MathCAD Fundamentals

Lecture 1

- Mathematical problem solver
- Unit converter
- Communicator of results
- Design tool

MathCad as a Mathematical Problem Solver

- Numerical problems solutions
- Symbolic problem solutions
- Collection of Built-in-Functions
- Matrix operations
- Calculation of derivatives
- Evaluation of Integrals
- Laplace Transforms
- Iterative Solutions

MathCad as a Unit Converter

Allows you to put units in your equations.!!

MathCad for Presenting Results

 MathCad spreadsheets show equations, calculations and results in a report format.

MathCad as a Design Tool

- Variable definitions
- Equations
- Text Regions
- Graphs

Objectives:

- The MathCAD workspace
- Four different EQUAL SIGNS
- Entering an equation
- Working with units
- Entering and Editing text
- Examples

MathCad workspace

- Title bar
- Menu bar
- Math Toolbar: provides functions and mathematical symbols
- Matrix Toolbar: displays a collection of functions for performing matrix operations.
- Worksheet: area available to enter your equations, graphs, etc.

	😪 Mathcad - [Untitled:1]
	File Edit View Insert Format Tools Symbolics Window Help
] D • ☞ 🖬 🚑 💁 🖏 🌾 ¾ 🖻 🛍 ∽ ⇔ ™ 🗧 🎊 🍞 = 🗞 💱 🗔 100% 💌 😰
	Normal Arial II II B I U $\equiv \equiv \equiv \equiv = = = = = = = = $
•	

+

Calc	ulate	or		×
sin	cos	tan	In	log
n!	i	$\left \times\right $	L	"√
e×	$\frac{1}{\times}$	()	\times^2	$\times^{\!$
π	7	8	9	7
ι÷	4	5	6	×
÷	1	2	3	+
:=	•	0	-	=
Matrix 🛛				×
[r	.		4 1	.]]

Mati	rix		×
[:::]	\times_{n}	× ⁻¹	×
f(M)	м	МΤ	mn
x•\$	х×т	Σv	42

Order of equations

- Placement of your equations: controls the order of your solution
- Evaluates equations from <u>left to right</u> and <u>top to bottom</u>

Four Kinds of = Signs

Assignment (:=)

- Entered by using colon key [:]
- Display your result or the value of a variable
 (=)
 - Plain = sign
- Symbolic equality (=)
 - Entered by pressing [Ctrl =]
- Global assignment (\equiv)
 - Entered by typing [~]

Entering an Equation

- Position the cursor (crosshair) where you want the equation to be written.
- The equation is displayed as you entered.
- MathCad creates an equation region and displays the equation.
- To see the results type =
- Be careful with exponents!!

Predefined values

- π [Ctrl-Shift-p]
- e [e]
- g [g]
- **%** [%]
- Exponent ^ [Shift-6]

Text Subscripts and Index Subscripts

- Text Subscripts (.): as a part of a variable name. For exp: A_{circle}, A_{sphere}
- Index Subscripts ([): indicate a particular element of an array. First element of an array in MathCad is zero.

Text Subscripts:

- Used to differentiate variables.
- Exp. Compute the areas of a circle and a square given r= 5 cm and L=1 cm

•
$$A_{circle} := \pi \bullet r^2$$

•
$$A_{square} := L^2$$

A

$$r := 5 \text{cm}$$

$$L := 1 \text{cm}$$

$$A_{\text{square}} := \pi \cdot r^{2}$$

$$A_{\text{square}} := L^{2}$$

$$A_{\text{square}} := 1 \times 10^{-4} \text{ m}^{2}$$

Index Subscripts:

Used to indicate a particular element of an array. First element in an array (matrix or vector) is element zero.
 Example:

 t := 2
 t₁=3
 t₂=4

Working with Units

- Default units: SI (meter, kilogram, second, Newton, etc)
- Also supports:
 - MKS
 - CGS
 - US
- MathCAD stores values in the base unit.
- Exp. r :=100cm ____ r=1m

r := 5 cm $A_{\text{circle}} := \pi \cdot r^{2}$ $A_{\text{circle}} = 7.854 \times 10^{-3} \cdot m^{2}$

$$A_{circle} = 78.54 \text{ cm}^2$$

Working with Units

- Limitations:
 - Unit conversion must be multiplicative
 - Some Built-in-Functions don't support units (LINFITL)

MathCad Functions

- A function accepts inputs, performs calculations and returns a value or set of values.
- Inputs:
 - Scalars (trigonometric functions, mathematical functions and operators)
 - Arrays

MathCad Functions

- Elementary Mathematics Functions and Operators: Calculator Toolbar
- QuickPlot: produces a graph of a function.
 [Shift2] creates XY plot
- 3-D QuickPlots: allows you to visualize a function of 2 variables. For ex.:

z(x,y)=2x²-y

- Trigonometric Functions: sin(z), cos(z), tan(z), cot(z), etc. z must be in radians.
- Hyperbolic Functions

Problem solutions:

- STEP 1: Use text to describe the problem
- STEP 2: Enter the given values with units
- STEP 3:Enter the equation or equations
- STEP 4: Display the answer with the appropriate units.

Entering Text

- Default mode is equation
- Type a series of letters and then space, MathCad will recognize it as text
- Or use ["] to tell MathCad that you are entering text

Controlling how results displayed

Use Format/Result from Menu Or double click the displayed result

🚱 Mathcad - [Untitled:1]				
File Edit View Insert	Format	Tools	Symbolics	Win
🗅 • 🖻 🖬 🎒 🖪 🕻	<u>E</u> qua	ation		k *
Normal Ar	<u>R</u> esu	ult		10
	A Text	t		10
🗐 A∀ [:::] ×= ∫∦ <ౖ 💈	En Para	grap <u>h</u>	•	Tutori
	Ta <u>b</u> s	s		
	St <u>y</u> le	e		
I				

Format Format General Decimal Scientific Engineering Fraction	Display Options Unit Display Tolerance Number of decimal places 3 Show trailing zeros Show exponents as E±000 1
---	--

Unit Conversions

Page 33, Problem 1 (a)

Step 1

speed :=
$$2.998 \cdot 10^8 \frac{\text{m}}{\text{s}}$$

speed = $2.998 \times 10^8 \frac{\text{m}}{\text{s}}$

Step

Step 2speed =
$$2.998 \times 10^8 \cdot \frac{m}{s}$$
Step 3speed = mph Step 4speed = 6.706×10^8 mph

speed = 6.706×10^8 mph

× "" 🗄 🕅 😨 = 1	💩 💱 🔲 🛛 100% 🔽 🛐
✓ 10 ✓ B I Insert Unit	:] ≞ ≣ E ∰ x² ×₂
Tutorials	🖌 🏷 Go
Insert Unit	
Dimension	System
Dimensionless	SI OK
Activity	Insert
Area	Cancel
	Carlos
Unit	
Accel. due to gravity [g]	►
Acres [acre]	
Ampere [A]	
Amps (amp) Atmospheres [atm]	
Becauerel [Ba]	
BTU's - 15 C (BTU15)	~