=1 \mathrm{~cm}$
- $\mathrm{A}_{\text {circle }}:=\pi \bullet \mathrm{r}^{2}$
- $\mathrm{A}_{\text {square }}:=\mathrm{L}^{2}$

$$
\begin{aligned}
& \mathrm{r}:=5 \mathrm{~cm} \\
& \mathrm{~A}_{\text {circle }}:=\pi \cdot \mathrm{r}^{2} \\
& \mathrm{~A}_{\text {circle }}=7.854 \times 10^{-3} \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{L}:=1 \mathrm{~cm} \\
& \mathrm{~A}_{\text {square }}:=\mathrm{L}^{2} \\
& \mathrm{~A}_{\text {square }}=1 \times 10^{-4} \mathrm{~m}^{2}
\end{aligned}
$$

Index Subscripts:

- Used to indicate a particular element of an array. First element in an array (matrix or vector) is element zero. Example:

$$
\begin{aligned}
& \mathrm{t}_{0}=2 \\
& \mathrm{t}_{1}=3 \\
& \mathrm{t}_{2}=4
\end{aligned}
$$

$$
t:=3 \quad \mathrm{t}_{1}=3
$$

Working with Units

- Default units: SI (meter, kilogram, second,Newton, etc)
- Also supports:
- MKS
- CGS
- US
- MathCAD stores values in the base unit.
- Exp. $\mathrm{r}:=100 \mathrm{~cm} \longrightarrow \mathrm{r}=1 \mathrm{~m}$

$$
\mathrm{r}:=5 \mathrm{~cm}
$$

$$
\begin{aligned}
& \mathrm{A}_{\text {circle }}:=\pi \cdot \mathrm{r}^{2} \\
& \mathrm{~A}_{\text {circle }}=7.854 \times 10^{-3} \cdot \mathrm{~m}^{2} \mathbf{L}
\end{aligned}
$$

$$
A_{\text {circle }}=78.54 \mathrm{~cm}^{2}
$$

Working with Units

- Limitations:
- Unit conversion must be multiplicative
- Some Built-in-Functions don't support units (LINFITL)

MathCad Functions

- A function accepts inputs, performs calculations and returns a value or set of values.
- Inputs:
- Scalars (trigonometric functions, mathematical functions and operators)
- Arrays

MathCad Functions

- Elementary Mathematics Functions and Operators: Calculator Toolbar
- QuickPlot: produces a graph of a function. [Shift2] creates XY plot
- 3-D QuickPlots: allows you to visualize a function of 2 variables. For ex.:
- $z(x, y)=2 x^{2}-y$
- Trigonometric Functions: $\sin (z), \cos (z), \tan (z)$, $\cot (z)$, etc. z must be in radians.
- Hyperbolic Functions

Problem solutions:

- STEP 1: Use text to describe the problem
- STEP 2: Enter the given values with units
- STEP 3:Enter the equation or equations
- STEP 4: Display the answer with the appropriate units.

Entering Text

- Default mode is equation
- Type a series of letters and then space, MathCad will recognize it as text
- Or use ["] to tell MathCad that you are entering text

Controlling how results displayed

- Use Format/Result from Menu - Or double click the displayed result

Unit Conversions

Page 33, Problem 1 (a)

$$
\text { speed }:=2.998 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Step 1

$$
\text { speed }=2.998 \times 10^{8} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Step 2

$$
\text { speed }=2.998 \times 10^{8} \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \mathrm{~d}
$$

Step 3

$$
\text { speed }=1 \mathrm{mph}
$$

Step 4 speed $=6.706 \times 10^{8} \mathrm{mph}$

