

Engineering Concepts and Methods

Outline

- Math and Trigonometric Functions
- Data Analysis Functions
- Matrix Operations
- Solutions to Systems of Linear Equations

MATLAB Help feature

- To get help on a particular topic, type help <topic> in the command window
 - Example: help sin
 - help sqrt
- MATLAB will display what that function does, how many argument(s) it needs, and the names of similar functions

Math and Trigonometric Functions

Elementary math functions:

- abs(x)
- sqrt(x)
- round(x)
- exp(x)
- log(x) is natural log i.e. ln(x); log10(x) is log₁₀(x)
- Trigonometric functions:
 - sin(x), x in radians
 - cos(x);
 - acos(x), x must be a number between 1 and -1

Data Analysis Functions

- Functions used to evaluate a set of test data:
 - max(x): returns the largest value in a vector x. Returns a row vector containing the maximum element from each column of a matrix x.
 - max(x,y): Returns a matrix. Each element in the matrix contains the maximum value from the corresponding positions in x and y.
 - min(x); min(x,y)

$$min(x) = 2$$

 $min(x,y) = 2 \ 10 \ 21 \ 13$

Data Analysis Functions

- Mean(x): computes the average value of the elements in a vector x or computes the mean value of each column of a matrix x.
- median(x): computes the median value of the elements in a vector x or computes the median value of each column of a matrix x.
- std(x): computes the standard deviation of the values in a vector x or computes the standard deviation of each column of matrix x

Data Analysis Functions

- sum(x) : sum of the elements of vector x
- prod(x): product of elements of vector x
- sort(x) : sorts the elements of vector x into ascending order
- size(x) : determines the number of rows and columns of matrix x
- Iength(x): determines the largest dimension of matrix x

Special values & functions

- **pi**:π
- i, j : imaginary number
- Inf : infinity, divide by zero
- NaN : not-a-number, divide zero by zero
- clock: display current year, month, day, hour, minute and seconds
- date: current date 02-Nov-2005

Colon Operator

- Use to define a range (like .. In MathCAD)
- A = 1:5
 - Means A = 1, 2, 3, 4, 5
 - By default the increment is 1
- A = 1:2:5
 - The middle number is the increment
 - So, A = 1, 3, 5

More use of Colon Operator

- To represent an ENTIRE row or column
- To select a submatrix from another matrix.
 Exp: F = C(:,2)
 - F will have the 2nd column of matrix C
 - means all the rows of the chosen column
- To choose 2nd to 4th column, B=C(:,2:4)
- To choose 2^{nd} row, A = C(2,:)
- To choose a single element, D = C(2,3)

Array operations

- If you want element-by-element operation for an array use .
 - A.*B element-by-element multiplication
 - A./B element-by-element division
 - A.^3 exponentiation of individual elements
 - But for addition and subtraction use A+B
 - To multiply or divide each elements of array
 A by a constant number use 2.5*A

Matrix Operations and Functions

- Transpose: A'
- Power: $A^2 = A^*A$
- Matrix Multiplication: A*B
 - Inner matrix dimension must agree.

•
$$C_{2x3} = A_{2x3} * B_{3x3}$$

- Matrix Inverse: A⁻¹ or inv(A)
- Determinant: det(A)
- Dot Product: dot(A,B)

Solutions to linear Equations

Consider the following system:

•
$$3x+2y-z=10$$

• $-x+3y+2z=5$
• $x-y-z=-1$
 $A = \begin{bmatrix} 3 & 2 & -1 \\ -1 & 3 & 2 \\ 1 & -1 & -1 \end{bmatrix}$
 $B = \begin{bmatrix} 10 \\ 5 \\ -1 \end{bmatrix}$

Solution using the matrix inverse: X=inv(A)*BSolution using matrix left division: $X=A\setminus B$

Solutions to linear Equations

MATLAB

MathCAD

X := [A]⁻¹.B
X := Isolve(A,B)

Random numbers

rand(n): returns an n x n matrix
rand(m,n): returns an m x n matrix

The M-FILE (another way to save your work)

- Enter Commands just like Command Window.
- Save comments, equations and variables
- Create programs and save.
- Run your M-File. (click on "*Debug/Run*")
 - Can also run from Command Window
- NOTE: You CANNOT see the results of your program here...
- The results will be written in the Command Window

Use m-file

 Calculate the range of a projectile using the following equation and display the results in a table

$$range = \frac{2V^2 \sin \theta \cos \theta}{g}$$

- g = 9.81; θ = launch angle = 0 to $\pi/2$
- V is the velocity of launch = 50

% range of a projectile V = 50;q = 9.81; % launch angle in radian theta = 0:pi/10:pi/2; % convert radian to degree degree = theta * 180/pi ; % calculate range range = 2 * V * V * sin(theta) .*cos(theta) / g;% create a table table = [degree', range']

Save the file as example.m

Command Window

>> example

table =

0	0
18.0000	149.7924
36.0000	242.3691
54.0000	242.3691
72.0000	149.7924
90.0000	0.0000

>>