Lecture 4

Programming in MathCAD

MathCAD Program

- Multi-step function (three parts)
- $1^{\text {st }}$ part: define a function name
- which will become the program name
- used to refer to the program whenever needed
- $2^{\text {nd }}$ part: parameter list
- list all the variable information that must be known before the program can do its jobs
- $3^{\text {rd }}$ part: assignment operator (:=)
- On right side of the assignment operator add two or more lines using the Add line from Programming Toolbox or by] key
- Local variables (i.e. variables that are used inside the body of a program are assigned using \leftarrow instead of equal to sign
$-\leftarrow$ can be given either from Programming Toolbox or by pressing \{ key
- Click Add line button as many times as you need to have more lines

Programming	\boxed{X}
Add Line	\leftarrow
if	otherwise
for	while
break	continue
return	on error

Calculate the area of a circle

$\mathrm{A}_{\text {circle }}{ }^{(4)}=12.566$
$\mathrm{A}_{\text {circle }}(5 \mathrm{~cm})=1.963 \times 10^{-3} \mathrm{~m}^{2}$

Use more than one parameter as input

Cylinder(r, h) := $\boldsymbol{x} \leftarrow \mathbf{r}$ $\mathrm{y} \leftarrow \mathrm{h}$ volume $\leftarrow \pi \cdot x^{2} \cdot h$

Cylinder $(2,4)=50.26$

- Local variables can only used inside the program, they loose their values when the program terminates
- Cannot assign values to the worksheet variables from within a program
- By default, the last value assigned in a program is the output of the program
- Can use return statement to return (output) multiple values

If statement

- Click the if button or press [Shift +]]. Do not just type the word "if"
- In the right placeholder, type a boolean expression
- Click the Add line button to insert placeholders for additional statements if necessary
- Click in the remaining placeholder and click the otherwise button. Do not just type the word "otherwise"

Example of If statement

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x}):=\left\lvert\, \begin{array}{ll}
1 & \text { if } \mathrm{x} \geq 0 \\
-1 & \text { otherwise }
\end{array}\right. \\
& \mathrm{f}(8)=1 \quad \mathrm{f}(-6)=-1 \\
& \mathrm{x}:=-5 . .5
\end{aligned}
$$

For Loop

- Use For loop when you know exactly how many times you want to execute the loop body
- Click for button or press [Ctrl+"]. Do not type the word "for"
- In the placeholder to the left of the \boldsymbol{E}, enter the iteration variable
- In the placeholder to the right of the \leq, enter the range of values to be taken by the iteration variable
- Click the Add line button to insert placeholders for additional statements if necessary

Sum of integers 1 to 15

$$
\operatorname{sum}(\mathrm{n}):=\left\lvert\, \begin{aligned}
& \mathrm{s} \leftarrow 0 \\
& \text { for } \mathrm{i} \in 1 . . \mathrm{n} \\
& \mathrm{~s} \leftarrow \mathrm{~s}+\mathrm{i}
\end{aligned}\right.
$$

$\operatorname{sum}(15)=120$

$$
\operatorname{sum}(300)=4.515 \times 10^{4}
$$

Return statement

- Use return statement to override the default and specify a different value to be returned by the program
- Use to return multiple values from the program as an array

While loop

- If you don't know exactly how many times you want to execute the loop body, use while loop
- While loop is keep on executing the loop until the given condition is met
- Click while button or press [Ctrl+]]
- In the placeholder to the right of 'while', type a boolean expression

$$
\operatorname{demo}(\text { start }):=\left\lvert\, \begin{aligned}
& \mathrm{y} \leftarrow \text { start } \\
& \text { while } \mathrm{y}<200 \\
& \mathrm{y} \leftarrow \mathrm{y}+5 \\
& \mathrm{y}
\end{aligned}\right.
$$

$\operatorname{demo}(2)=202 \quad \operatorname{demo}(6)=201$

$\operatorname{demo}($ start , end $):=|$| $\mathrm{x} \leftarrow$ start |
| :--- |
| while $\mathrm{x} \leq$ end |
| $\mathrm{x} \leftarrow \mathrm{x}+5$ |
| return x |

$\operatorname{demo}(2,200)=202 \quad \operatorname{demo}(6,200)=201$
$\operatorname{demo}(2,50)=52$
$\operatorname{demo}(6,50)=51$

Define an n by n identity matrix OR IGIN: $=1$

$$
I(n):=\left\{\begin{array}{l}
\text { for } \quad i \in 1 . . n \\
\text { for } j \in 1 . . n \\
\qquad \begin{array}{l}
M_{i, j} \leftarrow 1 \text { if } i=j \\
M_{i, j} \leftarrow 0 \text { otherwise }
\end{array} \\
\text { return } M
\end{array}\right.
$$

$$
\mathrm{I}(3)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Add Line:]

Inserts a new line into a programming block or creates a new programming block.

Local Definition $\leftarrow:\{$

Assignment equal for programming blocks. This operator defines a variable with local scope.
if: \}
Conditional statement. Computes the assignment if the condition is true.

return: Ctrl |

Returns a value or an array of values to the function statement.

otherwise: Ctrl \}

Used in conjunction with the if statement to assign a value if the condition is false.
for: Ctrl "
Unconditional loop execution. Used to perform execution repeatedly a predefined number of times.

while: Ctrl]

Conditional loop execution. Used to perform execution repeatedly while an imposed condition is true.

break: Ctrl \{

Used to halt the execution of for or while loops when a condition is true.

$$
\text { Summation }(N):=\left\lvert\, \begin{aligned}
& \mathrm{a} \leftarrow 0 \\
& \mathrm{n} \leftarrow 0 \\
& \text { while } \mathrm{n}<\mathrm{N} \\
& \left\lvert\, \begin{array}{l}
\mathrm{n} \leftarrow \mathrm{n}+1 \\
\mathrm{a} \leftarrow \mathrm{a}+\mathrm{n} \\
\text { break if } \mathrm{n}>99
\end{array}\right. \\
& \text { return a }
\end{aligned}\right.
$$

Summatior(50) $=1275$
Summation (100) $=5050$
Summation(120) $=5050$

Symbolic Operations

$>$ Mathcad includes symbolic operators that allow a number of algebraic manipulations to be performed over expressions without the need to evaluate numeric values.
$>$ The symbolic toolbar below provides a list of the available operators

Symbolic		\square
\rightarrow	\rightarrow	Modifiers
float	complex	assume
solve	simplify	substitute
factor	expand	coeffs
collect	series	parfrac
fourier	laplace	ztrans
invfourier	invlaplace	invztrans
$M^{\top} \rightarrow$	$M^{-1} \rightarrow$	$\|m\| \rightarrow$

Symbolic Operations

Expand:

The expand operator is used to develop a factorized expression.

$$
(x-7) \cdot(x-2) \text { expand, } x \rightarrow x^{2}-9 \cdot x+1<
$$

Symbolic Operations

Factor:
The factor operator is used to factorize expanded expressions.

$$
x^{2}-9 \cdot x+14
$$

Select the expression and click Factor from the Symbolics top menu:

$$
(x-7) \cdot(x-2)
$$

$$
x^{2}-7 \cdot x+10 \text { factor } \rightarrow(x-2) \cdot(x-5)
$$

Symbolic Operations

Substitute:

The substitute operator replaces a variable by another in the expression.

$$
x^{3}-2 \cdot x^{2}-3 \cdot x+4 \text { substitute, } x=y \rightarrow y^{3}-2 \cdot y^{2}-3 \cdot y+4
$$

Symbolic Operations

Solve:

The substitute operator replaces a variable by another in the expression.

$$
x^{2}-9 \cdot x+14 \text { solve, } x \rightarrow\binom{2}{7} \quad-2 \cdot x^{2}+3 \cdot x+4 \text { solve } \rightarrow\binom{\frac{\sqrt{41}}{4}+\frac{3}{4}}{\frac{3}{4}-\frac{\sqrt{41}}{4}}
$$

This is another way to solve quadratic equation

Symbolic Operations

Simplify:

The simplify operator can be used to combine expressions with a common denominator.

$$
\frac{a}{x-3}+\frac{b}{x-4} \text { simplify } \rightarrow \frac{(a \cdot x-4 \cdot a+b \cdot x-3 \cdot b)}{(x-3) \cdot(x-4)}
$$

Symbolic Operations

Mathcad symbolic integration and differentiation capabilities are one of its most powerful features.
$\int\left(x^{2}-3 \cdot x+6\right) d x \rightarrow \frac{1}{3} \cdot x^{3}-\frac{3}{2} \cdot x^{2}+6 \cdot x$
Differentiation can also be performed the same way.

$$
\frac{d}{d x}\left(3 \cdot x^{3}-4 \cdot x^{2}+2 \cdot x+6\right) \rightarrow 9 \cdot x^{2}-8 \cdot x+2
$$

Numerical Techniques

Numerical integration can be directly performed with the definite integral operator.

$$
\begin{aligned}
& \int_{-1}^{2} e^{-x^{2}} d x=1.629 \\
& \int_{0}^{1} \cosh (x)^{2} d x=1.407
\end{aligned}
$$

