Lecture 3

MATHCAD-DATA ANALYSIS FUNCTIONS

Objectives

- Graphs in MathCAD
- Built-in Functions for basic calculations:
- Square roots,
- Systems of linear equations
- Interpolation on data sets
- Linear regression
- Symbolic calculation

Graphing with MathCAD

- Plotting vector against vector:
- The vectors must have equal number of elements.
- MathCAD plots values in its default units.
- To change units in the plot......?
- Divide your axis by the desired unit.
- Or remove the units from the defined vectors
- Use Graph Toolbox or [Shift-2]
- Or Insert/Graph from menu

Graphing

$$
\text { time }:=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right) \text { min } \quad \text { Temp }:=\left(\begin{array}{c}
20 \\
28 \\
35 \\
42 \\
49
\end{array}\right) \mathrm{K} \quad \text { Time }:=\frac{\text { time }}{\min }
$$

Graphing with MathCAD

- Plotting element by element: define a range variable containing as many element as each of the vectors.
- $\mathrm{i}:=0 . .4$

$$
\begin{aligned}
\text { time } & =\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right) \min \quad \text { Temp }:=\left(\begin{array}{l}
20 \\
28 \\
35 \\
42 \\
49
\end{array}\right) \mathrm{K} \\
\mathrm{i} & :=0 . .4
\end{aligned}
$$

QuickPlots

- Use when you want to $\mathrm{x}:=0,0.1 . .2 \pi$ see what a function looks like
- Create a x-y graph
- Enter the function on y-axis with parameter(s)
- Enter the parameter on x -axis

Graphing with MathCAD

- Plotting multiple curves:up to 16 curves in a single graph.
- Example: For 2 dependent variables (y) and 1 independent variable (x)
- Press shift2 (create a x-y plot)
- On the y axis enter the first y variable then press comma to enter the second y variable.
- On the x axis enter your x variable.

Multiple curves

$$
\frac{x:=0,0.1 . .2 \pi}{\sin (x)}
$$

Modify Graphical Display

- Double-click anywhere on the graph
- Can change the axis characteristics

Formatting Currently Selected X-Y Plot

| $X-Y$ Axes Traces Labels Defaults |
| :--- | :--- | :--- |

- Y-Axis
\square Log Scale
\square Grid Lines
\square Numbered
\square Autoscale
\square Show Markers
\square Auto Grid
Number of Grids: 2

Grid Color.

Apply \square

Read data from the graph

- Click anywhere on the graph
- Choose Format/Graph/Trace from menu
- Click on any point on the curve to get x and y values

Read data from the graph

Make a Polar Plot of $\cos \left(\frac{3}{2} \theta\right)$

where the range of θ is from
-2π to 2π with an increment of 0.1.

3D Plots

Define the matrix of elements to plot

- Choose Insert/Graph/Surface plot from menu
- Place the name of the matrix in the placeholder

$$
M:=\left(\begin{array}{lll}
1 & 1 & 10 \\
2 & 2 & 12 \\
3 & 3 & 14 \\
4 & 4 & 16 \\
5 & 5 & 18
\end{array}\right)
$$

Make (a) a 3-D surface plot filled with grayscale color map and (b) a contour plot of the matrix T .
$T=\left[\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 12 & 27 & 43 & 46 & 42 & 21 & 0 \\ 0 & 22 & 52 & 100 & 100 & 100 & 42 & 0 \\ 0 & 25 & 57 & 100 & 100 & 100 & 46 & 0 \\ 0 & 22 & 52 & 100 & 100 & 100 & 42 & 0 \\ 0 & 12 & 27 & 43 & 46 & 42 & 21 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Built-in functions

- Calculation of square roots:
- use root ($\mathrm{y}(\mathrm{x} 1$), x1), where x 1 is guess value.
- $\operatorname{root}(\mathrm{y}(\mathrm{x} 1), \mathrm{x} 1)$ finds root of a function by approximation to the root value.
- if the expression has multiple roots, try different guess values

Calculate the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ where $\mathrm{a}=1, \quad \mathrm{~b}=3$ and $\mathrm{c}=-2$

$$
\begin{array}{ll}
\mathrm{a}:=1 & \mathrm{c}:=-2 \\
\mathrm{f}(\mathrm{x}):=\mathrm{a} \cdot \mathrm{x}^{2}+\mathrm{b} \cdot \mathrm{x}+\mathrm{c} & \\
\mathrm{x} 1:=1 & \mathrm{x} 2:=-3 \\
\operatorname{soln} 1:=\operatorname{root}(\mathrm{f}(\mathrm{x} 1), \mathrm{x} 1) & \operatorname{soln} 2:=\operatorname{root}(\mathrm{f}(\mathrm{x} 2), \\
\operatorname{soln} 1=0.562 & \operatorname{soln} 2=-3.562
\end{array}
$$

Built-in functions

- To solve a linear systems of equations:
- $[\mathrm{C}] .[\mathrm{x}]=[\mathrm{r}]$
- use $[\mathrm{x}]:=[\mathrm{C}]^{-1} .[\mathrm{r}]$
- use lsolve:
- $\mathrm{x}:=1$ solve (C,r)

$$
C:=\left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 4 & 7 \\
3 & 7 & 7
\end{array}\right) \quad r:=\left(\begin{array}{c}
12 \\
16 \\
18
\end{array}\right)
$$

$$
x:=\text { lsolve }(C, r)
$$

$$
x=\left(\begin{array}{c}
34 \\
-22 \\
10
\end{array}\right)
$$

Built-in functions

- Statistical Functions: mean(A), var(A), stdev(A).
- Curve Fitting:
- Linear regression
- Specialized regression equations: Exponential, power, sin, etc.

Curve fitting

- slope(x, y) returns the slope of line that best fits data in \mathbf{x} and \mathbf{y}.
- intercept (x, y) returns the intercept line that best fits data in \mathbf{x} and \mathbf{y}.
- $\operatorname{corr}(\mathrm{x}, \mathrm{y})$ returns the correlation coefficient of the elements in \mathbf{x} and \mathbf{y}. (tells you how good or bad is the fit)

$$
\mathrm{x}:=\left(\begin{array}{l}
0 \\
1 \\
3 \\
4
\end{array}\right) \quad \mathrm{y}:=\left(\begin{array}{c}
0 \\
2.6 \\
23.16 \\
27.57
\end{array}\right)
$$

$$
\begin{array}{lc}
\mathrm{m}:=\operatorname{slope}(\mathrm{x}, \mathrm{y}) & \mathrm{m}=7.57 \\
\mathrm{c}:=\operatorname{intercept}(\mathrm{x}, \mathrm{y}) & \mathrm{c}=-1.808
\end{array} \quad \operatorname{corr}(\mathrm{x}, \mathrm{y})=0.984
$$

$$
\mathrm{f}(\mathrm{x}):=\mathrm{m} \cdot \mathrm{x}+\mathrm{c}
$$

